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Abstract

Qualified difference sets are a class of combinatorial configuration. The sets are related
to the residue difference sets that were first discussed in detail in 1953 by Emma Lehmer.
Qualified difference sets consist of a set of residues modulo an integer v and they possess
attractive properties that suggest potential applications in areas such as image formation,
signal processing and aperture synthesis. This thesis outlines the theory behind qualified
difference sets and gives conditions for the existence and nonexistence of these sets in
various cases.

A special case of the qualified difference sets is the qualified residue difference sets.
These consist of the set of nth power residues of certain types of prime. Necessary and
sufficient conditions for the existence of qualified residue difference sets are derived and
the precise conditions for the existence of these sets are given for n = 2, 4 and 6. Qualified
residue difference sets are proved nonexistent for n = 8, 10, 12, 14 and 18.

A generalisation of the qualified residue difference sets is introduced. These are the
qualified difference sets composed of unions of cyclotomic classes. A cyclotomic class
is defined for an integer power n and the results of an exhaustive computer search are
presented for n = 4, 6, 8, 10 and 12. Two new families of qualified difference set were
discovered in the case n = 8 and some isolated systems were discovered for n = 6, 10 and
12.

An explanation of how qualified difference sets may be implemented in physical
applications is given and potential applications are discussed.
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Chapter 1

Overview

Qualified difference sets (QDS) are a class of combinatorial configurations that are related
to the normal residue difference sets (RDS) that were first discussed in detail by Lehmer
[47, pp. 425-430]. If zero is included as an element in the QDS, we have modified qualified
difference sets (MQDS), which are similarly related to the modified residue difference sets
(MRDS), also discussed by Lehmer [47, pp. 431-432]. All four classes of set possess
similarly attractive properties that suggest potential applications in areas such as image
formation, signal processing and aperture synthesis.

Different applications require different parameters of these sets. For example, high
energy astronomy uses an image formation technique called coded aperture imaging [23,
29], whereby radiation from a high energy source passes through holes in an aperture made
of opaque material and lands on a position sensitive radiation detector. The transparency
of any aperture (i.e. the ratio of the total area of holes to the entire aperture area)
depends on the parameters of the set from which the aperture is generated. For most high
energy telescopes, apertures of 50% transparency have been used [56, 69, 70], although
other transparencies have been proposed to aid physical construction of the aperture
[15, 33]. Accorsi et al. have investigated the use of the coded aperture technique in medical
imaging, concluding that in certain circumstances a lower transparency aperture is the
best compromise between instrument sensitivity and practical construction constraints [1].

The rationale behind this thesis is to introduce QDS and MQDS and hence increase
the range of parameters available for use in physical applications. In it we discuss QDS
and MQDS, including their existence and applications. In Chapter 2 we relate QDS and
MQDS to RDS and MRDS respectively, giving some necessary definitions. We present a
historical discussion of the RDS and MRDS and we discuss the current research position
of these sets. We also outline some of the necessary theory of cyclotomy required in many
of the proofs in the thesis. In Chapter 3 we discuss the special cases of the qualified
residue difference sets (QRDS) and similar sets that include the zero element called the
modified qualified residue difference sets (MQRDS). Using cyclotomy with respect to the
integer power n, we present necessary and sufficient conditions for the existence of both
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types of set. In Chapter 4 we provide precise conditions for the existence of both QRDS
and MQRDS for n = 2, 4 and 6, and in Chapter 5 we prove the nonexistence of both
types of set for n = 8, 10, 12, 14 and 18.

In Chapter 6 we discuss QDS and MQDS that are created from the unions of cyclotomic
classes. We provide necessary definitions and discuss the existence of such sets for the
values n = 4, 6, 8, 10 and 12.

In Chapter 7 we discuss the possible applications of QDS and MQDS and in Chapter
8 we summarise the thesis and the findings in it.

Some of the results in this thesis have been published elsewhere as follows: Sections
3.2, 4.2, 4.3 and 4.4 are in [40], [41] and [17]; Section 5.2 is in [17]; Section 5.3 is in [18];
Section 5.4 is in [19]; Sections 5.5 and 5.6 are in [21]; Chapter 6 is in [20].
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Chapter 2

Difference Sets and Qualified

Difference Sets

2.1 Difference Sets

Difference sets are a class of combinatorial configurations. Each difference set is associated
with three main parameters, v, k, λ, and for this reason they are sometimes also referred
to as (v, k, λ) difference sets. In the case when v is an odd prime we will use the symbol
p instead of v. First we require the following preliminary definition.

Definition 2.1 Let N be a positive integer. We define the sets ZN and Z+
N as follows:

ZN = {0, 1, 2, . . . , N − 1} (2.1)

Z+
N = ZN − {0} = {1, 2, . . . , N − 1}. (2.2)

Then the set ZN is a group under addition modulo N . The set Z+
N is not a group under

addition modulo N , but it is a group under multiplication modulo N if and only if N is
prime.

Difference sets are defined as follows.

Definition 2.2 Let v, k and λ be positive integers. A (v, k, λ) difference set D =
{a1, a2, a3, . . . , ak} is a set of k residues modulo v, such that for each d ∈ Z+

v the
congruence

ai − aj ≡ d (mod v) 1 ≤ i, j ≤ k, (i 6= j)

has exactly λ solution pairs ai, aj ∈ D. The integer v is called the modulus, k is called the
size and λ is called the multiplicity of the set D.

There is evidently a relationship between the parameters v, k and λ of a difference set that
arises due to the incidences of occurrence of each non-zero difference. As an immediate
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consequence of Definition 2.2 we obtain the following equation, which we refer to as the
incidence relation for a given difference set:

k(k − 1) = λ(v − 1). (2.3)

This arises from the fact that there are k(k − 1) non-zero differences and each non-zero
difference occurs exactly λ times. An example is the (15, 7, 3) difference set given by:

D15 = {1, 2, 3, 5, 6, 9, 11} (mod 15).

Each non-zero difference modulo 15 occurs three times, for example the difference 5 arises
from 6− 1, 11− 6 and 1− 11 (mod 15). Therefore λ = 3. Note that the values (v, k, λ) =
(15, 7, 3) satisfy (2.3). Note also that the condition in Equation (2.3) does not guarantee
the existence of a difference set. For example, the parameters (v, k, λ) = (16, 6, 2) satisfy
(2.3) but do not give rise to a difference set.

There are a number of obvious difference sets that are generally of little interest. These
are discussed by Baumert [8, pp. 1-2] and include the following;

1. The empty set: D = {}; k = λ = 0.

2. All single element sets: D = {i}; 0 ≤ i ≤ v − 1, k = 1, λ = 0.

3. The complete set of residues modulo v: D = {0, 1, 2, . . . , v − 1}; v = k = λ.

4. The complete set of residues modulo v, minus the element i: D = {0, 1, 2, . . . , i −
1, i+ 1, . . . , v − 1}; 0 ≤ i ≤ v − 1, k = v − 1, λ = v − 2.

These are called trivial difference sets and are often either ignored or treated as only
limiting cases. From the incidence relation (2.3), trivial difference sets arise if and only if
the quantity k − λ equals either zero or unity. Therefore if a (v, k, λ) difference set exists
then it is non-trivial if and only if

k − λ ≥ 2. (2.4)

In many discussions about difference sets in the literature, the assumption in Equation
(2.4) is often made implicitly. The definitive work on difference sets is the book by Baumert
[8] although other works of note include papers by Hall [36] and Baumert [7].

A subclass of (v, k, λ) difference sets are the nth power residue difference sets (RDS).
In 1953, Lehmer presented a detailed discussion of RDS [47]. A RDS of order n is defined
as follows.

Definition 2.3 Let n and k be positive integers and suppose p = nk + 1 is prime. Let
D = {r1, r2, r3, . . . , rk} be the set of nth power residues of p. The set D is called an nth
power residue difference set with k elements, RDS for short, if, when we form all the
k(k − 1) non-zero differences

ri − rj (mod p) 1 ≤ i, j ≤ k, (i 6= j) (2.5)
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we obtain every element of Z+
p exactly λ times. The prime p is called the modulus, k is

called the size and λ is called the multiplicity, of the set D.

Note from the earlier discussion on trivial difference sets that a non-trivial RDS also
requires n to be greater than unity. An example of a non trivial RDS is the following.

Example 2.4 The parameters n = 4, k = 9 yield a fourth power RDS with nine elements.
For p = nk + 1 = 37 is prime the incidence relation (2.3) implies λ = 2. Indeed, for the
set

D = {a ∈ Z+
37 : a = x4 for some x ∈ Z+

37}
= {1, 7, 9, 10, 12, 16, 26, 33, 34},

each non-zero difference occurs λ = 2 times.

An example of a set of parameters n, p, k, λ that obey the incidence relation (2.3) but do
not yield a RDS is as follows.

Example 2.5 The parameters n = 4, k = 13 do not yield a fourth power RDS with 13
elements.
For p = nk+1 = 53 is prime the incidence relation (2.3) would imply λ = 3. But, for the
set

D = {a ∈ Z+
53 : a = x4 for some x ∈ Z+

53}
= {1, 10, 13, 15, 16, 24, 28, 36, 42, 44, 46, 47, 49}

the difference 1 occurs twice (16− 15 and 47− 46) while the difference 2 occurs four times
(15− 13, 44− 42, 46− 44 and 49− 47). Therefore, the differences do not occur the same
number of times and hence there is no difference set in this case.

Chowla demonstrated that a fourth power RDS exists if and only if k is an odd square
[24].

In her article, Lehmer also points out that similar sets exist if zero is counted as a
residue [47, p. 431]. These are called nth power modified residue difference sets, by virtue
of the modification introduced by the inclusion of the zero element. The definition of a
modified residue difference set is as follows.

Definition 2.6 Let n and k be positive integers and suppose p = nk + 1 is prime. Let
D∗ = {r0, r1, r2, . . . , rk} be the set of nth power residues of p where r0 = 0. The set D∗ is
called an nth power modified residue difference set with k + 1 elements, MRDS for short,
if, when we form all the k(k + 1) non-zero differences

ri − rj (mod p) 0 ≤ i, j ≤ k, (i 6= j) (2.6)

we obtain every element of Z+
p exactly λ times. The prime p is called the modulus, k is

called the size and λ is called the multiplicity of the set D∗.

In this case the parameters have the following incidence relation:

k(k + 1) = λ(v − 1). (2.7)

An example of a non trivial MRDS is the following.
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Example 2.7 The parameters n = 4, k = 3 yield a fourth power MRDS with four
elements.
For p = nk + 1 = 13 is prime the incidence relation (2.7) implies λ = 1. Indeed, for the
set

D = {a ∈ Z+
13 : a = x4 for some x ∈ Z+

13} ∪ {0}
= {0, 1, 3, 9},

each non-zero difference occurs exactly once, so λ = 1.

2.2 Existence of RDS and MRDS

RDS and MRDS are subclasses of difference sets, of which there has been much study
and research. These sets have come in for special attention, mainly as a result of their
ease of construction. The definitive work on RDS and MRDS is by Lehmer [47] although
the article by Storer also gives extensive results on both types of set via the theory of
cyclotomy [60], and Berndt, Evans and Williams provide alternative proofs of many of the
associated theorems using Gauss sums [10, Chapter 5]. We present the known results as
a series of theorems.

Theorem 2.8 (Lehmer [47]) There exist no nth power RDS or MRDS for odd values
of n.

Lehmer provides a full proof of the nonexistence of RDS for odd n. She attributes the
nonexistence condition for MRDS to Hall without a clear citation, although a proof is
given by Baumert [8, Theorem 5.17]. Therefore for RDS and MRDS we are restricted to
studying cases when n is even.

Theorem 2.9 (Paley [55]) RDS for n = 2 exist if and only if p = 4x − 1 is a prime
and x is a positive integer.

Theorem 2.10 (Baumert [8]) MRDS do not exist for n = 2.

Theorem 2.11 (Chowla [24]) RDS for n = 4 exist if and only if p = 4x2 +1 is a prime
and x is an odd integer.

Chowla proved Theorem 2.11 using results of cyclotomy from Bachmann [2]. Lehmer
generalised the results in Theorems 2.9, 2.10 and 2.11, and outlined the necessary and
sufficient conditions for the existence of both RDS and MRDS [47, Theorems III and III’].
She was therefore able to prove further results. Again she attributes the following theorem
for a MRDS with n = 4 to Hall without citation.

Theorem 2.12 (Lehmer [47]) MRDS for n = 4 exist if and only if p = 4x2 + 9 is a
prime and x is an odd integer.

In the case n = 6 Lehmer proved the following
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Theorem 2.13 (Lehmer [47]) RDS and MRDS for n = 6 are nonexistent.

and for n = 8 she proved the following

Theorem 2.14 (Lehmer [47]) RDS for n = 8 exist if and only if p is a prime of the
form p = 8x2 +1 = 64y2 +9 where x and y are both odd integers. MRDS for n = 8 exist if
and only if p is a prime of the form p = 8x2 + 49 = 64y2 + 441 where x is an odd integer
and y is an even integer.

In her paper the final result for MRDS in Theorem 2.14 is incorrectly quoted [47, p. 432].
Correctly quoted results for MRDS with n = 8 are provided by Storer [60, p. 81, Theorem
19’], Baumert [8, p. 124] and Berndt et al. [10, p. 179, Theorem 5.3.6(b)].

For higher values of n no further RDS or MRDS have yet been found. For n = 10,
Lehmer proved the nonexistence of RDS for the case when 2 is a 5th power residue of the
prime modulus p [47, p. 430]. The final existence question for n = 10 for both RDS and
MRDS was solved by Whiteman.

Theorem 2.15 (Whiteman [67]) RDS and MRDS for n = 10 are nonexistent.

We also have the following theorems

Theorem 2.16 (Whiteman [68]) RDS and MRDS for n = 12 are nonexistent.

Theorem 2.17 (Muskat [52]) RDS and MRDS for n = 14 are nonexistent.

In the case n = 16 Whiteman used cyclotomy to provide a partial solution by proving
that both RDS and MRDS are nonexistent if 2 is an octic (8th power) residue of p [66].
The full proof for n = 16 was completed by Evans using Gauss sums [26].

Theorem 2.18 (Evans [26]) RDS and MRDS for n = 16 are nonexistent.

We also have a full solution in the following case.

Theorem 2.19 (Baumert and Fredricksen [5]) RDS and MRDS for n = 18 are
nonexistent.

For n = 20 Muskat and Whiteman proved the nonexistence of both RDS and MRDS when
5 is a biquadratic residue of p [53]. The final solution was provided by Evans.

Theorem 2.20 (Evans [28]) RDS and MRDS for n = 20 are nonexistent.

For n = 22 and n = 24 partial solutions exist.

Theorem 2.21 (Muskat [52]) RDS and MRDS for n = 22 are nonexistent if 2 is an
eleventh power residue of p.

Theorem 2.21 is a special case of the following neat theorem of Muskat.
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Theorem 2.22 (Muskat [52]) There exist no nth power RDS or MRDS when n ≡ 6
(mod 8) and 2 is an (n/2)th power residue of p.

Theorem 2.23 (Evans [27]) For n = 24 RDS and MRDS do not exist if either 2 is a
cubic residue of p or if 3 is a biquadratic residue of p.

In a separate article Berndt and Evans claim that the remaining cases for n = 24 could
‘... undoubtedly be settled using the formula for G24 [the Gauss sums of order 24] ...’ but
they concede that the calculations would appear to be very laborious [9, p. 350].

In an interesting recent incident, Ott published an article claiming to prove that the
order n of RDS and MRDS must be a power of 2 [54, Theorem 1]. However, Ott’s result
was subsequently refuted by Yuan and Yahui [72].

Summaries of the existence conditions for RDS and MRDS are given in Tables 2.1 and
2.2 respectively.

n RDS exist if and only if Conditions References

2 p = 4x− 1 x integer Paley [55]
4 p = 4x2 + 1 x odd Chowla [24]
6 Nonexistent Lehmer [47]
8 p = 8x2 + 1 = 64y2 + 9 x, y odd integers Lehmer [47]
10 Nonexistent Lehmer [47], Whiteman [67]
12 Nonexistent Whiteman [68]
14 Nonexistent Muskat [52]
16 Nonexistent Whiteman [66], Evans [26]
18 Nonexistent Baumert & Fredricksen [5]
20 Nonexistent Evans [28]
22 Nonexistent 2 is 11th power residue of p Muskat [52]
24 Nonexistent 2 is cubic residue or Evans [27]

3 is biquadratic residue of p

Table 2.1: Parameters for the existence of RDS.
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n MRDS exist if and only if Conditions References

2 Nonexistent Baumert [8]
4 p = 4x2 + 9 x odd Lehmer [47]
6 Nonexistent Lehmer [47]
8 p = 8x2 + 49 = 64y2 + 441 x odd, y even Lehmer [47]
10 Nonexistent Whiteman [67]
12 Nonexistent Whiteman [68]
14 Nonexistent Muskat [52]
16 Nonexistent Whiteman [66], Evans [26]
18 Nonexistent Baumert & Fredricksen [5]
20 Nonexistent Evans [28]
22 Nonexistent 2 is 11th power residue of p Muskat [52]
24 Nonexistent 2 is cubic residue or Evans [27]

3 is biquadratic residue of p

Table 2.2: Parameters for the existence of MRDS.

