Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The characterization of the functional properties of three cold alkali extracted meat protein concentrates and the relationship between functional properties determined using model systems and the properties of an emulsion-type sausage in which they were incorporated

> A thesis presented in partial fulfilment of the requirements for the degree of Masterate of Technology (Biotechnology) at Massey University

> > SUZANNE HELEN NICKLIN

1981

ABSTRACT

The feasibility of marketing three meat protein concentrates (MassMPC, MyoMPC and SarcoMPC) on the commercial protein market was studied. Solubility, heat gel strength, water binding and emulsification properties of these proteins were investigated under different temperature, protein to water ratio and salt treatments using model systems.

Model systems were designed so that they approximated the physical and chemical conditions found in an emulsiontype sausage. The properties of the meat proteins were compared to those exhibited by a soy concentrate (GL750) and three sodium caseinates (SV07, SV02 and CasN) measured under the same conditions. In addition the performance of the meat, soy, and caseinate proteins in an emulsion-type sausage was evaluated.

MassMPC and MyoMPC exhibited superior heat gelling properties compared to the commercial protein products, while SarcoMPC was more soluble and exhibited foaming properties similar to these products. All three proteins could be used successfully in sausages which had 3% of the total protein replaced with additive protein. At a 30% replacement level the addition of MassMPC and SarcoMPC produced undesirable effects on sausage properties. MyoMPC did not adversely affect the characteristics important in a commercial sausage, at this replacement level. However, in terms of overall functional properties and performance in a food system, MassMPC, MyoMPC and SarcoMPC were inferior to the commercial protein products.

Data collected from this study were analyzed using the Pearson's correlation test to identify relationships between: functional properties assessed using model systems; sensory and instrumental measurements of emulsion-type sausage rheological properties; and model system functional properties of proteins and the properties of sausages

ii

incorporating these proteins.

A negative correlation between emulsion stability moisture loss and water binding capacity was identified but this relationship was dependent on the methods used to measure these properties. Solubility was found to be negatively related to the water binding capacity of proteins.

The Warner Bratzler Shear test, multiple compression test and extrusion test were the most useful instrumental measurements for evaluating textural properties considered important in a commercial emulsion-type sausage. However, the relationships between sensory properties and these instrumental measurements were dependent on the level of incorporation of protein additives in the sausages.

Important correlations were identified between functional properties of proteins measured in the presence of 2% salt, and properties of sausages which had 30% of the total protein replaced by additive proteins. The usefulness of these relationships are discussed, the reasons why some relationships were not significant are suggested, and a new approach to studying the functional properties of proteins is proposed.

ACKNOWLEDGEMENTS

I would like to thank the following personnel, companies and research institutions for the assistance they gave me during this study:

A. Anderson G. Barrell C.S.I.R.O., Meat Division, Brisbane, Australia Eqsol Products V. Finer Food Technology Department, Massey University Griffith Laboratories (N.Z.) Ltd. J. Harris R. Hamilton Heatway Industries (N.Z.) Ltd. Johnson and Johnson (N.Z.) Ltd. Kiwi Bacon Co. Ltd. A. Krakocwyzk R. Mawson MIRINZ, Hamilton S. Newton N.Z.D.R.I., Palmerston North C. Towler G. Trout T. Wilkinson

Financial assistance from the following awards was gratefully accepted during this time:

Alliance Freezing Co. (Southland) Ltd. Award	1978
Globus Arlow Award	1978
Mauri Bros. and Thompson Award	1978
N.Z.I.F.S.T. Young Technologist of the Year Award	1978
Alliance Freezing Co. (Southland) Ltd. Award	1979
Globus Arlow Award	1979
Catherine Baxter Award	1979

Special thanks are given to my supervisor Mr Sam Oldfield, Erin Temperton for typing this thesis and Max Suckling for his continued help and support throughout the duration of my masterate.

