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Abstract

Closing the feedback loop of machine control has been a known method for gaining stability.

Medical exoskeletons are no exception to this phenomenon. It is proposed that through machine

vision, their stability control can be enhanced in a commercially viable manner. Using machines

to enhance human’s capabilities has been a concept tried since the 19th century, with a range of

successful demonstrations since then such as the REX platform. In parallel, machine vision has

progressed similarly, and while applications that could be considered to be synonymous have been

researched, using computer vision for traversability analysis in medical exoskeletons still leaves a

lot of questions unanswered. These works attempt to understand better this field, in particular,

the commercial viability of machine vision system’s ability to enhance medical exoskeletons.

The key method to determine this will be through implementation. A system is designed that

considers the constraints of working with a commercial product, demonstrating integration into

an existing system without significant alterations. It shows using a stereo vision system to gather

depth information from the surroundings and amalgamate these. The amalgamation process

relies on tracking movement to provide accurate transforms between time-frames in the three-

dimensional world. Visual odometry and ground plane detection is employed to achieve this,

enabling the creation of digital elevation maps, to efficiently capture and present information

about the surroundings. Further simplification of this information is accomplished by creating

traversability maps; that directly relate the terrain to whether the REX device can safely navigate

that location. Ultimately a link is formed between the REX device and these maps, and that

enables user movement commands to be intercepted. Once intercepted, a binary decision is

computed whether that movement will traverse safe terrain. If however the command is deemed

unsafe (for example stepping backwards off a ledge), this will not be permitted, hence increasing

patient safety. Results suggest that this end-to-end demonstration is capable of improving patient

safety; however, plenty of future work and considerations are discussed. The underlying data

quality provided by the stereo sensor is questioned, and the limitations of macro vs. micro

applicability to the REX are identified. That is; the works presented are capable of working on a

macro level, but in their current state lack the finer detail to improve patient safety when operating

a REX medical exoskeleton considerably.
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Chapter 1

Introduction

Rex Bionics is a New Zealand based, garage graduate company that has changed the level of

interaction possible between technology and humankind. Beginning with the desire to re-enable

humans who could no longer use their lower limbs, from the home garage to production facility,

the business has grown together human and machine in a unique manner. Their core product, the

REX, is the first self-supported medical exoskeleton to be commercially available. Being self-

supported was a major focus of the team, not only because this would give a marketing advantage

over similar medical exoskeletons; but because of the wish to allow patients to interact with their

environment while standing. Rather than having to support one’s self with crutches, patients are

free to go about their usual activities, interact with others and complete tasks. However while this

feature thoughtfully placed Rex Bionics exoskeleton apart from other products, it also reduced

the stability of the platform when navigating uneven terrain. Fundamentally this was a control

limitation, as mechanically the device could navigate the sloped terrain. Assuming the control

methods maintained a stable centre of mass over the grounded foot, which had roll and pitch

rotational freedom, the device could stand. The issue, however, was that although attempted, no

closed-loop control solution had been developed to stabilise the device.

With an apparent abundance of sensory technology and portable processing power being available

to consumers, there seemed an obvious solution: close the loop. Machine vision can capture

significant amounts of data about the environment and with advances in processing technology,

infer relevant information to base decisions on. Advances in sensor technology have allowed

cameras to perceive depth as humans do, adding yet another dimension of information available

for decision-making.

Machine vision and humanoid robotics is not an uncharted topic, with the likes of Humanoid

Robots Lab (HRL) doing significant work, along with other laboratories around the world. These

groups to date focus however on robotics not inhabited by humans. The benefits of combining
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CHAPTER 1. INTRODUCTION

these two technologies still lie largely untested. This research focuses on this novel application of

existing technologies in a commercial setting.

The question of why this should be attempted can easily be approached from various directions;

however, the predominant considerations are patient safety and empowerment. At the core of

REX’s focus is re-enabling patients; and to be able to do this effectively, users must feel confident.

Confidence can be enhanced by demonstrating that the latest technology helps ensure patient

safety by reducing fall rates, letting the user focus on the therapy process rather than their safety.

Additionally, advancing the sensory ability of the REX will lead to allowing advanced terrain

navigation, reducing restrictions on where patients may go and what they may do with the REX,

thus empowering them to be less dependent.

Research has indicated that terrain navigation and classification of a humanoid robot is possible,

and has identified key considerations when implementing such a system, however, this has not

been translated into a commercial product. Identifying the benefits such systems can offer a user

are important in determining if the technology is worth pursuing commercially. Considering the

availability of depth sensing technology, the integration into consumer products is still largely

untapped, arguably due to difficulties with sensors in uncontrolled environments. In pursuing

this application, issues faced when commercialising depth technology are identified and potential

solutions implemented.

Avoiding rediscovering known findings required an extensive literature review to be carried out.

This highlighted how researchers in approached and answered similar hypothesis, but also needed

to be continuously translated to apply to the REX. The following key challenges were approached

to respond to the hypothesis that machine vision could extend medical exoskeleton’s ability to

traverse terrain:

1. Technology Selection – Literature review quickly identified that research outcomes would

be significantly shaped by the technology employed, making this an important choice.

Each sensor category offered its strengths and weaknesses, as did software and processing

hardware. These choices are critically reviewed, and the decisions made are supported by

knowledge identified by fellow researchers.

2. Relating Data and Time – Observing all necessary information in a single instance would

limit the usefulness of the information. Instead, linking information observed at different

times and from different vantage points extended the ability to capture information. Adding

this temporal dimension, however, required knowledge of precise transforms between

frames, so the information could be merged in a common frame of reference.

3. Extendible Framework – Avoiding reworking significant challenges, choosing a frame-

work that provided solutions to these was essential. For software, this meant choosing an

2



CHAPTER 1. INTRODUCTION

operating system and a set of libraries and applications that implemented standard features

required for a machine vision robotics system.

4. Simplifying Information – While the insight gained by depth-cameras was crucial for

this research; they also produce large amounts of data. Managing, understanding and

working with raw point clouds was excessive, and so this was reduced, without losing

vital information such as elevation. It was possible to reduce complexity significantly but

maintain the basic underlying relevant information.

5. Determing Traversability – The definition of traversable is relative to with what one

wishes to traverse the terrain. To this extent, the simplified representation of the immediate

surroundings is assessed for traversability by the REX. Interfacing this information directly

to the REX when moving then closes the loop and signifies a key milestone in this research.

These challenges are all faced with applicability to the REX kept steadily in focus, ensuring that

the results presented are representative of what could be commercially achieved on the platform.

At times this presents a severe limitation, but one that is necessary to determine the commercial

viability of machine vision systems with medical exoskeletons.

By overcoming these challenges, this work describes the path to combining the fields of machine

vision and medical exoskeletons, something which has previously not been attempted. This

work will significantly help the REX move to a dynamic movement model capable of traversing

unknown terrain safely and extending the use-cases of the device.

3



Chapter 2

Literature Review

2.1 Robotic Exoskeletons

Exoskeletons, as first defined in the field of anatomy, mean “the protective or supporting structure

covering the outside of the body of many animals” [HarperCollins Publishers, 2016]. With

inspiration from the animal kingdom (in particular insects), there have been attempts at advancing

humans ability with such devices. Passive devices such as the one detailed in this article [Agrawal

et al., 2006], focus on removing the passive load on gravity on joints for medical examination.

However, since the first conception of a ‘powered exoskeleton’ by Nicholas Yagn in [Yagn, 1890],

a branch of human assistive devices of powered exoskeletal nature has emerged. Early attempts

such as the Hardiman, arguably the earliest true powered exoskeleton suit, developed by General

Electric in the 1960s had extensive limitations such as those detailed in the final project report

[Fick and Makinson, 1971]. These restrictions mostly led to these projects being discontinued and

only now in the 21st century have technology advancements allowed commercial opportunities to

arise. This has seen development in three fundamental areas of robotic exoskeletons categories

[Pons, 2008]:

Empowering Increasing the strength capabilities of humans has been one of the original mo-

tivators of exoskeleton robotics. Originally coined extenders [Kazerooni, 1990], these

often operate by mimicking the human intent (or motion) but will removing load from

the operator. Not necessarily restrained to encompassing a human, remotely teleoperated

designs also fall under this category.

Orthotic With medical technologies increasing, a large sector of exoskeletons attempt to restore

lost human functionality. Devices in this category will often attempt to re-enable humans

after they have lost the use of their limbs by retraining their body on how to operate

4
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correctly. To achieve this, these devices often attempt to integrate as closely to the human

body as capable, often employing neurological links.

Prosthetic Unique applications of robotic limbs are possible when the patient has lost the

original limb. In these cases, one is not restrained by working around the original limb, but

can completely replace it with a mechanical (or bio-mechanical) device. A large market

exists for enabling re-integration of amputees into society by re-enabling them to function

independently. Prosthetics have existed for a long time, however, advances robotics have

allowed them to become intelligent in nature.

2.1.1 Exoskeletons in Medical Applications

With the medical industry becoming increasingly intertwined with information technology

[Thompson and Brailer, 2004, Meara et al., 2004], medical devices are being developed globally

to more increasingly reliant on technology. From specialised robotic surgery [Lanfranco et al.,

2004] to health information standards for collaborative public health analysis such as those

developed by the USA’s Department of Health & Human Services, the implementations are vast.

To keep this review of current technologies focused, it will only focus on exoskeletons employed

by the medical sector, specifically robotic/assistive platforms. This is the market that Rex Bionics

operate within. In recent years suits such as the Robotic EXoskeleton (REX) platform, the

ReWalk, Hybrid Assistive Limb (HAL), EKSO, and many more have all been targeted at medical

use. The ReWalk (image 2.7a) was the first commercially available device (within the US) that

enables patients with loss of lower limb control to stand, walk and climb stairs. The device

requires the patient use crutches to support themselves and so needs them to have a healthy

and operational upper body. Rex Bionics differentiated themselves from this, by developing a

self-supporting device (image 2.7b) that does not require crutches for operation, and yet can still

perform the same actions; the REX. The Phoenix from SuitX (image 2.1e) differentiates itself by

being a modular light weight device (only 12.25 kg), but does again require crutches for operation.

It achieves this by only having two actuators, at the hip, allowing the other joints to move freely.

Esko or eLEGS again employs crutches and stems out of Berkeley Bionics, is slightly heavier

(roughly 20 kg), and can provide adaptive amounts of assistance per side. The HAL (image 2.1d)

stems from Cyberdyne, a Japanese company, and is heavily employed in medical facilities there
1. The device features a cybernetic control system that can determine user intent purely from

electrical signals from the body. Approaching the solution differently, this stationary Lokomat

(image 2.1f) device is produced by Swiss company Hocoma. Employing a treadmill design in

combination with a precision controlled exoskeleton for the lower body it can effectively re-train

1http://www.theaustralian.com.au/news/world/robots-to-the-rescue-as-an-aging-japan-looks-for-help/story-

e6frg6so-1226494698495
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(a) ReWalk 6.0

(b) Esko

(c) REX

(d) HAL

(e) Phoenix

(f) Lokomat

Figure 2.1: Medical Exoskeletons – A (non-complete) collection of medical exoskeletons available
commercially. Images sources: [Rewalk, 2012, Ekso Bionics Holdings, 2015, REX, 2014, CYBERDYNE,
2014, US Bionics, 2016, Hocoma, 2016]
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movement gaits. Proven to improve walking speed in clinical trials [Hidler et al., 2009], this

device is employed in many medical facilities.

2.2 Machine Learning

Machine Learning is a term that, although defined in a simple manner, is often used with ad

understanding of what it entails. It has emerged with the recent explosion of the ‘total digital

universe’ [Gantz and Reinsel, 2012]. Whilst still fundamentally bound by T. Mitchell’s ()

definition: “A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E”, its boundaries are vague. It is closely related to statistics and data mining.

Fundamentally there are three fields that machine learning can be split into supervised learning,

unsupervised learning and reinforcement learning [Murphy, 2012]. These three areas however

sometimes have vague boundaries, and implementations can be hard to classify.

Supervised learning is the process of taking one or more sets of input-output pairs and developing

a map from inputs to outputs. This is the form of machine learning most used in practical situations

[Murphy, 2012]. Supervised learning can be closely linked to optimisation and classification

(and their subfields) problems. A typical example of its real world implementation is email spam

filtering. One major drawback of supervised learning is the creation of these input-output pairs.

They often require experts to spend much time manually classifying data.

Unsupervised learning focuses on explorative knowledge acquisition. Unlike supervised learning,

it does not have input-output pairs to learn from. In fact, the nature and existence of the outputs

are generally unknown. This feature of not having to know the outputs first in a training set

makes unsupervised learning arguably more powerful. It enables computers to perform knowledge

discovery in unknown areas. An example of its immense use was demonstrated in when the digital

content provider Netflix created a competition with a 1M United States Dollars (USD) prize2.

The competition required a system to predict user’s interests better based on their ratings. The

prize was claimed in by a team of researchers who implemented many machine learning models

to achieve this result. Another example is demonstrated by Hofmann et al., where the authors

develop and prove the use of Probabilistic Latent Semantic Analysis (PLSA) to automatically

index documents based on content [Hofmann, 2001]. As it is becoming increasingly difficult to

generate a dataset for every possible answer, reliance on these methods which are proven to work

is rising.

Reinforcement learning, like unsupervised learning, is not given input-output pairs to learn

2http://www.netflixprize.com/
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from. However, in contrast to unsupervised learning, it is generally implemented in a continuous

learning loop. That is, it will have a measure of performance, and attempt to achieve better on

every iteration, even during runtime. A typical example of this is the pole balancing problem

that has been the test case of many reinforcement learning publications [Michie, 1968, Schaal,

1997, Si and Wang, 2001]. Si et al. even extend this challenge to a triple inverted pendulum

balancing challenge, demonstrating their algorithm. In this regard, similar to unsupervised

learning, reinforcement learning is heavily implemented where it is impossible or inconceivable

to generate large data sets with answers.

2.2.1 Machine Learning in Medical Exoskeletons

Examples of machine learning in medicine are becoming more frequent, especially in data

analysis, where there are often significant amounts of variables [Cleophas et al., 2013]. While

Cleophas et al.’s book provides an extensive range of examples and applications of machine

learning applied to medicine in general, there are far fewer examples when looking at exoskeletons.

A recent survey on model learning for robot control [Nguyen-Tuong and Peters, 2011] highlights

the importance of embracing machine learning to enable automatic control model generation for

the future of autonomy. They review case studies of machine learning applied and point out what

it achieved well. Looking at a particular example, teleoperated control of a humanoid robot was

successfully generalised using a combination of neural networks and particle swarm optimisation

(both core to machine learning) [Stanton et al., 2012]. The authors demonstrate that it is possible

to build a framework that does not explicitly understand the kinematic models of the robot but can

quickly determine control signals that generate desired outputs. Brain Machine Interface (BMI) is

another interesting area of research, where it was recently demonstrated that a BMI could control

a REX medical exoskeleton by employing machine learning to decode Electroencephalogram

(EEG) signals [Contreras-Vidal and Grossman, 2013, Kilicarslan et al., 2013]. Similarly He et al

investigate using EEG and Electromyography (EMG) to develop a BMI functional with NASA’s

X1 exoskeleton suit [He et al., 2014]. It is evident when looking at these recent advances that

there will be plenty more scope for research in this area over the coming years.

2.3 Machine Vision

Machine vision, closely related to machine learning, is an incredibly complex field of research, in

part because we do not yet understand human’s vision and perception [Szeliski, 2010]. Vision is

a primary input to human’s decision-making process when interacting with the world. Likewise,

vision is quickly becoming a fundamental input for the decision-making processes of computer

programs. Research in machine vision attempts to model the environment in a visual sense using
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complex mathematical algorithms and models. However, unlike humans who easy grasp the

concepts of vision, dimensions, occlusion, context, and other such intricacies, these prove to be

fundamental challenges for computers. This challenge stems from the inverse nature of computer

vision; that being the process of attempting to recover information from incomplete observations,

often employing forward based models (physics) [Szeliski, 2010]. This fact and the importance

of the potential possibilities has led to recent research in this field growing significantly [Hamzah

and Ibrahim, 2015]. As a result of this, reviewing current literature and developing a summary of

current state of technology itself could be the topic of a thesis. To contain the scope, only a few

specific technologies will be reviewed in detail.

2.3.1 Stereo Vision

As with animals and humans with binocular vision, programs have been enabled in a similar

manner, allowing stereopsis. Usually featuring two digital cameras separated by a horizontal

distance, systems employ complex matching algorithms to extract a depth map. The entire

process begins with camera selection and placement. The key parameters for camera placement

are interaxial separation and convergence angle.

Interaxial separation refers to the distance between two camera sensors. This plays a great role

in the depth perception. Greater interaxial separation increases depth perception but decreases

the minimum distance objects can be perceived at. On the flip side, smaller separation reduces

depth perception but allows for successful matching at close distances. While this parameter is

more important when the media will be viewed by humans, since wrong values can cause viewing

discomfort, it also plays a role in the matching algorithms ability to function. The convergence

angle again plays a role in the distances the vision system will be effective at. However, due to

computational implementations and consistent overall performance, cameras are mostly aligned

parallel. The reason for this is detailed in the image rectification process.

Rectification of pairwise captured images is an important step in the process of stereo vision.

Since no two cameras (lenses and sensors) will produce identical digital images, for matching

purposes, it is important that they be as noise free as possible. Also, images are rectified to be on

a common plane and have parallel epipolar lines. The process of rectification usually begins with

calibration training of the system. Here calibration images used to extract key parameters, learn

lens distortions and transformation matrices required for computational simplification. Typically,

this can be expressed in 12 parameters as Ch = AWh [Memon and Khan, 2001]. Here Ch

represent the camera coordinates, Wh are the world homogeneous coordinates and A is a vector

of the 12 unknown parameters. In general, there are three approaches to determining these

parameters: linear, nonlinear and two-step methods [Memon and Khan, 2001]. Linear methods

are computationally very fast as they assume a very simplistic pinhole camera model. This does,
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however, limit the models to not correcting for distortion effects, which are significant in lower

standard products. Contrary to this, non-linear methods, can account for these lens distortions.

However, due to its iterative nature, the initial parameter guess is important to ensure convergence.

In two-step methods, some parameters are found directly, while others are iteratively discovered.

Various novel techniques have been introduced with the advancements of machine learning

[Memon and Khan, 2001]. An example of this is a calibration procedure that uses Artificial

Neural Network (ANN)s to perform the correction. Intrinsic to the nature of ANN however, this

method does not reveal the underlying parameters, but rather operates as a black box.

Once rectified, the images pass through a framework of algorithms to generate a disparity map.

This is generally accepted to be a four-stage process as detailed in the figure 2.2 [Hamzah and

Ibrahim, 2015]. Each stage can consist of a multitude of algorithms that process the images

Figure 2.2: Stereo Matching Process – The general process of stereo matching can be broken into four
stages [Hamzah and Ibrahim, 2015].

individually or combined. As a combined process these can be classified as a local or global

approach. This classification stems from the computational approach used when calculating

disparity. If the calculation at a given point depends only on values surrounding it within a given

window, this is classified as local. Examples of these approaches have been explored in papers

such as [Tuytelaars and Van Gool, 2000, Gerrits and Bekaert, 2006, Zhang et al., 2009]. Opposing

this, a global approach will attempt to calculate the disparity map as to minimise some global error

or energy function. This function will penalise data that differ from the target, and also penalise

noisy data. This two-termed approach ensures that data is both valid and noise free, however,

is computationally expensive [Hamzah and Ibrahim, 2015]. This stems from the fact that they

normally skip the second stage, cost aggregation, and work with all the pixel data. As with many

statistical processes, the first stage in this process is matching cost computation. Matching cost

computation is able to evaluate how well a pixel on one image matches a pixel on the other image.

This can be defined as determining the parallax values of each point in two images [Brown et al.,

2003]. Since this is a fundamental task to complete for every single combination of pixels, this is

often constrained to reduce computational complexity. For example, given a 640 p× 480 p image,

over 94 billion comparisons would have to be made if every pixel of one image were compared

to every pixel of the other image. This large search field can be quickly reduced. Given the

rectification process is correctly calibrated, the data will be constrained to be epipolar in geometric

properties. Once constrained, matching points must lie on the epipolar lines e, as detailed in 2.3.

This reduces the search space from the entire data set to only the horizontal line (for horizontally

separated cameras) currently being computed [Song et al., 2014]. With this reduced sample set,
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Figure 2.3: Epipolar Geometry – An example of epipolar lines applied to stereo vision. For a point at any
depth from camera C1, lying on epipolar line E1, the same point will appear somewhere along line E2

from perspective C2 given the images are rectified to align epipolar lines. Image reproduced from [Lazaros
et al., 2008]

pixel-based techniques again become viable. Early pixel based approaches featured Absolute

Difference (AD), Squared Differences (SD) and variations of these. Other than pixel-based

approaches, area or window-based methods will analyse multiple pixel sub-groups. These are

capable of offering higher quality data as each matching process is essentially averaged, making it

more resilient to noise. Common implementations for window based algorithms include the Sum

of Squared Differences (SSD), Sum of Absolute Differences (SAD), Normalised Correlations

(NCC), Rank Transforms (RT) and Census Transforms (CT) [Lazaros et al., 2008]. The region

considered is commonly referred to as support or aggregation window and is flexible in shape,

that is it can be various shapes that may or may not change during run-time. Since in essence,

this approach is an averaging process, it features common pitfalls. The assumption that pixels

within the support region have similar disparity values is not always true. For example, pixels

near depth discontinuities or edges may be vastly different. Hence appropriate parameters must be

selected to ensure useful output. An interesting branch of algorithms, Feature Based Techniques,

exists, however, is plagued by lower accuracy. Since these only focus on features extracted from

the images and try to match these, they only generate sparse disparity maps. They are however

computationally very efficient as they have a significantly smaller sample sizes [Liu et al., 2014].

Details of these individual approaches are outside of the scope of this thesis as it is intended to

acquire a product that outputs the disparity map computed.

The next stage of cost aggregation attempts to reduce uncertainties. Since pixel-wise matching cost

computation is insufficient for precise matching, a support region is again employed to improve

matching accuracy. Similarly, this support region is of flexible nature. Many research efforts

have advanced this field (list from [Hamzah and Ibrahim, 2015] page 11), and so the original
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Fixed Window (FW) approach is used less often [Hamzah and Ibrahim, 2015]. A summary of

the basic approaches can be seen in figure 2.4. The authors of [Fang et al., 2012] performed a

Figure 2.4: Cost Aggregation Windows – Examples of windows to use in the process of stereo matching.
(a) is a simplistic 5x5 window, (b) adaptive window, (c) uses a window with adaptive eights, (d) shows
possible adaptive window results. Image reproduced from [Hamzah and Ibrahim, 2015]

study comparing the use of these techniques and concluded that Adaptive Support Weight (ASW)

was most advantageous to use. Essentially it is similar to an Adaptive Window (AW) approach

with a flexible window shape, since the weightings of each neighbour are variable. Where other

approaches fail to maintain object boundaries (since they are smoothed out), ASW assigns weights

based on pixel disparity correlation to the target pixel, resulting in well-maintained edges.

Disparity selection begins to collate all the possibilities accumulated above. A local winner takes

all Winner Takes All (WTA) algorithm chooses the disparity with the minimum associated cost.

This is a simple argmin function that iterates the discrete possibilities of disparity values. This is

a fairly concise and straightforward step that is well defined. A few alternatives such as Markov

Random Field (MRF) do exist, but WTA is the most commonly used approach [Hamzah and

Ibrahim, 2015]

Refinement of the now populated disparity map now takes place. Here the disparity map is noise

filtered (again), and special cases such as occlusion are handled. Hamzah and Ibrahim identify
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that this step usually consists of two core parts; regularisation and interpolation. Regularisation

is a simple pre-filter that removes inconsistent disparity estimations; primarily points that are

considerably different to neighbouring values. Interpolation on the other-hand attempts to fill in

disparity values that are missing due to occlusion or unsuitable matching. Amongst attempts used

are Gaussian filters and median edge filters such as those extended by Michael et al. [Michael

et al., 2013]. These will fill in sections of the disparity map by making probabilistic guesses,

primarily based on neighbouring disparity values.

A desired result of this four-step process is a smooth and accurate disparity map that can directly

(with known camera parameters) be re-projected to a three-dimensional point cloud. The wide

array of choices on how to progress from two cameras to a point cloud make this a non-trivial

task to implement, especially because there often exists no clear best approach.

2.3.2 Light Scanning

Light Scanning depth vision systems employ active sensing to determine the topology of a scene.

Fundamentally they differ in the sense that in most systems stereo vision is passive; that is it

does not emit any radiation (including visible light) itself, it is a passive sensor. Light scanning

systems however actively scan the field of view with an emitted signal, determining depth by

tracking how that signal interacts with the environment. This field can be further divided into two

subcategories as detailed below.

