Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE BIOLOGY AND CONTROL OF EHRHARTA VILLOSA, SOUTH AFRICAN PYPGRASS.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Plant Biology at Massey University.

LYNELLE MAREE HODDER

1997

ABSTRACT

The biology of an adventive weed, *Ehrharta villosa* (F. Schult) was investigated at Turakina beach, Rangitikei, in order to understand its means of spread and to discover a way of controlling the plant. Two populations have been found at Turakina, the smaller being on the dune system and the other in a nearby pine plantation.

Studies of the seed biology showed that although viability was high (ca. 80%), the numbers of seed produced per m^2 was low (8 to 102 seeds/ m^2). Dispersal of these seeds was limited to within 5m of the source population and no seeds were discovered in the soil seed bank. Circumstantial evidence suggests seed predation to be a contributing factor to this. Germination tests in sand showed seeds were capable of emerging from depths of up to 6cm.

Stages in seedling development were described. Pypgrass displays a tall habit with internodes which elongate soon after germination, but its seedlings are less vigorous than most other grasses and weeds. The morphology and growth pattern of pypgrass allows it to have a smothering effect on other vegetation.

The potential for vegetative spread by rhizome fragments was investigated by burial and reexcavation of fragments. Pypgrass is capable of reproduction from rhizome fragments of varying lengths. Mapping a 400m² area of the advancing front of one population showed that over one year pypgrass had spread between 4.1 and 9.0m. Species associated with pypgrass were recorded at the beginning and the end of the study to give some indication of the effect of pypgrass density on those associated species. In quadrats where pypgrass was most dense, fewer species overall were found.

Dune species including pypgrass were tested for the presence of mycorrhizal fungi. Pypgrass proved to have the greatest percentage mycorrhizal infection (88.9%) with the other species having significantly lower percent infection. Mycorrhizal association may give an advantage to pypgrass by allowing greater uptake of water and minerals compared with other plants.

Leaf anatomical studies confirmed pypgrass is a C3 plant and other features such as sunken stomata and inrolled leaves may be of adaptive value in a coastal dune habitat.

Different methods for control of pypgrass were considered and it was decided that herbicide was the best option, because of the large area involved and the nature of the underground rhizomes. Field trials were used to evaluate haloxyfop for control of pypgrass. A single application did not completely control pypgrass, regardless of time of application. Two, split, applications also did not achieve complete control of leaf and rhizome, however split applications ensured tiller regeneration remained low throughout the trial.

Haloxyfop can generally be used selectively among dicotyledonous plants and monocotyledons that are not in the family Poaceae, but it can harm some of these monocotyledons. Pot trials on dune monocotyledons associated with pypgrass demonstrated that marram was the only species significantly affected by haloxyfop, and even this plant was not completely killed. The trial established that haloxyfop would not adversely affect any native monocotyledonous plants growing in the area of pypgrass.

This study has gathered the necessary information to decide on a course of action. Pypgrass is at present confined to the Turakina area in two discrete populations. Use of herbicide (haloxyfop) in a number of split applications would prevent regrowth from rhizomes. Regeneration of pypgrass by seed after herbicidal control is not likely, allowing eradication to be an achievable aim.

ACKNOWLEDGEMENTS

I would like to thank the Department of Conservation (Wanganui), the Ngati Tama Trust and the Kaitoke Prison Native Tree Nurseries for their assistance in providing me with pingao plants for use in the herbicide trials.

I am also indebted to Dr. Ella Campbell for her efforts in identifying the mosses found on the Turakina dunes.

Much needed financial assistance from Massey University Research Fund, the Coombs Memorial Bursary and the New Zealand Plant Protection Society Research Scholarship was greatly appreciated.

I would most like to thank my supervisors, Dr. Heather Outred and Dr. Kerry Harrington for their unwavering support and encouragement.

Finally, a huge thank you to the three most important people in my life, Robert Hodder, Heather Eustace and Frank Eustace, for believing in me.

TABLE OF CONTENTS.