2.3 Qualified Difference Sets

In this thesis an extension to the RDS and MRDS is introduced in the form of two new
types of set. These we call qualified difference sets and modified qualified difference sets.
We define the qualified difference sets as follows.

Definition 2.24 Let k be a positive integer and R = {r1, r2, r3, . . . , rk} ⊂ Z+
v be a k-

element set of distinct non-zero residues modulo an integer v. We call R a qualified
difference set, QDS for short, if there exists some non-zero integer m, 0 < m < v, which
is such that

1.
mrj 6∈ R, 1 ≤ j ≤ k (2.8)

2. if we form all the k2 non-zero differences

ri −mrj (mod v) (2.9)

we obtain every element of Z+
v exactly λ times and we do not obtain zero. The integer v

is called the modulus, k is called the size and λ is the multiplicity of the set R. We call m
a qualifier of R.

Note that the condition mrj 6∈ R implies that m = 1 is not a qualifier, since we would then
obtain exactly k zero differences, whereas Definition 2.24 specifies that the differences must
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all be non-zero. If zero is counted as a residue, we can obtain modified qualified difference
sets, by virtue of the modification introduced by the inclusion of the zero element. We
define these sets as follows.

Definition 2.25 Let R = {r1, r2, r3, . . . , rk} ⊂ Z+
v be a k-element set of distinct non-

zero residues modulo an integer v. Let r0 = 0 and define R∗ = R ∪ {r0}. We call R∗ a
modified qualified difference set, MQDS for short, if there exists some non-zero integer m,
0 < m < v, which is such that

1.

mrj 6∈ R, 0 ≤ j ≤ k (2.10)

2. if we form all the (k + 1)2 non-zero differences

ri −mrj (mod v) (2.11)

we obtain every element of Z+
v exactly λ times and zero exactly once. The integer v is

called the modulus, k is called the size and λ is the multiplicity of the set R∗. We call m
a qualifier of R∗.

Note the single occurrence of the zero difference for a MQDS. This results from the point
that from (2.11) we have firstly r0 − mr0 = 0 (giving the single zero difference) and
secondly mrj 6∈ R, which means that another zero difference cannot occur. As above,
m = 1 cannot be a qualifier, since we would then obtain exactly k + 1 zero differences,
whereas Definition 2.25 specifies that the zero difference occurs exactly once.

As for difference sets, the parameters of QDS and MQDS are related by an incidence
relation. This is given by the following lemma.

Lemma 2.26 For a QDS of k elements and modulus v we have the following incidence
relation

k2 = λ(v − 1) (2.12)

and for a MQDS of k + 1 elements and modulus v we have the incidence relation

(k + 1)2 = 1 + λ(v − 1). (2.13)

Proof. For a QDS of k elements there are k2 possible non-zero differences, and each non-
zero difference modulo v occurs exactly λ times, giving (2.12). For a MQDS, there are
k+1 elements (including zero), and hence (k+1)2 possible differences. The zero difference
occurs exactly once and each non-zero difference modulo v occurs exactly λ times, giving
(2.13). �

The following lemma is presented to avoid ambiguity in Chapter 5 (Lemma 5.2).
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rj

ri

1 4 13 16

1 16 10 9 3
4 2 13 12 6

13 11 5 4 15
16 14 8 7 1

Table 2.3: Table showing ri − 2rj (mod 17).

Lemma 2.27 If R = {r1, r2, . . . , rk} is a QDS then R∗ = R ∪ {0} is not a MQDS and if
R∗ = R ∪ {0} is a MQDS then R is not a QDS.

Proof. If R is a QDS and R∗ is a MQDS then by Equations (2.12) and (2.13) we obtain
k = 0, which contradicts that k is a positive integer. �

When the modulus v is odd the following lemmas apply for QDS and MQDS.

Lemma 2.28 For all QDS and MQDS, if the modulus v is odd, then k must be even.

Proof. This is immediate from Lemma 2.26. �

The simplest QDS and MQDS are those composed of the nth power residues of certain
types of prime p, and having analogous properties to the RDS and MRDS respectively.
These are called qualified residue difference sets and modified qualified residue difference
sets, the word ‘residue’ being incorporated to notify that the sets are composed of nth
power residues. The QRDS are defined for modulus p as follows.

Definition 2.29 Let n and k be positive integers and suppose p = nk+1 is an odd prime.
Let R = {r1, r2, r3, . . . , rk} be the k-element set of non-zero nth power residues of p. We
call R an nth power qualified residue difference set with k elements, QRDS for short, if R
is a QDS.

An example of a QRDS is the following.

Example 2.30 The parameters n = 4, k = 4 and p = nk + 1 = 17 yield a QRDS. The
complete list of possible qualifiers is m = 2, 8, 9 and 15.
For p = 17 is prime, the incidence relation (2.12) implies λ = 1. We obtain the set

R = {r ∈ Z+
17 : r = x4 for some x ∈ Z+

17}
= {1, 4, 13, 16}.

Since we use this example in Section 7.4, we show the resulting differences in detail. Using
the qualifier m = 2 we use (2.9) to obtain the results in Table 2.3, modulo 17. Note from
Table 2.3 that each non-zero difference modulo 17 occurs exactly once, giving λ = 1, and
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the zero difference does not occur. The list of possible values of m arises due to the fact
that all the qualifiers are those integers that are in residue class n/2, namely those integers
that are (n/2)th power residues that are not nth power residues [21, Theorems 2.1 and
2.2]. Thus, 2, 8, 9 and 15 are the squares which are not fourth powers in Z+

17.

If zero is counted as an nth power residue we obtain modified qualified residue
difference sets. We define these sets as follows.

Definition 2.31 Let k be a positive integer and R = {r1, r2, r3, . . . , rk} be the set of nth
power residues of an odd prime p = nk + 1. Let R∗ be the k + 1-element set R∗ =
{r0, r1, r2, . . . , rk} = R ∪ {0} where r0 = 0. We call R∗ an nth power modified qualified
residue difference set, MQRDS for short, if R∗ is a MQDS.

We now give an example of a MQRDS.

Example 2.32 The parameters n = 2, k = 2 and p = nk + 1 = 5 yield a MQRDS. The
complete list of possible qualifiers is m = 2 and 3, as these are the integers that are in
residue class n/2 [21, Theorems 2.1 and 2.2].

For p = 5 is prime, the incidence relation (2.13) implies λ = 2. We obtain the set

R∗ = {r ∈ Z+
5 : r = x2 for some x ∈ Z+

5 } ∪ {0}
= {0, 1, 4}.

Using m = 2 or m = 3 with (2.11) we obtain every non-zero difference modulo 5 exactly
twice, giving λ = 2 and zero occurs exactly once.

In all cases so far discovered of RDS, MRDS, QRDS and MQRDS, the modulus v
of each type of configuration is an odd prime p. Storer investigated the case when the
modulus of a RDS or MRDS is a power of an odd prime (pα). He states that for n = 4, 6, 8
we must have α = 1 and hence a prime modulus [60, Theorem 20, p. 82]. He gives a
specific proof for the case n = 4, which he attributes jointly to Lebesgue [46] and a
rediscovery by Hall [37], and he ascribes the proof for n = 6 to W.H. Mills, without citing
a reference. He provides no proof for n = 8.

In the remainder of this thesis, the modulus v = p is always an odd prime.

2.4 Cyclotomy

The proofs in this thesis make extensive use of cyclotomy and cyclotomic number theory.
Therefore we present a brief discussion of cyclotomy in this section. Firstly we require a
definition of a primitive root.

Definition 2.33 Let p be an odd prime. The integer g is a primitive root of p if g is a
generator for the multiplicative group Z+

p , that is, {gu : u ∈ Z+
p } = Z+

p .
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Note here that Z+
p is a cyclic group with respect to multiplication and so the existence of

a primitive root g as a generator is guaranteed [39, p. 40-41]. Now, let n and k be positive
integers and suppose we have

p = nk + 1 (2.14)

where p is an odd prime. Let g be a primitive root of p. We now define the terms residue
class and index. The index is also called the discrete logarithm.

Definition 2.34 Let p be an odd prime which satisfies (2.14) and let g be a primitive root
of p. The integer N ∈ Z+

p is said to be in residue class i with respect to g for the given
values of p and n if the following congruence holds for some integer u:

N ≡ gun+i (mod p). (2.15)

We call the quantity un+ i in (2.15) the index of N, referred to as ind N , or the discrete
logarithm of n with respect to the base g. Therefore

g ind N ≡ N (mod p). (2.16)

We also define the cyclotomic constant of order n.

Definition 2.35 Let n and k be positive integers such that p = nk + 1 is an odd prime.
Let g be a primitive root of p. The cyclotomic constant (i, j) of order n denotes the number
of members of the residue class i which are followed by a member of the residue class j,
that is the number of solutions to the congruence

gun+i + 1 ≡ gvn+j (mod p) (2.17)

where 0 ≤ i, j ≤ n− 1 and 0 ≤ u, v ≤ k − 1.

See Dickson [25] for an in-depth study of the properties of cyclotomic constants. The
following results, also due to Dickson [25, pp. 392-394], are required too:

(i, j) = (−i, j − i) (2.18)

(i, j) = (j, i) if k is even (2.19)
n−1∑
j=0

(i, j) =

{
k − 1 if k is even and i = 0, or if k is odd and i = n/2

k otherwise
(2.20)

(i, j) = (i+ γ1n, j + γ2n) (2.21)

for all integers γ1 and γ2. We also require the following lemma.

Lemma 2.36 Let n and k be positive integers such that p = nk + 1 is prime. Now let
N ∈ Z+

p be an integer and define N̄ such that NN̄ ≡ 1 (mod p). If N is in residue class
n− i with respect to the primitive root g then N̄ is in residue class i with respect to g.
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Proof. Let N1 and N2 be integers and suppose they are in residue classes i1 and i2,
respectively. From Definition 2.34 we see that the product N1N2 is in residue class i1 + i2

(mod n). The claimed result now follows on taking N1 = N , N2 = N̄ and using the fact
that the integer 1 is in residue class zero. �

Apart from Dickson, cyclotomic constants have been investigated by many authors,
including Lehmer [48], Whiteman [67, 68], Muskat [52] and Baumert and Fredricksen
[5, 6]. Those cyclotomic constants used in this thesis are given in Appendix A.
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Chapter 3

Qualified Residue Difference Sets

3.1 Introduction

In this chapter we discuss in detail QRDS and MQRDS. We establish the necessary and
sufficient conditions for the existence of QRDS and MQRDS in Section 3.2. We then give
a few basic properties of QRDS and MQRDS in Section 3.3.

3.2 Necessary and Sufficient Conditions for the Existence

of QRDS and MQRDS

In this section we establish the necessary and sufficient conditions for the existence of
QRDS and MQRDS. Throughout this section, n and k will denote positive integers and
p = nk + 1 is assumed to be prime. Let R be a QRDS (if one exists) with modulus v = p

having k elements and multiplicity λ, where λ is given by the incidence relation (2.12).
Also, let R∗ be a MQRDS (if one exists) with modulus v = p having k + 1 elements and
multiplicity λ, where λ is given by the incidence relation (2.13).

Lemma 3.1 For the QRDS R, we have

p = λn2 + 1 and λ = k/n. (3.1)

For the MQRDS R∗, we have

p = λn2 − 2n+ 1 and λ = (k + 2)/n. (3.2)

Proof. From Equation (2.12) k2 = λ(p− 1) = λnk, so k = λn. �

Lemma 3.2 For all QRDS of prime modulus and all MQRDS of prime modulus, k must
be even.
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Proof. By definition the modulus p is odd. Therefore, k must be even by Lemma 2.28.
�

We now have the required information to outline the necessary and sufficient conditions
for QRDS and MQRDS to exist. The following theorem applies to QRDS.

Theorem 3.3 Let g be a primitive root of p. Suppose the integer m ∈ Z+
p belongs to

residue class n − σ with respect to g for some integer σ, 0 ≤ σ ≤ n − 1. Then m is a
qualifier of the QRDS R if and only if the cyclotomic constants obey the relations

(s, σ) = (σ, s) = λ = k/n (3.3)

for s = 0, 1, . . . , (n− 1).

Proof. Let R be a QRDS of modulus p = nk + 1 and multiplicity λ. Suppose that
m is a qualifier of R, belonging to the residue class n − σ, 0 ≤ σ ≤ n − 1. For each
t = 1, 2, . . . , p− 1 the congruence

ri −mrj ≡ t (mod p) : 1 ≤ i, j ≤ k (3.4)

has exactly λ solutions. Multiplying (3.4) through by m̄r̄j , where mm̄ ≡ 1 (mod p) and
rj r̄j ≡ 1 (mod p), and rearranging gives

m̄tr̄j + 1 ≡ m̄rir̄j (mod p). (3.5)

Since m belongs to residue class n−σ, m̄ belongs to residue class σ by Lemma 2.36. Also,
rj is in residue class zero, as is r̄j by Lemma 2.36. Therefore m̄tr̄j ≡ gu1n+σ+s+0 (mod p)
for some integer u1 and so m̄tr̄j belongs to residue class σ + s, where s is the residue
class of t. Also m̄rir̄j ≡ gu2n+σ+0+0 (mod p) for some integer u2 and so m̄rir̄j belongs to
residue class σ. Now t takes on any value from 1 to p−1 and (3.5) always has λ solutions.
Therefore using Definition 2.35 we have

(σ + s, σ) = λ for s = 0, 1, . . . , (n− 1)

and so by periodicity modulo n (see Equation (2.21)), Lemma 3.2 and (2.19) for k even
we have

(s, σ) = (σ, s) = λ for s = 0, 1, . . . , (n− 1). (3.6)

Eliminating p from p = nk + 1 and Equation (2.12) gives λ = k/n to complete Equation
(3.3). Therefore we have shown the necessity of the condition in Theorem 3.3. We now
need to prove that it is sufficient.

Suppose that the (s, σ) are all equal for a given σ 6= 0, then we have

(s, σ) =
n−1∑
i=0

(i, σ)/n. (3.7)
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Since by Lemma 3.2 k must be even, then using (2.19) and (2.20), and noting that σ 6= 0
gives

n−1∑
i=0

(i, σ) =
n−1∑
i=0

(σ, i) = k. (3.8)

Therefore we have, from (3.7), (3.8) and (3.1), (s, σ) = λ for all s. Therefore (3.5) and
hence (3.4) has exactly k/n solutions for all t. Thus, using a qualifier m which is in residue
class n−σ will yield a QRDS. Hence the condition is sufficient and Theorem 3.3 is proved.

�

The following theorem gives a necessary and sufficient condition for a MQRDS to exist.

Theorem 3.4 Let g be a primitive root of p. Suppose the integer m ∈ Z+
p belongs to

residue class n − σ with respect to g for some integer σ, 0 ≤ σ ≤ n − 1. Then m is a
qualifier of the MQRDS R∗ if and only if the cyclotomic constants obey the relations

1 + (0, σ) = 1 + (σ, 0) = 1 + (σ, σ) = (s, σ) = (σ, s) = λ = (k + 2)/n (3.9)

for s = 1, 2, . . . , (n− 1), s 6= σ.