Time of Flight Cameras

Understanding the speed of a radiated wave combined with precise timing, in theory, allows

measurements of distances following the same principles of bats with sound waves [Kleinschmidt

and Magori, 1985]. However due to the high speed of light waves, 1mm corresponds to 6.6 ps in

measuring accuracy required, which obviously presents a technological challenge. A solution to

this is described in patent [Shyy, 1993], employing Digitally Programmable Delay Generators

(DPDG) to very accurately measure time delays using principal properties of resistive-capacitive

circuits and a binary search approach. Figure 2.5 shows the fundamental working principle of

three dimensional Time of Flight (ToF) cameras. Fundamentally these rely on equation 2.1,

stating that the distance to a point d, can be determined by dividing the round-trip time it takes a

pulse of light τ multiplied the speed of light c and divided by 2.

d =
cτ

2
(2.1)
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Figure 2.5: Time of Flight camera principles – This figure depicts the working principles of a three-
dimensional depth sensing camera employing time of flight technology. Differences in phases are measured
with regards to the reference sending wave, then using known properties of light speed the distance traveled
can be deduced. Figure source: [Lange and Seitz, 2001].

This allowed for very accurate, sub-millimetre distance measurements and is still employed in

modern geo-surveying laser scanners. These devices, however, are only able to sample a single

point per operation, and while modern devices use mirrors to scan a three-dimensional scene

quickly, this is still challenging to implement in moving robotics and can be very costly. To

overcome this limitation, systems capable of simultaneous three-dimensional sensing have been

developed, employing smart modulation techniques to distinguish data points with an array of

sensors [Lange, 2000], such as depicted in figure 2.5. By carefully measuring the phase-shift of a

reflected signal these sensors are able to instantaneously sample an image, similar to a traditional

imaging chip. The Kinect sensors(both versions) are excellent examples and are amongst the

most employed in robotics and research with many articles published referencing them [Hsu,

2011, El-laithy et al., 2012, Zhang, 2012, Fankhauser et al., 2015, Maykol Pinto et al., 2015, Yang

et al., 2015] (it is infeasible to reference them all here). These sensors, however, rely heavily on

accurately distinguishing their signal from ambient noise. With the most commonly employed

wavelength being infra-red (invisible and harmless to the human eye at low powers), sunlight is a

large source of noise, providing many challenges in using such systems outdoors [Fankhauser

et al., 2015].

Structured Light cameras

Essentially a version of stereoscopic vision, Structured Light (SL) cameras usually employ a

virtual second perspective in the means of a projected known pattern (or structure) of light (visible

or invisible to the human eye) onto the scene. Triangulation is used to determine the distances of

pixels with information gathered by a binary search approach. Using the trigonometric equation
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2.2, it is possible to calculate the camera to point distance R using the angles θ and α which can

be determined from the matched pixel locations within an image, and the baseline B.

R = B
sin(θ)

sin(α+ θ)
(2.2)

Various coded patterns are projected onto the scene and imaged from a camera in a different

perspective. The offset caused by perspective in these patterns is compared and allows for back

depth perception to the object with the known distance between the sensor and projector and

the perceived pixel offset of the pattern [Posdamer and Altschuler, 1982]. These principles are

demonstrated in figure 2.6, with a simple projector-camera set-up. Advances in SL have been

(a) Structure projection (b) Triangulation calculation

Figure 2.6: Principles of Structured Light – This figure demonstrates the principles of generating depth
from structured light. a shows how a pattern is projected onto and distorted by an object. b then shows the
trigonometry used to determined the object height Z based on the difference distance d given that B is
known. Original figures sourced from [Geng, 2011].

demonstrated in various pattern encodings and processing techniques that can allow for very

accurate scene reconstructions. Accuracy is commonly proportional to scene sampling volume,

such that a system sampling a 6 cm× 12 cm× 16 cm volume has an accuracy of less than 100 μm

[Hall-Holt and Rusinkiewicz, 2001], whilst a system scanning an area of 0.23m has an accuracy

of 450 μm [Gernat et al., 2008]. These systems tend to be considerably processing intensive,

with the author of second example ([Gernat et al., 2008]) stating it took hundreds of hours of

post processing in addition to a full day of collection to build the model. Many modern systems

exist that employ structured light for scene capturing and achieve some of the highest accuracies.

However, due to the above-discussed limitations, often either the sensor or the scene must remain

static. [Hall-Holt and Rusinkiewicz, 2001] demonstrate this with the aforementioned sensor,

which is capable of capturing depth information at 60Hz, but requiring the sensor to remain

stationary while the object in the scene could be rotated.
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2.3.3 Machine Vision in Mobile Robotics

Applications of machine vision are vast and readily accepted in many major industries [Szeliski,

2010]. In academia, it is a heavily researched and documented topic with many books ([Szeliski,

2010]) providing detailed summaries of algorithms and approaches. While much research and

technology are focused on the manufacturing automation industry (as this is a major market),

for mobile robotics the implementations are still not as densely distributed. However with such

breadth in the types of technology and how to apply them, it was important to review what

approaches were being perused, specifically to mobile robot geometry detection. Table 2.1 tries

Table 2.1: Geometry Detection Methods Survey – A non-extensive survey of literature focused on plane
and stair detection, with key details extracted and summarised.

Author Year Summary Approach RGB/2D/3Da Frame/SLAMb Comments

Maohai 2014
Fast stair metric

extraction

Stereo, RGB

feature detection,

V-Disparity

RGB & 2D
Non-

temporal

Trained RGB Classifier, then focuses on ROI with

V-Disparity to detect planes, extract height and tread.

Bumblebee stereo Camera.

Delmerico 2013
Detect stairs

semantically

Kinect, 2D/3D

Edge Detection
2D Temporal

Uses 2D/3D combination. 2D edges, 3D points ex-

tracted. Extracts edges every frame, but ’detects’

stairs of a registered point cloud over time

Lee 2012
Wearable Staircase

Stereo

Haar Features,

Ground plane

segmentation

RGB & 2D

& 3D
Temporal

Uses RGB to detect stairs, many false positives, fil-

ters with RANSAC ground plane from stereo and

temporal consistency

Osswald 2011
Humanoid Stair

Climbing

Lidar, Scanline

Grouping
2D

Non-

temporal

Uses 2D LIDAR over angles with scan line group-

ing. Here lines are found in multiple 2D scans, then

grouped in 3D, creating a plane.

Holz 2011
Fast Plane

Segmentation

RGB-D, 3D

Normals, Cluster

Segmentation

3D
Non-

temporal

Uses RGB-D, Computes normals, clusters and seg-

ments based on these. 30Hz

Ben-Tzvi 2010 Plane Segmentation
Lidar, 2D Edge

Detection
2D Temporal

Uses a 2D LIDAR over angles to make 3D. Then

makes depth contour maps, edge detection, segmen-

tation of planes

Oniga 2010 Road Detection
Stereo, DEM,

Expected Density
2D

Non-

temporal

Uses disparity to DEM, then performs various algo-

rithms. Works in 2D and 3D mix. Expected Density

difference is a very interesting approach.

Hesch 2010 Descending stairs
2D, Texture,

Optical Flow, Lines
RGB

Non-

temporal

Uses RGB only to find descending stairs, doesn’t

extract info.

Hernandez 2010
RGB stairs

vanishing point

2D, Vanishing

Point, Directional

Filter, Lines

RGB
Non-

temporal

Uses RGB, very fast, high detection, no extracted

detail.

Gutmann 2008
Environment Map

Perception

Stereo, Planar

Segmentation,

Scanline Grouping

2D Both
Uses plane segmentation to semantically label data

and store SLAM.

Michel 2007
GPU RGB

Humanoid Stairs

Canny Edge, GPU,

Model Projection
RGB

Non-

temporal

Uses RGB edges to detect stairs. Fed a lot of assump-

tions. Fits CAD model of stairs to locate them

a Denotes methods employed during processing, not necessarily capturing of data. RGB denotes color information only, 2D denotes depth / disparity

images, 3D denotes point clouds.
b This describes the time variance of the process. Systems that consider a temporal dimension are said to operate in a time-variant manner and include time

as a dimension.

to demonstrate a non-exhaustive list of literature that would be relevant towards this research. It

demonstrates the amount of design choice faced when implementing machine vision (in particular

geometrical shape detection) into robotics.

Maohai et al. demonstrate an efficient and fast staircase detection process that combined traditional

Red Green Blue (RGB) with depth map disparity analysis to achieve promising results [Maohai

et al., 2014]. First using a two-dimensional classifier employing a 29-layer cascade involving
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655 Haar-like features, the system is able to quickly detect the presence of a staircase with high

confidence (in a test set of 311 negative test images, they had zero false positives). Their use of v-

disparity then enables them to reduce the three-dimensional plane extraction to a computationally

efficient two-dimensional problem capable of extracting three-dimensional features with an

accuracy of 2mm for close planes.

[Delmerico et al., 2013] demonstrate a different approach, working purely with the depth/disparity

information from a Kinect camera. They perform staircase edge detection by specifically looking

for discontinuities in the depth data, indicating abrupt geometry changes. Points representing

these edges are then used in a three-dimensional manner to fit a plane within a bounding box.

This represents the step dimensions with its pitch relative to the ground and the step width. This

detection algorithm is capable of operating at 20Hz, with accuracies of 3◦ in pitch (roughly 2 cm

in step height), however this is performed in post processing and not during collection.

[Lee et al., 2012] employ temporal consistency to their stair detection process, an idea that enforces

consistency over time in the data collected. For general detection, they too used Haar-like features

with cascade classifiers and v-disparity. Running their detection process in post-processing on

data gathered from a wearable stereo camera showed promising speeds, but takes advantage of a

large and powerful processing machine.

[Osswald et al., 2011a, Osswald et al., 2011b, Maier et al., 2012, Maier et al., 2013, Hornung et al.,

2014, Karkowski and Bennewitz, 2016] and their HRL published a lot of research on the topic

of relevance, with their humanoid stair climbing being of particular interest. In [Osswald et al.,

2011b], the group demonstrate a functional application of laser scanner based staircase traversal

for a humanoid robot. Their research, however, does point out the restrictions of employing laser

scanners requiring the robot to stand still every two steps and tilt its head to gather a new set of

points to analyse. Navigation of complex stair terrain is achieved with the humanoid robot, with

their approaches detecting stairs 7 cm in height with a model error of 0.42 cm.

[Holz et al., 2011] demonstrates a more general focus; plane detection in point clouds. Employing

methods to compute surface normals quickly, they perform fast plane segmentation with rates

of up to 30Hz. An interesting feature they employ is cleaning the point cloud once planes have

been detected by pulling points towards the plane average that probably belong to that plane.

While Holz et al. used an Red Green Blue Depth (RGB-D) camera, [Ben-Tzvi et al., 2010]

perform plane segmentation on a mobile tracked robot using a pitch actuated laser range finder,

similar to the process of [Osswald et al., 2011a]. Instead of plane fitting, the author uses depth

map contours to determine and extract them.

[Oniga and Nedevschi, 2010a, Oniga and Nedevschi, 2010b] introduce more concepts to the

solution through the use of Digital Elevation Map (DEM)s in their road detection research. A
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DEM significantly reduces the size of a three-dimensional data set by reducing measurements to

one vertical reading per configurable area. The authors also employ techniques to increase the

density of data in their DEMs taking into account the re-projection angles of the camera viewing

the scene. A particularly interesting method employed by the authors is generating a density

map, that measures the three-dimensional points per DEM cell. Areas of high density are likely

obstacles because multiple readings in the same x− y space indicate a vertical obstacle relative

to the camera (such as a wall).

Many of the articles mentioned above focus on ascending stairs, however, [Hesch et al., 2010]

concentrate on detecting descending stairwells and labelling them. Without any depth cameras,

the authors implement a method that tracks optical flow between frames. Then using this temporal

attribute they detect abrupt changes in flow indicating a descending stairwell. They demonstrate

this functioning on a tracked robot which first determined the presence of a stairwell and then

proceeds to navigate down it.

Reviewing earlier publications, there are more that chose to simply use RGB without depth

information, due to computational requirements. [Hernandez and Kang-Hyun, 2010] demon-

strates using such technology and vanishing point analysis to locate stairs effectively in outdoor

environments. Not being restricted by the infra-red limitations of depth cameras, their methods

successfully detect outdoor stairs with an acceptable false positive rate very quickly (0.08 s). They

demonstrate this working with a broad range of stairs, lighting and angles, proving its robustness

purely with RGB cameras.

Using a combination of these ideas, [Gutmann et al., 2008] (who later co-authors with HRL, no

doubt contributing some of these ideas), demonstrates an impressive solution on a humanoid robot

(QRIO). Running on limited processing their approach uses a tri-stereo camera to generate DEM

and then intelligently semantically label this with relation to the robot’s abilities. Demonstrating

this, they show the robot navigating a complex scene, littered with obstacles, stairs, and even a

tunnel that have to be navigated as seen in figure 2.7. Of interest in particular was that the robot

could distinguish that it would have to enter a different movement mode (crawling) in order to

traverse under the table (tunnel).

[Michel et al., 2007] demonstrate using a simple RGB camera, but employ the Graphics Processing

Unit (GPU) to improve speed, which also makes their methods more robust to noise from camera

shake commonly an issue on bipedal robots. They demonstrate climbing stairs with their large

bipedal HRP-2 robot, proving the capability of their methods.
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(a) Obstacle course with Nao robot (b) Generated terrain map and path

Figure 2.7: Humanoid Robot Terrain Mapping – An example of a humanoid robot (Nao) navigating
terrain and semantically labelling them. Images directly sourced from [Gutmann et al., 2008]

Machine Vision in Exoskeletons

While technically a lot of the above is relevant to exoskeleton robotics, it is still of interest

to review specific examples of such applications, of which there are only a few. Advances in

BMI were demonstrated using a combination of EEG, eye-tracking, and RGB-D cameras to

interface a human with an exoskeleton upper limb [Frisoli et al., 2012]. Here the authors use

a Kinect camera to detect objects for interaction in front of the patient, then track the patient’s

gaze to detect which object they wish to interact with, and finally, await the correct brain activity

indicating that the patient wishes to carry out interaction. They successfully demonstrated this

with a L-Exos, an exoskeleton for an arm that helps guide patients limbs when they can no longer

control them [Frisoli et al., 2005]. A different approach is presented that uses machine vision

with standard RGB images to determine user intent from facial expressions and control an upper

body exoskeleton [Baklouti et al., 2008]. Although their results seem inconclusive, their approach

is novel and further strengthens the argument of how broad machine vision applications are.

2.4 Conclusion of Findings

With such a vast array of technology and applications, it is difficult to assert that something has

not been explored previously; however, no direct applications of machine vision for path planning

have been demonstrated on an exoskeleton that were published at the time of writing. Identifying

this unexplored application, and a large amount of research undergone with mobile robotic path

planning (especially humanoid) it seemed worthwhile exploring the potential of implementing

a machine vision guidance system on a (medical) exoskeleton. End-user applications, such as

rehabilitation, will benefit from the increased control such research will lead too.
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Depth Vision and its Applicability to
REX

The use of machine vision to extend the ability of devices in both the consumer and manufacturing

sector are growing steadily1. It has been used in many manufacturing environments to aid

automation and is also making in roads into the consumer goods sector with depth enabled

devices such as Google’s Project Tango2. For many of these applications, machine vision provides

a straightforward and semi-universal approach to closing a control feedback loop. The sheer

amount of applicability and diversity of machine vision as a process monitoring and quality

control tool, has lead to many systems and products being redesigned with industry in mind.

Instead of tactile sensors on a conveyor belt, now an imaging system can verify not only part

count on a production line but also perform a variety of quality control checks. In fact, companies

such as Point Grey specialise in providing finely tuned machine vision sensors for applications

ranging from industrial automation to medical to security geographic information systems. Being

a tightly intertwined discipline of mechatronics, machine vision relies just as much on software

as it does on the hardware. Smart, efficient software is critical to making sense of the abundant

data transmitted by the hardware, and add value. Many commercial and non-commercial tools

have been developed that aid in the post-processing of data gathered by machine vision systems,

for example, Matrox or OpenCV. As a result, the industries ’learning curve’ to applying these

tools has been simplified greatly since its conception.

1Search result hit counts for papers published containing machine vision and applications show a steady growth

over time
2An initiative to introduce depth vision to mobile phones by integrating compatibility into Android and developing

standard hardware for phone manufacturers to use. http://get.google.com/tango/
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3.1 Co-existing with the REX

The focus of this research was not to develop just another vision system, but one functional with

medical exoskeletons, more specifically the REX platform. As shown in figure 2.7b, the REX

device is a bipedal medical device, capable of supporting a human in the standing position that

can no longer do so themselves. It is roughly 1.3m in height (adjustable per patient), 0.645m

in width and 0.66m in depth, and weighs around 50 kg with battery. Patients must be between

1.42m to 1.93m in height and between 40 kg to 100 kg in weight to use the device. Mechanically

the device is powered by 10 actuators over 6 joints. Powered by a battery the device can move

forward at a speed of 0.0347m/ sec, and can do so for 1 h straight. Primarily the device is used

by clinicians to help humans recover the use, or maintain the health of their lower body after an

accident or disease which prevents them from doing so themselves.

In order develop a compatible vision system, right from the beginning, certain aspects had to be

considered when making decisions. They are:

1. Functionality

(a) Able to detect the immediate surroundings geometrically

(b) Function in real-time, with speeds relative to REX’s speeds

(c) Detect ground plane level shifts, such as curb-ways

(d) Extending the above, detect stairways and extract important metrics

(e) Not negatively impact the REX’s performance

2. Aesthetics

(a) Small enough to integrate without causing obstructions

(b) Ability to function from a aesthetically pleasing location

3. User Interaction

(a) Be safe to use, unable to cause harm to occupant, whilst

(b) Presenting useful information to non-technical end-users and

(c) Give choices that are easy to understand

Whilst some of these items do not need any expansion, such as item ground-plane detection (1c),

some items such as patient safety (3a) caused a lot of discussion throughout the research. Being in

the medical industry places a lot of pressure and restrictions upon devices developed, something
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that is not inherently apparent. For the team developing the REX, patient safety (3a) is often a

major influence. It is for example why the device walks as it does, with an inhuman gait, so that

at any instant if power is cut, the device is able to stand stable. This also becomes a consideration

when programming such a device, where failure modes become less apparent. To adhere to these

strict regulations to which the device is qualified, any additions must also do so, or not tamper

with those in place. By considering the two systems disconnected, that is the REX platform does

not process any of the vision information and vice versa, and placing human decision-making

at the boundary of interaction, this issue can be mitigated. By not allowing the vision system to

make any actions, it is adhering to patient safety (3a) by placing it in the patients’ own hands.

3.2 Hardware and Software Technology Selection

Depth vision, as a subfield of machine vision, also looks to follow the same path of development.

Split across three main core technologies; stereo, time of flight, structured light, there is, however,

no universal approach to implementing and applying depth vision. The usage restrictions and

sub-variables of each core technology only expands the already complex choice of suitable

hardware for a machine vision task. Inverse to this, the selection of depth sensors available is

severely dwarfed by that of two-dimensional cameras. This selection is further dissected into

research and commercial categories, of which very few fall into the latter. Three-dimensional

processing software is also an important aspect and is discussed below.

3.2.1 Vision Hardware Selection for the REX

Unlike two-dimensional systems, the choices when looking for three-dimensional sensors is very

restricted. Arguably as a result of the infancy of applications within large industries, there simply

has not been enough demand for three-dimensional vision. This fact is evident when scoping

a potential device for use within a commercial product such as the REX platform. Table 3.1

presents a summary of depth sensors. While not an exhaustive list, this represents the majority of

sensors currently3 available to an end-user. To provide a comparison, a two-dimensional depth

sensing scanner has been included. Prices are included to relate back to commercial viability.

Note that cameras such as the Kinect v2 or the R200 are successors of older generation models not

included in the table. The application very much dictates the camera choice, at least in the sense

of core technology. As identified in the literature review, the different technologies behave very

differently circumstantially. Figure 3.1 shows three key performance metrics for depth cameras

that are often considered to match the application. There yet exists no universal technology that

3List sourced in Q1 2016
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Table 3.1: Depth Camera Hardware Summary – A non-exhaustive list of depth sensing technology
commercially available

Camera Supplier Price (USD) Technology Resolution (px)

ZED StereoLabs $449 Stereo Vision 1920x1080

R200 Intel $99 Combination 640x480

Duo MLX Duo3D Division $695 Stereo Vision 752x480

R12 Raytrix Stereo Array 3 MP

Structure Sensor Occipital $379 Structured Light 640x480

SentisToF - M100 Bluetechnix $830 ToF 160x120

Kinect v2 Microsoft $200 ToF 512x424

URG-04LX-UG01 Hokuyo $1,140 Laser 2D 0.36 deg

is able to perform in all metrics equally, although the MC3D claims this [Matsuda et al., 2015].

As the state-of-the-art is advanced, these axes extend and so it is also unlikely that a universal

solution will ever exist, making the task of selecting a suitable sensor a constant one. Review of

recent literature[Matsuda et al., 2015, Gupta et al., 2013, Taguchi et al., 2012, Fankhauser et al.,

2015] focused on characterising depth cameras reveals roughly where each technology lies on

this graph.

Time of flight systems that employ laser scanning are very accurate. However, the slow sampling

rate and high cost (while not included on this graph, still relevant) limit the applications they are

of use in. Laser scanner systems are very light independent due to their unique signal encoded

into a powerful laser beam, making them very reliable and accurate. However since laser scanners

operate on a points-per-second sampling rate, they are generally slow to sample a full three-

dimensional field of view. Well suited for the manufacturing industry, they perform their best

when mounted in a fixed location and scanning only a few preset points, such as dimensions

of a part on a conveyor belt. On a moving platform, such as the REX, laser scanners rely on

accurate localisation and or inertial measurement units to correct for the origin movement of

the sensor relative to its static surroundings, adding complexity to the system. Laser scanners

in themselves are already incredibly complex, and this is reflected in their pricing. The URG-

04LX-UG01 (shown in table 3.1 and figure 3.2) is an example of a budget sensor, capable only of

sampling a single two-dimensional plane, and yet is still the most expensive sensor on the table.

This demonstrates the enormous cost involved with the complex mechanical optics of a laser

scanner based system, with highly accurate land survey scanners costing closer to 50,000 USD
4. Size and weight are more attributes laser scanners do not traditionally excel in. These were

important factors to consider for the REX platform, being a consumer device, where aesthetics are

often more important than functionality. When considering a sensor for the REX platform, laser

scanners had to be dismissed from consideration, due to many of the reasons explained before.

4Faro Focus 3D X 330 Scanner
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x, acqusition speed

y, resolution

z, light resilience

Single-shot, eg Kinect

Laser Scanning

Gray Codes

Stereo Vision example

ToF, eg Kinect v2

Figure 3.1: Depth Sensor trade-offs – A visual representation of the compromises faced when choosing
a depth sensor. Here the [x, y, z] axis represent the acquisition speed, resolution, and light resilience
of the technologies respectively. Some examples are labelled based off the publishings of Matsuda et al.
[Matsuda et al., 2015]. The Stereo vision example purely shows that while not the best at any, stereo is
configurable, and can hence achieve a balance.

Figure 3.2: URG-04LX-UG01 Laser Scanner – An entry level laser scanner seen in many robotics
research applications due to its small size and relatively low cost. Image source: [Unknown, 2016]

Modern time of flight systems employing phase patterns projected in infra-red to sample an entire

frame at once have overcome the sampling rate issue but cannot maintain the accuracy and light

independence of laser scanners. These sensors display their strength under controlled lighting,

where they can produce low noise, high frame-rate reconstructions of the three-dimensional world.

Playing less of a role in the industrial scene, these sensors are emerging in the consumer sector.

Their low price point is arguably the major driver behind this and makes this sensor category

perfect for consideration for the REX platform. Conversely, the reduced performance in certain

lighting scenarios challenges suitability for the REX platform. As explained in the review of
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this technology (section 2.3.2), their dependence on active infra-red as a signal medium deeply

affects their performance under sunlight. The closed loop feedback depth system is arguably most

important outdoors, where the terrain encountered is less human-made and hence less predictable.

In this category, there were two key choices: Kinect v2 and the SentisToF M100. From Microsoft,

the Kinect v2 is arguably one of the most mainstream depth sensors on the market, after its

predecessor the Kinect v1. An example of a scene recorded with the Kinect v2 comparison to

other sensors in figure 4.4d. While this sensor produces very low noise data at great ranges and

accuracy, unfortunately as with the laser scanners, aesthetics take prescient over functionality. It

is the largest of the cameras considered, and requires a large external power adapter due to its high

consumption. Designed for use in the home-entertainment sector, size and manoeuvrability did

not play a large role in the design of the camera. For these reasons the Kinect v2 was disregarded

from selection. The SentisToF M100 camera is an impressive, small form factor time of flight

camera, shown in figure 3.3b. Measuring 50mm× 55mm× 36mm this sensor was well suited

(a) Kinect v2 (b) Sentis ToF M100

Figure 3.3: Commercial Time of Flight Cameras – A sample of two commercially available time-of-flight
based cameras. Bluetechnix’s small time of flight sensor, the Sentis ToF M100, and the Kinect v2 from
Microsoft, which is a very commonly used research camera. Image Sources: [Microsoft, 2014, Bluetechnix,
2016]

for the REX dimensionally. With a sensor frame size of 160 px× 120 px, the camera lacks high

resolution but still has enough to be of use at short to medium range. Although the SentisToF

M100 is a contender for the REX platform, due to its higher cost and reliance on active infra-red

illumination, this camera was not acquired for development.