																		Ρ	aye
ABSTR	ACT	• • •			•	• •	•		•		•	•	•	-	•	•	•	•	ii
ACKNO	WLED	GEMENTS	• • •	• •	-		•		•		•	•	•	•	٠	•	•	•	v
LIST	OF F	IGURES			•		•		•	•	•	•	•	•	•	•		•	xi
1. I	NTRO	DUCTION								•				•	-				1
2. P	YPGR	ASS BIO	LOGY .			••	•		•	•		•	•		•	•	•	•	9
	2.1	DESCRI	PTION .			• •	•	•••	•	•	•	•	•	•	•	•	•	•	9
	2.2	DISTRI	BUTION			•	•		•	•	•	•	•	•	•	•		•	9
		2.2.1	South	Afri	ca.		•		•	•	•	•	•	•	•	•	•	•	9
		2.2.2	Austra	lia.	• •	•	•	• -	•				•	•		•	•	•	11
		2.2.3	New Ze	alan	d	-	•	• •	•	•	•	•	•	•	•	•	•		11
	2.3	ECOLOG	<u>Y OF TH</u>	<u>e ar</u>	EA .		•		•	•		•	•	•	•	•	•		13
	2.4	WEED_PO	OTENTIA	<u>L OF</u>	PYI	GRA	<u>155</u>		•	•	•	•		•	•	•		•	16
		2.4.1	Growth	Hab	it.	•	•		•		•	•		•	•	•	•	•	16
		2	.4.1.1	Per	sona	al (bse	erv	ati	ior	ıs.		•	•	•	•	•	•	16
		2.4.2	Affili	ated	Spe	ecie	es.		•		•	•	•	•	•	•	•	•	17
		2.4.3	Polypl	oidy		•	•		•		-		•	•		•			22

page

3.	SEED B	IOLOGY						• •	•	•	•	•	•	24
	3.1	SEED PI	RODUCTIO	<u>N</u>					•	•	•	•	•	24
		3.1.1	Introdu	ction.				• •	•				•	24
		3.1.2	Methods	• • • •					•	•		•	•	25
		3	.1.2.1	Seed Nu	mber p	er Se	ed H	lead	ı.	٠	•	•	•	25
		3	.1.2.2	Density	of Fe	rtile	e Til	ler	s.	•				27
		3	.1.2.3	Total S	eed Pr	oduct	ion.	-	•		•		•	27
		3.1.3	Results						• •				-	27
		3	.1.3.1	Seed nu	mber p	er Se	ed H	lead	1.			•		27
		3	.1.3.2	Density	of Fe	rtile	e Til	ler	s.	•	•	•		30
		3	.1.3.3	Total S	eed Pr	oduct	ion.		•		•	•	•	30
		3.1.4	Discuss	ion					•	•		•	•	32
		3.1.5	Conclus	ions			•••		•	•				35
	3.2	DISPER	<u>SAL</u>			• •			•	•	•		•	35
		3.2.1	Introdu	ction.				• •	•	•	•	•	•	35
		3.2.2	Morphol	ogy					•	•		•		37
		3.2.3	Mechani	sm of D	ispers	al.			•	•	•	•		37
		3.2.4	Seed Tr	aps		• •			•				•	41
		3	.2.4.1	Introdu	ction.				•	•			•	41
		3	.2.4.2	Methods						•		-	•	43
		3	.2.4.3	Results		•••			•					43
		3	.2.4.4	Discuss	ion				•	•	•	•	•	45
		3	.2.4.5	Conclus	ions.			• •	•	•	٠	•		48
		3.2.5	Seed Ba	nk				• •		•		-	•	49
		3	.2.5.1	Introdu	ction.					•	•		•	49
		3	.2.5.2	Methods							•			50
		3	253	Reculte										ፍብ

vii

		3.2.5.4	Discus	sior).	•	•	•	•	•	•	•	•	٠		•	•	50
		3.2.5.5	Conclu	sior	ns.		•	•	•	•	•	•	•	•		٠	•	52
3.3	EMERG	ENCE FRO	<u>M BURIA</u>	Ŀ.	•	•	•	•	•	•	•	•	•	•	•	•	•	52
	3.3.1	Introd	uction.	•	•	•	•	•	•		•		٠	•	-	•	•	52
	3.3.2	Method	s		•	•	•	•	•	•	•	•	•	•	-	•	•	52
	3.3.3	Result	s		•	•	•				•	•		•	•	•	•	53
	3.3.4	Discus	sion.		•	•	٠				•		•		•		-	55
	3.3.5	Conclu	sions.	• •	•	•	-		•		•	•			-	•	•	56
VEGET	ATIVE	GROWTH .		• •	•	•		•	•	•	•	•	•		•	•	•	57
4.1	SEEDL	ING GROW	<u>TH</u> .	• •		•	•	•	•	•	٠	•	•	•	•	•	•	57
	4.1.1	Introd	uction.		•	•		•	•		•	•	•	•	٠		•	57
	4.1.2	Method	s	• •	•	•	•	•					•	•		•		57
	4.1.3	Result	s		•	•	•	•	•	•	•	•	•	•		•	•	59
	4.1.4	Discus	sion.		•	•	•	•			•	٠	•	•		•		64
	4.1.5	Conclu	sions.		•	•	•	•		•	•	•	•	•	•	•		65
4.2	REGEN	ERATION	FROM RH	IZOM	E	•	•	•		•	•			•	•	•	•	65
	4.2.1	Introd	uction.	•	•	•	•	•		•	•				•	•		65
	4.2.2	Method	s		•	•			•	•			•	•			•	66
	4.2.3	Result	s	• •		•	•	•		•		•	•	•			•	67
	4.2.4	Discus	sion.		-	•			•			•	•	•		•		67
	4.2.5	Conclu	sions.			•		-					•		•	•	•	71
4.3	RATE	OF VEGET	ATIVE S	PREA	D	•	٠	•	•		•	•	•	•	•	•		71
	4.3.1	Introd	uction.	•		•	•		•	•	٠			٠	٠			71

