Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

5-AMINOURACIL

SYNCHRONIZATION OF THE CELL CYCLE OF <u>VICIA FABA</u> ROOT TIP MERISTEMS

A thesis

presented in partial fulfilment

of the requirements for the Degree

of

Master of Science in Biology

at

Massey University

JENNIFER ANN BUTCHER

1977

ABSTRACT

This study was undertaken to try and find how the thymine analogue 5-aminouracil induces cell synchrony in the cell cycle of plant root meristems. It has previously been used as a synchronizing agent without knowing its mode of action.

The experiments confirmed the synchronization effect and that the removal of plants from 5AU stimulated the cells to divide. Results indicated that the late S and early G₂ phases of the cell cycle were the most affected, with DNA synthesis continuing in the presence of 5AU at a reduced rate. The inhibition of division caused by 5AU could be reversed by other bases and mixtures.

The G₁ phase was found not to be affected by 5AU but it was postulated that cells in early G₂ were slowed down or halted by the chemical. DNA density measurements were taken of nuclei treated continuously for varied times with 5AU, and these results confirmed a buildup of cells in the latter third of the S phase found by other workers. The presence of Feulgen-negative regions in chromatids of the 5AU treated tissue was noted and linked with possible interference in heterochromatin synthesis. The possibility of some enzyme function important in the final joining together of DNA units being interfered with by 5AU is also discussed. Suggestions are made for further possible avenues of work into DNA synthesis. The significance of cell cycle studies and their experimental design has recently been reconsidered and is mentioned in view of this work and other cell population studies.

ACKNOWLEDGEMENTS

I would firstly like to thank my supervisor Dr E D Penny of the Botany Department, Massey University, for his continual guidance during the course of this study, and for his valued criticism of the manuscript.

My thanks also go to Dr K Giles of the Plant Physiology Division, DSIR, Palmerston North, for his unlimited assistance with the fluorescence photography and making the fluorescence microscope and several stains available for my use.

The generosity of Dr P Fitzgerald of the Cytogenetics Unit, Christchurch Hospital, in allowing my use of the Vickers M85 Integrating Microdensitometer is also greatfully appreciated.

I would also like to thank Professor R Thomas for advise and discussion on different aspects of this study.

Finally to my husband Mike must go thanks for his continued encouragement, and especially for assistance with photography and diagrams.

iv

TABLE OF CONTENTS

ABSTRACT	••	••	••	••	••	••	••	ii
ACKNOWLE	DGEMENTS		••	••	••	••	••	iv
TABLE OF	CONTENTS		••	••	••	••	••	v
LIST OF !	TABLES	••	••	••	••	••	••	vii
LIST OF 1	FIGURES	••	••	••	••	••	••	viii
LIST OF .	ABBREVIAT	LONS 1	USED I	IN TEX	T	••	••	x
INTRODUC!	FION	••	••	••	••	••	••	l
MATERIAL	S AND METH	IODS		••	••	••	••	7
2-01	Growth of	f See	dlings	ł	••	••	••	7
2-02	5AU treat	tment		••	••	••	••	10
2-03	Cytologic	cal P	rocedu	ires	••	••	••	11
2-04	Isotope]	Incor	porati	on St	tudie	5	••	16
2-05	Reversal	Expe	riment	S	••	• •	••	18
2-06	Sectionia	ng of	Mater	rial	••	• •	• •	19
2-07	DNA conte	ent of	f cell	. nucl	Lei	••	••	21
RESULTS	••	••	••	••	••	••	••	24
3-01	Synchron	izati	on Exp	erime	ents	••	••	24
3-02	Longitud	inal :	sectio	ons fi	com s	ynchr	ony	
	experi	nents		••	••	••	••	31
3-03	Effect of	£ 5AU	on G _l	and	G ₂ pi	hases		35
3-04	DNA synt]	nesis	after	: 5AU	trea	tment		38
3-05	Effect of	£ 5AU	on DN	IA syn	nthes	is it	self	42
3-06	Longitud	inal a	secțio	nș fi	com l	abeli	ng	
	experi	nents		••	••	••	••	47
3-07	Nuclear 1	DNA d	ensity	T	••	••	••	49
3-08	Reversal	Expe	riment	S	••	••	••	57
3-09	Quiescen	t Cen	tre	••	••	••	••	63