Structured light was the core technology relied upon by the original Kinect sensor. Characteristics

of structured light sensors are well understood by the research community through extensive

characterisation[Zanuttigh et al., 2016]. Often used for ground truth measurements, in very

well controlled environments, this depth sensing technology is capable of very accurate scene

reconstructions. However to achieve such accuracy, many restrictions have to be enforced;

otherwise, performance suffers severely. Again relying heavily on active infra-red illumination,

and sometimes even visible light illumination, the scene lighting must be consistently controlled.
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Some commercially available sensors exist for a more general purpose use, similar to the Kinect

v1, however, their data was often rather noisy in outdoor environments. For the most part, this

disqualified these sensors from consideration for the REX platform. The Structure sensor from

Occipital is a small consumer based sensor, but lacks the accuracy to be considered here. Covered

later, the Intel R200 partially relies on structured light to sense depth, and a sample of its output

can be seen in figure 4.4c.

Unlike the previous technologies, stereo vision is usually considered a passive sensor, being

that it does not emit any signals of its own. Uncoupling the sensor from a dependence on

light signals of its own, reduces the overpowering effect of the sun in outdoor environments,

making stereo vision systems well suited here. Commercial stereo vision systems are not

the most common, however, due to their customisation requirements. It is hard for a single

product to capture the market, such as the Kinect did, rather end users choose two or more

two-dimensional cameras and construct their own stereo system. This places stereo vision outside

of reach for many companies who lack the internal expertise to do so. The ZED, a depth camera

(a) ZED (b) DUO MLX

Figure 3.4: ZED & Duo Stereo Cameras – Images of the two stereo cameras considered in this research.
Image Sources: [Stereolabs, 2016, Code Laboratories, 2016]

from Stereolabs, aims at bridging this gap and is depicted in figure 3.4a. With a baseline of

120mm, the camera is able to detect disparities across a large range from 0.7m to 20m. The

minimum range of 0.7m is not ideal for REX platform, limiting it’s close proximity collision

detection. As explained in section 2.3.1, to maintain accuracy at large ranges, each camera on

the ZED is capable of capturing 2208 px× 1242 px. While obviously increasing accuracy, the

extra computational requirement (with roughly nine times more data points over a traditional

640 px× 480 px image) needs to be considered. A comparative sample of the ZED’s output

can also be seen in figure 4.4b. The baseline forces the ZED to be longer in one dimension,

resulting in a size of 175mm× 30mm× 33mm, which is still acceptable for integrating on the

REX platform. Requiring only a single USB3 interface cable made the ZED additionally easy to

integrate wherever required upon the platform. Another stereo camera acquired for testing was
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the DUO MLX from Code Laboratories (shown in figure 3.4b). This stereo camera uses active

infrared to help in low-light environments, however, comes at the cost of it being more susceptible

to noise introduced by sunlight. It is however sized at only 52mm× 25mm× 13mm, making

it very easy to potentially have multiple cameras (front and rear-facing) on the REX platform.

A baseline of 30mm combined with a sensor frame resolution of 752 px× 480 px give it an

effective range of 0.25m to 2.5m. Besides this sensor uses global shutters capable of frame rates

as high as 360Hz (at a lower resolution), making it very well suited for visual odometry ( a topic

covered later), especially combined with its internal six degrees of freedom inertial measurement

unit included. Like with the ZED, the DUO MLX does not require an external power source other

than the USB2 cable for communications.

While these three core technologies define most depth sensors, there exist a few sensors that do

not easily fit into these categories. Intel’s R200 is such a sensor, combining both infra-red based

structured light with passive stereo to generate it’s depth maps this presents a novel approach.

While this sensor performs a lot better in uncontrolled environments than previous sensors,

especially given its small form factor of only 130mm× 20mm× 7mm, it was not chosen for

integration with the REX platform at this time point. It could however easily be considered at a

later time point. Another such combination of technologies is the research device codenamed

MC3D, developed at Northwestern University Evanston, Illinois. How this device overcomes

some of the challenges facing conventional depth cameras is detailed in their article, however as

it is not available for purchase and not easy to reconstruct, it too was not employed in the scope

of this research [Matsuda et al., 2015].

3.2.2 Depth Vision Software

As with most forms of sensors, it is simply not enough to gather the data with hardware. Software

to make sense of the data streams arguably become even more crucial with depth vision systems,

due to the sheer quantity of information contained. As a quick example of this, images are

often 24 bits per pixel, 8 bits per colour channel. In addition to this, depth data contains x-y-z

co-ordinates usually stored as double precision floating points, an extra bits per pixel/point. Not

only is there a far larger quantity of data, but it is also harder to display and communicate for

human interaction and analysis, being that most human interface devices operate on a three-

dimensional principal. This fundamental limitation in how we interact with technology is a key

focus of many researchers, but no widely accepted commercial method exists for interacting with

three-dimensional data natively. For this reason and the purpose of automation, it is important

that the implementation developed can analyse the depth information directly and only present

the end-user with simple choices. However, just as with depth vision hardware, software capable

of working with depth data is far from being as refined and developed as that designed to operate
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with conventional two-dimensional colour data. OpenCV is a large open-source software library

(or set of libraries) designed for image and video processing. There exist also closed source

software libraries and programs that enable researchers and industry to quickly and easily work

with two-dimensional information such as Matrox or VisionWorks by Nvidia. In the three-

dimensional space, however, there exist far fewer native options. Point Cloud Library (PCL),

the three-dimensional equivalent of OpenCV is a much smaller project, with a lot less industry

involvement. OpenCV has nearly 20 000 commits over roughly 600 contributors, whilst PCL

only has half as many commits with roughly 250 contributors and far fewer forks5. While in the

commercial space many applications exist for geo-surveyor data from laser scanners, there is

nothing universally suited.

There are many potential reasons for this lack of software support, however, major influences

arguably are a lack of sufficient processing power on current and semi-current systems and the

sheer complexity of analytics possible in three-dimensional data. To overcome these limitations,

depth information is often encoded into two-dimensional images as a depth map; an image

(usually black and white) where the grey-scale represents the depth of that pixel. This enables

traditional software, such as OpenCV and all of its algorithms, to operate with depth information.

Currently, this is still the main method for interacting with depth information, as obvious when

looking at the research being published 2.1. Often this compromise is sufficient for obstacle

detection and avoidance, but in order to interact with obstacles in three-dimensional space, one

must work with the data in this space. To achieve this, often the raw depth streams (inherently

captured from the camera as a two-dimensional image) are first filtered with various algorithms,

and only Region(s) of Interest (ROI) are extracted and converted to complete three-dimensional

space.

The operating system to employ for this research also was not a clear cut choice. Linux being the

obvious choice, did come with some downsides concerning software capability. Due to the nature

of low-level code, usually compiled directly to machine code, it is generally not operating system

traversable. An example of where this becomes an issue was with products such as the R200

or Kinect v2. Here Intel and Microsoft developed proprietary drivers that would ensure smooth

functionality of their products, but only released these for Windows-based operating systems.

Usually, only a matter of time until the open-source community (heavily involved in academia)

develops equivalent drivers and support for these products, but they sometimes can never match

the performance due to a lack of low-level access to the device.

5Statistics gathered from public GitHub repositories https://github.com/opencv/opencv and

https://github.com/PointCloudLibrary/pcl on 17/09/2016
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3.2.3 Processing Hardware Centred on Depth Vision

Less crucial than finding the right camera or algorithms, the hardware to perform the calculations

on is often overlooked in a research domain. Often their processing power consumption and

availability are not as restricted as on a commercial robotic platform. Modern processing has

enabled ever lower power devices to exist, but when it comes to working with masses of data,

these devices often choke. The REX platform contains a lithium-ion power source, mainly

used to drive the actuators, which would also power any processing hardware. Being a mobile

consumer product a continuous consideration for them is end-user battery life, and any additional

drain shortens this. Space for the processing unit to reside is also very limited on the REX.

Especially with the aim of investigating integration with the REX platform, it was critical that

any work developed, would function with these resource restraints. Space, power and processing

requirements pointed towards requiring a Single Board PC (SBC) rather than a modular computing

solution. System on Chip (SoC) solutions have also considered, but are these are often targeted at

higher volume products that can afford the overhead of PCB design around a SoC. There are many

contenders in the space of SBC, especially aided by the maker revolution, where the hobbyist

market has become large enough to interest manufacturers of these boards. This has resulted in

many reasonably priced, well documented and supported, powerful SBC such as the Raspberry Pi.

The Raspberry Pi 3 features a 1.2GHz quad-core 64-bit ARMv8 Central Processing Unit (CPU)

and 1GB of Random Access Memory (RAM). They also contain all the peripherals and Input

/ Output (IO) required for quick development and simple integration, such as network, display,

Human interface device (HID), and storage. Other devices such as the ODROID or BeagleBoard

offer similar performance and all for a similar price of roughly 30USD to 60USD. Those devices

are all based on the Advanced Reduced Instruction Set Computing (RISC) Machine (ARM)

architecture, imposing cross-compatibility restrictions for software. Luckily ARM is becoming

more mainstream, mostly in response to the mobile phone and tablet market, meaning much

software has either been ported or re-written to be compatible. Most, but not all, parts of OpenCV

and PCL are compilable on ARM systems, meaning this was not a limiting factor for decision

making. Often however when combining non-mainstream devices (such as depth cameras), with

non-mainstream architecture, device drivers are not developed or lack functionality, making this a

more significant concern. In these cases SBC units such as the Osprey from VersaLogic provide

an alternative. While usually costing more, these boards use Intel’s range of Atom processors,

again providing a different compatibility set.

Stereo matching algorithms, in particular, must perform thousands of operations to calculate

the disparity of each pixel, and these can easily be implemented in parallel. This fact opens

up a new type of SBC or SoC; namely one that implements massively parallel processing,

usually by employing a GPU. Largely motivated by academic research into accelerating machine

vision[Fung and Mann, 2005], many common algorithms are being implemented using GPU
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architecture, meaning some of OpenCV’s and PCL’s functionality can be executed on the GPU

already. Machine learning has also played a role in this domain, further spurring integration of

GPUs into embedded devices. Nvidia is a company that has been especially focused on this

domain, with the automotive industry being a massive incentive for them. The Tegra series of

SoCs from Nvidia are specifically targeted at this market, and already found in many auto-mobiles.

Aimed at the industry of automated robotics and employing the Tegra core, the Jetson series were

a perfect potential solution for this research. Being a complete SBC with an ARM CPU coupled

to a powerful Tegra GPU and featuring a wide variety of IOs this board had it all. The latest

Figure 3.5: Jetson TX1 Module – Nvidia’s SBC, the Jetson TX1, aimed at the automotive industry. On the
right a brief summary of specifications. Sources: [Nvidia, 2016]

revision, the Jetson TX1 (depicted in figure 3.5), was chosen due to its powerful combination

of processors, whilst costing 500USD for a development kit, and less for the actual SBC. Also

worth mentioning, the Software Development Kit (SDK) available for the Jetson TX1 makes

developing machine vision applications a quick process. To make efficient use of the GPU core, a

full Linux based image with appropriate drivers is maintained by Nvidia. Combining this with its

footprint of only 50mm× 87mm and typically under 12W of power consumption under max

load, this was the ideal choice.

3.2.4 Decision Validation and Testing

With sufficient understanding of the available technology in relation to vision hardware, software,

and processing hardware, conclusions were met and the suiting equipment was acquired. The

following items purchased:

1. ZED stereo high-resolution camera

2. DUO MLX stereo infra-red camera
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3. Nvidia Jetson TX1 embedded GPU SBC

4. Day hire of Faro S120 Laser scanner

Once the equipment arrived some initial classification and testing was done to establish what

working with them would entail. This will determine the ease-of-use of the products, involving

setting up the software environments for the cameras to produce data, and for the Jetson TX1 to

boot and be operational. First the cameras were tested with a Windows operating system, but then

quickly migrated to the Jetson TX1 as this was crucial for further development.
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Extracting Raw Data

To start characterising the sensors, a fair comparison of data quality was an obvious first step.

This proved to reveal a lot about using the cameras that was not apparent from their respective

datasheets. Being commercial cameras sold with software development kits and support, these

products were advertised as functional out of the box. The extent of this functionality had to be

tested.

4.1 Camera Calibration

Stereo calibration is a critical task to stereo vision, and much academic work has gone into

developing these techniques. Both cameras support fairly standard calibration, and store this

data on the camera, while also being factory calibrated. Initial testing of ranges however quickly

showed that the Duo MLX was consistently misjudging depth, pointing towards a calibration

error. After contacting Code Laboratories, it was discovered that in fact the calibration process

employed and supported for the Duo MLX was not adept at handling wide angle lenses, which

were fitted. After pointing out this flaw to the Code Laboratories team, much time was spent

trying to re-calibrate the device using a generic OpenCV approach rather than the provided

package. OpenCV includes a library that is focused around performing these tasks, calib3d,

which helped a lot in speeding up the process. Eventually, a suitable calibration was able to be

conducted, and figure 4.1 shows the gathering of samples. These correlated circular patterns are

used to calculate camera intrinsic and extrinsic properties such as principal points, focal lengths,

distortion and projection matrices.

The calibration preloaded onto the ZED was of acceptable accuracy, and it did not require re-

calibration. It is worth noting that while putting more time into calibration can guarantee more
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Figure 4.1: Stereo Calibration Sample – An OpenCV based calibration program for the DUO MLX with
fish-eye lenses

accurate results, the purpose of this research was to use consumer products and developing/refining

calibration techniques was outside of the scope of this work.

4.2 Reading Depth

Since both cameras came with SDKs, it was necessary to familiarise with how these functioned,

and how to extract depth data from the devices. Also because it was intended to let the camera

manufacturers device driver do the depth calculations and not use a common open source solution,

the accuracy of these also needed to be tested. Within Windows, it was simple to install the

relevant SDK, connect the camera and launch their viewing application to view a depth stream

(for example figure 4.2). A flat board with checker patterns affixed (to give the board texture and

to measure lateral error) was used and the Duo MLX was placed at distances of 300mm and

600mm distance from the board. The dashboard for interacting with the Duo MLX and viewing

the depth stream (shown in figure 4.2) exposes many options for fine tuning both the camera and

the process of generating depth. It was not feasible to measure the effect of each setting on the

depth error since one would have had to check for cross-correlation and there would have been

hundreds of combinations. Before adjusting the calibration as explained above, the depth values

were consistently short of the actual distance. At 300mm, over 23 samples gathered, the mean

distance recorded was 255mm, giving an axial error of 45mm. Laterally the checker patterns

measured 50.0mm, but the camera mean over the same samples was 46.6mm, giving an error

of 3.4mm. Repeated at 600mm, the axial error rose considerably to 142mm, and the lateral

error rose to 7.7mm. It quickly became apparent that the camera was not functioning properly, as
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Figure 4.2: Duo Dashboard GUI – Shows the user interface for operating the DUO MLX Camera. The
upper images are the raw infra-red filtered images, while the lower section shows a coloured depth map.
On the right are options to customise the data output generation parameters.

these errors grew proportional to distance as if the answers were being scaled incorrectly, which

lead to the before mentioned investigation of calibration methods revealing the fish-eye lens issue.

The challenge of getting valid depth information out of the Duo MLX did not, however, stop

at calibration. It is important here to note the chronological order of events. The Duo MLX

was received first, then testing revealed calibration errors. Much time passed with no solution, a

calibration program was developed using OpenCV, however, this could not update the calibration

stored on the camera (due to propriety access). The Flowchart shown in figure 4.3 demonstrates

the process used to accomplish this. Hence the included Duo software library responsible for

generating depth could not be used. Meanwhile, Code Laboratories had been made aware of the

problem, but not provided a solution. To not completely stall progress, a depth calculation program

was developed, again relying on OpenCV’s libraries. This was a lengthy and cumbersome process,

and roughly as it was completed, Code Laboratories released an updated firmware and SDK

that addressed the issues faced. Due to all these issues and to reduce the overhead and learning

curve required to use the Duo MLX, a middle-layer was developed that made using the camera

more ’plug and play’ compatible2. The software library also allowed image rectification using

OpenCV as opposed to Duo’s closed source methods. This combined the OpenCV calibration

work shown in figure 4.3, with an easier interface to working with the Duo. It also enabled users

to perform the rectification with OpenCV’s open-source libraries as opposed to Duo’s. This was

2Available at https://github.com/nznobody/duo_wrapper, however, development has ceased
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Figure 4.3: Duo OpenCV Calibration Flowchart – By using the features of OpenCV, a calibration program
was developed 1 that follows this process to calculate the parameters required to un-distort the images.
This prepares them for stereo matching algorithms.

an important feature to enable because the Duo libraries, whilst supporting multi-threading, did

not support using the GPU to perform the rectification or disparity calculations. Being able to

carry out these tasks on the GPU made a tremendous difference (roughly a 20 times performance

boost in image rectification, demonstrated with the afore mentioned wrapper software) in system

resources available to the user, and was the whole intention behind purchasing the Jetson TX1.

Now reading depth values with relative accuracy (as seen in table 4.1), a large discrepancy still

existed in re-projecting the depth values to x and y co-ordinates (seen in table 4.1). This is a

(a) Duo MLX (b) ZED (c) Realsense R200 (d) Kinect v2

Figure 4.4: Comparing Stereo Re-projections – Re-projected point clouds from each camera of the same
box and same view point

process that carefully depends on the calibration of the camera, indicating that there were still

fundamental issues with the device. Figure 4.4a helps demonstrate why even though the distances

may read correct, an accurate re-projection is critical to re-creating a scene that is of use once

the viewpoint is rotated. The challenges faced calibrating and re-projecting with the Duo began

to consume too much time, and so development focus was shifted to the ZED. This frustrating

experience is an indication of what working with fringe technology can be like.

Unlike the software included with the Duo, ZED’s depth viewer was rather simplistic concerning

settings. Figure 4.5 depicts the interface supplied. It did not expose the core settings associated

with stereo disparity calculations such as WindowSize or PreFilterCap. There are three
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Figure 4.5: ZED Depth Explorer GUI – Shows the user interface for operating the ZED Camera. The
upper left shows raw colour images, lower left shows grey-scale depth-map and on the right a rotatable
point cloud projection.

main view-panels; side-by-side raw video, depth video, and a manipulatable point cloud viewer.

The Graphical User Interface (GUI) allows for exports of any of the data formats (image, depth,

point cloud). Configurable settings are resolution and frame-rate of the camera, and a quality

or performance mode for the depth generation, and a confidence threshold. The confidence

threshold in particular was an important setting that changed the output considerably. As detailed

in the literature review (section 2.3.1), quality of a match is an important measure of confidence.

However, this results in flat non-unique planes scoring low confidence measures, such that if

the data were filtered to exclude low-confidence values, the ground would often be excluded.

Tuning this detail is detailed in depth when ground plane extraction is discussed, since it affected

this the most. Switching to the ZED required the Jetson TX1 to be set up, because unlike the

Duo, the ZED did not have an option for CPU disparity calculations and required a discrete GPU.

Since stereo calculations have to be performed on every pixel individually, this vast quantity

would bottleneck on a CPU. On the Jetson TX1 the ZED is able to display a depth stream at

1080p resolution in real time, whilst mostly processing on the GPU. Table 4.1 demonstrates

the minimum operational range of the ZED. Under 1000mm, the ZED struggles to capture

the disparity, because the large baseline results in very different views of the object. However,

over this range the ZED quickly gains accuracy and is able to re-project depth information into

meaningful point clouds as seen in figure 4.4b.
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Table 4.1: Camera Absolute Axial Error at Different Ranges – A brief comparison of camera performance
in comparable scenarios

Duo Zed R200a

Distance

(mm)

Abs Axial

Error (mm)

Std. Dev.

(mm)

Abs Axial

Error (mm)

Std. Dev.

(mm)

Abs Axial

Error (mm)

Std. Dev.

(mm)

500 285b

600 5 10.5

800 45 15

1000 11 15 18 12.5 45 4

1500 45 27 18 24.7 26 14.5

2000 155 32 6 10

The cameras were placed looking at a white board with a textured pattern applied. Depth samples of the board were

extracted, mean and the standard deviation was calculated. The absolute axial error is the difference between expected

distance and actual, not to be mistaken for axial noise, which is the variability in data representing a flat plane. The board

angle and perpendicularity was calibrated with a Hokuyo laser scanner. This data is only supposed to represent the relative

performance of the cameras.
a The R200 is only included here as a brief comparison of a differing technology type
b Since this was below the minimum range of the ZED, the data was barely recognizable as a plane, and a estimated figure

was extracted by hand. Purely included to demonstrate the ZED’s range limitations.

4.3 Coordinate Systems and Ground Planes

Information is arduous to comprehend without a relative measure and context. With depth

information, one of the most important aspects to consider is the coordinate frame being used.

For depth data re-projected to a point cloud, a three-dimensional Cartesian coordinate system is

employed. If such a system is employed, any position in three-dimensional space can be uniquely

identified by the signed distance to three mutually perpendicular planes (or equivalent)[Korn

and Korn, 2000]. An important point of consideration is the origin point where all three planes

cross, as this is the zero point, and how they are aligned relative to the world. The Duo and ZED

both follow the right-handed rule3 for defining their axis in a Cartesian manner. They do not,

however, follow the same orientation; with the Duo having negative z aligned perpendicularly

in front of the camera, positive x to the right and positive y upwards. The ZED, on the other

hand, has positive z aligned perpendicularly in front of the camera positive x to the right and

positive y downwards. To enable consistency and compatibility, when extracting point clouds

from these cameras, these coordinate frames were transformed to align with those set out by

the ROS Enhancement Proposal (REP)1034. This states that relative to the object x should face

forward, y to the left and z upwards. Equally as important as the camera’s location in Cartesian

space, is the camera’s orientation, defining its rotational alignment. Rotations in three dimensions

contain much ambiguity unless properly defined. Whilst defining them here is outside of the

3Assigning axis based on the direction your right thumb, index and middle finger point when mutually perpendicu-

larly aligned
4Sourced from http://www.ros.org/reps/rep-0103.html
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scope, it will be noted that the most commonly applied method in this work are using quaternions5

4.3.1 Aligning with the Ground Plane

With the data in a known coordinate frame, the next step was to place this frame relative to

something larger. Given the purpose of navigating surrounding terrain, it was important to extract

the height of this terrain, in particular, relative to the ground plane. The camera had to be mounted

in a location that allowed its perspective to produce useful information. Since the ZED performed

better at ranges above one meter, this had to be considerably high off the ground, preferably with

a not too steep and not too shallow angle relative to the ground. Working with the REX platform,

this meant the most likely location for mounting was the around the hip height at an angle of

roughly 45◦ downwards. As the REX is a moving robotic platform and has its own tolerances,

this angle cannot be assumed to be constant and valid for the ground plane. To accurately map the

height of surrounding terrain it was critical to properly determine the camera’s angle to the ground

plane, otherwise as the camera moved away from the origin, the ground plane would appear to

shift vertically. It became apparent that this angle calibration process would be an important step

to address whilst building elevation maps with the depth data. During testing, the camera was

mounted on a tripod at a similar height and angle as it would be on the REX. In the early stages,

the camera coordinate frame was was defined at a set hight and pitch rotation as described in

figure 4.6 by h and θ.

x

y
z

ph

x′

y′ z′

θ

Figure 4.6: Coordinates Frames in use – Camera coordinate frame (x’-y’-z’) is defined relative to the
ground coordinate frame (z-y-z). The camera (denoted by grey cube) can be thought of at height h, facing
along y’. y’ is rotated from p through angle θ, which represents a pitch rotation.

Statically transforming the camera frame to the ground plane frame like this however quickly

revealed its limitations. Careful attention had to be given to ensure rotation in the yaw and roll

5Originally defined by W. Hamilton in the 19th century, the theory behind quaternions is covered in this

book[Kuipers, 1999] and the mathematics involved in transforming these to and from various other notations, including

Euler angles, is covered in this article[Diebel, 2006]
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axis was 0◦, otherwise, the ground plane would appear to shift as described above. This was

practically impossible to achieve in the test environment, let alone once mounted on the REX,

giving rise to the requirement for a dynamic ground plane calibration process.

Determining the ground plane in computer vision is a common challenge and has had significant

research efforts [Vaz and Ventura, 2015, Lin et al., 2010, Zhao et al., 2007, Pears and Liang, 2001].

Being a special case of generalised plane detection, relevant research in this area such as [Schnabel

et al., 2007] who describe using Random Sample Consensus (RANSAC) algorithms for generic

shape detection or [Yang and Förstner, 2010] who apply this directly to plane detection in point

cloud data on stairs. Following the methods described (in particular [Vaz and Ventura, 2015]),

Figure 4.7: Ground Calibration Process – Flow graph of the calibration process run at start-up that
calibrates the ZED depth camera to the ground and the REX

figure 4.7 depicts the operational flow implemented in a ROS node named rex ground calib.