Proof. Let R∗ be a MQRDS of modulus p = nk + 1 and multiplicity λ. Suppose that
m is a qualifier of R∗, belonging to the residue class n − σ, 0 ≤ σ ≤ n − 1. For each
t = 1, 2, . . . , p− 1 the congruence

ri −mrj ≡ t (mod p) : 0 ≤ i, j ≤ k (3.10)

has exactly λ solutions. Congruence (3.10) has only one solution when t = 0 i.e. when
i = j = 0. For i 6= 0 and j 6= 0 we begin by following the same procedure as for the
proof of Theorem 3.3. We multiply (3.10) through by m̄r̄j (where mm̄ ≡ 1 (mod p) and
rj r̄j ≡ 1 (mod p)) and rearrange to give the congruence in (3.5). As above, m̄ belongs to
residue class σ, m̄tr̄j belongs to residue class σ + s, where s is the residue class of t, and
m̄rir̄j belongs to residue class σ. The remaining non-zero differences are of the following
form

ri −m.0 ≡ t (mod p) (i 6= 0, j = 0) (3.11)

0−mrj ≡ t (mod p) (i = 0, j 6= 0). (3.12)

Now, by the hypothesis of Theorem 3.4, Congruence (3.10) has exactly λ solutions for
each non-zero value of t. If i 6= 0 and j 6= 0 then all λ solutions arise as a result of (3.5)
and in these cases we follow the reasoning for the QRDS case (Equations (3.5) to (3.6))
and obtain (s, σ) = λ for those values of t (in residue class s) not generated by Equation
(3.11) or (3.12). If one of the differences t does arise as a result of the zero residue r0 we
have a solution to either (3.11) or (3.12). Firstly, if j = 0 we obtain t ≡ ri from Equation
(3.11) and so t belongs to residue class zero and hence we have a solution to (3.11) when
s = 0. Secondly, if i = 0 we obtain t ≡ (−1)mrj and so t belongs to residue τ + n − σ

where τ is the residue class of −1. Now g is a primitive root of p and so −1 ≡ g(p−1)/2
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(mod p). However, because p = nk + 1 we have (p− 1)/2 = nk/2 and, since k is even by
Lemma 3.2, we have (p − 1)/2 = βn for some integer β and so −1 ≡ gβn which means
that the residue class of −1 is zero. Therefore t belongs to residue class n−σ and we have
a solution to (3.12) when s = n− σ (note: it is not possible for both of Equations (3.11)
and (3.12) to be satisfied simultaneously, since this would mean that t ≡ ri ≡ −mrj . But
ri belongs to residue class zero and −mrj belongs to residue class σ, a contradiction since
σ 6= 0). Therefore, since R∗ is a MQRDS of multiplicity λ, we have

(s+ σ, σ) =

{
λ− 1 if s = 0 or s = n− σ

λ otherwise
(3.13)

which by periodicity gives

(s, σ) =

{
λ− 1 if s = σ or s = 0
λ otherwise

. (3.14)

Finally, Lemma 3.2 and Equations (2.19) and (3.2) combine to complete Equation (3.9).
This proves that the conditions are necessary. We now show that they are sufficient.

Suppose for a given σ 6= 0 we have

1 + (0, σ) = 1 + (σ, σ) = (s, σ), s = 1, 2, . . . , n− 1, s 6= σ

then

n(s, σ) = 2 +
n−1∑
i=0

(i, σ). (3.15)

Now, k is even and σ 6= 0. Therefore, by Lemma 3.2 and Equations (2.19) and (2.20) we
obtain

n(s, σ) = k + 2. (3.16)

Now eliminating p from p = nk + 1 and Equations (3.16) and (2.13) gives (3.9). Thus,
using a qualifier m which is in residue class σ will yield a MQRDS. This completes the
proof of Theorem 3.4. �

Note that for both QRDS and MQRDS the qualifier m belongs to residue class n− σ.
We therefore give the following general definition that applies to all QDS and MQDS that
are generated using index classes.

Definition 3.5 Let p = nk+1 be an odd prime and let g be a primitive root of p. Suppose
Rn,p is a QDS or MQDS of order n and modulus p, generated using index classes with
base g. There is an integer m ∈ Z+

p whose residue class with respect to g is n − σ. The
quantity σ is called a definer of the set Rn,p.

The analysis above indicates that the definer σ 6= 0. In the case of QRDS and MQRDS,
further developments by Byard, Evans and Van Veen have limited the conditions for the
definer. In 2006 the author proved that if σ is a definer for a QRDS or MQRDS then −σ
is also a definer [17, Theorem 3.3], thus limiting the need to check only for values σ ≤ n/2.
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However, in 2009 the definer was calculated precisely by Byard, Evans and Van Veen as
follows:

σ = n/2 (3.17)

[21, Theorem 2.1]. We therefore modify Theorems 3.3 and 3.4 accordingly to give the
following existence theorems for QRDS and MQRDS.

Theorem 3.6 A QRDS exists for the prime modulus p = nk + 1 if and only if the
cyclotomic constants

(s, n/2) = (n/2, s) = λ = k/n (3.18)

for 0 ≤ s < n/2 and λ is the multiplicity of the QRDS. The qualifiers m ∈ Z+
p are precisely

all integers that are in residue class n/2 with respect to the primitive root g.

Proof. Combining (3.17) with (3.3) gives (3.18). However, the range of values for s is
shortened as follows. Using (2.18) and (2.19) with the cyclotomic constant (i, n/2) gives

(i, n/2) = (i+ n/2, n/2). (3.19)

Thus we only need consider values of s < n/2. This completes the proof of Theorem 3.6.
�

Theorem 3.7 A MQRDS exists for the prime modulus p = nk + 1 if and only if

1 + (0, n/2) = 1 + (n/2, 0) = (s, n/2) = (n/2, s) = λ = (k + 2)/n (3.20)

for 0 < s < n/2, and λ is the multiplicity of the MQRDS. The qualifiers m ∈ Z+
p are

precisely all integers that are in residue class n/2 with respect to the primitive root g.

Proof. Combining (3.17) with Theorem 3.4 and (3.19) proves the theorem. �

Chapters 4 and 5 address the existence question for QRDS and MQRDS for even
values of n up to n = 18 excluding n = 16. The proofs of nonexistence for n = 16 and
n = 20 are presented in [21]. In all cases cyclotomy is used extensively and the relevant
cyclotomic constants are given in Appendix A.

3.3 Some Properties of QRDS and MQRDS

QRDS and MQRDS have many properties. We prove some of these here. In this section
we let R be a QRDS and R∗ be a MQRDS.

Lemma 3.8 All QRDS R and MQRDS R∗ are symmetric, i.e. if r ∈ R, then p− r ∈ R,
and if r ∈ R∗, then p− r ∈ R∗.

Proof. Let r be a non-zero nth power residue of the prime p. Therefore r ∈ R and r ∈ R∗.
Also r(p−1)/n ≡ 1 (mod p) which by p = nk + 1 means that rk ≡ 1 (mod p). However,
since k is even by Lemma 2.28 then (−r)k ≡ 1 (mod p). Therefore −r must also be a
residue and hence p− r ∈ R and p− r ∈ R∗. �
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Corollary 3.9 −1 ∈ R and −1 ∈ R∗

Proof. As 1 is always an nth power residue then, by Lemma 3.8, −1 must also be a
residue and hence must be in both R and R∗. �

Lemma 3.10 If m is a qualifier of a QRDS or MQRDS then p−m is also a qualifier.

Proof. Letm be a qualifier of a QRDS or MQRDS of modulus p and order n. By Theorem
3.6 or Theorem 3.7 respectively, m is in residue class n/2. Therefore m ≡ gun+n/2 (mod p)
for some integer u. But −1 is in residue class zero by Corollary 3.9, so −m ≡ gvn+n/2

(mod p) for some integer v. Therefore −m is in residue class n/2 and is hence a qualifier. �

The following lemma makes easier the task of finding a qualifier, m, in certain
circumstances.

Lemma 3.11 If the multiplicity λ of a QRDS is odd or the multiplicity λ of a MQRDS
is even, 2 and p− 2 are in residue class n/2, and can hence be used as qualifiers.

Proof. Lehmer proved that the cyclotomic constant (0, j) is odd or even according as 2
belongs to residue class j or not [47, Lemma I]. For a QRDS, using (3.18) gives (0, n/2) = λ,
so if λ is odd then 2 belongs to residue class n/2 and can hence be used as a qualifier.
Also, by Lemma 3.10 p−2 must also be a qualifier. For a MQRDS, using Equation (3.20)
gives 1 + (0, n/2) = λ. Therefore if λ is even then (0, n/2) is odd and so 2 belongs to
residue class n/2 and can hence be used as a qualifier. Also, by Lemma 3.10 p − 2 must
also be a qualifier. �
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Chapter 4

Existence of QRDS and MQRDS

for n = 2, 4 and 6

4.1 Introduction

In this chapter we prove that QRDS and MQRDS exist for all orders n = 2, 4 and 6 and we
determine precisely the conditions for which both types of set exist for these values of n.
We use the theorems of cyclotomy derived by Dickson [25]. The proofs run along similar
lines to those used by Lehmer [47] in her generalisation of RDS and MRDS. Originally
the case of a RDS for n = 2 was discovered in a different guise by Paley [55] and Chowla
proved the existence of RDS for n = 4 [24] using results from Bachmann [2]. Lehmer
extended the analysis to include MRDS and she also proved that there do not exist RDS
or MRDS for n = 6. The proof of existence of QRDS and MQRDS for n = 6 in Section
4.4 is therefore an interesting contrast to Lehmer’s result.

For a QRDS to exist we need to determine conditions which satisfy Equation (3.18).
For a MQRDS to exist we need to determine conditions which satisfy Equation (3.20).

4.2 Existence for n = 2

In this section we prove the following:

Theorem 4.1 QRDS and MQRDS exist for n = 2 and prime modulus p if and only if
p = 4α+ 1 where α is a positive integer.

Proof. Since p = nk + 1 then for n = 2 we have

p = 2k + 1. (4.1)

To determine the necessary and sufficient conditions for a QRDS to exist we also need to
satisfy Equation (3.18) for n = 2. Therefore we need to demonstrate that

(0, 1) = λ = k/2. (4.2)
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Using the relevant cyclotomic constant equation for n = 2 and k even from Section A.1 of
the Appendix we have

(0, 1) = (p− 1)/4. (4.3)

Now, combining Equations (4.2), (4.3) and (4.1) combine to give no further restriction on
p beyond p = 4λ+ 1 which is satisfied (as per Equation (3.1)).

For a MQRDS to exist we need to satisfy Equation (3.20). Therefore we need to
demonstrate that

1 + (0, 1) = λ = (k + 2)/2. (4.4)

Here, combining Equations (4.4), (4.3) and (4.1) gives p = 4λ − 3 which is also satisfied
(as per Equation (3.2)).

In both cases we have p = 4α+ 1 for integer α. This completes the proof of Theorem
4.1. �

4.3 Existence for n = 4

In this section we prove the following:

Theorem 4.2 If n = 4 and p is an odd prime a QRDS exists if and only if p = 16α2 + 1
and a MQRDS exists if and only if p = 16α2 + 9 where α is an integer in each case.

Proof. Since p = nk + 1 then for n = 4 we have

p = 4k + 1 (4.5)

and the cyclotomic constants are given in terms of the quadratic partition

p = x2 + 4y2 (4.6)

where x and y are integers and x ≡ 1 (mod 4) (Section A.2).
By (3.1) and (3.18), a necessary condition for the existence of a QRDS is

(0, 2) = (p− 1)/16. (4.7)

Also, from Section A.2 we have

16(0, 2) = p− 3 + 2x. (4.8)

Equations (4.7) and (4.8) combine to give x = 1. Hence, from (4.6) we must have p =
1 + 4y2, and since p ≡ 1 (mod 16) by (3.1), then y must be even and so p = 16α2 + 1.

For the converse, assume p = 16α2 + 1 is prime. Following Theorem 3.6 and Equation
(3.1) it is enough to show

(0, 2) = (1, 2) = (p− 1)/16. (4.9)

From Section A.2 we have
16(1, 2) = p+ 1− 2x. (4.10)
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Now p = 16α2 + 1 and so by (4.6) x = 1 since the representations of p as the sum of two
squares is unique up to order and sign. Now, Equations (4.8) and (4.10) combine to give
(4.9) so the converse is proved.

By (3.2) and (3.20), a necessary condition for the existence of a MQRDS is

1 + (0, 2) = (p+ 7)/16. (4.11)

Now (4.8) and (4.11) give p− 3 + 2x = p+ 7− 16 and hence x = −3. Therefore, by (4.6)
p = 9+4y2. From (3.2) p = 16λ−7 and so p ≡ 9 (mod 16), which means y must be even.
Therefore p = 16α2 + 9 for integer α.

For the converse, assume we have a prime p = 16α2 + 9. Following Theorem 3.7 and
(3.2) it is enough to show

1 + (0, 2) = (1, 2) = (p+ 7)/16. (4.12)

Because p = 16α2 + 9 then, since x ≡ 1 (mod 4) and by uniqueness, we have x = −3.
Using this value of x with the cyclotomic constant Equations (4.8) and (4.10) gives (4.12)
and so the converse is proved. This completes the proof of Theorem 4.2. �

4.4 Existence for n = 6

In this section we prove the following:

Theorem 4.3 If n = 6 and p is an odd prime QRDS exist if and only if p = 108α2 + 1
and MQRDS exist if and only if p = 108α2 + 25 where α is an integer in each case.

Proof. Since p = nk + 1 then for n = 6 we have

p = 6k + 1 (4.13)

and the cyclotomic constants are given in terms of the quadratic partition

p = A2 + 3B2 (4.14)

where A and B are integers and A ≡ 1 (mod 6) if k is even and A ≡ 4 (mod 6) if k is
odd [25, pp. 408-410]. Clearly B 6= 0 in (4.14) since p is prime. Furthermore, we need to
consider separately the three cases when ind 2 ≡ 0, 1 or 2 (mod 3) where ind a is defined
in Definition 2.34 for a primitive root g of p.

By (3.18) and (3.20), a necessary condition for the existence of either a QRDS or
MQRDS respectively is

(1, 3) = (2, 3). (4.15)

When ind 2 ≡ 1 (mod 3), (4.15) and the equations in Section A.3 give p+ 1− 2A− 6B =
p + 1 − 2A + 12B. Therefore B = 0 which is impossible by (4.14). When ind 2 ≡ 2
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(mod 3), (4.15) and the equations in Section A.3 give p+1−2A−12B = p+1−2A+6B.
Again we obtain B = 0 and hence a nonexistence condition for both types of set.

For the case ind 2 ≡ 0 (mod 3) (i.e. 2 is a cubic residue of p) we consider QRDS
and MQRDS separately. For a QRDS a necessary condition from (3.18) is that we have
(0, 3) = (1, 3). This gives p − 5 + 4A = p + 1 − 2A (Section A.3) and hence A = 1.
Therefore, from (4.14) we have p = 1 + 3B2, which combines with (3.1) to give B2 = 12λ.
Therefore λ must be of the form λ = 3α2 where α is an integer and so we have

p = 108α2 + 1. (4.16)

To prove the converse, assume we have a prime of the form in (4.16). Following Theorem
3.6 and (3.1) it is enough to show

(0, 3) = (1, 3) = (2, 3) = (p− 1)/36. (4.17)

From Section A.3 we have
(1, 3) = (2, 3). (4.18)

Now, since p = 108α2 + 1 then, combining with (4.14) and using the uniqueness of the
representation of primes of the form A2 + 3B2 (see Lemma 3.0.1 from Berndt et al. [10,
p. 101]) we obtain A = 1. In this case we have from Section A.3

(0, 3) = (1, 3) = (p− 1)/36. (4.19)

Now (4.18) and (4.19) combine to give (4.17) and so the converse is proved.
For a MQRDS when 2 ≡ 0 (mod 3), a necessary condition for existence is that we have

1 + (0, 3) = (1, 3) (Equation (3.20)). Imposing this restriction and using the cyclotomic
constants from Section A.3 gives 36+p−5+4A = p+1−2A and hence A = −5. Combining
this result with (4.14) gives p = 25 + 3B2, which along with (3.2) gives B2 = 12(λ − 1).
Therefore λ − 1 must be of the form 3α2 and hence B2 = 36α2 where α is an integer.
Therefore substituting the given values of A and B into (4.14) gives

p = 108α2 + 25. (4.20)

For the converse, assume we have a prime of the form given in (4.20). It is sufficient from
Theorem 3.7 and (3.2) to show that

1 + (0, 3) = (1, 3) = (2, 3) = (p+ 11)/36. (4.21)

Here, (4.18) applies as for the QRDS case. Since we now have p = 108α2 + 25 then,
combining with (4.14) and by uniqueness we obtain A = −5. Therefore we obtain from
Section A.3

1 + (0, 3) = (1, 3) = (p+ 11)/36. (4.22)

Now (4.18) and (4.22) combine to give (4.21) and so the converse is proved. This completes
the proof of Theorem 4.3. �
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Chapter 5

Nonexistence of QRDS for Higher

Values of n

5.1 Introduction

In this chapter we will give detailed proofs for the nonexistence of QRDS and MQRDS for
orders n = 8, 10, 12, 14 and 18. Each subsequent section of the chapter deals with one of
these individual values of n. Nonexistence for odd values of n and for n = 16 and n = 20
are given in [21, Theorems 2.1, 5.1 and 7.1]. Using cyclotomy we prove the nonexistence
of both types of set by demonstrating that the necessary conditions of Theorems 3.6 and
3.7 are not satisfied in each case. To simplify the analysis we now combine Equations
(3.18) and (3.20) from these two theorems. We begin with a definition and a lemma.