TABLE OF CONTENTS

		-		Page
	Abetra	at		ii
	ADSUID	lodgomont		iv
	ACKNOW	/leagement	.5	
	Table	or Conten	ts	LV iiii
	List c	f Figures		XIII
	List c	f Tables		xvii
	List c	of Plates		xxiii
	List o	of Appendi	ces	xxiv
CHAP	TER l:	INTRODUC	TION	1
CHAP	TER 2:	LITERATU	RE REVIEW	5
2.1	Introd	luction		5
2.2	Functi	onal prop	erties of proteins	5
2.3	The ma	nufacture	of emulsion-type cooked	
	sausag	es and th	e importance of protein	
	functi	onal prop	erties	7
2.4	The ef	fect of a	dditives on the properties	
	of emu	lsion-typ	e sausages	10
	2.4.1	Non-meat	protein additives	10
	2.4.2	Carbohyd	rate additives	12
2.5	Theore	tical asp	ects and measurement of the	
	functi	onal prop	erties important in emulsion-	
	type s	ausages u	sing model systems	12
	2.5.1	Percent	soluble protein	12
		2.5.1.1	Theoretical aspects	13
		2.5.1.2	Factors affecting protein	
			solubility	· 13
		2.5.1.3	Measurement of percent	
			soluble protein	15
	2.5.2	Gelation		16
		2.5.2.1	Theoretical aspects	17
		2.5.2.2	Factors affecting gelation	18
		2.5.2.3	Measurement of heat gelation	18

vi

				Page
	2.5.3	Water bi	Inding capacity	20
		2.5.3.1	Theoretical aspects	21
		2.5.3.2	Factors affecting the water	22
			binding capacity of proteins	
		2.5.3.3	Measurement of water binding	
			capacity	24
	2.5.4	Emulsifi	cation properties	26
		2.5.4.1	Theoretical aspects	27
		2.5.4.2	Factors affecting emulsification	30
		2.5.4.3	Methods used to measure	
			emulsion capacity	31
		2.5.4.4	Methods used to measure	
			emulsion stability	32
26	Charac	toriestio	an of the functional	
2.0	nropor	tion of m	all protoin products	33
	2 6 1	The use	of model systems combined with	55
	2.0.1	tost foo	of model systems combined with	
		function	al proportion of protoin products	37
		2 6 1 1	Choice of the test food system	0.5
		2.0.1.1	Measurement of food system	37
		2.0.1.2	properties related to the	
			functional properties of protein	
			additives	38
		2613	Mathematical approaches for use	
		2.0.1.5	when employing model systems	
			and the trial-and-error	
			technique when studying	
			functional properties	41
		2.6.1.4	Relationships identified between	25
			empirically determined functional	
			properties of proteins	42
		2.6.1.5	The relationships identified	
			between empirically determined	
			functional properties of proteins	
			and the properties of meat	
			products in which they are	
			incorporated	43
			venter e ere and talente 🦛 la ere e ventetetet terret 🖓	

vii

			viii <u>Page</u>
2.7	The p	roperties of meat proteins	43
	2.7.1	Solubility	44
	2.7.2	Heat gelation	44
	2.7.3	Water binding	44
	2.7.4	Emulsification properties	45
	2.7.5	Foaming properties	45
2.8	Theore	etical aspects and measurement, using	
	model	systems of protein foaming properties	45
	2.8.1	Theoretical aspects	46
	2.8.2	Factors affecting protein foam	
		properties	48
	2.8.3	Measurement of foaming properties	48
CHAI	PTER 3:	MATERIALS AND METHODS	52
3.1	Select	tion of non-meat protein concentrates	52
3.2	Produc	ction of meat protein concentrates	52
	3.2.1	MyoMPC and SarcoMPC	52
	3.2.2	MassMPC	54
3.3	Raw ma	terial analysis and storage conditions	55
	3.3.1	Storage of dry materials	55
	3.3.2	Protein analysis	55
	3.3.3	Fat	55
	3.3.4	Moisture	55
	3.3.5	Salt	56
3.4	Disper	sion methods for test proteins	56
	3.4.1	GL750	. 56
	3.4.2	SV07, SV02, CasN	57
	3.4.3	MyoMPC and SarcoMPC	57
	3.4.4	MassMPC	57
	3.4.5	Sausage ingredients	57
3.5	Determ	ination of percent soluble protein	58
	3.5.1	Protein determination	58
		3.5.1.1 Reagents	58
		3.5.1.2 Protein standards	58
	3.5.2	Measurement of percent soluble protein	60
3.6	Heat ge	el strength	62