4.

viii

4.3.2	Methods	•	٠	•	٠	٠	٠	٠	٠	٠	•	٠	٠	•	•	•	71
4.3.3	Results	•	•	•	•	•		•	•	•	•	٠	•	•	•	•	74
4.3.4	Discussion.	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	٠	•	81
4.3.5	Conclusions.	•	-	•	٠	•	٠	٠	•	•	•	•	•			•	83

5.	OTHER	ECOLOGI	CAL DATA	• •	•	•	•	٠	٠	•	٠	٠	•		•	•	٠	•	•	85
	5.1	LEAF A	NATOMY .	•••		•	•	•	•	•	•		•	•	•	•	•	•	•	85
		5.1.1	Introduct	lon.	•	•	•	٠	•		•	•	٠	•	•	•	•			85
		5.1.2	Methods.	••	•	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	•	85
		5.1.3	Results.	• •	٠	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	86
		5.1.4	Discussio	on.	•	•	•	•	4	•	•	•	•	•	•	•	•	•	•	86
		5.1.5	Conclusio	ons.	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	90
	5.2	SOIL M	YCORRHIZA	• •	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	91
		5.2.1	Introduct	cion.		•	•	٠	•	•	•	•	•	•	-	•	•	٠	•	91
		5.2.2	Methods.		•	•	•	•	-	•	•	•	•	•	٠	٠	•	٠	•	92
		5.2.3	Results.		•	٠	•	•	٠	٠	•	•	-	•	•	•	•	•	•	94
		5.2.4	Discussio	on.	•	•	•	٠	•	•	•	•	-	•	٠	•	•	٠		100
		5.2.5	Conclusio	ons.	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		102

6.	CONTROL OF P	YPGRASS	•••	•••	٠	•	•	•	•	•	•	•	•	٠	•	103
	6.1 CONTRO	DL OPTIONS .	••	• •	•	•	٠	•	•	٠	•	•	•	•	•	103
	6.1.1	Mechanical	meth	ods.	•	•	•	٠	٠	•	•	•	•	•	•	103
	6.1.2	Biological	cont	rol.	•	•	•	٠	•	•	•	•	•	•	•	104
	6.1.3	Use of her	oicid	le.	•	•	•	•	•	•	•	•	•	•	•	104

ix

<u>6.2</u> H	HERBICI	DE SELE	CTIO	<u>N</u> .	•		•	•	•		•	•	٠	•	•	105
e	5.2.1	Activit	y in	the	2 P.	lan	t.	•	•		•	•	•	•		105
ŧ	5.2.2	Activit	y in	the	e S	oil	•	•	•		٠	•	•	•	•	106
e	5.2.3	Mode of	Acti	ion.			•	•	•				•		•	107
e	5.2.4	Selecti	vity.	• •	•		•	•	-		•	•		•	•	107
e	5.2.5	Translo	catio	on.	•	• •	•	•	•			•		•	-	108
<u>6.3</u> F	FIELD T	RIALS			•	•••	-	•	•			•	•	•	•	109
e	5.3.1	Introdu	ctior	1.	•			•	•	• •	•		•	•	•	109
e	5.3.2	Methods		• •	•	• •	•		•			•	•	•	•	109
e	5.3.3	Results		• •	•		•	•	•			•	·	•	•	113
	6.	3.3.1	Veget	tati	on	Sco	ore	s.			•	•	•	•	•	113
	6.	3.3.2	Regro	owth	A	sses	ssn	ien	t.	-	•	•	•	•	•	118
6	5.3.4	Discuss	ion.	•	-		•	•	•			•	•		•	118
<u>6.4</u> F	POT TRI	ALS .		•••	•		•	•	•	• •	•	•	•	•	•	124
6	5.4.1	Introdu	ctior	1.	•		•	•	•		•	•	•	•	•	124
ϵ	5.4.2	Methods		• •	•		•	•	•			•	•	•	•	124
6	5.4.3	Results		• •	•		•	•	•		•	•	•	٠	•	126
e	5.4.4	Discuss	ion .	•••	•	• •	•	•	•		•	•		•	•	128
<u>6.5</u> (CONCLUS	IONS.	• • •	• •	•	• •		•	•			•	•	•	•	133
7. CONCLUSI	cons		•••	•••	•	••	•	•	•			•	٠	•	•	135
REFERENCES.				• •	•		-	•	•		•	•		•		140