Definition 5.1 Let n and k be positive integers such that p = nk+1 is an odd prime. Let
R be the k-element set of non-zero nth power residues modulo p. Suppose that either R is
a QRDS or R∗ = R ∪ {0} is a MQRDS (both cannot occur due to Lemma 2.27). Define

ε = ε(R) =

{
0 if R is a QRDS
1 if R∗ is a MQRDS,

(5.1)

and
ν = nε− 1. (5.2)

Lemma 5.2 Let n and k be positive integers such that p = nk + 1 is an odd prime. Let
R be the k-element set of non-zero nth power residues modulo p. Let R∗ = R ∪ {0}. If
either R is a QRDS or R∗ is a MQRDS then

n2(0, n/2) = p− ν2 (5.3)

and
n2(s, n/2) = p+ 2ν + 1 for all s ∈ N satisfying s < n/2. (5.4)
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Proof. Firstly, consider the case s = 0 in Theorem 3.6 and also Theorem 3.7. Then for
a QRDS, combining (3.18) with (3.1) gives

n2(0, n/2) = p− 1 (5.5)

and for a MQRDS combining (3.20) with (3.2) gives n2(0, n/2) = p + 2n − 1 − n2 and
hence

n2(0, n/2) = p− (n− 1)2. (5.6)

Combining Equations (5.1), (5.5) and (5.6) gives in either case n2(0, n/2) = p− (nε− 1)2

and hence by (5.2) we obtain (5.3).

Secondly, using Equations (3.18) and (3.1) for a QRDS with s 6= 0 we have

n2(s, n/2) = p− 1 0 < s < n/2 (5.7)

and from Equations (3.20) and (3.2) for a MQRDS we have

n2(s, n/2) = p+ 2n− 1 0 < s < n/2. (5.8)

The difference between the right hand sides of Equations (5.7) and (5.8) is 2n. Therefore,
employing (5.1) gives in either case n2(s, n/2) = p+ 2nε− 1, which with (5.2) gives (5.4).
This completes the proof of Lemma 5.2. �

In a complete proof that involves the use of cyclotomic constants, it is necessary to
take account of the additional individual conditions that arise due to the peculiarities of
each value of n. For example, in the cases n = 8, 10 and 12, these are the (n/2)th power
character of the integer 2. In each case, the specific requirements are outlined and the
analysis is completed accordingly. Also, all literary sources for the cyclotomic constants
are referenced and the relevant cyclotomic constants are given in Appendix A.

5.2 Nonexistence for n = 8

In this section we have p = 8k + 1 from (2.14) and we prove the following theorem.

Theorem 5.3 QRDS and MQRDS do not exist for 8th powers.

To prove Theorem 5.3 we require the cyclotomic constants for n = 8. These have been
calculated using Dickson’s results by Lehmer, who lists them in the appendix of her paper
for the cases p = 16α+ 1 and p = 16α+ 9 (integer α) [48]. Since we have p = 8k+ 1 and,
by Lemma 3.2, k is even for all QRDS and MQRDS, we require her list for p = 16α + 1
[48, p. 116]. The cyclotomic constants used in this section are given in Section A.4.

Theorem 5.3 is proved by demonstrating that Equation (5.4) is not satisfied for n = 8.
Here we need to investigate the following two cases: (a) 2 is a biquadratic (4th power)
residue of p, (b) 2 is biquadratic nonresidue of p. We then apply the resulting condition
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to the following further condition, stipulated by Dickson [25, p. 410, Theorem 11], that
for n = 8 the cyclotomic constants depend on the following quadratic partitions:

p = x2 + 4y2 and p = a2 + 2b2 (5.9)

where x ≡ a ≡ 1 (mod 4) and x, y, a and b are all integers.
Proof of Theorem 5.3. Case 1: If 2 is a biquadratic residue of p then for Equation

(5.4) to be satisfied, a necessary condition is that the cyclotomic constants (1, 4) = (2, 4).
Using the equations in Section A.4 we get

p+ 1 + 2x− 4a = p+ 1− 2x.

This gives x = a which, using Equation (5.9) gives 2y2 = b2. However, because
√

2 is
irrational, the only integer solution of this last equation is y = b = 0. Using this result
with Equation (5.9) gives p = x2, which is impossible since p must be prime. Therefore 2
cannot be a biquadratic residue of p if n = 8.

Case 2: If 2 is a biquadratic nonresidue of p, setting (1, 4) = (3, 4) (= (1, 5)) by (5.4)
gives

p+ 1 + 2x− 4a+ 16y = p+ 1 + 2x− 4a− 16y

which gives 16y = −16y and therefore y = 0. However, substituting this into Equation
(5.9) also gives the contradiction p = x2. Therefore 2 cannot be a biquadratic nonresidue
either. The nonexistence of QRDS and MQRDS for 8th powers is established and so
Theorem 5.3 is proved. �

5.3 Nonexistence for n = 10

In this section p = 10k + 1 and we prove the following theorem.

Theorem 5.4 QRDS and MQRDS do not exist for 10th powers.

To prove Theorem 5.4 we require the cyclotomic constants for n = 10. Following work
by Dickson [25] and Bruck [12], Whiteman has presented a complete solution for these
cyclotomic constants which he presents as a set of tables [67, pp. 107-109]. These are given
in terms of the prime p and the integers x, u, v, w, which must all satisfy the following
diophantine equations:

16p = x2 + 50u2 + 50v2 + 125w2 (5.10)

xw = v2 − 4uv − u2 (5.11)

where x ≡ 1 (mod 5) [67, p. 95]. The cyclotomic constants relevant to this section are
given in Section A.5.

Proof of Theorem 5.4. Let g be a primitive root of p. We consider three cases,
depending on the value of ind 2 modulo 5.
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Case 1: ind 2 ≡ 0 (mod 5). For Equation (5.4) to be satisfied, a necessary condition
is that we have (1, 5) = (2, 5). Therefore, using Whiteman’s results (Section A.5), we
obtain 2p+ 2 + x+ 25w = 2p+ 2 + x− 25w, giving w = 0. Therefore by Equation (5.11)
we have v2 − 4uv − u2 = 0, giving v = u(2 ±

√
5). The only integer solution of this last

equation is u = v = 0. Substituting these values for u, v and w into (5.10) and rearranging
gives p = (x/4)2, a contradiction. Therefore there exist no QRDS or MQRDS if ind 2 ≡ 0
(mod 5).

Case 2: ind 2 ≡ 1 (mod 5). Setting (1, 5) = (2, 5) gives 2(2p+ 2 + x+ 50v + 25w) =
4p+ 4− 23x+ 50u− 25w, giving

x+ 4v + 3w = 2u (5.12)

and setting (2, 5) = (3, 5) (which, from Dickson [25, p. 415], is equivalent to setting
(2, 5) = (2, 7)) gives 4p+ 4− 23x+ 50u− 25w = 2(2p+ 2 + x− 25u− 25v), giving

x+ w = 4u+ 2v. (5.13)

Eliminating w from Equations (5.12) and (5.13) gives u+v = x/5, a result that contradicts
at least one of the conditions that u and v must both be integers and x ≡ 1 (mod 5).
Therefore there exist no QRDS or MQRDS if ind 2 ≡ 1 (mod 5).

Case 3: ind 2 ≡ 2, 3 or 4 (mod 5). Let gc be any primitive root of p other than g

itself. Then gc ≡ gt (mod p) for some integer t prime to p− 1. Therefore any of the cases
ind 2 ≡ 2, 3, 4 (mod 5) may be transformed into the case ind 2 ≡ 1 (mod 5) by making
an appropriate choice of the primitive root. Therefore there exist no QRDS or MQRDS
if ind 2 ≡ 2, 3 or 4 (mod 5). The nonexistence of QRDS and MQRDS for 10th powers is
established and so Theorem 5.4 is proved. �

5.4 Nonexistence for n = 12

In this section p = 12k + 1 and we prove the following theorem.

Theorem 5.5 QRDS and MQRDS do not exist for 12th powers.

To prove Theorem 5.5 we require the cyclotomic constants for n = 12. Following the
groundwork of Dickson [25, pp. 417-424], Whiteman has calculated a complete solution
for these cyclotomic constants, which he presents as a set of tables in his article [68, pp.
69-73]. Because of Equations (2.18) and (2.19) there are various equalities between the
constants, which Whiteman also lists [68, p. 69, Table III]. The cyclotomic constants
depend on the parity of k, the values of ind 3 (mod 4) and ind 2 (mod 6) with respect to
the primitive root g and prime p = 12k+ 1, and a variable c which is equal to the ratio of
Jacobi sums as follows:

β = exp(2πi/12) is a primitive 12th root of unity
ψ(βγ , βδ) =

∑
a+b≡1 (mod p)

β(γ ind a)+(δ ind b)

c = ψ(β3, β)/ψ(β5, β)

(5.14)
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(see [68, Equations (2.3) and (5.7)]). Since p = 12k + 1 then (3/p) = 1 (where (3/p) is
the Legendre symbol for quadratic residues - see for example [42, pp. 131-132]) and so
ind 3 must be even [68, p. 64]. Therefore we have ind 3 ≡ 0 or 2 (mod 4). Since k is
even we have (2/p) = 1 and so ind 2 must also be even (see [68, p. 64]). Therefore we
have ind 2 ≡ 0, 2 or 4 (mod 6). Furthermore, Whiteman demonstrated that for n = 12, c
is actually a fourth root of unity and can thus take on values of 1, −1, β3 or −β3 [68, pp.
64-65]. He went on to prove that c = ±1 if k is even and ind 3 ≡ 0 (mod 4), and that
c = ±β3 if k is even and ind 3 ≡ 2 (mod 4) [68, p. 65]. Thus, we have to deal with twelve
cases in total. These are listed in Table 5.1.

The first six cases in Table 5.1 are covered by Whiteman’s tables. Because for all QRDS
and MQRDS k is even, we require Whiteman’s Tables 1,3,4,7,9 and 10. The parameters
ind 2, ind 3 and c for each of these tables required in the analysis of this section are
summarised in Table 5.1. The remaining six cases are dealt with at the end of the section

ind 2 (mod 6) ind 3 (mod 4) c Table from Whiteman [68]

2 2 β3 Table 1
2 0 1 Table 3
2 0 −1 Table 4
0 2 β3 Table 7
0 0 1 Table 9
0 0 −1 Table 10
0 2 −β3

2 2 −β3

4 0 1
4 0 −1
4 2 β3

4 2 −β3

Table 5.1: Parameters for the cyclotomic constants of order 12 for even k.

(Cases 7 and 8).

For n = 12 the cyclotomic constants depend on the following quadratic partitions:

p = x2 + 4y2 and p = A2 + 3B2 (5.15)

where x ≡ 1 (mod 4), A ≡ 1 (mod 6) and x, y,A and B are all integers [25, p. 417]. We
prove Theorem 5.5 by demonstrating that in all cases the cyclotomic constants do not
simultaneously satisfy Equations (5.4) and (5.15). Those cyclotomic constants required
for this section are given in Section A.6.

In the analysis which follows the results B = 0 or x = ±A occur. In such cases, the
following two lemmas apply.
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Lemma 5.6 If B = 0 then QRDS and MQRDS are nonexistent.

Proof. If B = 0, then by (5.15) we have the contradiction p = A2. �

Lemma 5.7 If x = ±A then QRDS and MQRDS are nonexistent.

Proof. If x = ±A then by (5.15) we have y = B
√

3/2. The only integer solution of this
last equation is y = B = 0, which by Lemma 5.6 gives a nonexistence condition for QRDS
and MQRDS. �

Proof of Theorem 5.5. Case 1: ind 2 ≡ 2 (mod 6), ind 3 ≡ 2 (mod 4), c = β3,
Table 1 from Whiteman [68, p. 70]. For Equation (5.4) to be satisfied, a necessary
condition is that the cyclotomic constants (4, 6) = (5, 6). From [68, Table III] this is
equivalent to setting (2, 8) = (1, 7), giving p+1+2A+12B+8y = p+1+8A−12B+6x+8y
and hence

4B = x+A. (5.16)

Also setting (2, 6) = (1, 6) gives p+ 1− 4A− 6x+ 8y = p+ 1 + 2A+ 12B+ 8y, and hence

2B +A+ x = 0. (5.17)

Combining Equations (5.16) and (5.17) gives B = 0 and so, by Lemma 5.6, a nonexistence
condition results for both QRDS and MQRDS.

Case 2: ind 2 ≡ 2 (mod 6), ind 3 ≡ 0 (mod 4), c = 1, Table 3. Setting (1, 6) = (3, 6)
gives p + 1 + 6A − 8x = p + 1 − 6A + 4x, giving x = A and hence by Lemma 5.7, a
nonexistence condition.

Case 3: ind 2 ≡ 2 (mod 6), ind 3 ≡ 0 (mod 4), c = −1, Table 4. (3, 6) = (4, 6) (i.e.
(3, 6) = (2, 8) from [68, Table III]) gives p+ 1 + 10A− 12x = p+ 1 + 6A+ 8x giving

A = 5x (5.18)

and (1, 6) = (5, 6) (i.e. (1, 6) = (1, 7)) gives p + 1 − 2A + 24B = p + 1 + 4A − 24B − 6x
giving

8B + x = A. (5.19)

Also, (2, 6) = (1, 6) gives p+ 1 + 12B + 14x = p+ 1− 2A+ 24B giving

7x+A = 6B. (5.20)

Combining Equations (5.18), (5.19) and (5.20) gives B = 0 and hence, by Lemma 5.6, a
nonexistence condition.

Case 4: ind 2 ≡ 0 (mod 6), ind 3 ≡ 2 (mod 4), c = β3, Table 7. Note that from [68,
Table III] (5, 6) = (1, 7). Whiteman proved that when k is even and ind 2 ≡ 0 (mod 6)
then the cyclotomic constant (i, j) can be replaced by (5i, 5j) except that B is replaced
by −B [68, pp. 71-73]. We denote this new cyclotomic constant by (5i, 5j)−B. Therefore
we have here (1, 7) = (5, 35)−B which taken modulo 12 equals (5, 11)−B which in turn by



Nonexistence for n = 14 31

Whiteman [68, Table III] equals (1, 6)−B. Setting (1, 6) = (5, 6) is therefore the same as
setting (1, 6) = (1, 6)−B. Therefore p+1+2A+12B+8y = p+1+2A− 12B+8y, giving
B = 0 and hence, by Lemma 5.6, a nonexistence condition.

Case 5: ind 2 ≡ 0 (mod 6), ind 3 ≡ 0 (mod 4), c = 1, Table 9. Setting (1, 6) = (2, 6)
gives p + 1 + 6A − 8x = p + 1 − 2A, giving x = A and by Lemma 5.7, a nonexistence
condition.

Case 6: ind 2 ≡ 0 (mod 6), ind 3 ≡ 0 (mod 4), c = −1, Table 10. Setting (1, 6) =
(2, 6) gives p + 1 − 2A + 24B = p + 1 + 6A + 24B + 8x, giving x = −A and by Lemma
5.7, a nonexistence condition.

Case 7: ind 3 ≡ 2 (mod 4) (two subcases) (a) ind 2 ≡ 2 (mod 6), c = −β3, (b) ind
2 ≡ 0 (mod 6), c = −β3. Whiteman demonstrated that when k is even and ind 3 ≡ 2
(mod 4), if the cyclotomic constant (i, j) is replaced by (7i, 7j) then y and c change sign
while ind 2 and ind 3 are unaltered [68, pp. 70-71]. We denote this new cyclotomic
constant by (7i, 7j)−y. Therefore we replace (i, 6) by (7i, 42)−y = (7i, 6)−y. Thus the
argument for c = −β3 is the same as the corresponding argument for c = β3 except that
y is replaced by −y. Thus subcase (a) reduces to Case 1 and subcase (b) reduces to Case
4, both yielding a nonexistence condition.