3-1	0 Ce	ll Cl	rcle 1	Durati	on	••	• •	••	64
3-1	l Gr	owth	Inhil	oition	L	••	••	••	66
DISCUSS	ION	••	••		• c	••	• •	••	69
CONCLUS	ION	••	••	• 3		o •		••	88
REFEREN	CES	••	••	a e	••		••	••	90
APPENDI	CES	••	••	••		••	••	••	101
l.	Stain	ing]	Proce	lures	• •	••	••	••	101
2.	Dehyd	ratio	on, In	nfiltr	ation	and	Embed	lding	
	of	Tissu	ıe	* 0		••		••	106

LIST OF TABLES

TABLE		PAGE
l.	Hoagland's Mineral Nutrient Solution 2.	8
2.	LI recorded in the presence or absence	
	of 5AU solution over 7 hours	35
3.	LI of mitotic figures observed over ll	
	hours of 5AU treatment	37
4.	MI and percentage of labeled figures	
	occurring over peak of division after	
	a 12 hour 5AU treatment	40
5.	LI and MI obtained after Pulse A using	
	'cold' thymidine, H^3 -TdR and H^3 -CdR	4.4
6.	LI and MI during Continuous 5AU treatment	46
7.	A selection of DNA densities of mitotic	
	figures from several control slides	51
8.	Mitotic figures seen in reversal	
	experiments	59
9.	Average cell lengths in microns at 2	
	positions in the root tip during	
	different lengths of 5AU treatment	67
10.	Variation in cell cycle times for <u>Vicia</u>	
	faba in the literature	84

LIST OF FIGURES

FIGURE		PAGE
l.	Vicia faba plants growing in darkroom	
	situation	9
2.	Longitudinal median section through a root	
	showing different cell types	20
3.	Fluorescing nuclear DNA of cells in squash	
	preparations stained with BAO	20
4.	Graph showing recovery after a 24 hour 5AU	
	treatment, using roots from one seedling	
	per sample	25
5.	Graph of results gained from first experime	nt
	using continuous 5AU	25
6A.	Graph showing recovery after a 24 hour	
	5AU treatment	28
6B.	Graph of MI during continuous 5AU	
	treatments	28
60.	Graph showing recovery after a 12 hour	
	5AU treatment	28
7.	Partially synchronized cell division 14	
	hours after a 24 hour 5AU treatment	30
8.	No cells dividing at the end of 24 hours of	
	5AU treatment	30
9.	Diagrams of longitudinal median sections	
	of roots collected 10 to 15 hours after	
	removal from a 24 hour 5AU treatment	32
10.	Diagrams of longitudinal median sections	
	of roots collected over peaks of division	S
	after a 12 hour 5AU treatment	34

FIGURE

10010	11	1015
11.	$2l\frac{1}{2}$ hours continuous 5AU preparation	
	showing incorporation of label immed-	
	iately after a half hour pulse	48
12.	42 hours continuous 5AU treatment showing	
	large nuclei	48
13.	Diagrams of longitudinal median sections	
	of pulse labeled tissue showing	
	distribution of label in the root tip	50
14.	Histograms showing a change in nuclear	
	DNA content during continuous 5AU	
	treatment	53
15.	Histograms showing range of DNA content in	
	G_1 and G_2 cells treated with continuous	
	5AU	56
16.	High mitotic index seen in reversal experi-	
	ment using mixture of pyrimidine bases	60
17.	'Damaged' nuclei seen after prolonged treat-	
	ment with 'cold' thymidine	60
18.	Longitudinal section of pulse labeled	
	tissue showing the quiescent centre	65
19.	Close up of quiescent centre	65
20.	Feulgen-negative regions visible in chroma-	
	tids after 15 hours continuous 5AU	
	treatment	78
21.	Feulgen-negative regions visible in control	
	tissue	78

PAGE

ABBREVIATIONS USED IN TEXT

5AU	5-aminouracil
BAO	2,5-bis 2/4'-aminophenyl-(l')7-1,3,4-oxadizole
CdR	deoxycytidine
H ³ -CdR	tritiated deoxycytidine
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
FUdR	5-fluorouracil-2-deoxyriboside
_Н 3	tritium
LI	Labeling Index
MI	Mitotic Index
ррт	parts per million
RNA	Ribonucleic acid
RNase	Ribonuclease
TdR	thymidine
H ³ -TdR	tritiated thymidine