Details of working with ROS are described in chapter 5, and will not be detailed here. The

operational flow begins on launch and waits for new incoming point cloud messages from the

camera. These messages are timestamped and contain the name of the coordinate frame they are

represented in. Once received PCL’s RANSAC fitting algorithm is used to find the largest plane

within the point cloud, outputting the coefficients describing the plane as ax+ by + cz + d = 0.

Understanding this equation represents a normal vector �n(a, b, c) to the plane, at a distance d

from the origin gives rise to a method of transforming into the planes coordinate frame. Then

a vector �h(a′, b′, c′) is determined where a′ = −d× a, b′ = −d× b, c′ = −d× c (given �n is a

unit vector) that begins at the origin of the camera coordinate frame and takes the shortest path to

the plane (is perpendicular to the plane). Next, we must calculate the rotation that transforms �h

to align with the −z axis of the camera coordinate frame. Using quaternions this is a matter of

using vector cross products to determine the axis of rotation and vector dot products to determine

39



CHAPTER 4. EXTRACTING RAW DATA

the angle between the two vectors.

q = cos
θ

2
+ i sin

θ

2
vx + j sin

θ

2
vy + k sin

θ

2
vz (4.1)

Equation 4.1 demonstrates how quaternion q can be defined given a vector �v(x, y, z) and angle

θ. To provide a better calibration, multiple quaternions are gathered over multiple input point

cloud samples. Once a sufficient sample size is acquired, it is required to average these, a process

defined by Markley[Markley et al., 2007]. Markley’s approach is simplified based on a method

employed in the game engine sector 6. Since the transform of coordinate frames depends on both

orientation and translation, the length of �h samples is averaged and taken as the z axis offset. With

the transform between the ground plane frame and the camera frame fully defined, it is published

via ROS’s framework. This allows all future point clouds published in the camera frame to be

translated to the ground plane frame. To adhere to ROS’s notation guidelines the ground plane

frame is called the odom frame. Additionally, as the framework was already in place, this node

published the offset between the ZED Camera and the root of the REX exoskeleton. This was

configurable via ROS parameters encase the mounting point of the ZED changed.

4.4 Camera Motion and Odometry

Two approaches exist in computer vision; time-invariant and time-variant processes. In general, a

process is time-invariant if it is outcomes do not explicitly depend on time, that is at any given

moment a set input will produce an identical output. Mathematically speaking y(t) = x(t) is

time-invariant whilst y(t) = x(t) + x(t − 1) is time-variant. The meaning behind this in the

context of computer vision is that of systems that operate frame by frame, or those that consider

previous frames (the past) as well. To give a contextual example may be that of a visual collision

avoidance system that analyses input from a camera and determines if a collision is likely. A

time-invariant system would look at a single frame, and attempt to determine if the object is too

close or on a collision course. A time-variant system, however, would try to track that object

over a series of frames, allowing it to extract more detail about the object such as it’s velocity

vector. Another way of describing a time variant system is one that has a temporal dimension to

consider. A survey of literature focused on plane and stair detection was conducted to understand

these merits, presented in table 2.1. Although not an extensive survey, it provides an insight to

approaches being pursued. There is no clear ’correct’ solution, and both have their merits worth

considering, which is supported by the diversity presented in this table.

Understanding the objectives helped determine that a system employed by the REX platform

would benefit from considering the time dimension, that is being time-variant or temporal in

6http://wiki.unity3d.com/index.php/Averaging_Quaternions_and_Vectors
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functionality. To understand this, consider the task of navigating a passage sideways, such as

the REX passing through a door frame. Constructing a system that can close the feedback loop

and advise if the next motion is safe can consider two options: install enough cameras that a

continuous 360◦ image can be reconstructed of the REX’s surroundings or store the information

seen on approach, then track relative movement once rotated sideways. Remembering that there

is no ’correct’ method, it again comes down to weighing the merits of each and deciding based

on these. Relating these merits back to the design considerations defined in chapter 3 provides

reasoning to the decision process. For example, it becomes apparent that multiple cameras could

be aesthetically unappealing and also demand too much processing power. For the REX platform,

a temporal solution would be required to meet the objectives adequately whilst also adopting the

design considerations.

Knowing that the system would consider information from the past, determined that a system

tracking the motion of the camera would be required. Information from the past can only be

considered in the current frame, if a transform, t) is known that relates the two frames and places

them relatively in all considered dimensions (t = [x, y, z, i, j, k, w, t] where x, y, z are positional

transforms, i, j, k, w rotational and t a time transform). Tracking the transformation in time is a

trivial task, within a given accuracy the computers clock can achieve this. However relating the

two frame’s transformations in three-dimensional space is non-trivial, and is the topic of much

research, especially in machine vision (refer to table). Two key approaches exist to this task:

absolute and relative tracking. Examples of absolute positioning such as Global Positiong System

(GPS) or cellular triangulation are relative in the sense that they place the target relative to some

other object, but are considered to be absolute as they do not relate the current position to the

previous one. Relative tracking technologies, such as an Inertial Measurement Unit (IMU), on

the other-hand, are temporal systems that track changes in position over time and can determine

position by integrating these temporal changes. Whilst many modern mobile platforms employ

GPS, this was not an option for the REX; GPS doesn’t function well indoors and is only accurate

to 5m. The Duo camera included a 6 axis IMU, however, the issue with integrating motion data

to gain position is that over time error accumulates and so the position is said to drift. Visual

odometry has proved its worth in the recent years, being employed successfully on the Mars

exploration rovers[Maimone et al., 2007]. Such a system is both time-variant and time-invariant,

in that the movement calculated depends on data in the past, but most modern systems will

generate identical absolute positions when presented with an identical scene. Visual odometry, in

essence, tracks the apparent motion of key features within successive images through optical flow

and assumes they are for the most part stationary, giving rise to the fact the camera has moved.

Modern implementations also employ a form of loop-closure, where key features are tracked in a

database and when seen again, the system knows it has returned to a previous location, removing

drift effect over large loops. Visual odometry systems will still produce drift over large distances

that do not feature loop closures, such as a straight line, due to calibration and approximation
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errors causing scaling errors.

Initially, visual odometry was attempted with the Duo camera, because it had global shutter

sensors. The issues with using rolling shutters for visual odometry are explained in these

articles[Li et al., 2013, Lovegrove et al., 2013], whilst also solutions are offered. However, since

a global shutter stereo camera was already available, its use was investigated with various visual

odometry implementations: RTABMap[Labbé and Michaud, 2014], ORB-SLAM[Mur-Artal et al.,

2015], and LSD-SLAM[Engel et al., 2014]. These researchers all made their implementations

open-source with the majority of code hosted on GitHub. Compiling these and building a

functional pipeline on the Jetson TX1 was a pretty straight forward task. While the original

code was not necessarily compatible with the ARM platform, most were presented as CMake

projects. CMake is a cross-platform open-source collection of tools for building code natively7.

This made it easy to adjust compilation options and update certain snippets to add compatibility.

ORB-SLAM functioned best, with a real-time solution possible, even though the GPU was

un-utilised. Had development carried on with these packages, an extension would have been to

port compatible sections of the algorithm onto the GPU to free up the CPU. Again, the issues of

incorrect image rectification caused the Duo to lose accuracy in motion, rendering it of no use.

Conveniently around this time-frame an update to the SDK for the ZED added built-in visual

odometry. Being implemented within their closed-source driver, the workings of this could

not be investigated, but it functioned well. An interesting trade-off was discovered here; the

visual odometry system functioned better when the camera was operating at a higher frame-rate

and resolution. It can be speculated that Code Laboratories employ a method similar to those

published, which rely heavily on feature tracking within RGB images. So the larger the resolution,

the easier it is to track unique features. Also, the faster the frame-rate, the lower the approximation

errors of integrating are due to approximating the motion between frames to be linear. However

re-projecting the images to point-clouds at a high frame-rate and resolution consumed the majority

of resources and so a trade-off had to be made. Since their ROS compatible driver was open-source
8, it was possible to extend this framework. This gave way to developing a flexible framework

that in essence operated at two separate frame-rates, grabbing the raw images and performing

visual odometry at a high rate, whilst then down-sampling and publishing the point clouds at a

lower rate. A few minor improvements and bug fixes were made as part of this work and pulled

into the main source tree, but the main functionality was not integrated due to time constraints.

7https://cmake.org/
8https://github.com/stereolabs/zed-ros-wrapper
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4.4.1 Odometry Fusion

Visual odometry functions well with a motion that is effectively linear between samples (frames

grabbed). This is not the case for erratic motion, with fast accelerations (such as changes in

trajectory) on the Jetson TX1, because with limited processing power the sampling rate was

15Hz. IMUs, on the other hand, can easily operate at a much higher rate with lower processing

requirements. The Duo’s IMU can operate at 100Hz, reducing the integration error component

introduced when estimating pose and orientation, however as mentioned they are susceptible

to drift. Recent research[Leutenegger et al., 2015] on tightly integrating visual odometry with

that of an IMU has proven to reduce error build up. The article identifies that the combination

of information rich pictures with accurate short term estimations of an IMU complement each

other very effectively. Combining the two is not a simple task of averaging, since as previously

mentioned, they are fundamentally different. With visual odometry generally reporting absolute

positions, and IMU reporting velocity information, these data formats are not directly compatible.

One approach is to differentiate the visual odometry readings into velocities, combine both in the

velocity domain (by considering sensor covariances to do a weighted average), then re-integrate

the combined result to a position. Due to time constraints, this topic was abandoned, and sensor

fusion was never implemented but the open-source implementation of[Leutenegger et al., 2015]

is hosted on GitHub9.

4.5 Combining Solutions

Having sufficiently explored the depth producing capabilities of the two cameras, development

had to move forwards. A ROS framework was developed and tested that reliably produced point

clouds in the camera frame, but also provided a transform to a fixed odom frame. The ZED stereo

camera provided both the point clouds and the transform between frames by tracking motion with

visual odometry. Allowing flexible mounting, a calibration routine would ensure the information

was aligned with the ground plane.

9https://github.com/ethz-asl/okvis
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Implementing with Robot Operating
System

The beauty in open-source methodology is it allows an individual to work with and contribute

to a project much larger than themselves. ROS is an example of such a project, originating out

of Stanford University, but becoming a large worldwide collaboration of work. Fundamentally

ROS consists of software that implements best practice for robotics applications. Adopted by

Willow Garage in 2007, it has been developed to provide a universal approach to implementing

robotic applications. Although other similar frameworks exist, such as YARP1, ROS has a large

active community distributed across many universities and industry alike. Often when developing

a system from the ground up, one is faced with recreating common systems to support the actual

task at hand, especially in software. ROS’s core task is to reduce this duplication of work, and

instead enable an advanced configurable system to be used by many. Since this research would

cover many areas of robotics and require them to work efficiently together on something referred

to as a pipeline, ROS was an obvious key development tool. ROS Consists of three core features

as described in the subsequent sections.

5.1 Filesystem Management

ROS considerably simplifies the distribution of software packages by defining a set of standards

that must be adhered to for compilation. This allows users to download and compile distributed

works on their local machine with little difficulty, providing they have a standard ROS setup.

1Yet Another Robot Platform, http://www.yarp.it/
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Valid ROS packages must contain formatted package manifests2, which are used to compile

the source, if required (some packages do not require compilation as they are descriptive only).

Following the methodology of Linux, most common ROS packages can be simply installed via

the package management system, e.g. apt-get install ros-kinetic-PACKAGE. A

non-exhaustive list of available packages is maintained 3, the source code for these and others is

most commonly hosted on GitHub. As a build system ROS supports rosbuild or the catkin

systems, both of which employ the cmake build system described earlier. These manage a

workspace on the development machine and ensure project dependencies are met across ROS

packages when compiling, by feeding information to the cmake system. For example building

an entire set of packages being developed within a workspace requires calling catkin build

from within the workspace, all changed packages (and their dependencies) will be checked for

changes and rebuilt if any are found. Utilising this ability, software development in this area was

split into two workspaces: core ws and rex ws. The first contained mostly dependencies that

required little or no editing from the source code provided, while the latter contained projects

written for this research and forks of open source software that were adapted to be compatible.

While not strictly speaking a ROS standard, all works developed were version controlled utilising

GitHub and are selectively publicly available: https://github.com/nznobody (some

content was kept private due to commercial sensitivity).

5.2 Computation Graph

At its core ROS contains a messaging framework, providing a standard, extensible method for

processes to exchange information. When developing larger systems, these pipelines inevitably

become non-linear, that is information does not simply flow from one end to the other. It becomes

complex to manage the flow and synchronisation of information within a single machine or across

a distributed architecture. The publisher/subscriber paradigm of message handling in computer

code is a well-established practice for managing this complexity. First we must explain nodes in

Figure 5.1: ROS Pipeline Demonstration – A simple ROS pipeline example: keyboard commands from
one node control the turtle in another

2As with many ROS standards, they are defined in REPs. The package manifest is defined here: http://www.
ros.org/reps/rep-0127.html

3http://www.ros.org/browse/list.php
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the context of ROS: In essence, they are processes that perform a task. These could be compiled

code or a script, but they all integrate the ROS client library native to them, for example, roscpp

with C++ code. A master node is responsible for acting as a central register and lookup to enable

inter-node communication, commonly referred to as ros core. Contained within this master,

is a parameter server that simplifies the process of configuring pipelines, allowing a central

storage of parameters by lookup name. Understanding these principles, the need for inter-node

messaging can easily be demonstrated, as depicted in figure 5.1, showing a nodegraph exported

from ROS’s rqt graph. It demonstrates the flow of information (keyboard commands) from

node teleop turtle to node turtlesim via the message topic /turtle1/cmd vel,

resulting in turtle movement (shown on the right). This simple example is the building block of

much more complex systems ranging many nodes with hundreds of message topics potentially

across distributed locations and networks. As messages are a reactive system, the ROS concept of

services are proactive, in that an action or response can be instigated when requested by a node.

True to the universal solution nature, both messages and services are completely customisable

by creating definition files. A large selection of standard messages and services does exist that

should be considered to promote a universally compatible system.

ROS provides an extensive collection of tools for analysing, debugging and logging development,

such as the node graphs generated in figure 5.1. Some of the key programs and their features are:

roscore The core process, known as the master. All nodes must be able to communicate with the

master as it manages topic registration and variable storage.

rosrun Is used to launch nodes in the correct environment and attempt to establish contact with

the master.

roslaunch A customisable approach to rosrun. Reads a description file and can from this launch

many nodes with pre-set settings, names and outputs.

rviz The primary method for displaying any visual output, such as images, point clouds, maps or

pose information. Can also be used to publish messages that interact with this data.

rosnode A method for getting information about running nodes and optionally terminating nodes.

rostopic Can query and list all topics, displaying their content, bandwidth and frequency. Can

also publish messages.

rqt gui A GUI for a collection of utilities such as the above. Can be used to inspect the node

graphs, message topography, transform frames and pretty much any aspect of an operating

ROS system.

rosbag A utility for recording and playing back messages. Can record all or a subset of published

messages and at a later time play them back, at varying speeds and with pausing. An
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incredibly useful tool.

The above list is far from being exhaustive, and there are many user created tools that help

development. Functional detail will not be described in this text, as it is already well documented

and not feasible to summarise effectively.

5.3 The Community

Perhaps the most important aspect of ROS, is the sharing of knowledge about a common platform.

Because it is used by many developers, there is a very lively and active community built around

the software, willing to help. This is an invaluable resource that can make an apparently steep

learning curve relatively easy to master. The community maintains the large list of packages

mentioned afore, but also takes part in active peer helping via their questions and answers site

http://answers.ros.org/. Peer reviewing of issues and solving them was a substantial

assistance in the implementation of this research. The ROSWiki is also very well maintained and

documents a lot of the packages available with examples and tutorials. Continuous improvement

of the core functionality is seen through releases of new distributions, and there is a fundamental

revision to ROS2 in the works 4.

5.4 ROS and the REX

A part of integrating the REX into the ROS pipeline was to create a model of the REX for

visualisation and potentially collision detection at a later stage. Within ROS there exist multiple

avenues for creating models, ranging from simple static shapes to detailed dynamic models

imported from 3D files. Originally a part of ROS, Gazebo 5 is focused on simulating robotics. It

is able to test algorithms and configurations in simulated environments quickly. However this is

what it focuses on, and for that reason, it was decided not to employ Gazebo, as it was too focused

on simulations and not working with real environments. Instead the native ROS framework,

xacro6, was used to build and simulate a dynamic model. Xacro defines a XML macro language,

and enables more complex native urdf 7 to be written with ease. Urdf is the basis of most ROS

models and can be natively displayed in rviz. A simplified model of the REX was created, based

of maximum collision bounding rectangles and is shown in figure 5.2. This was created from the

code attached in appendix source code listing 3. Consisting of a hip bounding shape, an upper

4Still in early development, but publicly open-sourced at https://github.com/ros2
5http://gazebosim.org/
6http://wiki.ros.org/xacro
7http://wiki.ros.org/urdf
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Figure 5.2: REX Model in ROS – Model of REX robot made with ROS’s xacro framework and dynamically
simulated with an application written to mimic real movement maps.

leg section, a lower leg section and a foot per side this model is also able to simulate the joints

between these parts as demonstrated in the right-hand image. Within ROS it is standard to get

sensor information that would be able to determine joint angles and update the model. While

theoretically possible, the interface to extract this information in the desired form from the REX

would have been very cumbersome to implement because the REX only reports actuator lengths,

not direct joint angles. Instead, a ROS node was written that could publish the expected joint

angles for a specific movement map, simulating this sensory feedback loop. The angles were

extracted from the V-REX (virtual REX movement simulator) and stored in configuration files that

could be loaded by the joint state simulating node; rex model. This compromise was acceptable

for immediate testing as the actual angles did not differ much from the simulated ones, however

ultimately to manage dynamic terrain (not yet possible with the REX in general), a proper closed

loop feedback system would be needed.

The completed ROS pipeline graph involves 16 nodes that intercommunicate with messages and

services. Shown in figure 5.3a, this clearly demonstrates the modularity of working with ROS.

Since frame transforms play a vital part in relating all these nodes, figure 5.3b shows the entire

transform tree of the pipeline. A sample ROS program is also included in the appendices (code

listing 1 and 2 in appendix VI) that demonstrates the basic functionality of such a program. It is

the rex interface program, that was responsible for interfacing the REX with the mapping

solutions.

48



CHAPTER 5. IMPLEMENTING WITH ROBOT OPERATING SYSTEM

(a) ROS Node Graph

Figure 5.3: Complete ROS Graphs of the system – System overview of both the nodes and transforms
used in the final implementation of this research
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(b) ROS Transform frame graph

Figure 5.3: Complete ROS Graphs of the system – System overview of both the nodes and transforms
used in the final implementation of this research
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Chapter 6

Elevation Maps

When faced with masses of information, it is key to reduce this to a more useful summary. This

was a challenge confronted with the point clouds received from the cameras because there was

simply too much data to work with the raw clouds in real time. To navigate this issue, key

concepts were combined from the papers reviewed (table 2.1). Many of these researchers operated

with two-dimensional data such as depth images, however as earlier discussed it was decided to

operate in three-dimensional space for this research. A lot could still be learned and assimilated

from their workings, to enable efficient and effective processing of the point clouds.

6.1 Working with Point Clouds Efficiently

Oniga used a method of converting their disparity maps to DEMs, allowing a change of perspective

when analysing a two-dimensional image[Oniga and Nedevschi, 2010a, Oniga and Nedevschi,

2010b]. The value in this approach when operating in 3 dimensions is from reducing memory

management complexity for storing point clouds. First, one must understand the storage of

point clouds in memory, of which there are two main implementations (at least within PCL):

organised and unorganised. The difference stems from the method of capture; with point clouds

from cameras that perform re-projection producing organised point clouds, and other sources

generally producing un-organised clouds. In memory, organised point clouds are stored as

a two-dimensional array of points p = [x, y, z] and in unorganised these are a single long

one-dimensional array of points. When re-projecting from a two-dimensional disparity image,

neighbouring points are naturally also spatially close, so storing them close in memory has

advantages. Algorithms that operate on neighbourhoods of points (such as normal calculations1),

1http://pointclouds.org/documentation/tutorials/normal_estimation_using_
integral_images.php
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use this storage technique to speed up the search process for neighbouring points, with the priori

that they will be located close in memory. In an unorganised point cloud, this can be a lengthy

operation as the algorithm must search the entire memory array because there is no guarantee that

they are allocated by spatial proximity. This knowledge was used when performing the RANSAC

plane detection in section 4.3.1 on an organised point cloud with PCL. Location lookups are still

inefficient in both memory structures because the memory location does not directly map to a

point’s spatial location, making processes such as collision detection slow.

6.1.1 Octrees

Octrees are a memory organisation technique (not just for point clouds) that help address this,

enabling quicker processing of spatial algorithms. Conceptualised in 1980 by Meagher, this

process of memory organisation recursively subdivides memory organisation into octant sectors,

gaining granularity at each level. Figure 6.1 visually explains the recursive nature. It can be

Figure 6.1: Octree Representation – Visual representation of octree memory and spatial layout. Source:
[WhiteTimberwolf, 2010].

seen that if one wishes to query a particular spatial location, there is a fixed lookup length,

regardless of location that is purely dependent on granularity (resolution) desired. There exist

several well-developed libraries for working with octrees both within PCL and as standalone2.

Similar research into humanoid robot navigation using machine vision successfully used an

implementation of octrees to manage their point clouds[Maier et al., 2012]. Octrees, however,

express an important limitation: they must be spatially of a pre-defined finite size, which directly

relates to the memory space required to achieve a certain accuracy. For confined application, this

is no issue, but the REX is a platform that must move with its user, and the operational confines

2OctoMap is an example: https://octomap.github.io/
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are not known in advance. Presented with this knowledge a potential workaround would be to

rebuild the tree when the robot approaches an edge of the current extents, but this can be a very

costly process and is non-ideal.

6.1.2 Gridmapping

An alternate method to octrees is to reduce the complexity of the point cloud to a 2.5 dimensional

level. Fankhauser et al. perform significant work in building a framework that operates efficiently

in this domain[Fankhauser and Hutter, 2016]. While octree representation of point clouds

maintains full three-dimensional compatibility, this work limits each [x, y] location to only

have a single z height. It can be imagined as a stack of images, where each pixel location

represents an [x, y] spatial location, and the value of the pixel stores a parameter about that

location. Their implementation, named Grid Map, is made available open source at https:

//github.com/ethz-asl/grid_map and was of great use to this research. Each grid

map layer can store a type of information and is organised in memory so that a predefined sized

grid map can move without requiring a complete rebuild. To achieve this, the point cloud is

compartmentalised into a grid of a chosen resolution, with the method of resolving duplicate

points within one grid cell being user defined. Because elevation information is critical for

navigation, it becomes evident that when merging points that co-exist in one [x, y] cell (such as

points vertically up a wall section) they should be merged into the highest point, as this represents

the height of an obstacle in that location. Storing these in a two-dimensional memory array makes

looking up a particular location trivial, and finding neighbouring values equally efficient. Limiting

each two-dimensional location to a single value, might appear to be working in two-dimensional

space, but allowing grids to be stacked, allows for multiple values separated by key for each

location. For example, one grid map could store the maximum elevation detected whilst another

could store the minimum, allowing a pseudo three-dimensional appearance. Extending upon this

idea Fankhauser et al. implement an efficient method for map relocating, allowing the boundaries

to be relocated, without reallocating the underlying data. This functionality makes it perfect for

working with mobile robots that need to navigate terrain in an unconfined space. One is able

to define a relatively small map around the robot origin, that moves with the robot as it does,

representing just enough information to be computationally efficient but effectively describe

the immediate surroundings for navigation. A grid size of 25mm (or sometimes 50mm for

performance) was chosen with a map size of 6m× 6m and the robot located in the middle,

giving 3m of obstacle detection in each direction. When the robot pose is updated via the visual

odometry pipeline described in section 4.4, the map boundaries maintain a 3m offset from the

new location. Information no longer within the boundaries is forgotten and new area contained is

filled with data from the camera if available or set to unknown if not.
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6.2 Simultaneous Localization and Mapping

Simultaneous Localisation and Mapping (SLAM) is a key concept to enabling effective use of

depth vision. As discussed in section 4.4, data will need to be gathered over time and be stored

to enable an effective system. Conveniently grid maps are well suited to this and Fankhauser et

al. provide a framework (called elevation mapping) built around ROS and grid map capable of

efficiently performing this[Fankhauser et al., 2014]. In SLAM there are a few important concepts

to consider that Fankhauser et al. address. Defining the transforms between frames is one of

these, as described in section 4.4, whilst another is that of fusing consecutive point clouds into

one, where information overlaps. Here the authors introduce a concept of fusing overlapping

information based on the variances of each data point (the old and the new). To understand this

key feature we must examine their algorithm for performing these updates:

ĥ+ =
σ2
pĥ

− + σ̂2−
h p̃

σ2
p + σ̂2−

h

, σ̂2+
h =

σ̂2−
h σ2

p

σ̂2−
h + σ2

p

(6.1)

In this equation new height measurements (p̃, σ2
p) are fused with the existing estimation (ĥ, σ̂2

h),

where − superscripts denote values prior to the update and + denotes post update. More

mathematical insight is given in the original article, but it is important to understand that the

variance (σ2) plays a significant role in the weighting of new readings in this implementation of a

Kalman filter. The author employed a pre-filter to handle data points that are significantly different

based on the Mahalanobis distance [Mahalanobis, 1936]. This pre-filter selects whether the ĥ and

p̃ should be merged as described in equation 6.1 or ignored whilst increasing the variance by a

pre-defined amount. Aimed at helping handle cells which have multi-height readings, such as

walls, or cells that have outliers and moving objects, this effectively delays the merging of values

that are too different until enough cycles have passed that the variance has grown to consider the

new outlier.