Case 8: ind 2 ≡ 4 (mod 6) (four subcases) (a) ind 3 ≡ 0 (mod 4), c = 1, (b)
ind 3 ≡ 0 (mod 4), c = −1, (c) ind 3 ≡ 2 (mod 4), c = β3, (d) ind 3 ≡ 2 (mod 4),
c = −β3. Whiteman demonstrated that for k odd or even if the cyclotomic constant (i, j)
is replaced by (5i, 5j) then B and ind 2 change sign while ind 3 and c are unaltered [68, p.
70]. We denote this new cyclotomic constant by (5i, 5j)−B. Therefore we replace (i, 6) by
(5i, 30)−B = (5i, 6)−B. Thus subcase (a) reduces to Case 2, subcase (b) reduces to Case
3, subcase (c) reduces to Case 1 and subcase (d) reduces to subcase (a) of Case 7, in each
case giving a nonexistence condition.

As a nonexistence condition has been obtained in all cases then the nonexistence of
QRDS and MQRDS for 12th powers is established and so Theorem 5.5 is proved. �

5.5 Nonexistence for n = 14

In this section p = 14k + 1 and we prove the following theorem.

Theorem 5.8 QRDS and MQRDS do not exist for 14th powers.

To prove Theorem 5.8 we require the cyclotomic constants for n = 14. These have been
calculated by Muskat [52] and are given as linear combinations of the integer parameters
p, T , U and Ci (0 ≤ i ≤ 6) relative to a fixed primitive root g. The quantities T , U and
p satisfy the following quadratic partition

p = T 2 + 7U2 (5.21)



Nonexistence for n = 14 32

where T ≡ 1 (mod 7) [52, p. 264 and 270]. To determine the condition for the Ci we
proceed as follows. We define the quantity S as:

S =
6∑

i=0

Ciζ
i
7 ζ7 = exp (2πi/7) (5.22)

where
6∑

i=0

Ci = p− 2 (5.23)

[52, p. 264, Equation (2.5)]. If we denote the complex conjugate of S by S̄ then, since S
is a Jacobi sum, the values Ci must satisfy the following

p = SS̄ = |S|2. (5.24)

Combining (5.22) and (5.24) and expanding we have

p =
6∑

i=0

Ciζ
i
7

6∑
j=0

Cjζ
−j
7

= ζ0
7

6∑
i=0

CiCi + ζ1
7

6∑
i=0

CiCi+1 + ζ2
7

6∑
i=0

CiCi+2 + ζ3
7

6∑
i=0

CiCi+3

+ ζ4
7

6∑
i=0

CiCi+4 + ζ5
7

6∑
i=0

CiCi+5 + ζ6
7

6∑
i=0

CiCi+6

= ζ0
7h0 + ζ1

7h1 + ζ2
7h2 + ζ3

7h3 + ζ4
7h4 + ζ5

7h5 + ζ6
7h6

(5.25)

where

hj =
6∑

i=0

CiCi+j (5.26)

and where all subscripts in (5.25) and (5.26) are viewed modulo 7. Comparing coefficients
in powers of ζ7 in (5.25) and using (5.26) gives the following

h1 = h2 = h3 = h4 = h5 = h6 = h0 − p = 0. (5.27)

To prove Theorem 5.8 we need to consider the two cases when ind 2 ≡ 0 (mod 7) and
ind 2 6≡ 0 (mod 7). Here, the case ind 2 6≡ 0 (mod 7) is the simpler to deal with. This is
where we begin.

Proof of Theorem 5.8. Case 1: ind 2 6≡ 0 (mod 7). In this case in order to cater
for the different possible values of ind 2 simultaneously Muskat has adopted the following
approach [52, p. 271]. Letting

m = ind 2 (mod 7) 1 ≤ m ≤ 6
M ≡ m (mod 7) M odd

(5.28)

we represent the cyclotomic constants by the following generalised form

(iM, jM) (5.29)
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and we replace the Ci by the generalised Cim in the evaluation of the cyclotomic constants
[52, pp. 277-278]. (Note incidentally that Muskat quotes the second congruence in (5.28)
incorrectly in his article [52, p. 271]). From (5.28) we therefore have the following values
for the parameters m and M : m = M = 1; m = 2,M = 9; m = M = 3; m = 4,M = 11;
m = M = 5; m = 6,M = 13.

Therefore combining (5.4) with (5.29) and noting that M is odd, for a QRDS or
MQRDS to exist we need to satisfy

196(sM, 7) = p+ 2ν + 1 1 ≤ s ≤ 6. (5.30)

For ease of notation we adopt the symbol Ai = Cim. Therefore Equation (5.26) is replaced
with

Hj =
6∑

i=0

AiAi+j . (5.31)

and (5.27) is replaced with

H1 = H2 = H3 = H4 = H5 = H6 = H0 − p = 0. (5.32)

Solving (5.30) for 1 ≤ s ≤ 6 and rearranging, we obtain the following

14A1 = 2p− 4 + T − 17U − ν

14A2 = 2p− 4 + T + 15U − ν

14A3 = 2p− 4 + T − 9U − ν

14A4 = 2p− 4 + T − 5U − ν

14A5 = 2p− 4− 6T + 6U + 6ν
14A6 = 2p− 4 + T + 3U − ν

(5.33)

and using (5.23) with (5.33) gives

14A0 = 2p− 4 + T + 7U − ν. (5.34)

Now, inputting the Ai values into (5.31) gives

28H1 = −16p+ 16 + 4p2 − T 2 + 2TU + 2Tν − 65U2 − 2Uν − ν2

28H2 = −16p+ 16 + 4p2 − T 2 + 2TU + 2Tν + 15U2 − 2Uν − ν2.
(5.35)

Now, combining (5.32) and (5.35) gives U = 0. This, with (5.21), yields p = T 2 which is
impossible.

Case 2: ind 2 ≡ 0 (mod 7). We solve (5.4) for 1 ≤ s ≤ 6 and rearrange to obtain the
following

14C1 = 4p− 8 + 2T − 2ν − 14C6

14C2 = 4p− 8 + 2T − 2ν − 14C5

14C3 = 6p− 12 + 3T − 14U − 3ν − 14C5 − 14C6

14C4 = −2p+ 4− T + 14U + ν + 14C5 + 14C6.

(5.36)
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For ease of notation we write

y = (2p− 4 + T − ν)/7, C5 = r, C6 = s (5.37)

which, with (5.36) gives

C1 = y − s, C2 = y − r,

C3 = 3y/2− U − r − s, C4 = −y/2 + U + r + s.
(5.38)

Combining (5.38) with (5.23) gives

C0 = p− 2− 3y. (5.39)

Substituting the values for the Ci from (5.38) and (5.39) into (5.26) gives the following
values for h0, h1, h2 and h3:

h0 = 4 + p2 − 4p− 6py + 12y + 4r2 + 4s2 + 27y2/2− 6sy − 6ry − 4Uy
+4rU + 2U2 + 4sU + 4rs

h1 = −2y + r2 − s2 + py − 5y2/4− 2ry + Uy − U2 − 2sU + 2rs
h2 = −2y − 2r2 + s2 + py − 2y2 − sy + 2ry − 2rU + 2sU
h3 = −2y − r2 − 2s2 + py − 7y2/2 + 4sy + 3ry + Uy − 2sU − 4rs.

(5.40)

We eliminate the s2 term from the equations in (5.40) by using (5.27) and setting 3h1 −
h2 − 2h3 = 0 to give

3h1− h2− 2h3 = 7r2 + 21y2/4− 14ry+Uy− 3U2− 4sU + 14rs− 7sy+ 2rU = 0. (5.41)

Rearranging (5.41) gives the following equation for s:

s = (28r2 + 21y2 + 8rU − 56ry + 4Uy − 12U2)/(28y + 16U − 56r). (5.42)

Now, if the denominator in (5.42) were zero, we would have r = y/2 + 2U/7 which,
substituting into (5.41) would yield 3h1 − h2 − 2h3 = −13U2/7 = 0 and hence U = 0.
Thus by (5.21) we would obtain the impossible result p = T 2. Therefore we must have
r 6= y/2 + 2U/7, i.e.

r = y/2− Uw, w 6= −2/7 (5.43)

where w must be rational, due to the fact that y is rational and r and U must be integers
(see (5.37) and (5.21)). Now, by (5.27) we have h1 − h3 = 0 and hence from (5.40)

2r2 + s2 + 9y2/4− 5ry − 4sy − U2 + 6rs = 0. (5.44)

Substituting for s and r from (5.42) and (5.43) into (5.44) and factorising we obtain

7U2(3w − 1)(7w3 − 7w2 − 7w − 1)
4(7w + 2)2

= 0. (5.45)

Now, since condition (5.21) means that U cannot be zero, we have either 7w3−7w2−7w−
1 = 0 or 3w−1 = 0. However, the cubic polynomial in w cannot have any rational solutions
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for the following reason. Assume that 7w3− 7w2− 7w− 1 = 0 and that w = a/b for some
integers a and b, with gcd(a, b) = 1. Therefore we have 7(a/b)3−7(a/b)2−7(a/b)−1 = 0,
which multiplying through by b3 gives

7a3 − 7a2b− 7ab2 − b3 = 0. (5.46)

Now, the integer a must have a prime factor e. Therefore e must divide each term in
Equation (5.46) and hence e|b3 which contradicts the condition gcd(a, b) = 1. Therefore
we must have 3w − 1 = 0 and hence

w = 1/3. (5.47)

Thus by (5.43) we have
r = y/2− U/3 (5.48)

and substituting for r from (5.48) into (5.42) gives

s = y/2− U/3. (5.49)

Now, by Equation (5.27) we have

h0 − h1 − p = 0 (5.50)

which by (5.40) gives

4 + p2 − 5p− 7py + 14y + 3r2 + 5s2 + 59y2/4
−6sy − 4ry − 5Uy + 4rU + 3U2 + 6sU + 2rs = 0.

(5.51)

Substituting for r and s from (5.48) and (5.49) into (5.51) gives

4 + p2 − 5p− 7py + 14y + 49y2/4 + 7U2/9 = 0 (5.52)

and hence, on eliminating y from (5.37) we have

0 = −p+ T 2/4− Tν/2 + ν2 + 7U2/9. (5.53)

Substituting for p from (5.21) into (5.53) and rearranging gives

27T 2 + 224U2 + 18Tν − 9ν2 = 0. (5.54)

Solving (5.54) for T gives

9T = −3ν ± 2
√

9ν2 − 168U2. (5.55)

Now, by (5.1) and (5.2) ν can only take on the values −1 or 13. But U 6= 0, so if ν = −1
the discriminant 9ν − 168U2 is negative and (5.55) has no real solutions. If ν = 13 we
obtain from (5.55) U2 = 9. Therefore we have T = −5 which contradicts the condition
T ≡ 1 (mod 7) from (5.21). Theorem 5.8 is proved. �
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5.6 Nonexistence for n = 18

In this section p = 18k + 1 and we prove the following theorem.

Theorem 5.9 QRDS and MQRDS do not exist for 18th powers.

To prove Theorem 5.9 we require the cyclotomic constants for n = 18. These have been
calculated by Baumert and Fredricksen [5, 6] and those cyclotomic constants relevant to
the analysis in this section are given in Section A.8. The cyclotomic constants are given
in terms of the integer parameters L, M , and Ci (0 ≤ i ≤ 5) relative to a fixed primitive
root g, and we let ind 2 and ind 3 denote the indices of 2 and 3, respectively, with respect
to g. The quantities L, M and p satisfy the following equation

4p = L2 + 27M2 (5.56)

where L ≡ 7 (mod 9) [5, p. 208 and Equation (5.3)] and we define the quantity S as
follows:

S =
5∑

i=0

Ciζ
i
9 ζ9 = exp (2πi/9). (5.57)

If we denote the complex conjugate of S by S̄ then, since S is a Jacobi sum, we have

SS̄ = |S|2 = p (5.58)

[5, p. 209]. Noting that ζ6
9 + ζ3

9 + 1 = 0 then, if we combine Equations (5.57) and (5.58),
we obtain the following equations when the coefficients of the powers ζ9 are compared:

ζ0
9 : p = C2

0 + C2
1 + C2

2 + C2
3 + C2

4 + C2
5 − C0C3 − C1C4 − C2C5 (5.59)

ζ1
9 : 0 = C0C1 + C1C2 + C2C3 + C3C4 + C4C5 − C0C2 − C1C3

−C2C4 − C3C5 (5.60)

ζ2
9 : 0 = C0C2 + C1C3 + C2C4 + C3C5 − C0C1 − C1C2 − C2C3

−C3C4 − C4C5 (5.61)

ζ4
9 : 0 = C0C4 + C1C5 − C0C2 − C1C3 − C2C4 − C3C5 + C0C5 (5.62)

ζ5
9 : 0 = C0C5 − C0C1 − C1C2 − C2C3 − C3C4 − C4C5 + C0C4

+C1C5 (5.63)

(note that the terms in ζ3
9 cancel to give a coefficient of zero).

For n = 18 the cyclotomic constants are split into 54 separate cases, determined by
the nine values of ind 2 (mod 9) and the six values of ind 3 (mod 6) [5, p. 212]. However,
Baumert and Fredricksen demonstrated that due to restrictions imposed by the quadratic
character of 3 and by suitably changing the primitive root, all possibilities can be derived
from just eight separate cases [5, pp. 212-215]. These are:
(a) ind 2 ≡ 0 (mod 9), ind 3 ≡ 0 (mod 3)
(b) ind 2 ≡ 0 (mod 9), ind 3 ≡ 1 (mod 3)
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(c) ind 2 ≡ 1 (mod 9), ind 3 ≡ 0 (mod 3)
(d) ind 2 ≡ 1 (mod 9), ind 3 ≡ 1 (mod 3)
(e) ind 2 ≡ 1 (mod 9), ind 3 ≡ 2 (mod 3)
(f) ind 2 ≡ 3 (mod 9), ind 3 ≡ 0 (mod 3)
(g) ind 2 ≡ 3 (mod 9), ind 3 ≡ 1 (mod 3)
(h) ind 2 ≡ 3 (mod 9), ind 3 ≡ 2 (mod 3).
We apply Equation (5.4) to each of these cases in turn to prove Theorem 5.9.

Proof of Theorem 5.9. Case 1: ind 2 ≡ 0 (mod 9), ind 3 ≡ 0 (mod 3). Setting
(1, 9) = (4, 9) as per Equation (5.4) gives 18C1 − 18C4 − 18C5 = −18C2 + 18C4 + 18C5

and hence
C1 + C2 = 2C4 + 2C5. (5.64)

Also, setting (1, 9) = (2, 9) and simplifying gives

2C1 = C2 + C4 + C5. (5.65)

Combining Equations (5.64) and (5.65) gives

C1 = C2 = C4 + C5. (5.66)

Setting (3, 9) = (6, 9) (where (6, 9) = (3, 12) on using (2.18) and (2.19) we obtain

C3 = M. (5.67)

We now substitute for C1, C2 and C3 from (5.66) and (5.67) into Equations (5.61) and
(5.62) to give respectively

C2
5 + 2C4C5 +MC4 −MC5 = 0

C2
5 − C2

4 −MC4 − 2MC5 = 0.
(5.68)

Eliminating C4 from Equations (5.68) gives

C3
5 − 3C5M

2 −M3 = 0. (5.69)

Now, Equation (5.69) is of the form x3 − 3x − 1 = 0 with x = C5/M , which has no
rational solutions. Therefore M = C5 = 0 which, from (5.56) gives 4p = L2 and hence a
contradiction.