х

LIST OF FIGURES, TABLES AND PLATES.

	p	age
Plate 1.1	Pypgrass creates a virtual monoculture on the	
	dunes	2
Plate 1.2	In summer, pypgrass has very little leaf	3
PLate 1.3	In winter, pypgrass has relatively lush	
	foliage	4
Plate 1.4	Pypgrass can climb to a height of at least	
	two metres	5
Figure 2.1	Distribution of pypgrass in South Africa	10
Figure 2.2	Distribution of pypgrass in New Zealand	12
Figure 2.3	The Turakina Beach area	14
Plate 2.1	Pypgrass climbing in a lupin bush	18
Plate 2.2	Pypgrass smothering boxthorn	19
Plate 2.3	Pypgrass climbing up a Macrocarpa tree	20
Plate 2.4	Underground rhizomes of pypgrass	21
Table 3.1	Number of seeds per seedhead in pypgrass	29
Table 3.2	Density of fertile tillers of pypgrass	31
Table 3.3	Total pypgrass seed production	31
Figure 3.1	Pypgrass floret	38
Figure 3.2	Pypgrass dispersal unit	39
Plate 3.1	Inflorescence and single floret of pypgrass.	40
Figure 3.3	Plate type seed trap	42
Figure 3.4	Funnel type seed trap	44
Figure 3.5	Pattern of seed dispersal around pypgrass	
	populations	46
Table 3.4	Number of dispersal units per square metre.	47

Table 3.5	Number of buried pypgrass seedlings that	
	emerged	4
Figure 4.1	Diagram of a grass plant 5	8
Figure 4.2	Pattern of seedling growth in pypgrass 6	0
Figure 4.3	Pypgrass - Three leaf stage 6	1
Figure 4.4	Pypgrass - Four leaf stage 6	2
Figure 4.5	Pypgrass - Tillering 6	3
Figure 4.6	Rhizome fragments that grew shoots 6	8
Table 4.1	The specific axillary buds that shoots grew	
	from	9
Plate 4.1	Mapping area, 1994 7	2
Plate 4.2	Mapping area, 1995 7	3
Figure 4.7	Mapping of an area of beach pypgrass 7	5
Table 4.2	Distance from the western boundary of the	
	study area to the colonising pypgrass plants. 7	6
Figure 4.8	Density of pypgrass tillers within the	
	study area	8
Figure 4.9	Changes in species composition in the	
	study area	9
Plate 5.1	Transverse section of median vascular bundle	
		-
	of pypgrass leaf 8	7
Plate 5.2	Transverse section of pypgrass leaf showing	_
	semi radiate mesophyll 8	8
Plate 5.3	Transverse section of pypgrass leaf showing	

sunken stoma.89Table 5.1Species tested for presence of mycorrhiza.93

xii

Figure 5.1	Percentage mycorrhizal infection of tested
	species
Plate 5.4	Extracellular hyphae 9
Plate 5.5	A mycorrhizal vesicle seen in the root cortex
	of pypgrass
Plate 5.6	Intracelluar hyphae
Figure 6.1	Site of herbicide trial 110
Table 6.1	Treatments given in herbicide trial 112
Plate 6.1	Pypgrass scoring 2
Plate 6.2	Pypgrass scoring 5 115
Plate 6.3	Pypgrass scoring 8 116
Table 6.2	Effect of haloxyfop on pypgrass as assessed
	by scoring
Figure 6.2	Effect of a single application of
	haloxyfop
Figure 6.3	Effect of a split application of
	haloxyfop 120
Table 6.3	Tiller regrowth in trial plots 121
Table 6.4	Species tested in pot trials 125
Table 6.5	Effect of haloxyfop on pot trial plants 128
Plate 6.4	Effect of haloxyfop on Flax 129
Plate 6.5	Effect of haloxyfop on Pingao 130
Plate 6.6	Effect of haloxyfop on Isolepis 131
Plate 6.7	Effect of haloxyfop on Marram 132