The use of variance proved to be non-trivial when implementing this with a stereo depth camera

since working models defining this property had not been implemented. For the Kinect and

Kinect v2 articles[Fankhauser et al., 2015, Nguyen et al., 2012] have in-depth explored the sensor

variance and defined a mathematical model that is capable of describing it. The open-source

code supporting this work [Fankhauser et al., 2014] included sensor pre-processors that were

configurable to match the sensor employed. These preprocessors existed for the following sensor

models:

Perfect This model was for ground truth data, setting the height variance to 0.

Laser Estimates normal and lateral variances in sensor frame and transforms them to a single

height variance. The normal noise is based on an experimental constant whilst the lateral

54



CHAPTER 6. ELEVATION MAPS

noise is a linear equation with experimental constants multiplied by distance. Based on the

workings detailed in [Pomerleau et al., 2012].

Kinect Also estimates normal and lateral variances first in the sensor frame and then transforms

them to a single height variance. Uses experimental constants in linear equations for both

factors. Taken from [Nguyen et al., 2012].

Stereo There existed a stereo model based on the workings of Hannes Keller of ETH Zurich, but

these were never published and cannot be found on the public domain. To this extent his

algorithm has been extracted from the code and reproduced in equations 6.2 and 6.3 for

normal σ2
n and lateral variance σ2

l :

σ2
n =

(
D

d2

)2 (
(P5d+ P2)

√
(P3d+ P4 − j)2 + (R− i)2 + P1

)
(6.2)

σ2
l = (Ll)2 (6.3)

where P1−5 are constants related to re-projection, D is the depth to disparity factor, d is

the disparity (reverse calculated from point’s z value), i and j are the row a column the

original point was re-projected from in the disparity image, R is the amount of rows in

the original image, L is the lateral noise factor and l is the distance of the original point

from the sensor (calculated from vector length of point). Without the original material,

it is hard to decipher the original intent of equation 6.2. It is possible to speculate that

(σ2
n) is proportional to the initial pixel distance from the image centre (The square-root

component in eq. 6.2), since these depend on row and column information. This comes

as no surprise as many articles dating back to the conception days of stereo re-projection

have identified the error caused by quantisation [Freundlich et al., 2015, Rodriguez and

Aggarwal, 1990, Solina, 1985, Mcvey and Lee, 1982], which is related to pixel-position on

the sensor.

Experimenting with these preprocessors and the ZED camera revealed that they had little to no

effect or undesirable effects. However using the perfect filter also had the undesired effect of

not correctly updating scene changes, such as a person walking through the field of view. This

would leave artefacts on the map that would not be resolved in a reasonable period of time. In an

attempt to improve the data merging, the following sensor models were added:

Simplified Stereo Because the exact nature of parameters P1−5 could not be determined in 6.2,

that sensor pre-processor could not be employed (attempting to empirically determine them

proved unsuccessful). A simplified model was created that closely bound the variance to l,

the distance of the point from the sensor, as this seemed to be a predominant factor in most

literature. Based of derivations performed by [Rodriguez and Aggarwal, 1990], it is stated
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that the maximum normal error is:

enmax =
−z2Δd

bf + zΔd
(6.4)

σ2
n =

(enmax

4

)2
(6.5)

where b is the baseline of the stereo rig, f is the focal length and Δd is the disparity error.

Δd can range from −δ to δ, where δ is the image sampling resolution (distance between

pixels on the sensor chip), therefore Δd = 2δ. The lateral noise was approximated as in

equation 6.3.

Basic A simplistic model (in terms of computation and parameter definition) was also tested.

This model directly calculated the height variance as:

σ̂2
h = em + epl (6.6)

where the constants em and ep are estimated based of calibration points and line fitting.

Ultimately the simplified stereo filter was employed, however it remained hard to see large

improvements over the perfect filter. The ineffectiveness of these was especially apparent when

the camera was panned from side to side. Data points that lay at the edges of the field of view

exhibited substantial errors and would leave artefacts in a smooth surface (as seen in figure 6.2;

the sharp lines on the smooth floor as the camera moved forwards, roughly 50mm in height). This

behaviour supported the intention of equation 6.2, which includes the location in the camera’s field

of view in error estimation. Prior to calculating these noise models, the data was pre-processed

to both clean and reduce CPU time required. Employing predominantly PCL pass-through

filters (C++ classes for acting on all points in a cloud), first the cloud was distance filtered, that

is any points below a minimum range and above a maximum range from the camera (in the

camera’s frame) were removed. Next, the cloud is downsampled, to a user configurable density,

significantly reducing the number of points to work with whilst maintaining the accuracy of a

higher resolution image in terms of stereo quantisation. Finally, a statistical outlier removal also

traverses all remaining points, ensuring they have sufficient neighbouring points within a given

radius, otherwise removing these stray points. All parameters are user configurable via the ROS

parameter server framework and stages can easily be disabled. A combination of these filters

(predominantly the down-sampling), reduced the clouds to contain only around 20% of their

original points, making subsequent operation significantly faster.

By combining the pre-processing with the simplified stereo filter, the resulting DEM was smoothed

and required less processing than originally, increasing refresh rates. With this pipeline imple-

mented the system is capable of producing an elevation grid map which can be visualised in rviz
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as a point cloud (or surface) as demonstrated in figure 6.2.

Figure 6.2: Elevation Mapping output – Demonstrating the elevation mapping pipeline output. The image
in the top left is that seen by the camera, whilst the main image is a 3 dimensional reconstruction of this.
The co-ordinate frames demonstrate the map origin (odom), the robot’s origin (initial frame), and the
current location (zed tracked frame).
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Traversability Maps

With consistent elevation information extracted from the camera’s depth clouds, it was possible to

begin analysing what this information could reveal for the REX platform. As discussed in section

3.1, where the design considerations of a device that would benefit the REX are investigated;

masses of elevation information would be of no benefit to the end user. For the platform at hand,

the main concern is traversability: is it safe and possible to take a step in the desired direction? To

address this, mobile robotic systems often create traversability maps based on a variety of sensory

information [Pradeep et al., 2010, Fankhauser et al., 2014, Karkowski and Bennewitz, 2016].

These maps can then be used directly to query a certain movement or a series of movements that

when combined form a path between points.

7.1 Traversing with the REX

Since traversable is relative to the vehicle trying to navigate the terrain it was unlikely to find

a solution that would generate accurate maps for the REX. However as we were working with

the ROS platform, there existed a lot of open source solutions that would easily be adjusted to

suit, saving a considerable amount of time. Again a member of ETH Zurich had provided their

solution to traversability mapping open source on GitHub 1, with its functionality explained

in [Wermelinger et al., 2016]. Their framework was forked into a local application named

rex traversability and adapted for the REX platform. Written by the same research group as the

grid mapping project, these elevation maps were directly compatible. The first customisation was

the footprint of the robot, as this understandably greatly effects the map output. REX’s footprint

here is described as a rectangular polygon, 200mm× 400mm in size, however, a simplified

circular model is also provided with a radius of 300mm. Testing indicated that this model might

1https://github.com/ethz-asl/traversability_estimation
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need extending later on as whilst the feet occupied only the size give, the upper robot occupied

more, especially when swaying during movement. One could not, however, increase the actual

footprint, as this would prevent the robot from determining stairs as traversable.

7.1.1 Traversability Filters

In order to determine traversability, we must investigate what makes terrain un-traversable.

Heavily dependent on drive system configuration, this has no universal solution, however there

are a few standard terrain metrics that most systems depend on. Wermelinger et al. address this

in a universal manner, by implementing a filter based system with configurable parameters that

produce a standard uniform traversability metric. These filters can be configured depending on the

vehicle, as that their outputs are scaled relative to what is and is not acceptable for that platform.

Utilising the systems developed for ROS to filter data in an efficient manner, the following filters

process DEMs and can be stacked to form a chain of filters:

Step For humanoid robots there exists a height limit that is considered as traversable, usually

higher than on a wheeled or tracked robot, due to the kinematics of the limb joints. This

filter was crucial for the desired research outcome of investigating stair climbing on

medical exoskeletons. Mathematically the filter attempts to determine the maximum height

difference between cells, but filters these values as to provide some resilience against noise.

In essence the filter iterates through every cell twice, using some defined parameters, to

determine first the maximum height difference in an area, and then if enough cells qualify

as step-cells in the vicinity. This approach ensurse that a singular noisy height reading does

not result in non-traversable terrain and is detailed in pseudo algorithm 1.

Slope Similar to the the step height, slope tolerances depend a lot on the platform navigating the

terrain. The REX ankle joint is capable of pitch and roll rotations however the platform as

a whole must always remain stable encase of power loss. The slope the feet are placed at

plays a large role in stability, since in general the device should not be operated on slopes

larger than a few degrees. Here the traversability is simply computed from a comparison of

the normal angle at that cell against a configurable critical slope value as shown in pseudo

algorithm 2.

Surface Normals Used not directly to observe traversability, but instead for many other filters,

this property uses a search radius to estimate the average surface normal within the area.

The mathematics behind this involve plane fitting and is performed by solving for a set of

eigenvectors and eigenvalues, as shown in pseudo algorithm 3.

Roughness In order to maintain traction and a stable footing the surface must also be relatively

flat. To judge this, a roughness filter will classify the elevation map based on the unevenness
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of the surface. Again this filter employs surface normals to estimate an average plane, and

then computes the distance between this plane to every point within a search radius. This

distance is root-mean-squared and used as an indicator or roughness as explained in pseudo

algorithm 4

Algorithm 1 Step Filter

Require: critStep � Critical step height parameter

Require: critCount � Critical cell count parameter

Require: r1, r2 � 1st and 2nd search radius

1: procedure UPDATE(GridMap M ) � First cycle

2: for each Cell c ∈M do
3: minHeight← 0
4: maxHeight← 0
5: for each Cell d within radius r1 of c do
6: if d.height > maxHeight then
7: maxHeight← d.height
8: else if d.height < minHeight then
9: minHeight← d.height

10: end for each
11: c.step← maxHeight−minHeight
12: end for each
13: for each Cell c ∈M do � Second cycle

14: maxStep← 0
15: nCritical← 0
16: for each Cell d within radius r2 of c do
17: if d.step > maxStep then
18: maxStep← d.step

19: if d.step > critStep then
20: nCritical ++

21: end for each
22: maxStep← argMin(maxStep, nCritical

critCountmaxStep)
23: if maxStep < critStep then
24: c.traversability ← 1− maxStep

critStep
25: else
26: c.traversability ← 0

27: end for each
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Algorithm 2 Slope Filter

Require: critSlope � Critical slope angle

1: procedure UPDATE(GridMap M )

2: for each Cell c ∈M do
3: slope← acos(c.surface normal z)
4: if slope < critSlope then
5: c.traversability ← 1− slope

critSlope
6: else
7: c.traversability ← 0

8: end for each

Algorithm 3 Surface Normals Filter

Require: r1 � Radius of normal sample

Require: � �covM is the covariance matrix

Require: � The solveEigen function solves for eigenvector (V T ) and values (V )
1: procedure UPDATE(GridMap M )

2: for each Cell c ∈M do
3: nCount← 0
4: �p [ ]
5: for each Cell d within radius r1 of c do
6: �p.pushback(d. �point)
7: nCount← nCount+ 1
8: end for each
9: �m← average(�p)

10: �NN [ ]
11: for each Cell d within radius r1 of c do
12: �NN.pushback(d. �point− �m)
13: end for each
14: �covM ← �NN · �NN

ᵀ

15: solveEigen

⎛
⎝covM = V

⎡
⎣ λ1

. . .
λd

⎤
⎦V T

⎞
⎠

16: smallV alue←∞
17: smallIndex← 0
18: nCount← 0
19: for each EigenValue v within V do
20: if v < smallvalue then
21: smallV alue← v
22: smallIndex← nCount

23: nCount← nCount+ 1
24: end for each
25: c. �normal← V T [smallIndex]
26: end for each
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Algorithm 4 Roughness Filter

Require: critRough � Critical roughness quantity

Require: r1 � Radius of roughness sample

1: procedure UPDATE(GridMap M )

2: for each Cell c ∈M do
3: nCount← 0
4: �p [ ]
5: for each Cell d within radius r1 of c do
6: �p.pushback(d. �point)
7: nCount← nCount+ 1
8: end for each
9: �m← average(�p)

10: planeParam← �m • c. �normal
11: sum← 0
12: for each Cell d within radius r1 of c do
13: sum← sum+

(
�m • d. �normal − planeParam

)2

14: end for each
15: roughness =

√
sum

nCount−1

16: if roughness < critRough then
17: c.traversability ← 1− roughness

critRough
18: else
19: c.traversability ← 0

20: end for each
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7.1.2 Combining Traversability Layers

With a lot of information now at hand as an output of the filters, this needs to be amalgamated to

a simplistic model that can be referred to by other parts of the system. A weighted summation

E

B

A

D

C

Figure 7.1: Traversability Map Sample – This demonstration traversability map shows what the combined
outputs of the individual filters may produce. Worth noting in this image are the smooth footpaths (E), the
rougher grass terrain (A), and the non traversable stair edges (D) and bushes (C). Slopes are also lightly
detected (B).

was used to combine the layers into one traversability map, as shown in figure 7.1. This allowed

differing importance to be placed on the individual layers depending on the situation, or as it may

be the noise levels. For example when operating with the REX, often the weighting of the slope

filter was significantly reduced. This was due to the surface normal filter not considering a large

enough area (was computationally too expensive) during fitting, rendering it susceptible to noise

caused by disconnects in the map. By reducing the weighting of the slope filter, small noise bands

where not enough to stop traversing, however, consistent sloped terrain still was detected.

7.2 Interfacing with the REX

Demonstrating this technology functioning with the REX platform was always a key milestone

for this research. To investigate the applicability of this research to medical exoskeletons and the

REX in particular, a working interface had to be demonstrated. It was identified early on that it

would not be possible to directly integrate the vision pipeline to the Master Control Unit (MCU)
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of the REX for regulatory reasons, so an alternative route had to be explored. The obvious choice

of interface with the MCU was via REX-LINK, a proprietary Application Programming Interface

(API) that exposes various levels of control over the robotic device. Predominantly exposed via a

Bluetooth connection with the device, this API is used predominantly by physicians to monitor

the device, ensuring patients are being placed into the poses they require. Since the REX a highly

regulated medical device, advanced access to REX-LINK is carefully controlled, but can allow

authorised individuals to remote control authorised devices. This ability presented a solution to

demonstrate an end-to-end solution demonstrating functionality with the REX as detailed in figure

7.2. Employing C#, an interface program was written (as it contained a proprietary API, this

Figure 7.2: REX-LINK Flowchart – This demonstrates the flow of operations when interfacing with the
REX platform. A continuous stream of three-dimensional points is gathered from the ZED, processed and
integrated into the stored maps. When the user issues a command on the REX (via the joystick) this is
intercepted, and sent to the Jetson via Bluetooth and REX-LINK. The stored database of maps is then
queried if the desired movement is considered traversable, and a yes / no decision is made. If considered
traversable, an acknowledgement sound is played, and the REX moves as normal. If not, a tone indicating
that it is not considered safe to move in that direction is played and no movement occurs.

could not be made public) that connected to the REX Platform via REX-LINK with authorisation

to remote control the device. The program would monitor the user input joystick, and if moved,

intercept the command for processing. Due to software compatibilities of the REX-LINK API,

this program had to run on a Windows operating system, providing an extra layer of complexity

not detailed in figure 7.2. In practice a Windows laptop was used to connect to and intercept user
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input from the REX, which then in turn (via TCP\IP WebSocket, employing rosbridge suite2)

communicated with the Jetson TX1 (Linux), forwarding the query via a ROS service call. The

Jetson would then respond a status of either: traversable, non-traversable or error. If software

running on the laptop received a positive response, it would play an acknowledgement tune on

the actual REX and then after a suitable delay, begin the movement. Otherwise a tone would

be emitted, alerting the user that this movement was deemed not possible. This entire process

was typically able to be executed in less than 100ms, effectively happening seamlessly behind

the scenes to the user (initial first query could take up to 1000ms establishing the connection).

Physically the camera was mounted to the left armrest of the REX with a custom mount and 3D

printed bracket. The angle of the mount could be altered to test different configurations. Usually,

an angle of 30◦ to 35◦ was employed (below the horizon). Functionality wise this demonstrated

the machine vision interface successfully implemented on the REX medical exoskeleton and

directly interacting with the device, concluding the implementation requirements of the research.

2http://wiki.ros.org/rosbridge_suite
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Dataset Generation

In order to validate the results of this research in a more quantitative manner, it was determined a

ground-truth dataset should be created, and this was included in the budget (section 3.2.4). As the

primary focus of this work was to investigate machine vision for traversability analysis, geometric

accuracy was an important metric. Researchers often will compare their work to the ground-truth,

something that is known to be as close to reality as possible (within a small margin of error). This

would create a benchmark to compare result accuracy, and a ground truth for error calculations to

optimise algorithms. With the technology available in depth sensing moving quickly, this would

also indicate what may be possible in this field sensors improve to be on par with current laser

scanning technology.

For depth perception often laser scanners are employed to develop these accurate maps due to

their consistently small error. The datasets described here were created with a Faro Focus3D S120

laser scanner, which is a very accurate surveying scanner capable of up to 120m scanning range.

Characteristics of the device (especially ranging error) are shown in table 8.1. Point sampling flat

Table 8.1: Faro Focus3D Accuracy – Measurement accuracy of Faro Focus3D laser
scanner series, including the S120 unit that was used. Error is given as ranging errora

Surface

Reflectivity
10m

10m - noise

compressedb 25m
25m - noise

compressed

90% refl. 0.6mm 0.3mm 0.95mm 0.5mm
10% refl. 1.2mm 0.6mm 2.2mm 1.1mm

a Ranging noise is defined as a standard deviation of values about the best-fit

plane for measurement
b A noise-compression algorithm may be activated to average points in sets of 4

or 16, thereby compressing raw data noise by a factor of 2 or 4

terrain surfaces in the data gathered indicate that these values are reasonable, although there is
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additional error introduced in the multi-scan registration process. However this combined error

is still negligible in comparison to the sensors and SLAM implementations being tested, and so

serves as a valid comparison.

Since geometric terrain navigation was the focus of this research, a diverse set of environments

would be required to validate the methods employed on the REX. These should include reference

areas such as flat floors but also doorways, different types of stairs, curbs, and more. Key

Locations were chosen around Albany, Auckland, New Zealand that would be convenient to

return to. These consist of a household setting, an industrial environment (including office space)

and public outdoor environments around Massey University Albany. Notable features of each

Table 8.2: Laser Datasets – A summary table of the laser datasets generated as part of this research, size and notable features
contained.

Label Project Name Size (m) Points (millions) Notable Features

A HOME Ballymore 15x14x7 72 Household, Doorways, Curved Stairs

B MASSEY AVKellDrive 75x40 127 Outdoors, Roadside curbs, Public Park

C MASSEY AVStairs 7x7x7 47 Complex Angled Staircase

D MASSEY EPCourtyard 01 58x76 93 Outdoors, Slopes, Varied Steps, Varied Terrain

E MASSEY EPCourtyard 02 24x17 31 Outdoors, Large Stairs

F MASSEY EPCourtyard 03 85x66 77 Grass, Stairs, Ledges

G MASSEY EPCourtyard 04 9x8 28 Single, Stairs

H REX Complete 39x35 125 Large Internal Area

I REX DemoStairs 12x12 42 Standard Stairs, Standard Ramp

J REX Office 4x4 7 Desks

K REX ProductionStairs 12x4x7 38 Large flight of stairs

L REX Reception 11x8x6 63 Complex Stairs, Glass railings

M REX SteepStairs 9x5 46 Steep Stairs, No kickboards

set are labelled for convenience in table 8.2. Each of the scenes is then down-sampled to 1mm,

cleaned 1, exported and photographed, converted to a DEM (resolution of 25mm), and also

exported. The outputs of this process are shown in figure 8.1 for each scene.

In order to promote comparison, the point-clouds generated by this are publicly available2 to

download and work with in common file formats (PCL compatible). This process has allowed the

generation of a ground-truth standard that research outputs can be compared to for validation.

1Via CloudCompare’s statistical outlier removal with parameters of 7 points and 4.0 standard deviations
2Due to the large size they are hosted at todo. Certain sections have been removed due to commercial sensitivity.
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(a) Household in Auckland (b) Albany Kell Drive & Park (c) Massey AV Stairs

(d) Massey Courtyard 01 (e) Massey Courtyard 02 (f) Massey Courtyard 03

(g) Massey Courtyard 04 (h) Rex Warehouse (i) Rex Demonstration Stairs

(j) Rex Production Stairs (k) Rex Reception (l) Rex Steep Stairs

Figure 8.1: Laser Dataset Point Clouds – Point clouds of each dataset generated for this research. Normal
RGB points and DEM coloured points are superimposed to help perceive height. One sample set (Rex
Office) is not shown here for formatting reasons.
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Results

9.1 Traversability Mapping

Combining the hardware and software development of implementing a vision system on the

REX exoskeleton, this chapter details the results achieved and attempts to qualitatively and

quantitatively assess them. Testing the system as a whole was a process that had to be developed

and progressed various stages. The most basic system that demonstrated outputting traversability

maps was with the ZED camera mounted on a trolley with the Jetson TX1, a screen, keyboard,

mouse and Uninterupted Power Supply (UPS). With this setup and ROS’s recording ability, it

was possible to gather the following results demonstrating the system’s initial capability. Figure

(a) Camera Scene
(b) Trolley Map (c) REX Mounted Map

Figure 9.1: Flat Terrain Results – Elevation and traversability maps for a flat open area (seen in a). In b
the movement (depicted by the red arrows) was on the trolley, whilst in c it was with the camera attached
to the REX

9.1 shows the most simple terrain: a clear flat area with items around the edges. From left to

right are depicted the colour image of the scene as captured by the camera, the output maps when

employing a trolley for movement, and the outputs of using a REX for movement. Focusing

first on image 9.1b, it is possible to identify the flat floor, the boxes along the left-hand side, and

the two obstacles straight ahead protruding from the wall line. There are a few small spots that

69



CHAPTER 9. RESULTS

show up as black (non-traversable). These are false negatives in the interpretation of the terrain

and are in fact flat floor, due to noise in the stereo data. Often the segment lines in the concrete

pads (seen in image 9.1a) are enough of a lighting and reflectivity difference to result in elevation

noise. Under normal operation, the traversability map is kept smaller, to reduce processing power

required and increase overall refresh-rates. The concrete poured floor is relatively flat (Confirmed

in laser dataset), revealing the wavy nature of stereo vision by the range of colours representing

the core floor section. Image 9.1c depicts the same scene and roughly the same start and end

positions, but the camera was mounted to the REX platform for movement. The REX’s movement

maps are very linear with sharp transitions, resulting in non-smooth trajectories. These can be

visualised by the red arrows and when compared to 9.1b, the difference is clear. This non-linear

motion is difficult for the ZED to track, given the computing resources it has access too, resulting

in inaccuracies for the pose estimation of the robot, and consequently, the merging of grid map

messages. In the elevation, and consequently the traversability, maps this manifests itself as

jagged edges. These are e specially apparent in the peripheral vision areas as seen along the

right edge in image 9.1c. Figure 9.2 further investigates the difference between smooth motion

(a) Camera Scene (b) Trolley Map (c) REX Mounted Map

Figure 9.2: Flat Terrain Analysis – Focusing on the difference between data generated with a REX moving
the camera as opposed to a trolley image a shows the jagged edges and labels their height. Histograms
b and c show the spread of points representing the ground plane form the trolley data and the REX data
respectively. Note the larger spread in c.

and abrupt motion by comparing the spread of points representing the floor plane when trolley

mounted (image 9.2b) and REX mounted (image 9.2c). Individual edge height differences are

also annotated in image 9.2a, ranging from 0.030m to 0.078m, with the larger difference being

at the edges. Mainly triggering the slope filter, this causes the traversability map to be fairly noisy

and filled with horizontal lines. The key features (the floor, the boxes on the right, the back wall,

and the obstacles protruding) are still clearly present, and so the challenge of differentiating them

is discussed later.