Case 2: ind 2 ≡ 0 (mod 9), ind 3 ≡ 1 (mod 3). By (5.4), setting (2, 9) = (7, 9)
(= (2, 11)) and simplifying gives

2C4 + C5 = 0. (5.70)

Also, setting (1, 9) = (5, 9) (= (4, 13)) gives

C1 + C2 = 4C4 (5.71)

and setting (1, 9) = (8, 9) (= (1, 10)) gives

C2 = C5 + 2C1. (5.72)
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Combining Equations (5.70), (5.71) and (5.72) gives

C1 = C2 = 2C4 = −C5. (5.73)

Setting (2, 9) = (8, 9) (= (1, 10)) gives

4C1 + C2 + C4 + C5 = 0 (5.74)

which, substituting for C1, C2 and C5 from (5.73) gives

C1 = C2 = C4 = C5 = 0. (5.75)

Now, setting (3, 9) = (2, 9) gives
M = −C3 (5.76)

and setting 324(1, 9) = p+ 1 + 2ν from (5.4) gives

L = 2ν. (5.77)

The formula 324(6, 9) = p+ 1 + 2ν, with (5.76) and (5.77) gives p+ 1 +L = p+ 1− 8L+
18C0 + 9M and hence with (5.77) we get

M = 2(ν − C0). (5.78)

Combining (5.75), (5.59) and (5.76) gives p = C2
0 +M2 +MC0 and hence, by (5.78) we

obtain
p = 3C2

0 + 4ν2 − 6C0ν. (5.79)

Eliminating M and L from (5.56), (5.77) and (5.78) gives

p = 27C2
0 − 54C0ν + 28ν2. (5.80)

Since Equations (5.79) and (5.80) are equal, we obtain C2
0−2C0ν+ν2 = (C0−ν)2 = 0 and

therefore C0 = ν, which, by (5.78), gives M = 0 and by (5.56) the contradiction 4p = L2.
Case 3: ind 2 ≡ 1 (mod 9), ind 3 ≡ 0 (mod 3). Setting (3, 9) = (6, 9) (= (3, 12)) and

simplifying gives
−2C1 + 3C2 + 3C3 + 2C4 − 4C5 = 0. (5.81)

Also, setting (1, 9) = (7, 9) (= 2, 11)) gives

5C1 − 5C4 + 4C5 = 0 (5.82)

and (7, 9) = (4, 9) gives
C1 − C4 − C5 = 0. (5.83)

Combining Equations (5.81), (5.82) and (5.83) we have

C5 = 0, C1 = C4, C2 = −C3. (5.84)
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Substituting for C1, C2 and C5 from (5.84) into (5.63) gives C2
3 = 0 and hence with (5.84)

we get

C3 = C2 = 0. (5.85)

Combining Equations (5.62), (5.84) and (5.85) gives

C0C4 = 0 (5.86)

and so at least one of C0 or C4 must be zero. Also, combining (5.84) and (5.85) with
(5.59) gives

p = C2
0 + C2

4 . (5.87)

Combining (5.86) and (5.87) gives either p = C2
0 , p = C2

4 or p = 0, all of which are
contradictions.

Case 4: ind 2 ≡ 1 (mod 9), ind 3 ≡ 1 (mod 3). Setting (3, 9) = (6, 9) (= (3, 12)) we
have

−2C1 + C2 + 3C3 + 2C4 = 0 (5.88)

and setting (4, 9) = (7, 9) (= (2, 11)) gives

−2C1 + C2 + 2C4 = 0. (5.89)

From (5.88) and (5.89) we obtain

C3 = 0. (5.90)

Since (1, 9) = (7, 9), we have

5C1 + 2C2 = 5C4. (5.91)

Combining (5.89) and (5.91) gives

C1 = C4, C2 = 0. (5.92)

Now, using Equation (5.4), p + 2ν + 1 = 324(4, 9) and hence 2p + 4ν + 2 = 648(4, 9).
Therefore, using the formula for the cyclotomic constant (4, 9) we obtain 2p + 4ν + 2 =
2p+ 2 + 2L+ 18M + 36C0 + 18C1− 36C2− 36C3− 18C4 and hence, employing (5.90) and
(5.92), we have

L+ 9M + 18C0 = 2ν. (5.93)

We now set (5, 9) = (8, 9) (i.e. (4, 13) = (1, 10)) to give L+3M−2C0−2C1+C2+C3+2C4 =
0 which, using (5.90) and (5.92) gives

L+ 3M − 2C0 = 0. (5.94)

Eliminating C0 from (5.93) and (5.94) gives

5L+ 18M = ν. (5.95)
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Now, using (5.4) and adding the formulae for (2, 9), (8, 9) (= (1, 10)) and (5, 9) (= (4, 13))
we have 6p+ 12ν + 6 = 6p+ 6− 21L− 27M + 108C3 and hence by (5.90) we have

7L+ 9M + 4ν = 0. (5.96)

Eliminating L from (5.95) and (5.96), we obtain ν = 3M , which contradicts (5.2).
Case 5: ind 2 ≡ 1 (mod 9), ind 3 ≡ 2 (mod 3). Using Equation (5.4) for the

cyclotomic constants (1, 9), (2, 9), (3, 9), (5, 9) (= (4, 13)), (6, 9) (= (3, 12)), (7, 9)
(= (2, 11)) and (8, 9) (= (1, 10)) gives

(1, 9) : 4ν = 2L+ 18M − 36C0

(2, 9) : 4ν = −L+ 45M − 12C0 − 12C1 + 6C2 + 6C3 + 24C4 + 24C5

(3, 9) : 4ν = 5L− 9M − 6C0 − 24C1 − 24C2 + 48C3 + 12C4 − 6C5

(5, 9) : 4ν = −19L− 9M + 78C0 + 24C1 − 30C2 − 66C3 − 12C4 + 6C5

(6, 9) : 4ν = 5L− 9M − 6C0 + 12C1 − 6C2 − 6C3 − 24C4 + 30C5

(7, 9) : 4ν = 2L+ 18M − 36C0 + 18C1 + 36C2 − 18C4 − 36C5

(8, 9) : 4ν = −L− 63M + 42C0 − 12C1 + 24C2 − 48C3 − 12C4 − 30C5.

(5.97)

Solving the set of equations for each Ci and M in (5.97) gives the follwing

C2 = C3 = C5 = −C0 = −(ν + L)/9, C1 = C4 = (L− 8ν)/9
M = (4ν + L)/9.

(5.98)

By (5.98) and (5.60) we have C2
2 = 0, giving L = −ν and hence from (5.98) M = ν/3,

which contradicts (5.2) for integer M .
Case 6: ind 2 ≡ 3 (mod 9), ind 3 ≡ 0 (mod 3). Setting (1, 9) = (5, 9) (= (4, 13)) we

obtain
C1 = C2 (5.99)

and setting (1, 9) = (7, 9) (= (2, 11)) gives 2C1 + 2C5 = C2 + C4 which, with (5.99) gives

C1 + 2C5 = C4. (5.100)

Also, since (2, 9) = (8, 9) (= (1, 10)) then we have 5C1 + 5C2 − C4 − C5 = 0 which, with
(5.99) and (5.100) gives

C5 = 3C4/7, C1 = C4/7. (5.101)

Now, since by (1, 9) = (8, 9) we have 6C1 − C2 − 5C4 + 4C5 = 0. Therefore employing
(5.99) and (5.101) gives

C1 = C2 = C4 = C5 = 0. (5.102)

Finally, since (3, 9) = (4, 9) we obtain M = C2 + C4 which by (5.102) gives M = 0.
Therefore, substituting M = 0 into (5.56) yields the contradiction 4p = L2.

Case 7: ind 2 ≡ 3 (mod 9), ind 3 ≡ 1 (mod 3). Setting (2, 9) = (5, 9) (= (4, 13)) we
obtain

C1 + C5 = 0 (5.103)
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and setting (5, 9) = (8, 9) (i.e. (4, 13) = (1, 10)) gives

C2 + C4 = 0. (5.104)

Now, setting (1, 9) = (4, 9) gives −C1 + 2C2 − 4C4 − C5 = 0 and hence with (5.103) and
(5.104) we have

C2 = C4 = 0. (5.105)

Setting (1, 9) = (2, 9) gives 3C1− 4C4 +C5 = 0, which combined with (5.103) and (5.105)
gives

C1 = C5 = 0. (5.106)

Using (5.4) with the cyclotomic constant (1, 9) we have

2p+ 4ν + 2 = 2p+ 2 + 2L+ 18C1 + 18C2 − 54C4 − 18C5

which with (5.105) and (5.106) gives

L = 2ν. (5.107)

Similarly using the formula for (3, 9) gives 2p+ 4ν + 2 = 2p+ 2− 16L+ 36C0 + 36C3 and
hence by (5.107) we have

ν = C0 + C3. (5.108)

Using the formula for (6, 9) (= 3, 12)) we have 2p+ 4ν + 2 = 2p+ 2 + 2L− 54M − 54C0

and hence from (5.107)
C0 = −M. (5.109)

Thus by (5.108) and (5.109) we obtain

C3 = ν +M. (5.110)

Combining Equations (5.105), (5.106), (5.109) and (5.110) with (5.59) gives p = M2 +
(ν +M)2 +M(ν +M) and hence

p = 3M2 + 3νM + ν2. (5.111)

Eliminating p from Equations (5.56) and (5.111) gives L2 + 15M2 = 12νM + 4ν2 which,
upon employing (5.107) gives

5M2 = 4νM. (5.112)

Therefore we obtain from (5.112) eitherM = 0 which with (5.56) leads to the contradiction
4p = L2, or M = 4ν/5 which contradicts (5.2) for integer M .

Case 8: ind 2 ≡ 3 (mod 9), ind 3 ≡ 2 (mod 3). Using (5.4) with the cyclotomic
constants (1, 9), (2, 9) and (8, 9) (= (1, 10)) and summing gives 6(p+2ν+1) = 6p+6+6L
and hence

L = 2ν. (5.113)
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Also, calculating the formula for (3, 9) with (5.4) gives 2p+ 4ν + 2 = 2p+ 2 + 2L− 54M
and hence

4ν = 2L− 54M. (5.114)

Combining (5.113) and (5.114) givesM = 0 which, in view of (5.56) gives the contradiction
4p = L2.

As we have reached contradictions in all cases the proof of Theorem 5.9 is complete.
�
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Chapter 6

Qualified Difference Sets from

Unions of Cyclotomic Classes

6.1 Introduction

In this chapter we describe a cyclotomic extension of the QRDS and MQRDS to produce
new QDS and MQDS. The new sets are created from the unions of two or more smaller
sets of integers modulo certain types of prime p, which are themselves generated using as
a basis the theory of cyclotomy with respect to the integer order n (see Section 2.4). We
first present a preliminary discussion in Section 6.2, where we introduce a few definitions
and a necessary lemma. We then present the theoretical considerations of the chapter in
Section 6.3. A description of the results obtained is given in Section 6.4 and the results
themselves for n = 4, 6, 8, 10 and 12 are presented in Sections 6.5 to 6.8. As will be seen,
some new isolated systems were discovered for the cases n = 6, 10 and 12 (Sections 6.6,
6.7 and 6.8 respectively), and two new entire families of QDS were discovered in the case
n = 8 (Section 6.5).

6.2 Preliminary Discussion

The QDS and MQDS have similar properties to the RDS and MRDS respectively, which
were discussed in detail in 1953 by Lehmer [47]. In his subsequent extensive survey, Hall
extended the notion of ‘residue difference sets’ and discovered a new family of difference
set that can be created from a union of 6th power cyclotomic classes [36, Theorem 2.2].
We define the nth power cyclotomic class C(ci) as follows.

Definition 6.1 Let

p = nf + 1 (6.1)

be an odd prime, with n and f being positive integers, and let g be a primitive root of
p. The nth power cyclotomic class C(ci) is given by the set of integers derived from the
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congruence
C(ci) = {gun+ci (mod p) : 0 ≤ u ≤ f − 1}. (6.2)

Note that C(ci) = C(ci + γn) for integer γ. Hall discovered that if n = 6 and if a
primitive root g of p is chosen such that indg 3 = 1 then the union of cyclotomic classes
C(0) ∪ C(1) ∪ C(3) forms a difference set for all prime moduli of the form p = 4α2 + 27
(integer α). For example, let α = 1 giving p = 31 and f = 5. Noting that g = 3 is a
primitive root of p = 31 satisfying indg 3 = 1 and using this value of g in (6.2) gives the
following cyclotomic classes:

C(0) = {1, 2, 4, 8, 16}
C(1) = {3, 6, 12, 17, 24}
C(3) = {15, 23, 27, 29, 30}.

Now, the union of these cyclotomic classes gives the set

R = {1, 2, 3, 4, 6, 8, 12, 15, 16, 17, 23, 24, 27, 29, 30}

which upon inspection can be shown to be a (31, 15, 7) difference set as per Definition 2.2.
Hayashi later extended Hall’s theorem, noting that if a primitive root g is chosen such

that indg 3 = 2 then the union of cyclotomic classes C(0) ∪ C(2) ∪ C(3) also forms a
difference set for all p = 4α2 + 27 (integer α) [38, p. 73].

In this chapter we demonstrate the existence of QDS and MQDS that are similarly
composed of unions of cyclotomic classes. These sets are defined as follows.

Definition 6.2 Let p = nf +1 be a prime and k = tf where k and t are positive integers.
Let E = {c1, c2, . . . , ct} be a set of t residue classes that are all distinct modulo n. Now
let R be the k-element set consisting of the union of nth power cyclotomic classes derived
from the set E as follows:

R = {ri : 1 ≤ i ≤ k} = C(c1) ∪ C(c2) ∪ . . . ∪ C(ct) (6.3)

where C(ci) is defined by (6.2). If a set R of the form of the set in (6.3) is a QDS then we
call it a QDS composed of a union of cyclotomic classes. Now let R∗ be the k+ 1-element
set consisting of the union of nth power cyclotomic classes, together with the residue zero,
derived from the set E as follows:

R∗ = {ri : 0 ≤ i ≤ k} = C(c1) ∪ C(c2) ∪ . . . ∪ C(ct) ∪ {0}, r0 = 0 (6.4)

where C(ci) is defined by (6.2). If a set R∗ of the form of the set in (6.4) is a MQDS then
we call it a MQDS composed of a union of cyclotomic classes.

Note that if we set t = 1 in Definition 6.2, we obtain the special cases of QDS and
MQDS from a single cyclotomic class, which are the QRDS and MQRDS respectively, as
discussed in Chapters 3, 4 and 5. Since we have k = tf then we have a slight modification
to Equations (3.1) and (3.2) to give the following lemma.
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Lemma 6.3 For a QDS composed of t cyclotomic classes we have

p = λ(n/t)2 + 1 (6.5)

and for a MQDS composed of t cyclotomic classes we have

p = λ(n/t)2 − 2(n/t) + 1. (6.6)

Proof. For a QDS of k elements we have Equation (2.12). Substituting k = tf into (2.12)
and eliminating the parameter f using (6.1) gives (6.5). For a MQDS of k + 1 elements
(including zero), we have Equation (2.13). Substituting k = tf into (2.13) and combining
with (6.1) gives (6.6). �

Motivated by Hall’s discovery, Hayashi undertook an exhaustive computer search for all
the possible difference sets composed of unions of cyclotomic classes for the case n = 10
[38]. Although his project failed to uncover any new difference sets, his approach re-
established some known results and also provides a very useful technique in this chapter
to search for QDS and MQDS composed of unions of cyclotomic classes as defined in
Definition 6.2. It should be noted here that Baumert has demonstrated the nonexistence
of any new residue difference sets from unions of cyclotomic classes in the case n = 4 [8,
pp. 128-129].

The purpose of this chapter is to describe the results of an exhaustive search for QDS
and MQDS created from the unions of cyclotomic classes for the cases n = 4, 6, 8, 10 and
12. Two new families were discovered in the case n = 8 and some new isolated systems
were discovered for n = 6, 10 and 12.

6.3 Theory

In order to investigate whether QDS and MQDS can be generated from unions of
cyclotomic classes, it is necessary to determine how often the non-zero differences occur
between the elements of sets of different cyclotomic classes. This can be done as follows,
using a similar approach to that adopted by Hall [36] and Hayashi [38] in their analyses.
Following (2.9), consider the congruence

Y −mX ≡ d (mod p) (6.7)

where Y is in residue class j, X is in residue class i, m is in residue class σ 6= 0 and d is
in residue class s. Using these conditions, we get:

gAn+j − gBn+i+σ ≡ gκn+s (mod p)

where A, B and κ are integers. Multiplying this congruence by g−κn−s and rearranging
gives

gB′n+i+σ−s + 1 ≡ gA′n+j−s (mod p) (6.8)
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where A′ and B′ are also integers. Now by the cyclotomic constant equation (2.17), we
see that Congruence (6.8), and hence Congruence (6.7), has (i + σ − s, j − s) solutions.
This enables us to calculate how often each difference d arises from Congruence (6.7),
and hence how often each difference arises from sets of integers composed of unions of
cyclotomic classes. For the set of residue classes E = {c1, c2, . . . , ct}, the general equation
for the number N(s) of times the difference d in residue class s occurs is given by

N(s) =
∑
i∈E

∑
j∈E

(i+ σ − s, j − s). (6.9)

Note by Equation (2.21) that N(s+ γn) = N(s) for integer γ. As there are n− 1 residue
classes, then there are at most n− 1 different values for N(s), although in practice some
of the values of N(s) will repeat for different values of s. If conditions can be determined
that make each value of N(s) equal, then a QDS will result. If no such conditions exist,
there will be no corresponding QDS.