		ix Page
3.7	Water binding capacity (WBC)	65
3 8	Emulsion capacity	68
2.0	Determination of englairy stability	70
3.9	Determination of emulsion stability	75
3.10	Sausage formulation	, .
	3.10.1 The goal program	76
	3.10.1.1 The objective	76
	3.10.1.2 The constraints	76
	3.10.1.3 Compositional data	79
3.11	Manufacturing of the emulsion sausage systems	79
3.12	Measurement of cooking losses in the emulsion	
	sausage system	81
3.13	Subjective and objective assessment of	
	emulsion sausage systems	82
	3.13.1 Taste panel evaluation	82
	3.13.1.1 Taste panel training	82
	3.13.1.2 Taste panel evaluation	
	of emulsion sausage systems	83
	3.13.2 Objective evaluation of emulsion	
	sausage systems	84
	3.13.2.1 Compression to rupture	84
	3.13.2.2 Multiple compression test	85
	3.13.2.3 Extrusion through a wire grid	85
	3.13.2.4 Warner Bratzler Shear Force	
	Test	85
	3.13.2.5 Relaxation time	85
3.14	Foaming capacity and foaming stability	86
3.15	Statistical analysis	90
	3.15.1 Analysis of variance	90
	3.15.2 Bartlett's test and New Duncan's	
	multiple range test	91
	3.15.3 Pearson's correlation	91
СНАР	TER 4: RESULTS	92
4.1	Postal survey on the use of non-meat	
	protein additives	92

				x Page
4.2	Compos	sitional a	nalyses	92
4.3	Functi	onal prop	erties determined using	
	model	systems		92
	4.3.1	Percent	soluble protein	92
	4.3.2	Heat gel	strength	95
	4.3.3	Water bin	nding capacity	95
		4.3.3.1	Water binding capacity of	
			ingredients used in sausage	
			formulations	95
		4.3.3.2	Water binding capacity of	
			test proteins	100
	4.3.4	Emulsion	capacity	105
	4.3.5	Emulsion	stability	106
		4.3.5.1	Visual assessment of	
			emulsion stability	106
		4.3.5.2	Moisture loss	107
		4.3.5.3	Fat loss	107
4.4	Sausag	e formulat	tions	111
4.5	Functi	onal prope	erties assessed using an emulsion-	-
	type s	ausage sys	stem	111
	4.5.1	Cooking 2	losses	111
		4.5.1.1	Moisture loss	111
		4.5.1.2	The deviation of the predicted	
			water binding capacity from the	
			observed water binding capacity	
			for the test sausages	115
		4.5.1.3	Fat losses	117
	4.5.2	Taste par	nel assessment of sensory	
		propertie	25	118
		4.5.2.1	Firmness	118
		4.5.2.2	Cleanness of first bite	118
		4.5.2.3	Rate of breakdown	120
		4.5.2.4	Chewiness	120
		4.5.2.5	Stickiness	123
		4.5.2.6	Juiciness	123
		4.5.2.7	Fattiness	126
	4.5.3	Instrumer	ntal measurement of textural	
		propertie	es	129