Figure 9.3 features a doorway straight ahead of the camera, with the door standing ajar. This

introduces the interesting feature of considerable lighting change (visible in 9.3a, it is considerably

darker through the door and is artificial lighting as opposed to natural lighting), and also a tracking

challenge when forced to track with a narrow field of view for feature tracking. Image 9.3b again

shows the smooth movement maps generated using a trolley to approach the doorway with only
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(a) Camera Scene (b) Trolley Map (c) REX Mounted Map

Figure 9.3: Door Terrain Results – Elevation and traversability maps for an approach to a doorway (seen
in a). In b the movement (depicted by the red arrows) was on the trolley, whilst in c it was with the camera
attached to the REX

minor noise speckles. The width of the doorway is clearly visible and measures (0.95± 0.10)m

from the elevation map compared to (1.0± 0.1)m when measured with a ruler. The elevation

level of the ground drops a small amount over the door sill (no physical sill is present) due to

lighting effects, but this is not significant enough to cause any errors in the traversability map

generation. Plane fitting on the elevation map for the internal and external floor show close

(a) Processed Cloud (b) Left Histogram (c) Right Histogram

Figure 9.4: Door Terrain Analysis – Ground planes fitted separately for the lighter section (before the
door) and the darker section (past the door) are shown in a left and right respectively. The statistical
analysis of these points is shown in b and c respectively.

proximity with a difference of 0.09m (as seen in figure 9.4). Whilst this may seem significant,

upon closer inspection it is evident that this averaged difference is affected by the slope of the

inner ground plane, most likely caused by incorrect movement tracking (visible in the downwards

slope of pose tracking arrows). Similar to the empty space, when the camera was mounted to

the REX platform, and this was walked towards the door, significant noise was introduced to

the model, in particular, to the ground plane traversability estimation. The motion increased the

standard deviation of the floor area roughly 2.5 fold, very similar to the increase soon in the first

case. However, when comparing absolute readings such as the door width or ground level change

across the door sill, these remain within the same error bounds and still present useful information

to the user.

Moving on to a more complex scene, figure 9.5 shows the results of a set New Zealand building

code compliant demonstration stairs. These stairs are often used as a reference to test various
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(a) Camera Scene (b) Trolley Map (c) REX Mounted Map

Figure 9.5: Demo Stairs Terrain Results – Elevation and traversability maps of a demonstration set of
stairs compliant to New Zealand’s building code (seen in a). In b the movement (depicted by the red
arrows) was on the trolley, whilst in c it was with the camera attached to the REX

features of the REX and so using them for the vision system was obvious. There are three steps,

and four railings with a wide space in the middle for the REX to use, whilst assistants can ensure

patient safety from outside sections. The traversability filter output can be appreciated here,

clearly showing the three steps in image 9.5b as consistent black bars. With sufficient tuning

of the parameters detailed in equation 1 the bands became narrow enough to allow stepping

in-between them. The steps are further investigated in figure 9.6, which highlights them in

(a) Coloured Stair Cloud (b) Histogram of trolley (c) Histogram with REX (d) Histogram with laser

Figure 9.6: Demo Stairs Terrain Analysis – Showing the individual stairs hand picked in image a. The
histogram shows the four peaks from left to right of the floor, 1st and 2nd steps and the the top platform.
Histogram b is from the trolley dataset whilst c was with the ZED mounted on the REX. For comparison
the histogram from the laser dataset is shown in d, with perfect peaks.

height-mapped colour. Each step measured (0.15± 0.05)m in height, compared to 0.18m in

reality. The sharpness of the peaks in the histogram 9.6b demonstrate precision of the data points

whilst the distance between peaks shows their accuracy (should measure 0.18m), as demonstrated

with 9.6d. Comparing 9.6b and 9.6c shows the impact of mounting the ZED on the REX platform.

The four peaks are still visible, however clearly less defined in 9.6c, reinforced by the reduced

clarity in traversability estimation shown in image 9.5c. The distance between peaks is still not

accurate, but has similar precision at (0.14± 0.05)m.

Although fully building code compliant, the demonstration stairs are aesthetically not like a

normal set of stairs. Figure 9.7 challenges the pipelines ability to track multi-story traversability

across large flights of stairs. Totalling 20 stairs, divided by a mid platform these represent a normal

set of straight stairs with well-defined front edges and naturally lit by ambient sunlight. With the
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(a) Scene (b) REX Mounted Map (c) Hand Guided Map

Figure 9.7: Large Flight of Stairs Terrain Results – Mapping a large flight of stairs with a centre platform
as shown in a. Approaching the stairs with the camera mounted to the REX is shown in image b and since
neither the trolley, nor the REX were capable of traversing the stairs, it was carried up by hand in image c.

understanding that the trolley gives smoother results, it was decided to demonstrate this no longer,

but rather attempt to test the tracking ability when climbing the entire flight of stairs. Image

9.7b first demonstrates the approach with the REX, still showing traversable bands matching the

frequency of stairs, albeit rather narrow. Image 9.7c then demonstrates the same stairs traversed

on foot carrying the ZED camera in a relatively consistent stance. Trials revealed that this had to

be higher than when mounted to the REX; otherwise the camera struggled to accurately track

movement and re-project point clouds due to the operational minimum distance limit and the

approaching climbing stairs. This resulted in the camera being held at roughly 1.8m height angled

downwards. With many stairs detected it was possible to analyse the precision and accuracy

(a) REX Histogram

(b) Hand Histogram
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(c) Step Height Histogram

Figure 9.8: Large Flight of Stairs Terrain Analysis – First we compare the step separation (indicated by
peaks in height value histograms) between the maps generated with a REX (a) and when hand-held (b).
Then the peak separation of all are analysed in chart c.
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of the detection process in more detail. Figure 9.8 does this by extracting and comparing the

height histograms of both REX mounted data and hand-held data, and then both combined. With

histogram 9.8c in mind it is possible to determine that the system consistently under-estimates

step height (an average of (0.170± 0.004)m). In terms of accuracy the gathered samples had a

standard deviation of 0.024m. The system also correctly identified the mid-platform as a suitable

traversable area. Tread depth was compared (in a similar manner, using histogram peaks), with the

hand-held map averaging (0.275± 0.025)m in depth and (0.285± 0.005)m in the laser scan.

At 1.25m wide, the previous set of stairs is wider than normal, making detection with the ZED

easier. To contrast this a standard set of stairs with a width of 1.10m was tested.

(a) Scene (b) REX Elevation Maps

Ground

1st Step

2nd Step

Platform

Wall

(c) Pointcloud Side View

Figure 9.9: Complex Stairs Terrain Results – Traversability of some more complex stairs featuring varied
lighting, glass and a right angle, as depicted in a. The elevation map here is less definitive as shown in
figure c, resulting in a less clearly defined traversability map (shown in b). The annotations show how
little height is present in the 1st step.

These stairs also featured a number of other complexities such as; clear glass sides, carpet texture

and direct sunlight streaks (all visible in 9.9a). It is therefore not surprising that the definition of

the elevation (and consequently traversability) maps was reduced as shown in image 9.9b, which

was generated with the ZED mounted to the REX platform. It is very heard to distinguish the

first step (shown in image 9.9c), because it is nearly level with the ground plane, and so it is

not detected as a step on the traversability maps. Adding to the factors making detection hard,

these stairs are also only 0.165m tall with the first step measuring only 0.155m in height. The

pipeline did pick up well on the traversable areas in the ground plane, clearly marking the internal

rock-garden and reception desk as non-traversable.

Tied into all the results, the sensors ability to perform under sunlight, whilst not quantitatively,

was understood qualitatively through repeat exposure to such environments. In general, these

results indicate that on a macro scale the results are accurate, but calculating traversability from

elevation still requires refinement.
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9.2 Laser Data Set

A common practice when proposing research results is to compare them to a standard. With

limited prior work with machine vision traversability mapping on medical exoskeletons available,

research outputs are here compared to a ground-truth dataset generated with a laser scanner as

described in chapter 8. With the focus of traversability mapping being primary, two comparisons

will be made to evaluate performance:

Gridmap Comparison Select areas will be mapped using the methods described in the preceding

chapters, and the resulting gridmaps will be saved as point clouds (each cell as one point

with the appropriate height). A relevant matching area of the laser point cloud is processed

with the identical pipeline, and the resulting gridmaps are also converted back to point

clouds. The two gridmaps in point cloud form are then aligned, first roughly manually,

then using regression to optimise the match. Differences between the two clouds are then

computed using two approaches; Direct Cloud to Cloud (C2C) and Multiscale Model to

Model Cloud Comparison (M3C2)[Lague et al., 2013]. Whilst similar both algorithms

have their advantages as described by Lague et al., so both are presented here.

Traversability Comparison The above exported elevation maps are processed through the

traversability mapping node. The resulting map is exported in two formats; an image

(greyscale) for displaying, where white is traversable and black is non-traversable, and

each pixel is one unit of the map. The other export is a point cloud, where each point

corresponds to a traversability cell (storing [x, y] information), and the point height (z)

stores the traversability of the cell. A height of 0 defines non-traversable, and a height of

1.0 defines fully traversable. In this form, it was possible to employ the same comparisons

as above (C2C and M3C2) between the two outputs for visual analysis. Figures 9.10 and

9.12 explain how this works in practice and how to interpret the results.

Having established a standard practice for comparing results, processing could begin, which took

a significant amount of time, even on a workstation computer, as some of the clouds had over 100

million points. Figure 8.1 and table 8.2 provide a summary of the datasets.

Starting with a simple flat area comparison, figures 9.10b and 9.10c demonstrate the differences

in technologies as explained in the caption. This clearly helps confirm some of the results

demonstrated in the previous section, especially regarding the discontinuities introduced by the

rough movement of the REX. It also begins to investigate the effect of intense direct sunlight on

the sensor.

Looking at a more complex example, we again analyse the double set of stairs (as in section 9.1),

this time comparing the traversability maps generated. Figure 9.11 shows both the DEMs and
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A

B

(a) Camera RGB

C

D

E

F

(b) DEM Difference Map

G

H

I

J

(c) Traversability Difference Map

Figure 9.10: Flat Area Laser Comparison – This figure demonstrates the comparative process between
data gathered by hand or with the REX to data gathered by laser scanner, representing the ground truth.
First sub-figure a shows an establishing shot of the scene, captured by the depth camera. Here labels A and
B show an obstacle (pillar) and a stripe of intense sunlight respectively. Sub-figure b then shows a colour
coded M3C2 difference map between the collected datasets. As set-out by the scale F, green indicates little
deviation, whilst blue indicates the ground truth lies below the measured value (negative), and red shows
areas where the truth is higher than measured. C shows an area with consistent upwards discontinuities in
the horizontal peripheral areas, and D consistent downwards discontinuities in the lower peripheral area.
E shows the pillar as labelled in A. It is to be expected that a match could not be naturally found here, as
the ZED would not see the top of the pillar (over 5m), and so there would be a large difference. Looking
at the traversability difference map (c), area G indicates the false negatives produced produced by C, H
shows some resilience towards the errors in D and I shows the pillar correctly identified as an obstacle.
Area J which relates to the sunlight strip B also clearly becomes a false negative. On both lower images a
histogram indicates density of the errors observed.
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(a) Laser DEM (b) Hand DEM (c) Laser Traversability (d) Hand Traversability

Figure 9.11: Production Stairs Laser Comparison (a) – Detailed difference analysis of the double
staircase dataset. Left clouds a and b show the coloured elevation maps generated using the laser scanner
and ZED respectively. Right figures then show the traversability maps from a top down perspective,
showing clear similarities.

the traversability map side by side for a visual comparison. Using this information figure 9.12

then analyses the differences as described, using M3C2 pointcloud comparison. As annotated it

identifies areas that matched well, and areas that did not, either false positives (areas noted as

traversable, that are in truth not), or false negatives (areas that are noted as not-traversable but

in fact are). The results here clearly show that the camera is able to perform fairly well under

these conditions in mapping the environment, and whilst the DEMs do not directly match, the

A

B
C

D

E

Figure 9.12: Production Stairs Laser Comparison (b) – An area correctly (in both the laser data and ZED
data) identified as non-traversable, indicated by green and black (A), Correctly identified as traversable,
shown with green and white (B), area falsely classified as not traversable shown with red and black (C),
and an area falsely classified as traversable shown with blue and white (D). Areas where camera shake
cause disconnects are clearly visible as in (E).
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traversability outcomes are very similar.

Direct sunlight and harsh texture conditions proved challenging for the methods put in place.

Figure 9.13 demonstrates a lot of challenging features within one scene, and reports on how the

methods perform. Looking down a set of stairs is of particular interest to the REX, since it must

approach them backwards. These results (albeit in harsh lighting) show that whilst the overall

height and slope of the stairs, and the horizon are correctly identified (figure 9.13b), because the

camera detects them only as a smooth slope, the traversability maps are wrong. The effect of

bright sunlit scenes mixed directly with shaded areas is also demonstrated.

To demonstrate the capability of the traversability mapping, a ground truth map is directly

processed and analysed. Figure 9.14 shows the main courtyard at Massey University (Albany,

New Zealand) processed with the same methods as the core results. The acquisition of this data

is explained in section 8. It is shown here primarily to discuss the future potential of this work,

when sensors are improved to produce similar levels of data on mobile moving platforms.

Comparing results from the REX platform (and also hand-held) highlights the important areas

where the sensors cause false results. Many scenes were scanned and then also traversed with the

REX that are not presented in this section, but included in the additional content.
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A

B

C

(a) Camera RGB

D

E
F

(b) DEM Difference Map

H

I

(c) Traversability Difference Map

Figure 9.13: Harsh Environment Laser Comparison – Demonstrates a very harsh environment in terms
of lighting and geometry for the ZED camera. With a harsh lighting difference across A, the camera
cannot simple adjust exposure to suit either and it must compromise. This places obstacles in the dark
such as the side rails (B). Downwards stairs are also challenging to detect due to the horizon visible in
C. The elevation map is fairly accurate, with 50% of points lying within 5mm of the ground truth, and
90% within 14mm. D shows how little effect the harsh lighting conditions have on the ZED in a real use
case scenario. E demonstrates how the horizon was correctly detected (with minimal erroneous pixels),
whilst F shows the continued inaccuracies in the horizontal peripheal vision, failing to properly detect the
dark obstacles labelled in B. Figure c however identifies the requirement for tuning of the traversability
parameters to match lighting conditions. Area I identifies how most stairs were not correctly detected, and
H shows large false negative areas.
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C

A

B

D

(a) Laser DEM

C

A

B

D

E

(b) Laser Traversability

Figure 9.14: Ground Truth Traversability Map – Showing the results when the same methods are applied
to clean ground truth data. Figure a shows the height coloured DEM with a scale one the right. Left (b)
shows the processed traversability. A shows a ramp clearly on both maps, with the flat mid section being
detected (the slope critical value parameter remained unchanged, but could be reduced to make this more
apparent). The non-standard geometry around point B is converted to clearly separated surfaces. The
occasional noise is present, as shown in area C, where a flat surface as a non traversable cell labelled.
Stairs are also clearly labelled D. Surface roughness is detectable in these results where all the grass
surfaces (such as E) are a slightly darker shade. This feature was completely un-utilised on the REX due
to significant false negative traversability results from noisy data.
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9.3 Interfacing with the REX

Whilst sections 9.1 and 9.2 present the algorithm’s results by analysing the data outputs, this

section considers the complete integration with the REX as described in section 7.2. Working

around the limitations set by a commercial environment, it was still possible to implement and

demonstrate simple integration with the REX. Figure 9.15 left to right shows the camera mounted

(a) REX Mounted ZED (b) Complete system in action (c) Backend Footstep Query

Figure 9.15: REX-Link Interface Overview – Demonstrating a complete end to end application of the
methods developed, the ZED is mounted to the left armrest of the REX (a), the device is then operated by a
person (b), and when a movement command is issued, the traversability map is first queried, preventing
the movement if deemed non-traversable (c). The green square indicated the area the REX would inhabit if
the requested command would be allowed, however clearly being in occupied terrain, in this case it would
be intercepted and stopped.

below the left-hand armrest of the REX, the REX in operation with the camera and Jetson

TX1 onboard, and a movement request that would stop the REX as it is on the blocked terrain.

Although the Jetson TX1 could easily have been powered by the REX battery, it was deemed

inappropriate to modify the device purely for the demonstration, leaving an extension cord to

power the PC.

To demonstrate the capabilities of this interface, a demonstration scene is traversed, collision with

an obstacle is avoided, and the REX is inhibited from reversing into an obstacle. To capture this,

figure 9.16 shows the entire process, with the video frames overlaid, and the individual interface

moments also captured. In the 3rd position, the forwards command from the user is intercepted

and stopped, as it is deemed unsafe, instead playing a warning tone. The 4th position shows

the methods ability to prevent collision with obstacles not directly visible to the camera at that

moment. Here the table is still remembered in memory, and by tracking the motion of the robot
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2nd 1st3rd

4th

(a) Interface Demonstration Lapse

(b) Interface outputs 1st pose (c) Interface outputs 2nd pose

(d) Interface outputs 3rd pose (e) Interface outputs 4th pose

Figure 9.16: REX-Link Interface Demonstration – Taking extracts from a video, figure a shows the
movements made during demonstrating the REX-Link interface with a table obstacle. 1st the occupant
gets into the REX, the initial gridmap, traversability map and camera output (from the ZED) are shown in
figure b. Then the occupant issues commands via the joystick, which are then relayed to the Jetson TX1 via
bluetooth. Shown as a green square (seen in figure c) the footprint queries determine if the movement is
carried out. In then 2nd position this is clearly possible and so the robot carries of forwards until it reaches
the 3rd position. Figure d shows the table clearly detected as a non-traversable edge. It does determine that
the table top itself is flat and traversable, however the footstep query determines that it cannot reach this.
From this position the user takes a couple steps backwards, and circumnavigates the table, proceeding to
approach it backwards. This will be possible until in the 4th position, where as shown in figure e, memory
of the tables presence stops the REX.
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visually, it is predicted when the table is directly behind the robot, intercepting and stopping

movement in that direction.

This entire process and another demonstration are visible as videos in the digital media supplied

with this document or on-line1. These are played at five times speed and demonstrate interception

of movements that would cause a collision, both in-front and behind the REX. They show both a

camera recording of the entire scene, as well as all the interface outputs (gridmaps, traversability

maps and ZED camera stream), providing full oversight of the actions happening.

It was successfully demonstrated that the careful design decisions taken whilst developing the

methods made implementation on an actual REX possible. Multiple scenarios are tested, and the

platform has been extended to have loop closing feedback from the surrounding environment that

it can act upon. This is done in a safe manner, where it will only intercept and inhibit commands

it deems unsafe, and will never autonomously issue movement commands not first issues by the

user.

1https://goo.gl/kfQoKu
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Determining and understanding the significance of these results for REX platform is an important

aspect of this work. Having investigated a wide range of scenarios, it is attempted to summarise

the strengths and weaknesses of the applied methods. It also provides an opportunity to review

the original focus of commercial integration. This will naturally lead into discussing the direction

of potential future work in this field of research and extensions to the methods employed.

10.1 Discussion

Analysing the scenarios presented in section 9.1, the extent to which this system can provide

useful information is qualitatively questioned. Whilst the system is capable of detecting flat terrain

and walls when stationary, and even when smoothly moved (such as on a trolley), the fact that

a significant amount of noise is introduced when mounted to a walking REX is an issue (figure

9.1). Analysing the causes of this suggests a solution; that improved visual odometry paired with

accurate, high-speed, inertial tracking would significantly improve the results. This stems from

reviewing the recorded sessions and noting that the movement tracking features large discrete

steps, rather than smooth movements. Since the temporal combining of point clouds depends

on an accurate transform between time-frames (described in chapter 6), the result of delayed or

inaccurate transforms will be discontinuities in alignment. With results being published of highly

accurate, fast moving visual odometry [Bloesch et al., 2015, Leutenegger et al., 2015], this is

not a significant hindrance, and should easily be overcome with time. The authors demonstrate

it accurately tracking movement aboard a roller-coaster ride with extreme accelerations, and

yet still providing accurate positional estimations1. Another deficiency of using purely pose

information from the ZED camera was that it is provided with no measure of confidence, which

1https://www.youtube.com/watch?v=9RaenslCedA
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meant that this could not be considered further down the pipeline. Hence whilst the grid mapping

code base implements including pose uncertainty when merging with past data, this could not

be used due to the lack of this information. Visual odometry often relies on tracking features

in successive frames to place in them a three-dimensional space. Many algorithms are capable

of storing the key-points, and over time build a database of consistent point-features to improve

tracking. This functionality was not implemented, as testing was constantly being carried out

in new locations, but for a device permanently located in a home or clinic, this could further

help improve tracking. Having access to fast and accurate positional information with measures

of confidence will significantly reduce the discontinuities, with results trending towards those

gathered on the trolley.

A new stereo sensor filter was added to the grid mapping code-base as described in chapter 6.

This helped improve the temporal combining of data frames, however still has a lot of extension

potential. Calculating point variance as described in the algorithms did not seem to be sufficient

in managing noise introduced by the stereo camera, especially in the peripheral vision areas.

Figure 9.10 demonstrates this, showing significant errors in traversability mapping in the outer

areas. Negative effects were most prominent when reversing or pivoting. In these scenarios, data

from extreme edges can end up rotated to lie directly at the foot of the REX and be too close

to be updated (due to ZED’s minimum range), resulting in significant errors directly interfering

with movement. Incorporating a confidence measure into the stereo filter would further help

assign useful error probability information to points. Stereo confidence measures each have their

own merits, as discussed by Hu and Mordohai, and it is important to use a fitting model [Hu

and Mordohai, 2012]. By extending the implemented filter to capture these probabilities and

employing them as weights when merging points that inhabit the same DEM cell, the map would

progressively become smoother as surfaces average out.

By improving the above-discussed points the quality of information gathered can be improved;

however, it will be challenging to adjust the scale of error from macro to micro fundamentally.

Shown in figure 9.3, the proposed system functions well at detecting macro objects in relation to

the REX (such as doorways), but cannot detect micro objects that affect the REX. An obstacle

only a few mm in height, if placed in the right location, can cause instability of the REX

platform resulting in the device tipping over. Discussed in chapter 6, quantisation error of stereo

matching produces errors larger than this in many scenarios. Recalling the equation defining

stereo quantisation error (eq. 6.4), factors of influence in reducing this under user control are

the baseline and focal-length (defined in pixel units, effectively including resolution into the

equation)2. Changing these parameters to effect accuracy is investigated by Gallup et al., who

develop a fixed error stereo sensor; that is a sensor with identical quantisation error at all operable

2This stereo vision calculator helps demonstrate this fact: https://nerian.com/support/resources/
calculator/
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ranges [Gallup et al., 2008]. The authors acknowledge that baseline cannot be arbitrarily increased

as near-field perception is lost, but recognise that increasing the resolution requires it to grow

proportionally to zmax
4 (where zmax is the furthermost detectable object). Employing this type

of technology, the stereo error can be improved; however, it will be challenging reduce the error

significantly, allowing detection of micro obstacles that pose a danger to the REX’s stability.

Parameter optimisation and adaptation was a large issue when progressing methods and collecting

results in varied scenarios. Across all the ROS nodes employed when operating, there are over

100 configurable parameters that contribute to the results produced. Although not all have major

effects, minor changes compound to changes in results that are not understood. Key parameters

to do with the ZED’s SDK regarding frame-rate, resolution, depth matching quality and tracking

are still poorly understood, often trial and error was used to adjust these values. Stemming from

the large potential for covariance between parameters, it was not within the scope of this research

to determine these relations. It is feasible to employ advances in machine learning and controlled

reinforcement learning to address this issue. Using ground truth (such as laser based traversability)

maps is a commonly employed technique in machine optimisation and is directly applicable in

this situation. Additionally, the inclusion of ambient lighting levels (via a light sensor) could

help adjust parameters to match, maintaining optimum results when transitioning from indoors to

outdoors. Literature shows that evolutionary algorithms can be effectively employed, providing

the constraints are well understood[Bäck and Schwefel, 1993].

Relating to technology compromise, the results indicate that a combination of sensors, utilising

each’s strengths, could further improve reliability. Stereo-depth sensor’s ability to still function

in sunlight was a key factor in choosing the technology, and in this regard, it has proven that it

can perform; even in bright sunlight (figure 9.13 and more in the additional content). Combining

sensory inputs to improve accuracy is not a novel approach. Maier et al. employ such a tactic in

their article, using a Computer Aided Design (CAD) scene to represent the static information of

the map (walls, stairs, structural), and a RGB-D camera to add dynamic objects and obstacles to

the map [Maier et al., 2012]. From a commercial standpoint, using CAD to map the environment

REX will inhabit is not directly feasible, but employing a laser scanner, such as that used in

chapter 8, is a potential. Effectively creating mm accurate maps of the static environment (such as

those shown in figure 9.14), semantic labelling of this could allow significant data noise reduction,

such as disregarding points detected below the surface or within walls. With REX’s price-point in

consideration, this is a feasible solution to allowing patients more freedom and diverse movements

when using the device within a shared location such as a physiotherapy clinic. ToF cameras have

only been shown in this research for comparative purposes; it is, however, clear that there exist

opportunities for these to function alongside stereo vision. Recent ToF sensors developed3 are

small enough that they could provide targeted feedback. For example, these could be mounted

3Such as pmd’s 19k-S3 – http://www.pmdtec.com/html/pdf/pmdPhotonICs_19k_S3.pdf
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in the foot or on the ankle of the device to provide highly accurate surface maps (since these

operate at less than 1% error in accuracy). As with the laser mapping, employing ToF would

not replace stereo, but rather extend it. Determining step height and depth was investigated and

results show that while steps are consistently detected (figures 9.7, and 9.12), it is still difficult to

extract the correct step height (figure 9.8c). Analysing the results, the key issue is that the steps

are not detected as flat parallel platforms, but rather smoothed slopes, making feature extraction

difficult. It could be investigated if a two-dimensional laser scanner mounted so that it could scan

vertically could augment these methods sufficiently to resolve this ambiguity.