In the case of a MQDS, the residue 0 is added to the union of cyclotomic classes. In
this case we need to consider the two additional differences:

Y − 0 ≡ d (mod p) (6.10)

0−mX ≡ d (mod p). (6.11)

For Congruence (6.10) we have Y ≡ d (mod p) and so d, which is in residue class s, also
is in residue class j. Therefore j = s and hence s ∈ E. This means that we need to add
1 to the summation N(s) in Equation (6.9) if s ∈ E. Congruence (6.11) is a little more
complicated. Here we have (−1)(mX) ≡ d (mod p) and mX is in residue class σ + i.
Now, since g is a primitive root of p

(−1) ≡ g(p−1)/2 ≡ gnf/2 ≡

{
gn(f/2) if f is even
gn(f−1)/2+n/2 if f is odd.

(6.12)

Therefore if f is even, then −1 is in residue class 0. In this case, by (6.11), d, which is in
residue class s, is also in residue class σ+ i+0 (i.e. the residue class of −mX). Therefore
i = s−σ and so we must add 1 to the summation for N(s) in Equation (6.9) if s−σ ∈ E.
If f is odd, then by Equation (6.12) −1 is in residue class n/2. Here, by (6.11), d, which
is in residue class s, is also in residue class σ+ i+ n/2. Therefore, i = s− σ− n/2 and so
we must add 1 to the summation for N(s) in Equation (6.9) if s− σ − n/2 ∈ E.

An important type of equivalence between the sets is the concept of ‘complementary’
sets. This is a familiar notion in the study of difference sets (see, for example, Baumert [8,
pp. 2-3]) and the same applies to QDS and MQDS. If R is a QDS, then the set R∗ = Zp−R
is a MQDS which is the complement of R, that has the same qualifierm. Stated differently,
if E is the set of residue classes that gives a QDS, then E∗ = Zn −E is the set of residue
classes that, with the residue zero, gives the corresponding complementary MQDS. In the
case of a MQDS, R∗, the same argument applies. If E = {c1, c2, . . . , ct} is a set of residue
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classes, together with the residue zero, that produces a MQDS R∗ then E∗ = Zn−E will
give rise to a complementary QDS. The detailed analysis of this point is given in Appendix
B. Because of this equivalence, it is only necessary to analyse cases where t ≤ n/2.

For each value of n, there are many other equivalent cases that arise due to the following
two isomorphisms. Firstly, assume that E = {c1, c2, . . . , ct} is a set of residue classes that
produces a QDS. Therefore, Congruence (6.7) and Equation (6.9) lead to values of N(s)
that are equal for all s. Now consider the set E′ = {c1 + q, c2 + q, . . . , ct + q} for some
integer q. Using Equation (6.9) the summation N(s) for the set E′ is as follows:

N(s) =
∑
i∈E′

∑
j∈E′

(i+ σ − s, j − s)

=
∑
i∈E

∑
j∈E

(i+ q + σ − s, j + q − s)

=
∑
i∈E

∑
j∈E

(i+ σ − [s− q], j − [s− q])

= N(s− q).

(6.13)

Now, since each value of N(s) is equal for E then the same values for N(s− q) will result
for the set E′. Therefore, if E = {c1, c2, . . . , ct} is a set of residue classes that gives a
QDS, then the set E′ = {c1 + q, c2 + q, . . . , ct + q} will also give an isomorphic QDS. In
the case of a MQDS the same argument evidently applies.

Secondly assume that E = {c1, c2, . . . , ct} is a set of residue classes that, using the
primitive root g, gives a QDS. Choose one of these classes, say c, and let C(c) be the
corresponding cyclotomic class. Therefore, by Equation (6.2) we have

C(c) = {gun+c (mod p) : 0 ≤ u ≤ f − 1}. (6.14)

Now, let g1 be another primitive root of p, where

gz
1 ≡ g (mod p) (6.15)

where z must be prime to p− 1 = nf . Substituting this into (6.14) gives

C(c) = {gzun+zc
1 } = {gzc

1 (gn
1 )uz (mod p) : 0 ≤ u ≤ f − 1}. (6.16)

Now, because the integers u : 0 ≤ u ≤ f − 1 form a complete residue system modulo f ,
then because z is prime to f (which is the case, since z must be prime to nf), the integers
uz : 0 ≤ u ≤ f − 1 also form the same reduced residue system. Therefore, Congruence
(6.16) becomes

C(c) = {gzc
1 (gn

1 )u} = {gun+zc
1 (mod p) : 0 ≤ u ≤ f − 1}. (6.17)
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Comparing (6.14) with (6.17) shows that a QDS derived from E = {c1, c2, . . . , ct} and
primitive root g will be the same as that derived from E = {zc1, zc2, . . . , zct} and primitive
root g1 where gz

1 ≡ g (mod p). In the case of a MQDS, the same argument evidently
applies.

6.4 Results

Equation (6.9) has been applied to the cases n = 4, 6, 8, 10 and 12 to determine if any
QDS or MQDS composed of unions of cyclotomic classes exist. In each case, an exhaustive
computer search has been completed for the range 1 ≤ σ ≤ n−1, for f odd and f even (note
that σ = 0 corresponds to difference sets, which is not the subject of this chapter). Also,
in any exhaustive analysis, one must take account of the additional individual conditions
for each value of n, such as the (n/2)th power character of 2, for example. This has also
been done and each such condition, where necessary, is addressed in the relevant section
below.

The results below are given up to equivalence, either by complementary sets or
isomorphism (see Section 6.3). A major positive result was revealed in the case n = 8,
This, therefore, is where we begin.

6.5 Results for n = 8

In this section we prove the following theorem.

Theorem 6.4 Qualified difference sets created from the union of 8th power cyclotomic
classes C(0) ∪ C(1) exist for all primes of the form p = 64z4 + 128z3 + 144z2 + 80z + 17
or p = 64z4 + 48z2 + 1 where z is an integer in each case. All other unions of 8th power
cyclotomic classes are isomorphic to either of these cases or to previously known QDS,
MQDS or residue difference sets.

Proof. For the case n = 8, we need to consider the additional condition of whether 2 is
either a biquadratic (i.e. 4th power) residue or a biquadratic nonresidue of p. In order to
demonstrate the computational methods used in this chapter, a detailed analysis follows,
whereby we generate a QDS for the case when f is even, t = 2, R = C(0) ∪ C(1), σ = 4
and 2 is a biquadratic nonresidue of p.

For R = C(0) ∪ C(1) we have E = {0, 1}. Using this with σ = 4 and using Definition
6.2, along with Equations (6.9) and (2.21), gives the following condition for the number
of differences N(s):

s = 0 : N(0) = (4, 0) + (4, 1) + (5, 0) + (5, 1)
s = 1 : N(1) = (3, 7) + (3, 0) + (4, 7) + (4, 0)
s = 2 : N(2) = (2, 6) + (2, 7) + (3, 6) + (3, 7)
s = 3 : N(3) = (1, 5) + (1, 6) + (2, 5) + (2, 6).

(6.18)
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In this case the values for s = 4, 5, 6, 7 repeat those for s = 0, 1, 2, 3 respectively. Following
Dickson’s work [25, p. 410, Theorem 11], Berndt et al. demonstrated that the cyclotomic
constants for n = 8 are determined uniquely by

p = a2
4 + b24 = a2

8 + 2b28 (6.19)

where a4, b4, a8 and b8 are integers (see also Equation (5.9)) and for the case p = 8f + 1:

a4 ≡ −(2/p) ≡ −1 (mod 4), b4 ≡ a4g
(p−1)/4 (mod p) (6.20)

[10, p. 78], and

a8 ≡ −1 (mod 4), 2b8 ≡ a8(gf + g3f ) (mod p) (6.21)

[10, p. 109]. The cyclotomic constants for n = 8 have been calculated by Lehmer [48] and
are given in Section A.4. Substituting these cyclotomic constants for the case when 2 is a
biquadratic nonresidue of p into Equations (6.18) gives:

s = 0 : 64N(0) = 4p− 12 + 4a4 + 4a8

s = 1 : 64N(1) = 4p− 12 + 4a4 + 4a8

s = 2 : 64N(2) = 4p+ 4− 4a4 − 4a8 + 8b4 − 16b8
s = 3 : 64N(3) = 4p+ 4− 4a4 − 4a8 + 16b8 − 8b4.

(6.22)

Note that in her paper, Lehmer instead uses the symbols x, y, a, b, where x = −a4, a =
−a8, 2y = b4 and b = b8. Now, if all values N(s) are equal then a QDS will result. Putting
this restriction on the equations in (6.22) gives:

b4 = 2b8
a4 + a8 = 2.

(6.23)

Combining Equations (6.23) and (6.19), and setting x = −a4 and 2y = b4 for ease of
notation, gives

p = x2 + 8x+ 8 x ≡ 1 (mod 4)
y2 = 2 + 2x.

(6.24)

Now, since x ≡ 1 (mod 4) then y2 = 2 + 2x is of the form y2 = 4l2, where l is an odd
integer, and so x = 2l2−1, l odd. Thus, x = 8z2 +8z+1 for integer z which, using (6.24),
gives

p = 64z4 + 128z3 + 144z2 + 80z + 17 (6.25)

where z is an integer, as in the statement of Theorem 6.4. Now, under the conditions in
Equation (6.19), 2 is always a biquadratic nonresidue of p of the form in Equation (6.24)
by the following analysis. Equation (6.24) gives y2 = 2(x + 1), but since x ≡ 1 (mod 4)
then we have y2 = 4(2η + 1) where 2η + 1 must be an odd square. Substituting this
into Equation (6.24) means that p = x2 + [4(2η + 1)]2, and so, since the representation
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of p = 8f + 1 ≡ 1 (mod 4) as the sum of two squares is unique up to order and sign,
p cannot be represented in the form p = x2 + 64η2

1 for integer η1. Therefore 2 must be
a biquadratic nonresidue of p by a known theorem on biquadratic reciprocity (see, for
example Mollin, [51, Corollary 5.71]) and as a result we will always obtain values for
N(s) as given by the equations in (6.22). The condition in (6.25) appears strict, but
there are fifty primes of this form ≤ 1011 and eighty primes ≤ 1012. The sequence begins
p = 17, 433, 2801, 10193, 60017, . . .. Since the polynomial (6.25) is irreducible over the
integers it is expected that there would be an infinite number of primes of this form but
this would be very difficult to establish, as is the case even for polynomials of degree two.

The values of those primitive roots that can be used to generate the QDS are
determined by the condition b4 = 2b8 from Equation (6.23). Substituting for b4 and
b8 from (6.20) and (6.21) into the first equation in (6.23) and rearranging gives

a8µ
2 − a4µ+ a8 ≡ 0 (mod p) (6.26)

where µ = gf . This quadratic congruence for µ can be demonstrated to give

(2a8µ− a4)2 ≡ a2
4 − 4a2

8 (mod p). (6.27)

Congruence (6.27) reduces to a simple calculation of the squares (2a8µ− a4)2, which can
then be used to calculate the values of µ = gf that lead to the condition b4 = 2b8, and
hence those primitive roots g that give QDS for n = 8, σ = 4, R = C(0) ∪ C(1) and
p = x2 + 8x+ 8 (x ≡ 1 (mod 4)).

For the converse, assume that we have a prime of the form given in Equation (6.24).
We can write p = x2 + 4x+ 4 + 4x+ 4 = (x+ 2)2 + 2y2 and so, by uniqueness with (6.19)
we have b2 = y2 and so (x + 2)2 = a2, where a = −a8. Therefore x + 2 = ±a which,
combined with the condition x ≡ a ≡ 1 (mod 4) means that x+a = −2 and so the second
of the equations in (6.23) is satisfied. Now since x+ a+ 2 = 0, we have a = −(x+ 2) so
we can write

x2 − 4a2 = −[x2 + 2(x2 + 8x+ 8)] = −(x2 + 2p) ≡ −x2 (mod p). (6.28)

However (−1/p) = 1, where (−1/p) is the Legendre symbol, since p ≡ 1 (mod 4).
Combining this with (6.28) means that x2 − 4a2 is a square modulo p and so Congruence
(6.27) always has a solution and so there is always a QDS of the current form under the
conditions in (6.24).

An example of a QDS of the form in (6.24) is as follows.

Example 6.5 The parameters n = 8, f = 2, t = 2, R = C(0) ∪ C(1) and k = tf = 4,
yield a QDS of modulus p = 17 and multiplicity λ = 1.

This particular QDS has 4 elements. The parameters satisfy (6.25) for z = 0 and also
(6.24) for the case x = −a4 = 1 which, in turn by Equation (6.23), gives a8 = 3. We now
need to determine a primitive root g that will generate the corresponding QDS, the full
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set of primitive roots of the prime 17 being 3, 5, 6, 7, 10, 11, 12 and 14. Using Congruence
(6.27) we have

(6µ+ 1)2 ≡ 16 (mod 17) (6.29)

where µ = gf = g2. The integers congruent to 16 modulo 17 that give squares of the
form (6g2 +1)2 are 3025, 47089, 528528 and 1385329. These give values of g = 3, 6, 11 and
14 respectively, any of which can be used to generate a QDS with the given parameters.
Using Equation (6.2) with g = 3, we have

C(c1) = {gun+c1 : 0 ≤ u ≤ f − 1} = {38u+0 : 0 ≤ u ≤ 1} = {30, 38} ≡ {1, 16} (mod 17)

C(c2) = {gun+c2 : 0 ≤ u ≤ f − 1} = {38u+1 : 0 ≤ u ≤ 1} = {31, 39} ≡ {3, 14} (mod 17)

the union of which gives the set R = {1, 3, 14, 16} (mod 17). We now need to choose a
qualifier, m, that is in residue class σ = 4. Therefore, m ≡ gun+σ ≡ 38u+4 (mod 17), which
gives m = 4 or m = 13. Using m = 4 we get the set mR = {4, 12, 56, 64} ≡ {4, 12, 5, 13}.
Therefore we have

R = {1, 3, 14, 16} (mod 17)
mR = {4, 5, 12, 13} (mod 17).

(6.30)

Note that using the qualifier m = 13 gives rise to the same set of integers as mR in
(6.30), but in a different order. It can be readily seen that taking all 16 differences
R−mR (mod 17) between the elements of the sets in (6.30) gives the integers 1, 2, . . . , 16
exactly once each. Therefore R is a QDS with multiplicity λ = 1, which agrees with
Equation (2.12). Note in this example, that the corresponding complementary MQDS
R∗ is given by R∗ = {0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15} which can be generated by R∗ =
C(2) ∪ C(3) ∪ C(4) ∪ C(5) ∪ C(6) ∪ C(7) ∪ {0}.

The second family of QDS in Theorem 6.4 arises when 2 is a biquadratic residue of p.
Using (6.18) for this case gives the following:

s = 0 : 64N(0) = 4p− 12− 4a4 − 4a8 + 8b4 − 16b8
s = 1 : 64N(1) = 4p− 12− 4a4 − 4a8 − 8b4 + 16b8
s = 2 : 64N(2) = 4p+ 4 + 4a4 + 4a8

s = 3 : 64N(3) = 4p+ 4 + 4a4 + 4a8.

(6.31)

Equalising all the values of N(s) in (6.31) gives:

b4 = 2b8
a4 + a8 = −2.

(6.32)

Combining (6.32) and (6.19) gives here

p = x2 − 8x+ 8 x ≡ 1 (mod 4)
y2 = 2− 2x.

(6.33)

Now, since x ≡ 1 (mod 4) then y2 = 2−2x is of the form y2 = 16z2, where z is an integer,
and so x = 1− 8z2. Thus using (6.33) this gives

p = 64z4 + 48z2 + 1 (6.34)
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where z is an integer, as in the statement of Theorem 6.4. Under the conditions in
Equation (6.19), 2 is always a biquadratic residue of p of the form in Equation (6.33)
as follows. Equation (6.33) gives y2 = 2(1 − x), but since x ≡ 1 (mod 4) then we have
y2 = 16η2

2 where η2 must be an integer. Substituting this into (6.33) gives p = x2 + 64η2
2.

This means that p is always of the correct form for 2 to be a biquadratic residue of p by the
same biquadratic reciprocity theorem as referenced above [51, Corollary 5.71]. Therefore
we will always obtain values for N(s) as given by the equations in (6.31). Again, proof of
the infinitude of primes of the form in (6.34) would be extremely difficult but an infinite
number would be expected. There are fifty seven primes of the form ≤ 1011 and eighty
five ≤ 1012, the sequence beginning p = 113, 1217, 41201, 84673, 644801 . . ..