÷

			xi Page
		4.5.3.1 Compression test	129
		4.5.3.2 Multiple compression test	133
		4.5.3.3 Extrusion through a wire grid	138
		4.5.3.4 Warner Bratzler test	146
		4.5.3.5 Relaxation	153
	4.5.4	The correlation between sensory measure-	
		ments and instrumental measurements	155
4.6	The co	prrelation between functional properties	
	measur	ed using model systems	155
4.7	Proper	ties of a cooked emulsion-type sausage	
<u> </u>	correl	ated to functional properties of added	
	protei	ns	155
1 0	Doomin	a connection and stability	
4.8	roamin	g capacity and stability	174
	4.0.1	Forming capacity	174
	4.0.2	roaming stability	174
CHAP	TER 5:	DISCUSSION	182
5.1	Introd	uction	182
5.2	Select	ion of non-meat protein additives	183
5.3	Functi	onal characteristics of MassMPC, MyoMPC	
	and Sa	rcoMPC assessed using model systems	183
	5.3.1	Percent soluble protein	184
	5.3.2	Heat gel strength	186
	5.3.3	Water binding capacity	187
	5.3.4	Emulsion capacity	190
	5.3.5	Emulsion stability	192
		5.3.5.1 Moisture loss	192
		5.3.5.2 Fat loss	193
	5.3.6	Foaming properties	195
	5.3.7	Summary of the properties of MassMPC,	
		MyoMPC and SarcoMPC measured using	
		model systems	196
	5.3.8	The relationships between functional	
		properties measured using model systems	197
5.4	Functio	onal properties of MassMPC, MyoMPC and	
	SarcoM	PC assessed in a commercial sausage	202
	5.4.1	Cooking losses	203
		5.4.1.1 Moisture loss	204

			xii Page
		5.4.1.2 Fat loss	205
*	5.4.2	Sensory properties	205
	5.4.3	The correlation between sensory and instrumental textural measurements	207
5	.5 Relati proper	lonships identified between functional strikes measured using model systems and	
	the pr	coperties of an emulsion-type sausage	208
CI	HAPTER 6:	SUMMARY AND CONCLUSIONS	214
	Biblic	ography	217
	Append	lices	232

xiii

÷.

.

LIST OF FIGURES

J.

Figure	Title	Page
2.1	A Venn-diagram illustrating the complex dependence of functional properties on various factors (Hermansson, 1979)	7
2.2	The effect of salt and pH on the electrostatic charge of proteins in solution (Hamm, 1975)	14
2.3	The changes in protein structure relating to increases in temperature (adapted from Hermansson, 1973ª)	15
2.4	The degree of cohesion between adjacent protein molecules and its effect on the amount of immobilized water (Hamm, 1975)	22
2.5	A schematic representation of emulsion instability	29
4.1	The effect of temperature on the solubility of 1% protein solutions of SV07, SV02, CasN, GL750, MassMPC and SarcoMPC	96
4.2	The effect of temperature on the solubility of 1% protein solutions of SV07, SV02, CasN, GL750 and MassMPC in the presence of 2% salt	97
4.3	The effect of temperature on the water binding capacity of SV07, SV02, CasN, GL750, MassMPC and MyoMPC at a protein to water ratio of 1:5	101

Figure	Title	Page
4.4	The effect of temperature in the water binding capacity of SV07, SV02, CasN, GL750, MassMPC and MyoMPC in the presence of 2% salt, at a protein to water ratio of 1:5	102
4.5	The effect of temperature on the water binding capacity of SV07, SV02, CasN, GL750, MassMPC and MyoMPC at a protein to water ratio of 1:10	103
4.6	The effect of temperature on the water binding capacity of SV07, SV02, CasN, GL750, MassMPC and MyoMPC in the presence of 2% salt at a protein to water ratio of 1:10	104
4.7	The effect of temperature on the moisture lost from emulsions (protein to fat to water ratio = 1:5:1.67) prepared with SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC	108
4.8	The effect of temperature on the moisture lost from emulsions (protein to fat to water ratio = 1:5:1.67) prepared with SV07, SV02, CasN, GL750, MassMPC and MyoMPC in the presence of 2% salt	109
4.9	Firmness scores for control sausages and sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at the 3% and 30% protein replacement levels	119
4.10	Cleanness of first bite scores for control sausages and sausages contain- ing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at the 3% and 30% protein replacement levels	121