When collecting results, a key issue was alignment with the ground plane. The methods developed

in section 4.3.1 enabled case-by-case alignment (critical to the dynamic start position of the

REX), but did present challenges when operating in harsh environments. Often result recordings

had to be discarded because the ground-plane alignment would be wrong, causing the DEMs

to be completely erroneous (since the process assumes the positive z-axis is perpendicular to

the ground). Investigating the causes of this revealed that excessive sunlight would cause the

first 10 s to 30 s of depth data to be significantly warped due to over exposure whilst the camera

adjusted. Although an interim fix of simply delaying the single-shot ground alignment process

when operating outdoors (giving the camera time to adjust) sufficed, it did raise awareness that a

constantly updating alignment process would be advantageous. It would, however, have to be

determined when the floor was sufficiently visible, as a stable result relied on this.

Map update rates of less than 1Hz caused additional complications visible in the results. The

Jetson TX1 was employed to generate the results presented, and an effort was maintained to keep

this real-time in nature; however there was much room for improvements. Investigating these

revealed that the hardware was not being utilised to its full potential, often leaving the GPU and

sometimes even individual CPU cores unloaded. Reason for this was the reliance on platform

independent code, such as grid mapping, which was not designed to be multi-threaded in nature

necessarily, or utilise the GPU. In fact only ZED’s SDK made use of the GPU resources, even

though all processes that deal with point-clouds (or derivations thereof, such as DEMs) are well

suited for the kind of hardware parallelization offered by GPUs. Future improvements in this

research would have to investigate implementing core processing steps within the GPU to achieve

greater update rates, potentially also reducing the discontinuity that has been a primary source of

erroneous results.

Employing ROS has been a significant advantage in bringing together the many aspects of

implementing a depth vision system (illustrated in figure 5.3a), and whilst introducing some

overhead to the system, this was an acceptable compromise. An example of what ROS enabled can

be seen when looking at the results in section 9.3, demonstrating an end-to-end implementation

of the systems with a human operated REX. As the REX Link interface is only compatible with

Windows operating systems, ROS’s messaging structure and core framework allowed a quick
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solution (less than a day development time) to a cross-platform communication issue complex in

nature. Extending on this, inserting additional building blocks becomes a modular process, for

example integrating depth information from an additional ToF sensor would be a trivial matter.

Throughout all parts of this work, patient safety was always considered highly important. REX

Bionics carefully considers all design choices it must make as their medical class devices must be

safe to operate and incapable of causing harm. The implications of this have become apparent

during this research, especially regarding software safety. To determine software as medically safe

is an incredibly difficult task, and as identified early on, would be far outside of the scope of this

research. It is, however, likely that a framework such as ROS would never be directly considered

medically safe, due to it’s extensively large code-base. This introduces a certain challenge, to

which the most obvious solution is to separate the two core components as demonstrated in the

results. Posing implications for future development, however, this leaves to question if it could

ever be considered safe for a framework, such as the one presented, to autonomously control a

device inhabited by a human being. Discussions around this often identify that this strenuous

restriction of systems can hold back technology from reaching patients that desperately require

and want it.

10.2 Conclusion

Since the late 19th century, humans have attempted to extend their capabilities by literally

surrounding themselves with technology in the form of an exoskeleton. This Technology has

rapidly advanced, consistently extending the capability of these devices and broadening the

outreach of their applications. Medical exoskeletons are becoming mainstream with multiple

companies pursuing the technology, each adding their improvements, jointly advancing the state-

of-the-art. REX Bionics is a company heavily involved in medical exoskeleton development

and uniquely offer the only non-crutch assisted platform, primarily targeted for physiotherapy

of patients unable to control their lower body. As they do not rely on four points of ground

contact (crutches), terrain navigation and understanding is vital to the stable and safe operation

of their devices. Analysing their current technology, it was identified that this could potentially

be advanced by applying machine vision practices to their unique application case to help close

the machine control loop. Reviewing literature on the matter indicated that research on such an

application had not yet been pursued and that the benefits for such a device were yet unknown.

Considering what research had been conducted, especially in the areas of machine vision applied

to mobile robotics, an extensive review of the literature was conducted, forming an educated

foundation of knowledge on which to build. The core challenge would be developing a system

compatible with the REX platform that was not only viable in a theoretical manner but provided

an easy path to commercial viability both regarding technology and benefit to the customer.
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Removing constraints that held other research within a theoretical academic domain would be a

core challenge of this work. From a hardware perspective, this was addressed by choosing to work

with a commercially available depth camera (the ZED), reducing the time-to-market. Initially,

two stereo vision systems were trialled, but the ZED proved to suit the purpose better. One

constraint that often was faced with similar work was that ToF or structured light cameras, whilst

being generally more accurate, had limited to no functionality outdoors. Stereo vision (whilst

introducing its own challenges) removed this constraint. Pairing the ZED with a Jetson TX1

embedded computing module presented consumer-grade hardware that could easily be integrated

into the REX platform, should this research prove beneficial. Choosing to develop with ROS

as a core component enabled this research to quickly and efficiently bring togeather multiple

aspects and processes. By breaking tasks down to have smaller and precise goals, a pipeline

of these was easily constructed, individually joined by the ROS framework to tackle a greater

complex task. A major challenge identified in this work was the lack of a clear path to employing

machine vision to such an application. Extracting useful information required the development

of high-level drivers that would work with the ZED to provide calibration and alignment of the

data provided relative to the REX platform. Ground plane detection and visual odometry allowed

the system to track the movement of the platform in three-dimensional space with respect to

time, which was fundamental to building up a map of the surroundings. Filters were developed

that focused on removing the noise produced by stereo-vision devices before this was integrated

into temporal DEMs of the environment. Based heavily on the working of the ASL-ETHZ4

group, this data was processed and analysed for traversability by the REX platform. Representing

the surrounding terrain as a map of traversable to non-traversable (values between 1.0 and 0.0

respectively), allowed for the device to quickly determine whether a specific movement was

potentially unsafe. To tie everything together, methods of testing the frameworks developed on

an actual REX were put in place. This involved interfacing with the REX platform, intercepting

user commands, querying the traversability maps, and either allowing or denying the movement

request.

Evaluating the ability of the developed methods to correctly sense, map, and label terrain, in

a manner the was directly integrated to the REX was demonstrated through various results.

Building in complexity, differing aspects of performance were presented; from flat floor detection

to complex stairways in mixed lighting and obscured terrain. These results highlighted the

systems general capability to correctly identify terrain, although do show significant challenges

introduced by the jerky movement of the REX platform. Stairs are detected with reasonable

accuracy and relevant information such as step height and pitch is proved to be contained in the

maps. Results are directly compared to a ground-truth data set gathered with a laser scanner.

These assess the operability outdoors in mixed lighting and direct sunlight, where (although

4http://www.asl.ethz.ch/
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degraded) useful results are still produced. Also, these provide a good quantitative measure

of inaccuracy in the terrain traversability estimation process. Summarising these results, their

usefulness is demonstrated by showing them in use with a REX device.

Questioning the validity of these results and revisiting the initial question, commercial viability

of a machine vision system for medical exoskeletons, a critical discussion identifies that key

areas require further investigation before this can be answered. Whilst this work and the results

demonstrate an interaction between the two fields that does extend the ability of the device, the

constraints and conditions of operating are still too confined. Additionally, end-user engagement

and benefit are not directly assessed, leaving the commercial cost-benefit question largely open.

Potential directions that can solve the key issues identified in these works, such as sensor

inaccuracy or motion-tracking, are suggested. Ultimately the knowledge base about applying

machine vision to medical exoskeletons has been extended with a practical application that

identifies some of the key challenges that still need to be overcome to provide a commercially

viable solution that enhances the user experience.
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Dimensions

Features High-Resolution and High Frame-rate 3D Video Capture

Depth Perception indoors and outdoors at up to 20m

6-DOF Positional Tracking

Large-scale 3D Mapping using ZEDfu

Video Video Mode Frames per second Output Resolution (side by side)

2.2K 15 4416x1242

1080p 30 3840x1080

720p 60 2560x720

WVGA 100 1344x376

Depth Depth Resolution

Same as selected video resolution

Depth Range

Depth Format

32-bits

Stereo Baseline

TECH SPECS

Appendix I

I ZED Datasheet
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0.7 - 20 m (2.3 to 65 ft) 120 mm (4.7")

Motion 6-axis Pose Accuracy

Position: +/- 1mm
Orientation: 0.1°

Frequency

Up to 100Hz

Technology

Real-time depth-based visual odometry  
and SLAM

Lens Wide-angle all-glass dual lens with reduced distortion

Field of View: 110° (D) max.

ƒ/2.0 aperture

Sensors Sensor Resolution

4M pixels per sensor with  
large 2-micron pixels

Sensor Size

1/3” backside illumination sensors 
with high low-light sensitivity

Camera Controls

Adjust Resolution, Frame-rate, Exposure,
Brightness, Contrast, Saturation,
Gamma, Sharpness and White Balance

Sensor Format

Native 16:9 Format  
for a greater horizontal field of view

Shutter Sync

Electronic Synchronized Rolling Shutter

ISP Sync

Synchronized Auto Exposure

Connectivity Connector

USB 3.0 port with 1.5m integrated cable

Power

Power via USB
5V / 380mA

Mounting Options

Mount the camera to the ZED mini tripod
or use its 1/4"-20 UNC thread mount

Operating Temperature

0°C to +45°C (32°F to 113°F)

Size and Weight Dimensions

175 x 30 x 33 mm (6.89 x 1.18 x 1.3’’)

Weight

159 g (0.35 lb)

Compatible OS

Appendix I
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Windows 7, 8, 10 Linux

Third-party  
Support

SDK System
Requirements

Dual-core 2,3GHz or faster processor

4 GB RAM or more

Nvidia GPU with compute capability > 2.0

In The Box ZED Stereo camera

Mini Tripod stand

USB Drive with Drivers and SDK

Documentation

Order your ZED today

Start building exciting new applications that recognize and understand
your environment.

Order Now

Appendix I
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DUO MLX Product Brief  v1.1 duo3d.com

Embeddable stereo imaging for high performance 3D sensing. 

DUO MLX

Code Laboratories introduces a new series of machine vision 

cameras, utilizing low latency and low noise CMOS sensors and 

hardware synchronization. With a wide range of accessories and 

customizable illumination, lens, mounts and more the DUO offers 

a unique and powerful solution for researchers and integrators.

Using high-speed USB 2.0 bus protocol and offering a fully 

programmable illumination array, digitization and processing of 

monochrome video signals, these cameras are designed for real-

time uncompressed stereo video streaming and digital still image 

acquisition while maintaining resolution and high frame rates.

DUO mini lx 

solution. Featuring an ultra-compact design and low level sensor 

access in an extremely lightweight solution (only 12.5 grams). 

The ultra small form factor provides more versatility in space 

restricted applications.

With a standard USB 2.0 interface, Micro USB connector and 

modular components to allow for use in real-time/high demand 

applications. The camera supports a standard M8 Lens Mount 

The software provides thorough documentation and low level 

access to sensor data making it easy to integrate into existing 

and embedded systems. With a robust C API and SDK examples, 

common languages/frameworks such as C/C++, C#, Python and 

more are supported. 

usage and is highly optimized for real-time scenarios.  Target 

areas of application are machine vision, human computer 

interaction, automotive, robotics, microscopy inspection, military, 

Solution Overview

Appendix II

II DUO MLX Datasheet
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S p e c i f i c a t i o n M o d e l :  C L - D U O - M I N I L X - L V 1

S t e r e o  F r a m e s

C o n f i g u r a b l e  B i n n i n g / W i n d o w i n g :

5 6   F P S  @  7 5 2 x 4 8 0
6 2   F P S  @  6 4 0 x 4 8 0
1 2 3  F P S  @  6 4 0 x 2 4 0
2 4 0  F P S  @  6 4 0 x 1 2 0
9 3   F P S  @  3 2 0 x 4 8 0
1 8 4  F P S  @  3 2 0 x 2 4 0
3 6 0  F P S  @  3 2 0 x 1 2 0

V a r i a b l e  F r a m e r a t e s :
0 . 1 - 3 0 0 0 +  F P S

P i x e l  S i z e

B a s e l i n e 3 0 . 0 m m

C o l o r m o d e / F i l t e r s M o n o c h r o m e / I R  -  8 5 0 n m  N a r r o w  B a n d - p a s s

F o c a l  L e n g t h s 2 . 0 m m  -  2 . 1 m m  -  I n f i n i t y  2 . 2 m m  -  B a c k  3 . 1 m m

F i e l d  o f  V i e w 1 7 0 °  W i d e  A n g l e  L e n s  w i t h  L o w  D i s t o r t i o n  <  3 %

L e n s  T y p e M 8  x  P 0 . 5  -  C o m p a c t  M i c r o l e n s

I n t e r f a c e s 1  x  U S B  2 . 0  I n t e r f a c e  ( M i c r o  U S B )

P o w e r  C o n s u m p t i o n ~ 2 . 5  W a t t  @  + 5 V  D C  f r o m  U S B

I l l u m i n a t i o n
3  I n d e p e n d e n t l y  c o n t r o l l e d  3 . 4 W  8 5 0 n m  I R  L E D s  1 7 0 °  l i g h t  c o n e
I n d i v i d u a l  b r i g h t n e s s  a n d  i l l u m i n a t i o n  s e q u e n c e  p r o g r a m m a b l e  i n 
2 5 6  l i n e a r  s t e p s .

T r a n s f e r  R a t e H i - S p e e d  4 8 0  M b p s

C o n t r o l  F u n c t i o n s E x p o s u r e / S h u t t e r / B r i g h t n e s s

S c a n n i n g  M o d e s P r o g r e s s i v e  S c a n / G l o b a l  S h u t t e r

S / N  R a t i o >  5 4 d B  L i n e a r

S y n c / S t r o b e  T r i g g e r s Ye s

S u p p l i e d  A c c e s s o r i e s L e n s  C o v e r s ,  D r i v e r s / S D K ,  M i c r o  U S B  c a b l e

Te m p e r a t u r e s O p e r a t i o n s :  - 5  t o 5 0 °  C
S t o r a g e :  - 2 0  t o  6 0 °  C

S h u t t e r  S p e e d

I n t e g r a t e d  S e n s o r s 6  A x i s  ( G y r o s c o p e / A c c e l e r o m e t e r )  M o t i o n  S e n s o r
Te m p e r a t u r e

D i m e n s i o n s / W e i g h t 5 2  x  2 5 . 4  x  1 3 . 3  m m  @  1 2 . 5  g r a m s

C u r r e n t  R e v i s i o n 2 . 0
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Sensor Access & Control 
 

The DUO API provides low level access and 

control of the device and related sensors. 

Whether running in standalone or in an 

array the API allows for precise manipulation 

of common parameters such as acquisition 

rates and illumination methods. This is a 

requirement for developing fully custom 

machine vision applications.

Applications & Algorithms 
  
The DUO SDK provides high level 

applications and algorithms for working 

with modern stereo vision systems. With 

applications ranging from standard matching 

examples, dense 3D reconstruction, hand 

and face tracking and more we aim to give 

developers a head start by providing highly 

optimized production quality solutions.

duo@codelaboratories.com
We create vision™
Code Laboratories, Inc.
Las Vegas, Nevada - USA

© Copyright 2014 Code Laboratories,  Inc.. All rights reserved. DUO3D™ and its 
associated logo are trademarks of CL Inc. and are the subject of trademark 
applications or registrations in various countries around the world. All other 
trademarks are the property of their respective owners. All CL Inc. products and 
services are subject to continuous development. We reserve the right to alter 

Requirements

 

Phone: 1-800-282-5031

Software Overview

 30.02mm 

 

13.30mm 

 25.40m
m

 

 52.02mm 
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Unleash Your Potential with the Jetson TX1 Development Kit

The Tech Specs

The Jetson TX1 Developer Kit is a full-featured development platform for visual computing designed to get you up and running fast. It comes pre-flashed
with a Linux environment, includes support for many common APIs, and is supported by NVIDIA’s complete development tool chain. The board also
exposes a variety of standard hardware interfaces, enabling a highly flexible and extensible platform. This makes it ideal for all your applications requiring
high computational performance in a low-power envelope.

What's in the DevKit?

You will receive the Jetson TX1 Developer Board, AC adapter with power cord, a USB Micro B to USB A adapter, a copy of the Quick Start Guide, Safety
Guide, and two Antennas for Wi-Fi.

JETSON TX1 MODULE

NVIDIA Maxwell™ GPU with 256 NVIDIA® CUDA® Cores
Quad-core ARM® Cortex®-A57 MPCore Processor
4 GB LPDDR4 Memory
16 GB eMMC 5.1 Flash Storage
10/100/1000BASE-T Ethernet

JETSON CAMERA MODULE

5 MP Fixed Focus MIPI CSI Camera

BUTTONS

Power On/Off
Reset
Force Recovery
User-Defined

I/O
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USB 3.0 Type A
USB 2.0 Micro AB (supports recovery and host mode)
HDMI
M.2 Key E
PCI-E x4
Gigabit Ethernet
Full-Size SD
SATA Data and Power
GPIOs, I2C, I2S, SPI*
TTL UART with Flow Control
Display Expansion Header*
Camera Expansion Header*

*I/O expansion headers: refer to product documentation for header specification.

POWER OPTIONS

External 19V AC adapter

The following items are recommended, but not included:

HDMI Display and Cable (Type A)
Keyboard and Mouse
JTAG Debugger
TTL to RS232 UART

Select Your Country
 Austria (http://www.nvidia.de/object/jetson-tx1-dev-kit-de.html)

 Belgium (http://www.nvidia.fr/object/jetson-tx1-dev-kit-fr.html)

 Canada (http://www.nvidia.com/object/jetson-tx1-dev-kit.html)

 Czech Republic (http://www.nvidia.co.uk/object/jetson-tx1-dev-kit-uk.html)

 Denmark (http://www.nvidia.co.uk/object/jetson-tx1-dev-kit-uk.html)

 Finland (http://www.nvidia.co.uk/object/jetson-tx1-dev-kit-uk.html)

 France (http://www.nvidia.fr/object/jetson-tx1-dev-kit-fr.html)

 Germany (http://www.nvidia.de/object/jetson-tx1-dev-kit-de.html)

 Ireland (http://www.nvidia.co.uk/object/jetson-tx1-dev-kit-uk.html)

 Israel (http://www.nvidia.co.uk/object/jetson-tx1-dev-kit-il.html)

 Italy (http://www.nvidia.it/object/jetson-tx1-dev-kit-it.html)

 Japan (http://www.nvidia.co.jp/object/jetson-tx1-dev-kit-jp.html)

 South Korea (http://www.nvidia.co.kr/object/jetson-tx1-dev-kit-kr.html)

 Luxembourg (http://www.nvidia.fr/object/jetson-tx1-dev-kit-fr.html)

 Netherlands (http://www.nvidia.co.uk/object/jetson-tx1-dev-kit-uk.html)

 Norway (http://www.nvidia.co.uk/object/jetson-tx1-dev-kit-uk.html)

 Poland (http://www.nvidia.pl/object/jetson-tx1-dev-kit-pl.html)

 Portugal (http://www.nvidia.es/object/jetson-tx1-dev-kit-es.html)
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Appendix V

V Additional Results

Included in the bonus content package are results not published here. These are sorted by location

and often include processed point cloud exports alongside traversability mapping images.
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VI Source Code

Listing 1: ROS Interface Program C++ Header

1 // ========================================================================

2 // Rex ROS Sample Core Node

3 // Copyright(C) {2016} {Manu Lange}

4 //

5 // This program is free software : you can redistribute it and / or modify

6 // it under the terms of the GNU General Public License as published by

7 // the Free Software Foundation, either version 3 of the License, or

8 // (at your option) any later version.

9 //

10 // This program is distributed in the hope that it will be useful,

11 // but WITHOUT ANY WARRANTY; without even the implied warranty of

12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the

13 // GNU General Public License for more details.

14 //

15 // You should have received a copy of the GNU General Public License

16 // along with this program.If not, see < http ://www.gnu.org/licenses/>.

17 // ========================================================================

18 #pragma once

19

20 #include <r o s / r o s . h>

21 #include < s t d s r v s / Empty . h>

22 #include < t f 2 r o s / t r a n s f o r m l i s t e n e r . h>

23 #include <t f 2 g e o m e t r y m s g s / t f 2 g e o m e t r y m s g s . h>

24 #include < t f 2 / c o n v e r t . h>

25 #include < t f 2 e i g e n / t f 2 e i g e n . h>

26 #include <v e c t o r>

27 #include <geomet ry msgs / TransformStamped . h>

28 #include <geomet ry msgs / Twis t . h>

29 #include <geomet ry msgs / PolygonStamped . h>

30 #include <v i s u a l i z a t i o n m s g s / Marker . h>

31 #include <geomet ry msgs / PoseStamped . h>

32 #include < r e x i n t e r f a c e / s t e p Q u e r y . h>

33 #include < t r a v e r s a b i l i t y m s g s / C h e c k F o o t p r i n t P a t h . h>

34 #include < t r a v e r s a b i l i t y m s g s / F o o t p r i n t P a t h . h>

35 #include < t r a v e r s a b i l i t y m s g s / T r a v e r s a b i l i t y R e s u l t . h>

36

37 class R e x I n t e r f a c e

38 {
39 public :

40 R e x I n t e r f a c e ( r o s : : NodeHandle& nodeHandle ) ;

41 ˜ R e x I n t e r f a c e ( ) ;

42

43 /*!
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44 * Attempts to take a step in the given direction.

45 * @param request the ROS service request.

46 * @param response the ROS service response.

47 * @return true if successful.

48 */

49 bool s t e p ( r e x i n t e r f a c e : : s t e p Q u e r y : : R e q u es t& r e q u e s t , r e x i n t e r f a c e : :

s t e p Q u e r y : : Response& r e s p o n s e ) ;

50

51 /*!

52 * Reads in all the parameters from the parameter server.

53 * @return true if successful.

54 */

55 bool r e a d P a r a m t e r s ( ) ;

56

57 /*!

58 * Callback for a movement goal message. Well check if footstep is

possible at goal.

59 * @return true if successful.

60 */

61 void s t e p Q u e r y C a l l b a c k (const geomet ry msgs : : Po s e S t a m p e d C o n s t P t r&

message ) ;

62

63 void v i s u a l i s e (const geomet ry msgs : : Pose f o o t p r i n t ) ;

64

65 private :

66 r o s : : NodeHandle& nodeHand le ;

67 r o s : : P u b l i s h e r m a r k e r P u b l i s h e r ;

68 r o s : : S u b s c r i b e r s t e p Q u e r y P o s e S u b s c r i b e r ;

69 r o s : : S e r v i c e S e r v e r s t e p F o r w a r d S e r v i c e ;

70 r o s : : S e r v i c e S e r v e r s t e p S e r v i c e ;

71 r o s : : S e r v i c e C l i e n t f o o t p r i n t C h e c k e r S u b s c r i b e r ;

72 t f 2 r o s : : B u f f e r t f B u f f e r ;

73 t f 2 r o s : : T r a n s f o r m L i s t e n e r t f L i s t e n e r ;

74

75 //! Vertices of the footprint polygon in base frame.

76 s t d : : v e c t o r<geomet ry msgs : : Po in t32> f o o t p r i n t P o i n t s ;

77

78 //parameters

79 s t d : : s t r i n g f o o t p r i n t S e r v i c e N a m e ;

80 s t d : : s t r i n g f o o t p r i n t F r a m e ;

81 double s t e p F o r w a r d D i s t a n c e ;

82 double s t e p B a c k w a r d D i s t a n c e ;

83 double s t e p S i d e w a y s D i s t a n c e ;

84 double f o o t p r i n t R a d i u s ;

85 double s a f e T r a v e r s e ;

86

87 /// <summary>Joystick sectors</summary>
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88 enum E J o y s t i c k S e c t o r : int

89 {
90 NO POSITION = 0 ,

91 INSIDE N ,

92 INSIDE NE ,

93 INSIDE E ,

94 INSIDE SE ,

95 INSIDE S ,

96 INSIDE SW ,

97 INSIDE W ,

98 INSIDE NW ,

99 OUTSIDE N ,

100 OUTSIDE NNE ,

101 OUTSIDE NE ,

102 OUTSIDE ENE ,

103 OUTSIDE E ,

104 OUTSIDE ESE ,

105 OUTSIDE SE ,

106 OUTSIDE SSE ,

107 OUTSIDE S ,

108 OUTSIDE SSW ,

109 OUTSIDE SW ,

110 OUTSIDE WSW,

111 OUTSIDE W ,

112 OUTSIDE WNW,

113 OUTSIDE NW,

114 OUTSIDE NNW,

115 } ;

116

117 enum Resu l tCode : int

118 {
119 OK = 0 ,

120 NOT TRAVERSABLE,

121 ERROR = −1,

122 } ;

123 } ;

Listing 2: ROS Interface Program C++ Source

1 // ========================================================================

2 // Rex ROS Sample Core Node

3 // Copyright(C) {2016} {Manu Lange}

4 //

5 // This program is free software : you can redistribute it and / or modify

6 // it under the terms of the GNU General Public License as published by

7 // the Free Software Foundation, either version 3 of the License, or

8 // (at your option) any later version.
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9 //

10 // This program is distributed in the hope that it will be useful,

11 // but WITHOUT ANY WARRANTY; without even the implied warranty of

12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the

13 // GNU General Public License for more details.

