

OCCUPATIONAL EXPOSURE TO ELF-MF AND ELECTRIC SHOCKS AND MOTOR NEURONE DISEASE

Grace Chen¹, Dave McLean¹, Leonard van den Berg², Andrea 't Mannetje¹, Neil Pearce³, Hans Kromhout⁴, Wendyl D´Souza⁵, Melanie McConnell⁶, Jeroen Douwes¹

¹Centre for Public Health Research, Massey University, Wellington, New Zealand. ²University Medical Centre, Utrecht, The Netherlands. ³London School of Hygiene and Tropical Medicine, London, United Kingdom. ⁴Utrecht University, Utrecht, The Netherlands ⁶Malaghan Institute of Medical Research, Wellington, New Zealand ⁵University of Melbourne, Melbourne, Australia.

RESULTS

Although there are no established environmental or occupational risk factors for Motor Neurone Disease, an association with work in "electrical occupations" has been observed in a number of studies¹⁻³. However, the results of investigations using job-exposure matrices for extremely low frequency electromagnetic fields (ELF-MF) and for electric shocks have been equivocal. In a population-based casecontrol study conducted in New Zealand we examined the effect on Motor Neurone Disease of both electric shocks and ELF-MF.

AIM OF THIS STUDY

To investigate the association between occupational exposure to extremely low frequency electromagnetic fields (ELF-MF), electric shocks and Motor Neurone Disease in New Zealand.

The analyses were based on 259 cases and 474 controls.

Table 1: Characteristics of the study population

Table 1		Cases	Cases		
		Number	%	Number	%
Gender	Male	170	65.66%	260	54.89%
	Female	89	34.34%	214	45.11%
Age at interview	20-50	21	8.30%	34	7.14%
	51-60	57	21.89%	74	15.60%
	61-70	104	40.00%	150	31.58%
	≥71	77	29.81%	216	45.68%
Smoking	Never	132	50.94%	247	52.07%
	Ex	106	41.13%	191	40.23%
	Current	19	7.17%	28	6.02%
	Missing Data	2	0.75%	8	1.69%
Ethnicity	European/Pakeha	230	89.06%	430	90.79%
	Maori	12	4.53%	21	4.32%
	Pacific & others	17	6.42%	23	4.89%
Deprivation Index	1-2	80	30.94%	128	27.07%
Quintile					
	3-4	63	24.53%	111	23.31%
	5-6	56	21.51%	99	20.86%
	7-8	35	13.58%	88	18.61%
	9-10	25	9.43%	48	10.15%

METHODS

A population-based case-control study was conducted to examine the associations between occupational and environmental risk factors and Motor Neurone Disease in New Zealand.

Cases were recruited through the Motor Neurone Disease Association of New Zealand (MNDANZ) supplemented by the National Minimum Dataset (NMDS) (hospital events routinely registered through the NMDS), and notifications by neurologists. Controls were randomly selected from the New Zealand Electoral Roll, two controls for each case, frequency matched by age and gender. These controls are therefore representative of the general population that generated the cases.

All participants completed comprehensive questionnaires on demographic and personal data, lifestyle factors and a lifetime occupational history. Participants were asked to list all jobs ever held for 6 months or more. All jobs were assigned a New Zealand Standard Classification of Occupations (NZSCO99) 5digit code and then converted to the International Standard Classification of Occupation 2008 (ISCO08). The occupational histories of all participants were linked the Dutch job-exposure matrices on ELF-MF to exposure and on electric shocks⁴.

Table 2: Exposure to ELF-MF by occupation

Exposed to ELF by	Cases	%	Controls	%	OR	95%CI	P value
occupation							
No exposure	101	39.00	167	35.23	1		
Low Exposure	131	50.58	268	56.54	0.82	0.59-1.14	0.2311
High Exposure	27	10.42	39	8.23	1.04	0.60-1.83	0.8972

Table 3: Risk of electric shock by occupation

Risk of electric shock by	Cases	%	Controls	%	OR	95%CI	P value
occupation							
Low risk	115	44.40	260	54.85	1		
Medium risk	58	22.40	92	19.41	1.29	0.86-1.93	0.2208
High risk	86	33.20	122	25.74	1.26	0.85-1.86	0.2621

CONCLUSION

Unconditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for age, gender, ethnicity, socioeconomic status (NZDep2006) and smoking.

There was no association between ELF-MF exposure and Motor Neurone Disease, with an OR=1.04 (95% CI, 0.60-1.83) for the high exposure group. For electric shock the risk was elevated (but not statistically significant) for both the medium risk group OR=1.29 (95% CI, 0.86-1.93) and high risk group OR=1.26 (95% CI,0.85-1.86) when compared with the reference low risk group.

We found no strong evidence of elevated risk of Motor Neurone Disease associated with either ELF-MF or electric shock. However, further analyses will be conducted to examine the effect of exposure duration.

REFERENCES

1.Gunnarsson LG, Bodin L, Soderfeldt B, Axelson O. A case-control study of motor neurone disease: its relation to heritability, and occupational exposures, particularly to solvents. Br J Ind Med. 1992;49(11):791-8.

2.Feychting M, Jonsson F, Pedersen NL, Ahlbom A. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 2003;14(4):413-9; discussion 27-8.

3. Fischer H, Kheifets L, Huss A, Peters TL, Vermeulen R, Ye W, et al. Occupational Exposure to Electric Shocks and Magnetic Fields and Amyotrophic Lateral Sclerosis in Sweden. Epidemiology. 2015;26(6):824-30.

4. Huss A, Vermeulen R, Bowman JD, Kheifets L, Kromhout H. (2013) Electric shocks at work in Europe: development of a job exposure matrix. Occup Environ Med 70: 261-267.

MASSEY RESEARCH ONLINE

Massey Documents by Type

http://mro.massey.ac.nz/

Conference Posters

OCCUPATIONAL EXPOSURE TO ELF-MF AND ELECTRIC SHOCKS AND MOTOR NEURONE DISEASE

Chen GX

2016-09-04

14/03/2024 - Downloaded from MASSEY RESEARCH ONLINE