xiv

XI

•

Figure	Title	Page
4.11	Rate of breakdown scores for control sausages and sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at the 3% and 30% protein replacement levels	122
4.12	Chewiness scores for control sausages and sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at the 3% and 30% protein replacement levels	124
4.13	Stickiness scores for control sausages and sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	125
4.14	Juiciness scores for control sausages and sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replace- ment levels	127
4.15	Fattiness scores for control sausages and sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replace- ment levels	123
4.16	Typical compression test force-deformation curve showing rupture force (F), deform- ation (D) and slope (dF, dD) measurements	129
4.17	Typical force-deformation curve for the extrusion test showing measurements for rupture force (F), rupture deformation (D), rupture slope (dF, dD), extrusion force (EF), extrusion deformation (ED) and	
	extrusion slope (dEF, dED) measurements	139

xv

Figure	Title	Page
4.18	Typical force deformation curve for the Warner Bratzler test showing shear force (F), rupture deformation (D) and rupture slope (dF, dD) measurements	147
4.19	Typical relaxation curve showing relaxation time measurement	153
4.20	The effect of shaking time on the foaming capacity of 2% protein dispersions of SV07, SV02, CasN, GL750, SarcoMPC and egg white albumin	175
4.21	The effect of shaking time on foam volume decay for a 2% protein dispersion of SV07	176
4.22	The effect of shaking time on foam volume decay for a 2% protein dispersion of SV02	177
4.23	The effect of shaking time on foam volume decay for a 2% protein dispersion of CasN	178
4.24	The effect of shaking time on foam volume decay for 2% protein dispersions of GL750	179
4.25	The effect of shaking time on foam volume decay for 2% protein dispersions of SarcoMPC	180
4.26	The effect of shaking time on foam volume decay for 2% protein dispersions of egg white albumin	181

xvi

÷

LIST OF TABLES

Table	Title	Page
2.1	The functional properties of proteins important in food applications	6
3.1	Methods used to determine moisture concentration (%) in test ingredients	56
3.2	Protein standards for biuret test	59
3.3	Goal program matrix	77
3.4	Addition levels of the test proteins used to achieve 3% and 30% protein replacement in a 100 g batch	79
4.1	The use of non meat protein additives by N.Z. meat smallgoods manufacturers	93
4.2	Compositional analyses of raw materials	94
4.3	Heat gel strength of SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC gels	98
4.4	Heat gel strength of SV07, SV02, CasN, GL750, MassMPC and MyoMPC gel with 2% (m/m) salt	99
4.5	Water binding capacities of sausage ingredients (70 ⁰ C, 2% salt)	100
4.6	Mean (n = 4) emulsion capacities of SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC in the presence and absence of salt (2%, m/m)	106
4.7	Visual observations of the stability of emulsions formed by SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC (protein to water to fat ratio 1:5:1.67)	107
	14010 110110//	101

xvii

Table	Title	Page
4.8	The effect of temperature and 2% salt addition on the fat lost from emulsions (protein to fat to water ratio = 1:5:1.67) prepared with SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC (mean results, n = 3)	110
4.9	Test sausage formulations	112
4.10	Functional values, percentage deviations contributing to functional values and constraint values for each test sausage formulation	113
4.11	Mean (n = 4) moisture losses from emulsion-type sausages with 3% and 30% of their protein replaced by SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC	115
4.12	Mean (n = 4) values for the deviation of the predicted water binding capacity (WBC) from the observed WBC for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at the 3% and 30% protein replacement levels	116
4.13	Mean (n = 4) fat losses from emulsion- type sausages with 3% and 30% of their protein replaced by SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC	117
4.14	Mean (n = 6) compression test rupture force (kg) values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	130

xviii

.