14 //

15 // You should have received a copy of the GNU General Public License

16 // along with this program.If not, see < http ://www.gnu.org/licenses/>.

17 // ========================================================================

18

19 #include <i o s t r e a m>

20 #include <p c l / common / common headers . h>

21 #include <Eigen / Core>

22

23

24 #include "../include/rex_interface/rex_interface.hpp"

25

26

27

28 R e x I n t e r f a c e : : R e x I n t e r f a c e ( r o s : : NodeHandle& nodeHandle )

29 : nodeHandle ( nodeHandle ) ,

30 t f L i s t e n e r ( t f B u f f e r )

31 {
32 r e a d P a r a m t e r s ( ) ;

33

34 //Load publishers

35 m a r k e r P u b l i s h e r = nodeHandle . a d v e r t i s e <v i s u a l i z a t i o n m s g s : : Marker>("

visualization_marker" , 0 ) ;

36

37 //Load service handlers

38 s t e p F o r w a r d S e r v i c e = nodeHandle . a d v e r t i s e S e r v i c e ("step_forward" , &

R e x I n t e r f a c e : : s t epForward , this ) ;

39 s t e p S e r v i c e = nodeHandle . a d v e r t i s e S e r v i c e ("step" , &R e x I n t e r f a c e : : s t e p ,

this ) ;

40

41 //Subscribe to services

42 f o o t p r i n t C h e c k e r S u b s c r i b e r = nodeHandle . s e r v i c e C l i e n t <

t r a v e r s a b i l i t y m s g s : : C h e c k F o o t p r i n t P a t h >( f o o t p r i n t S e r v i c e N a m e ) ;

43

44 //Subscribe to messages

45 s t e p Q u e r y P o s e S u b s c r i b e r = nodeHandle . s u b s c r i b e ("/move_base_simple/goal

" , 1 , &R e x I n t e r f a c e : : s t e p Q u e r y C a l l b a c k , this ) ;

46

47 }
48

49 R e x I n t e r f a c e : : ˜ R e x I n t e r f a c e ( )

50 {

117



Appendix VI

51 nodeHandle . shutdown ( ) ;

52 }
53

54 bool R e x I n t e r f a c e : : s t e p ( r e x i n t e r f a c e : : s t e p Q u e r y : : Reques t& r e q u e s t ,

r e x i n t e r f a c e : : s t e p Q u e r y : : Response& r e s p o n s e )

55 {
56 //Establish local variables

57 t r a v e r s a b i l i t y m s g s : : C h e c k F o o t p r i n t P a t h f o o t p r i n t S e r v i c e ;

58 t r a v e r s a b i l i t y m s g s : : F o o t p r i n t P a t h f o o t p r i n t P a t h ;

59 geomet ry msgs : : Pose f o o t p r i n t ;

60 r e s p o n s e . r e s u l t C o d e = Resu l tCode : : ERROR; //default to error

61

62 geomet ry msgs : : TransformStamped t r a n s f o r m S t a m p e d ;

63 //Get transform to map

64 try {
65 t r a n s f o r m S t a m p e d = t f B u f f e r . l o o k u p T r a n s f o r m ("map" ,

66 "base_link" ,

67 r o s : : Time ( 0 ) , r o s : : D u r a t i o n ( 1 . 0 ) ) ;

68 }
69 catch ( t f 2 : : T r a n s f o r m E x c e p t i o n &ex ) {
70 ROS WARN("%s" , ex . what ( ) ) ;

71 return false ;

72 }
73

74 //tf2::Vector3 footPosition;

75 E igen : : Vec to r3d f o o t P o s i t i o n ;

76

77 //Check if the direction queried is handled. This should become generic

eventually..

78 f o o t P o s i t i o n . z ( ) = 0 . 0 ; //Default z height

79 f o o t p r i n t . o r i e n t a t i o n . x = f o o t p r i n t . o r i e n t a t i o n . y = f o o t p r i n t .

o r i e n t a t i o n . z = f o o t p r i n t . o r i e n t a t i o n .w = 0 . 0 ; //Default

orientation

80 switch ( r e q u e s t . d i r e c t i o n )

81 {
82 case OUTSIDE N :

83 f o o t P o s i t i o n . x ( ) = s t e p F o r w a r d D i s t a n c e ;

84 f o o t P o s i t i o n . y ( ) = 0 . 0 ;

85 break ;

86 case OUTSIDE E :

87 f o o t P o s i t i o n . x ( ) = 0 . 0 ;

88 f o o t P o s i t i o n . y ( ) = −s t e p S i d e w a y s D i s t a n c e ;

89 break ;

90 case OUTSIDE S :

91 f o o t P o s i t i o n . x ( ) = −s t e p B a c k w a r d D i s t a n c e ;

92 f o o t P o s i t i o n . y ( ) = 0 . 0 ;

93 break ;
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94 case OUTSIDE W :

95 f o o t P o s i t i o n . x ( ) = 0 . 0 ;

96 f o o t P o s i t i o n . y ( ) = s t e p S i d e w a y s D i s t a n c e ;

97 break ;

98 default :

99 return false ; //Unhandled case, return an error.

100 }
101

102 //Transform frames

103 Eigen : : A f f i n e 3 d eigenTF = t f 2 : : t r a n s f o r m T o E i g e n ( t r a n s f o r m S t a m p e d ) ;

104 Eigen : : A f f i n e 3 f e i g e n T F f = eigenTF . c a s t<float>() ; //need flaot form

for PCL helper

105 f o o t P o s i t i o n = eigenTF∗ f o o t P o s i t i o n ;

106 float r o l l , p i t c h , yaw ;

107 p c l : : g e t E u l e r A n g l e s ( e igenTFf , r o l l , p i t c h , yaw ) ;

108 //ROS_INFO("Roll: %f, Pitch: %f, Yaw: %f", roll,pitch,yaw);

109 float yawTOw = ( 1 . 5 7 0 7 9 6 / yaw ) ; //For some reason the quarternion uses

a scale of 2.0 per pi radians... Maybe it uses 2 * vector length,

which I set to 1.0?

110 //bug may be the normalisation of quart. Testing

111 Eigen : : Q u a t e r n i o n<double> t e s t i n g ;

112 t f 2 : : Q u a t e r n i o n normalQuat ;

113 normalQuat . setRPY ( 0 . 0 , 0 . 0 , yaw ) ;

114 normalQuat . n o r m a l i z e ( ) ;

115 //Set rotation

116 f o o t p r i n t . o r i e n t a t i o n . x = normalQuat . x ( ) ;

117 f o o t p r i n t . o r i e n t a t i o n . y = normalQuat . y ( ) ;

118 f o o t p r i n t . o r i e n t a t i o n . z = normalQuat . z ( ) ;

119 f o o t p r i n t . o r i e n t a t i o n .w = normalQuat .w( ) ;

120

121 //load footprints into service message

122 f o o t p r i n t . p o s i t i o n . x = f o o t P o s i t i o n . x ( ) ;

123 f o o t p r i n t . p o s i t i o n . y = f o o t P o s i t i o n . y ( ) ;

124 f o o t p r i n t . p o s i t i o n . z = 0 . 0 ; //footPosition.z(); //Testing force 0

125 f o o t p r i n t P a t h . p o s e s . h e a d e r . f r a m e i d = f o o t p r i n t F r a m e ; //Test using /

map instead of footprintFrame_

126 f o o t p r i n t P a t h . p o s e s . h e a d e r . s tamp = r o s : : Time : : now ( ) ;

127 f o o t p r i n t P a t h . p o s e s . p o s e s . p u s h b a c k ( f o o t p r i n t ) ;

128

129 //Using polygon

130 f o o t p r i n t P a t h . r a d i u s = 0 . 0 ; //Testing polygons

131 f o o t p r i n t P a t h . f o o t p r i n t . h e a d e r = f o o t p r i n t P a t h . p o s e s . h e a d e r ;

132

133 for ( s i z e t i = 0 ; i < f o o t p r i n t P o i n t s . s i z e ( ) ; i ++)

134 {
135 f o o t p r i n t P a t h . f o o t p r i n t . po lygon . p o i n t s . p u s h b a c k ( f o o t p r i n t P o i n t s [ i ] )

;

119



Appendix VI

136 }
137

138 //copy into service request

139 f o o t p r i n t S e r v i c e . r e q u e s t . p a t h . p u s h b a c k ( f o o t p r i n t P a t h ) ;

140

141 ROS INFO ("Debugging: %f, %f, %f || %f, %f, %f, %f || %s" ,

142 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . p o s i t i o n . x ,

143 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . p o s i t i o n . y ,

144 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . p o s i t i o n . z ,

145 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . x ,

146 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . y ,

147 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . z ,

148 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . w,

149 f o o t p r i n t P a t h . p o s e s . h e a d e r . f r a m e i d . c s t r ( ) ) ;

150

151 //call service

152 f o o t p r i n t C h e c k e r S u b s c r i b e r . w a i t F o r E x i s t e n c e ( ) ; //wait for it

153 ROS DEBUG("Calling footprint checker service" ) ;

154 f o o t p r i n t C h e c k e r S u b s c r i b e r . c a l l ( f o o t p r i n t S e r v i c e ) ;

155

156 //Testing Visualisation

157 v i s u a l i s e ( f o o t p r i n t ) ;

158

159 double r e s u l t = 0 . 0 ;

160 r e s u l t = f o o t p r i n t S e r v i c e . r e s p o n s e . r e s u l t . f r o n t ( ) . t r a v e r s a b i l i t y ;

161 ROS INFO ("Traversibility: %f" , r e s u l t ) ;

162

163 if ( r e s u l t >= s a f e T r a v e r s e ) //Todo: Figure out why sometimes it

returns values around 0.95 when some cells are ’unseen’

164 r e s p o n s e . r e s u l t C o d e = Resu l tCode : : OK;

165 else

166 r e s p o n s e . r e s u l t C o d e = Resu l tCode : : NOT TRAVERSABLE;

167

168 //Todo: Figure out how to handle unmapped terrain properly...? Maybe the

isSafe flag on footpath response?

169

170 return true ;

171 }
172

173 bool R e x I n t e r f a c e : : r e a d P a r a m t e r s ( )

174 {
175 //Added footprint for query

176 // Read footprint polygon.

177 XmlRpc : : XmlRpcValue f o o t p r i n t ;

178 if ( nodeHandle . ge tParam ("footprint/footprint_polygon" , f o o t p r i n t ) ) {
179 if ( f o o t p r i n t . s i z e ( ) < 3) {
180 ROS WARN("Footprint polygon must consist of at least 3 points.
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Only %i points found." , f o o t p r i n t . s i z e ( ) ) ;

181 f o o t p r i n t P o i n t s . c l e a r ( ) ;

182 }
183 else {
184 geomet ry msgs : : P o i n t 3 2 p t ;

185 p t . z = 0 . 0 ;

186 for (int i = 0 ; i < f o o t p r i n t . s i z e ( ) ; i ++) {
187 p t . x = (double ) f o o t p r i n t [ i ] [ 0 ] ;

188 p t . y = (double ) f o o t p r i n t [ i ] [ 1 ] ;

189 f o o t p r i n t P o i n t s . p u s h b a c k ( p t ) ;

190 }
191 }
192 }
193 else {
194 ROS WARN("Traversability Map: No footprint polygon defined." ) ;

195 }
196

197 nodeHandle . param ("footprintServiceName" , f o o t p r i n t S e r v i c e N a m e , s t d : :

s t r i n g ("/rex_traversibility/check_footprint_path" ) ) ;

198 nodeHandle . param ("footprintFrame" , f o o t p r i n t F r a m e , s t d : : s t r i n g ("

base_link" ) ) ;

199 nodeHandle . param ("stepForwardDistance" , s t e p F o r w a r d D i s t a n c e , 0 . 4 0 ) ;

200 nodeHandle . param ("stepBackwardDistance" , s t e p B a c k w a r d D i s t a n c e , 0 . 2 5 ) ;

201 nodeHandle . param ("stepSidwaysDistance" , s t e p S i d e w a y s D i s t a n c e , 0 . 1 0 ) ;

202 nodeHandle . param ("footprintRadius" , f o o t p r i n t R a d i u s , 0 . 1 5 ) ;

203 nodeHandle . param ("safeTraverse" , s a f e T r a v e r s e , 0 . 8 0 ) ;

204 return true ;

205 }
206

207 void R e x I n t e r f a c e : : s t e p Q u e r y C a l l b a c k (const geomet ry msgs : :

P o s e S t a m p e d C o n s t P t r& message )

208 {
209 t r a v e r s a b i l i t y m s g s : : C h e c k F o o t p r i n t P a t h f o o t p r i n t S e r v i c e ;

210 t r a v e r s a b i l i t y m s g s : : F o o t p r i n t P a t h f o o t p r i n t P a t h ;

211 geomet ry msgs : : Pose f o o t p r i n t ;

212

213 //Copy pose information into footprint message

214 f o o t p r i n t . p o s i t i o n . x = message−>pose . p o s i t i o n . x ;

215 f o o t p r i n t . p o s i t i o n . y = message−>pose . p o s i t i o n . y ;

216 f o o t p r i n t . p o s i t i o n . z = message−>pose . p o s i t i o n . z ;

217

218 f o o t p r i n t . o r i e n t a t i o n . x = message−>pose . o r i e n t a t i o n . x ;

219 f o o t p r i n t . o r i e n t a t i o n . y = message−>pose . o r i e n t a t i o n . y ;

220 f o o t p r i n t . o r i e n t a t i o n . z = message−>pose . o r i e n t a t i o n . z ;

221 f o o t p r i n t . o r i e n t a t i o n .w = message−>pose . o r i e n t a t i o n .w;

222

223 //load footprints into service message
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224 f o o t p r i n t P a t h . p o s e s . h e a d e r . f r a m e i d = f o o t p r i n t F r a m e ; //This should

be changed...

225 f o o t p r i n t P a t h . p o s e s . h e a d e r . s tamp = r o s : : Time : : now ( ) ;

226 f o o t p r i n t P a t h . p o s e s . p o s e s . p u s h b a c k ( f o o t p r i n t ) ;

227

228

229 //assign radius, this could later be a polygon

230 f o o t p r i n t P a t h . r a d i u s = 0 . 0 ; //Testing polygons

231 f o o t p r i n t P a t h . f o o t p r i n t . h e a d e r = f o o t p r i n t P a t h . p o s e s . h e a d e r ;

232

233 for ( s i z e t i = 0 ; i < f o o t p r i n t P o i n t s . s i z e ( ) ; i ++)

234 {
235 f o o t p r i n t P a t h . f o o t p r i n t . po lygon . p o i n t s . p u s h b a c k ( f o o t p r i n t P o i n t s [ i ] )

;

236 }
237

238 //copy into service request

239 f o o t p r i n t S e r v i c e . r e q u e s t . p a t h . p u s h b a c k ( f o o t p r i n t P a t h ) ;

240

241 ROS INFO ("Debugging: %f, %f, %f || %f, %f, %f, %f || %s" ,

242 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . p o s i t i o n . x ,

243 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . p o s i t i o n . y ,

244 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . p o s i t i o n . z ,

245 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . x ,

246 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . y ,

247 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . z ,

248 f o o t p r i n t P a t h . p o s e s . p o s e s . f r o n t ( ) . o r i e n t a t i o n . w,

249 f o o t p r i n t P a t h . p o s e s . h e a d e r . f r a m e i d . c s t r ( ) ) ;

250

251 //call service

252 f o o t p r i n t C h e c k e r S u b s c r i b e r . w a i t F o r E x i s t e n c e ( ) ; //wait for it

253 ROS DEBUG("Calling footprint checker service" ) ;

254 f o o t p r i n t C h e c k e r S u b s c r i b e r . c a l l ( f o o t p r i n t S e r v i c e ) ;

255

256 //Testing Visualisation

257 v i s u a l i s e ( f o o t p r i n t ) ;

258

259 double t e s t = 0 . 0 ;

260 t e s t = f o o t p r i n t S e r v i c e . r e s p o n s e . r e s u l t . f r o n t ( ) . t r a v e r s a b i l i t y ;

261 ROS INFO ("Traversibility: %f" , f o o t p r i n t S e r v i c e . r e s p o n s e . r e s u l t . f r o n t ( ) .

t r a v e r s a b i l i t y ) ;

262

263 }
264

265

266 void R e x I n t e r f a c e : : v i s u a l i s e (const geomet ry msgs : : Pose f o o t p r i n t )

267 {
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268 //Testing Visualisation

269 v i s u a l i z a t i o n m s g s : : Marker marker ;

270 marker . h e a d e r . f r a m e i d = "map" ;

271 marker . h e a d e r . s tamp = r o s : : Time ( ) ;

272 marker . ns = "rex_interface" ;

273 marker . i d = 0 ;

274 marker . t y p e = v i s u a l i z a t i o n m s g s : : Marker : : LINE STRIP ;

275 marker . a c t i o n = v i s u a l i z a t i o n m s g s : : Marker : :ADD;

276 marker . pose . p o s i t i o n . x = f o o t p r i n t . p o s i t i o n . x ;

277 marker . pose . p o s i t i o n . y = f o o t p r i n t . p o s i t i o n . y ;

278 marker . pose . p o s i t i o n . z = f o o t p r i n t . p o s i t i o n . z ;

279 marker . pose . o r i e n t a t i o n . x = f o o t p r i n t . o r i e n t a t i o n . x ;

280 marker . pose . o r i e n t a t i o n . y = f o o t p r i n t . o r i e n t a t i o n . y ;

281 marker . pose . o r i e n t a t i o n . z = f o o t p r i n t . o r i e n t a t i o n . z ;

282 marker . pose . o r i e n t a t i o n .w = f o o t p r i n t . o r i e n t a t i o n .w;

283

284 for ( s i z e t i = 0 ; i < f o o t p r i n t P o i n t s . s i z e ( ) ; i ++)

285 {
286 geomet ry msgs : : P o i n t t e s t 2 ;

287 t e s t 2 . x = f o o t p r i n t P o i n t s [ i ] . x ;

288 t e s t 2 . y = f o o t p r i n t P o i n t s [ i ] . y ;

289 t e s t 2 . z = f o o t p r i n t P o i n t s [ i ] . z ;

290 marker . p o i n t s . p u s h b a c k ( t e s t 2 ) ;

291 }
292 marker . s c a l e . x = 0 . 0 5 ;

293 marker . s c a l e . y = 1 . 0 ;

294 marker . s c a l e . z = 1 . 0 ;

295 marker . c o l o r . a = 0 . 7 5 ; // Don’t forget to set the alpha!

296 marker . c o l o r . r = 0 . 0 ;

297 marker . c o l o r . g = 1 . 0 ;

298 marker . c o l o r . b = 0 . 0 ;

299 m a r k e r P u b l i s h e r . p u b l i s h ( marker ) ;

300 }

Listing 3: ROS Xacro model code

1 <?xml version="1.0"?>

2 <robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="rex_collision">

3 <xacro:property name="robotName" value="rex"/>

4 <xacro:property name="pelvisWidth" value="0.470"/>

5 <xacro:property name="upperLegDepth" value="0.15"/>

6 <xacro:property name="upperLegWidth" value="0.15"/>

7 <xacro:property name="upperLegHeight" value="0.43"/>

8 <xacro:property name="lowerLegDepth" value="0.15"/>

9 <xacro:property name="lowerLegWidth" value="0.15"/>

10 <xacro:property name="lowerLegHeight" value="0.416"/>

11 <xacro:property name="footDepth" value="0.366"/>
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12 <xacro:property name="footWidth" value="0.190"/>

13 <xacro:property name="footHeight" value="0.144"/>

14 <xacro:property name="footBackToAnkle" value="0.126"/>

15 <xacro:property name="footInsideToAnkle" value="0.150"/>

16

17 <!--NOTE: Floor to base_link distance = ${ref_foot}-footHeight-->

18

19 <xacro:macro name="default_inertial" params="mass">

20 <inertial>

21 <mass value="${mass}"/>

22 <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"

/>

23 </inertial>

24 </xacro:macro>

25

26 <xacro:macro name="upperleg" params="prefix reflect">

27 <link name="${prefix}_upperleg">

28 <visual>

29 <geometry>

30 <box size="${upperLegDepth} ${upperLegWidth} ${upperLegHeight}"/>

31 </geometry>

32 <origin xyz="0 0 -${upperLegHeight/2}" rpy="0 0 0"/>

33 <material name="white">

34 <color rgba="1 1 1 1"/>

35 </material>

36 </visual>

37 <!--This is currently more of a place holder and not used...-->

38 <xacro:default_inertial mass="10"/>

39 </link>

40 <joint name="pelvis_to_${prefix}_upperleg" type="revolute">

41 <axis xyz="0 1 0"/>

42 <parent link="${robotName}_base_link"/>

43 <child link="${prefix}_upperleg"/>

44 <origin xyz="0 ${reflect*pelvisWidth/2} 0"/>

45 <limit effort="1000.0" lower="-${pi/4}" upper="${pi/4}" velocity="10"

/>

46 </joint>

47 </xacro:macro>

48

49 <xacro:macro name="lowerleg" params="prefix reflect">

50 <link name="${prefix}_lowerleg">

51 <visual>

52 <geometry>

53 <box size="${lowerLegDepth} ${lowerLegWidth} ${lowerLegHeight}"/>

54 </geometry>

55 <origin xyz="0 0 -${lowerLegHeight/2}" rpy="0 0 0"/>

56 <material name="white">
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57 <color rgba="1 1 1 1"/>

58 </material>

59 </visual>

60 <!--This is currently more of a place holder and not used...-->

61 <xacro:default_inertial mass="10"/>

62 </link>

63 <joint name="${prefix}_upperleg_to_${prefix}_lowerleg" type="revolute">

64 <axis xyz="0 1 0"/>

65 <parent link="${prefix}_upperleg"/>

66 <child link="${prefix}_lowerleg"/>

67 <origin xyz="0 0 -${upperLegHeight}"/>

68 <limit effort="1000.0" lower="-${pi/4}" upper="${pi/4}" velocity="10"

/>

69 </joint>

70 </xacro:macro>

71

72 <xacro:macro name="foot" params="prefix reflect">

73 <link name="${prefix}_foot">

74 <visual>

75 <geometry>

76 <box size="${footDepth} ${footWidth} ${footHeight}"/>

77 </geometry>

78 <origin xyz="${footDepth/2-footBackToAnkle} ${reflect*(footWidth/2-

footInsideToAnkle)} -${footHeight/2}" rpy="0 0 0"/>

79 <material name="white">

80 <color rgba="1 1 1 1"/>

81 </material>

82 </visual>

83 <!--This is currently more of a place holder and not used...-->

84 <xacro:default_inertial mass="10"/>

85 </link>

86 <joint name="${prefix}_lowerleg_to_${prefix}_foot" type="revolute">

87 <axis xyz="0 1 0"/>

88 <parent link="${prefix}_lowerleg"/>

89 <child link="${prefix}_foot"/>

90 <origin xyz="0 0 -${lowerLegHeight}"/>

91 <limit effort="1000.0" lower="-${pi/4}" upper="${pi/4}" velocity="10"

/>

92 </joint>

93 </xacro:macro>

94

95 <link name="${robotName}_base_link">

96 <visual>

97 <geometry>

98 <box size="0.10 0.411 0.332"/>

99 </geometry>

100 <origin rpy="0 0 0" xyz="-0.160 0 -0.008"/>
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101 <material name="black">

102 <color rgba="0 0 0 1"/>

103 </material>

104 </visual>

105 <visual>

106 <geometry>

107 <box size="0.230 0.060 0.180"/>

108 </geometry>

109 <origin rpy="0 0 0" xyz="-0.07 ${pelvisWidth/2} 0.040"/>

110 <material name="white">

111 <color rgba="0 0 0 1"/>

112 </material>

113 </visual>

114 <visual>

115 <geometry>

116 <box size="0.230 0.060 0.180"/>

117 </geometry>

118 <origin rpy="0 0 0" xyz="-0.07 -${pelvisWidth/2} 0.040"/>

119 <material name="white">

120 <color rgba="0 0 0 1"/>

121 </material>

122 </visual>

123 </link>

124

125 <xacro:upperleg prefix="right" reflect="-1"/>

126 <xacro:upperleg prefix="left" reflect="1"/>

127 <xacro:lowerleg prefix="right" reflect="-1"/>

128 <xacro:lowerleg prefix="left" reflect="1"/>

129 <xacro:foot prefix="right" reflect="-1"/>

130 <xacro:foot prefix="left" reflect="1"/>

131 </robot>

126