Table	Title	Page
4.15	Mean (n = 6) compression test deform- ation (cm) values for sausages contain- ing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	131
4.16	Mean (n = 6) compression test slope (g/mm) values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	132
4.17	Mean (n = 6) multiple compression test rupture force values for sausages contain- ing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	134
4.18	Mean (n = 6) multiple compression test deformation values for sausages contain- ing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	135
4.19	Mean (n = 6) multiple compression test slope values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	136
4.20	Mean (n = 6) extrusion test rupture force values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	138
4.21	<pre>Mean (n = 6) extrusion test rupture deformation values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels</pre>	140

xix

Table	Title	Page
4.22	Mean (n = 6) extrusion test rupture slope values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	141
4.23	Mean (n = 6) extrusion test extrusion force values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	142
4.24	Mean (n = 6) extrusion test extrusion deformation values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	143
4.25	Mean (n = 6) extrusion test extrusion slope values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	145
4.26	Mean (n = 6) Warner Bratzler rupture force values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	148
4.27	Mean (n = 6) Warner Bratzler deform- ation values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	149
4.28	Mean (n = 6) Warner Bratzler slope values for sausages containing SV07, SV02, CasN, GL750, MassMPC, MyoMPC and SarcoMPC at 3% and 30% protein replacement levels	150

٠

xx

Table	Title	Page
4.29	Mean $(n = 6)$ relaxation values for	
	sausages with 3% and 30% of the protein replaced by test protein	154
4.30	Significant ($P \leq 0.05$) correlation	
	coefficients between sensory and	
	instrumental measurements of textural	
	properties for emulsion-type sausages	
	with 3% and 30% of the protein replaced by additives $(n = 7)$	156
4.31	Significant ($P < 0.05$) correlation	
	coefficients between functional properties	
	determined using model systems in both the presence and absence of salt $(n = 7)$	157
4.32	Significant (P \lt 0.05) correlation	
	coefficients between functional	
	properties determined using model systems	
	(in the presence and absence of 2% salt)	
	and properties of a cooked emulsion-type	
	sausage (with 3% and 30% of the protein replaced by additive protein) $(n - 7)$	166
	repraced by addresse process) (II = /)	

÷

xxi

XX	11

Table	Title	Page
II.l	Percent soluble protein data for R.S.D. calculations	237
II.2	Heat gel strength data for R.S.D. calculation	238
II.3	Water binding capacity data for R.S.D. calculation	239
11.4	Emulsion capacity data for R.S.D. calculation	240
II.5	Emulsion stability data for R.S.D. calculation	241
II.6	Foaming capacity and foaming stability data used for R.S.D. calculations	242
IV.l	Percent soluble protein data	245
V.1	Water binding capacity data	246
VI.l	Mean (n = 3) emulsion stability moisture loss data	248
VII.1	Group discussion taste panel scores	249

.....

LIST OF PLATES

Plate	Title	Page
3.1	Mixing apparatus used in the percent soluble protein determinations	61
3.2	Apparatus used to measure water binding capacity	66
3.3	Apparatus used to measure emulsion capacity	69
3.4	Mixing shaft showing oil delivery tube (A) and copper wires (B)	69
3.5	Heatway Upright Grill Master showing grill bars (G), reflector plates (R), and drip tray (D)	72
3.6	The system employed to determine heating times for test sausages used in the emulsion stability study	72
3.7	Apparatus used in compression test	85
3.8	Extrusion test apparatus showing wire grid	85
3.9	Warner Bratzler shear test apparatus	86
3.10	Pneumatic shaker used for foaming capacity determinations	89
3.11	Determination of foam volume achieved by gently pressing a filter paper disc	
	onto the foam head (A) until resistance is encountered	89

1

.

LIST OF APPENDICES

Table		Title	Page
I	Posta	l Survey Questionnaire	232
II	Calcu Devia	lation of the Relative Standard tion for Test Methods	237
	II.l	Percent soluble protein	237
	II.2	Heat gel strength	238
	II.3	Water binding capacity	238
	II.4	Emulsion capacity	239
	II.5	Emulsion stability (moisture loss)	240
	II.6	Foaming capacity and foaming stability	241
III	Equal Sheet	Interval Taste Panel Evaluation	243
IV	Percent Soluble Protein Data		
V	Water	Binding Capacity Data	246
VI	Emuls	ion Stability Data	248
VII	Group	Discussion Taste Panel Scores	249