To calculate the required primitive roots in this case, firstly note that from (6.32)
b4 = 2b8. Therefore using (6.20) and (6.21) similarly gives (6.26) and hence (6.27) as
in the case when 2 is a biquadratic nonresidue of p. Therefore the primitive roots g are
calculated exactly in the same manner as in the earlier case, but here with the different
values of a4 and a8, as derived from the second equation in (6.32).

For the converse, assume that we have a prime of the form given in Equation (6.33).
We can write p = x2− 4x+ 4− 4x+ 4 = (x− 2)2 + 2y2 and so, by uniqueness with (6.19)
we have b2 = y2 and so (x − 2)2 = a2, where a = −a8. Therefore x − 2 = ±a which,
combined with the condition x ≡ a ≡ 1 (mod 4) means that x+ a = 2 and so the second
of the equations in (6.32) is satisfied. Now since a = 2− x we can write

x2 − 4a2 = −[x2 + 2(x2 − 8x+ 8)] = −(x2 + 2p) ≡ −x2 (mod p). (6.35)

As above, (−1/p) = 1, which with (6.35) means that x2 − 4a2 is a square modulo p and
so Congruence (6.27) always has a solution in this case. The proof of Theorem 6.4 is
complete. �

An example of a QDS of the form in (6.33) is as follows.

Example 6.6 The parameters n = 8, f = 14, t = 2, R = C(0) ∪ C(1) and k = tf = 28,
yield a QDS of modulus p = 113 and multiplicity λ = 7.

The QDS has 28 elements. Firstly we note that the parameters satisfy (6.32), (6.33) and
(6.34), where z = 1, x = −a4 = −7 and a = −a8 = 9. We now need to calculate a
suitable primitive root g that will be used to generate the QDS. Using (6.27) we have
(−18µ− 7)2 ≡ 64 (mod 113) and hence

(18µ+ 7)2 ≡ 64 (mod 113) (6.36)

where µ = gf = g14. Solving (6.36) gives the following list of suitable values of primitive
root: g = 10, 38, 39, 43, 47, 54, 59, 66, 70, 74, 75 and 103. Using g = 10, we employ (6.2)
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to give

C(0) = {100, 108, 1016, . . . , 10104}
≡ {1, 4, 7, 16, 28, 30, 49, 64, 83, 85, 97, 106, 109, 112} (mod 113)

C(1) = {101, 109, 1017, . . . , 10105}
≡ {10, 38, 39, 40, 43, 47, 54, 59, 66, 70, 73, 74, 75, 103} (mod 113)

which by (6.3) gives

R = {1, 4, 7, 10, 16, 28, 30, 38, 39, 40, 43, 47, 49, 54, 59,
64, 66, 70, 73, 74, 75, 83, 85, 97, 103, 106, 109, 112}.

(6.37)

To choose a qualifier, m, that is in residue class σ = 4 we use m ≡ gun+σ ≡ 108u+4

(mod 113), which gives us any of the values m = 2, 8, 14, 15, 32, 53, 56, 57, 60, 81, 98,
99, 105, or 111. Using m = 2 with (6.37) we obtain the set

mR = {2, 5, 8, 14, 15, 19, 20, 27, 32, 33, 35, 37, 53, 56, 57,
60, 76, 78, 80, 81, 86, 93, 94, 98, 99, 105, 108, 111}.

(6.38)

Taking all 784 differences R −mR (mod 113) between the elements of the sets in (6.37)
and (6.38) gives the integers 1, 2, . . . , 112 exactly seven times each. Therefore R is a QDS
with multiplicity λ = 7, which agrees with Equation (2.12).

Many of the other possible combinations of residue classes give non-integer and/or zero
values for a4, b4, a8 or b8 and hence no QDS or MQDS. However, a particularly interesting
instance of nonexistence occurs in the case of a MQDS when R∗ = C(0)∪C(1)∪ {0} and
σ = 4 (and hence a complementary QDS with R = C(2)∪C(3)∪C(4)∪C(5)∪C(6)∪C(7)
and σ = 4). Here we have E = {0, 1}. Again we use Equation (6.9). However, since we
are dealing with MQDS we need to add 1 to the summations for N(0), N(1), N(4) and
N(5) as per the reasoning surrounding Congruences (6.10) and (6.11) in Section 6.3. Now,
equalising all the equations for N(s) gives the following conditions

b4 = 2b8
a4 + a8 = 6 if 2 is a biquadratic residue of p
a4 + a8 = −6 if 2 is a biquadratic nonresidue of p.

(6.39)

Combining this with (6.19), and setting x = −a4, 2y = b4 gives

y2 = 18 + 6x; p = x2 + 24x+ 72 if 2 is a biquadratic residue of p
y2 = 18− 6x; p = x2 − 24x+ 72 if 2 is a biquadratic nonresidue of p.

(6.40)

Here, there is no family of MQDS for the following reason. Because 3|(18±6x) then, since
18± 6x is a square by (6.40), 9|(18± 6x). But 9|18 so therefore 9| ± 6x which means that
3| ± x. Hence 9|(x2 ± 24x+ 72) and so any p of the form given in (6.40) is a multiple of 9
and hence cannot be prime.

For brevity, the rest of the results for n = 8 are given without the detailed
computational proofs. Some of these are simply redefinitions of known QRDS or MQRDS.
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For example the set R = C(0) ∪ C(2) ∪ C(4) ∪ C(6) with σ = 1, 3, 5 or 7 simply gives a
QRDS for n = 2 (see Section 4.2). Note, however, the difference in the form of the prime
modulus of these two isomorphic cases. A QRDS generated purely from the 2nd powers
(i.e. n = 2) has a prime modulus of the form p = 4α+ 1 for integer α. However, when a
QDS is generated using n = 8 and t = 4 there is a further restriction on the form of the
prime modulus due to the higher value of n. Here, combining the conditions in Theorem
4.1 with p = 8f + 1 gives p = 8α + 1 for integer α. This is shown in Table 6.1. Similar
modifications in the prime moduli occur for other values of n (see Tables 6.2, 6.3 and 6.4).

Except for isomorphisms of either the above described examples or of those already
known, the computer calculations revealed no further QDS. For example, the QDS for
R = C(0) ∪C(3) and n = 8 was found, but this is simply isomorphic to R = C(0) ∪C(1)
with n = 8, as described in Section 6.3 above. The list of QDS and MQDS discovered for
n = 8 is given in Table 6.1. For each case in the table, except for R = C(0) ∪ C(1), any
primitive root g can be used to generate the set.

f Set p σ Comments

even C(0) ∪ C(1) x2 + 8x+ 8 4 New family of QDS;
x ≡ 1 (mod 4) g determined by (6.26)
2 + 2x is square

even C(0) ∪ C(1) x2 − 8x+ 8 4 New family of QDS;
x ≡ 1 (mod 4) g determined by (6.26)
2− 2x is square

even C(0) ∪ C(4) 16α2 + 1 2, 6 Isomorphic to QRDS
integer α with n = 4

odd C(0) ∪ C(4) ∪ {0} 16α2 + 9 2, 6 Isomorphic to MQRDS
integer α with n = 4

even C(0) ∪ C(2) ∪ C(4) 8α+ 1 1, 3, 5, 7 Isomorphic to QRDS
or odd ∪C(6) integer α with n = 2

even C(0) ∪ C(2) ∪ C(4) 8α+ 1 1, 3, 5, 7 Isomorphic to MQRDS
or odd ∪C(6) ∪ {0} integer α with n = 2

Table 6.1: List of parameters of QDS and MQDS composed of unions of cyclotomic classes for
n = 8.

6.6 Results for n = 4 and n = 6

In this section we have the following theorem.

Theorem 6.7 A MQDS created from the union of 6th power cyclotomic classes R∗ =
C(0) ∪ C(1) ∪ {0} exists for p = 13. Any primitive root g can be used to generate the
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MQDS. All other unions of 4th power and 6th power cyclotomic classes are isomorphic to
previously known QDS, MQDS or residue difference sets.

Proof. For the first statement of Theorem 6.7 we have n = 6. We use σ = 3. Now, since
R∗ = C(0) ∪ C(1) ∪ {0} (i.e. E = {0, 1}) we will be dealing with MQDS, as indicated by
the presence of the zero element. We now employ (6.9) but because of the zero residue,
we need to modify the sums in (6.9) according to the reasoning surrounding (6.10) and
(6.11) described in Section 6.3. Namely, we need to add 1 to the summation N(s) in the
cases when s ∈ E and s− σ ∈ E (i.e. s− 3 ∈ E). Thus we need to add 1 to N(0), N(1),
N(3) and N(4). Therefore from (6.9) we have

s = 0 : N(0) = (3, 0) + (3, 1) + (4, 0) + (4, 1) + 1
s = 1 : N(1) = (2, 5) + (2, 0) + (3, 5) + (3, 0) + 1
s = 2 : N(2) = (1, 4) + (1, 5) + (2, 4) + (2, 5)

(6.41)

with the values for s = 3, 4, 5 repeating those for s = 0, 1, 2 respectively. The cases that
yield positive results are when f is even and ind 2 ≡ 1 (mod 3) or ind 2 ≡ 2 (mod 3).

Firstly when ind 2 ≡ 1 (mod 3) we use the cyclotomic constants from Section A.3
with (6.41) to give

s = 0 : 36N(0) = 4p+ 28− 8A
s = 1 : 36N(1) = 4p+ 28 + 4A− 6B
s = 2 : 36N(2) = 4p+ 4 + 4A+ 6B

(6.42)

where the integers A and B are given in terms of the quadratic partition in (4.14).
Equalising these values of N(s) gives A = 1 and B = 2, which combining with (4.14)
gives

p = 13. (6.43)

Secondly when ind 2 ≡ 2 (mod 3) we obtain from (6.41)

s = 0 : 36N(0) = 4p+ 28 + 4A+ 6B
s = 1 : 36N(1) = 4p+ 28− 8A
s = 2 : 36N(2) = 4p+ 4 + 4A− 6B.

(6.44)

Equalising the N(s) values here gives A = 1 and B = −2, which with (4.14) similarly
gives (6.43). Since we obtain the same result for both cases of ind 2 considered, it follows
that we have a MQDS when 2 is not a cubic residue of p, which is the case for p = 13.
(Incidentally, the case when 2 is a cubic residue of p leads to the result B = 0 upon using
(6.41) with N(0) = N(1), and hence by (4.14) the contradiction p = A2). Because of this,
any of the four primitive roots of p = 13 (i.e. 2, 6, 7 and 11) can be used to generate the
MQDS. This completes the proof of the first statement of Theorem 6.7.

We now generate the above MQDS for p = 13 using g = 2. Since n = 6, p = 13, f = 2,
k = tf = 4 and R∗ = C(0)∪C(1)∪ {0}, then using these parameters with (6.4) and (6.2)
gives

R∗ = {0, 20, 26, 21, 27} = {0, 1, 64, 2, 128} ≡ {0, 1, 12, 2, 11} (mod 13)
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giving

R∗ = {0, 1, 2, 11, 12}.

Using the qualifier m = 8 (which is in residue class σ = 3 with respect to the primitive
root g = 2) we see that Congruence (2.11) for the set R∗ has exactly 2 solutions for each
non-zero difference modulo 13 and the zero difference occurs exactly once. Therefore R∗

constitutes a MQDS of multiplicity λ = 2.

The second statement of Theorem 6.7 asserts that the above MQDS is the only new
set for n = 4 or n = 6. All other sets are equivalent to previously known systems. The
full results for the cases n = 4 and n = 6 are given in Table 6.2. As can be seen from
the table, the only results for existing QDS and MQDS for n = 4 are simply equivalent
to known systems for n = 2. For the case n = 6, the remainder of the cases for f even
are equivalent to known QRDS and MQRDS with n = 2 but with a modified form of p,
similar to the case for n = 8 described above (compare with Section 4.2). In the cases for
f odd we obtain systems that are equivalent to both RDS and complementary RDS for
n = 2. The RDS here have a modification to the modulus compared to that discussed by
Paley [55] and Lehmer [47, p. 428]. Here we have p = 12α + 7. This modification arises
due to the combination of the conditions p = 4x − 1 from Theorem 2.9 and p = 6f + 1.
This is given in Table 6.2. The proof of Theorem 6.7 is complete. �

6.7 Results for n = 10

In this section we have the following theorem.

Theorem 6.8 A MQDS created from the union of 10th power cyclotomic classes R∗ =
C(0)∪C(2)∪{0} exists for p = 41. In this case the primitive root g to generate the MQDS
must be chosen such that indg2 ≡ 1 or 4 (mod 5). A MQDS created from the union of
10th power cyclotomic classes R∗ = C(0) ∪ C(1) ∪ C(2) ∪ C(6) ∪ {0} exists for p = 41.
In this case any primitive root can be chosen to generate the MQDS. All other unions of
10th power cyclotomic classes are isomorphic to previously known QDS, MQDS or residue
difference sets.

Proof. We begin by proving the first MQDS case in Theorem 6.8. The procedure runs
along the same lines as those in the proofs of Theorems 6.4 and 6.7 above. Therefore we
omit some routine steps during the proof and we also refer the reader to the cyclotomic
constants in the paper of Whiteman [67] when necessary, rather than give them explicitly
in the appendices.

For R∗ = C(0) ∪ C(2) ∪ {0} we use (6.9) with f even, σ = 5 and note that we need
to add 1 to the summations for N(0), N(2), N(5) and N(7) (see the reasoning in Section
6.3). Using the cyclotomic constant equations for the case when ind 2 ≡ 1 (mod 5) from
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n f Set p σ Comments

4 even C(0) ∪ C(2) 8α+ 1 1, 3 Isomorphic to QRDS
integer α with n = 2

4 odd C(0) ∪ C(2) 4α+ 1 1, 3 Isomorphic to QRDS
α odd with n = 2

4 even C(0) ∪ C(2) ∪ {0} 8α+ 1 1, 3 Isomorphic to MQRDS
integer α with n = 2

4 odd C(0) ∪ C(2) ∪ {0} 4α+ 1 1, 3 Isomorphic to MQRDS
α odd with n = 2

6 2 C(0) ∪ C(1) ∪ {0} 13 3 Single case,
all g

6 even C(0) ∪ C(2) ∪ C(4) 12α+ 1 1, 3, 5 Isomorphic to QRDS
integer α with n = 2

6 even C(0) ∪ C(2) ∪ C(4) 12α+ 1 1, 3, 5 Isomorphic to MQRDS
∪{0} integer α with n = 2

6 odd C(0) ∪ C(2) ∪ C(4) 12α+ 7 2, 4 Isomorphic to RDS
integer α with n = 2

6 odd C(0) ∪ C(2) ∪ C(4) 12α+ 7 2, 4 Isomorphic to complementary
∪{0} integer α RDS with n = 2

Table 6.2: List of parameters of QDS and MQDS composed of unions of cyclotomic classes for
n = 4 and n = 6.

[67, p. 108] we therefore obtain

s = 0 : 400N(0) = 16p+ 336 + 13x+ 100u− 50v − 75w
s = 1 : 400N(1) = 16p+ 16 + 8x− 50u+ 50v − 50w
s = 2 : 400N(2) = 16p+ 336− 12x+ 100u− 100v
s = 3 : 400N(3) = 16p+ 16 + 8x− 50u+ 50v − 50w
s = 4 : 400N(4) = 16p+ 16− 17x− 100u+ 50v + 175w

(6.45)

where the values for s = 5, 6, 7, 8, 9 repeat those for s = 0, 1, 2, 3, 4 respectively. If we
equalise all the values of N(s) in (6.45) we get x = −9, u = 0, v = 3 and w = −1,
which satisfy (5.11). Substituting these values into (5.10) gives p = 41 which is prime.
Whiteman demonstrated that the cyclotomic constants in the cases ind 2 ≡ 2, 3 or 4
(mod 5) can be derived from the case ind 2 ≡ 1 (mod 5), but with some transformation
of the values of u, v and w [67, p. 107]. Using this, along with the cyclotomic constant
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equations for the case when ind 2 ≡ 4 (mod 5) [67, p. 108] with σ = 5 gives

s = 0 : 400N(0) = 16p+ 336− 12x− 100u+ 100v
s = 1 : 400N(1) = 16p+ 16 + 8x+ 50u− 50v − 50w
s = 2 : 400N(2) = 16p+ 336 + 13x− 100u+ 50v − 75w
s = 3 : 400N(3) = 16p+ 16− 17x+ 100u− 50v + 175w
s = 4 : 400N(4) = 16p+ 16 + 8x+ 50u− 50v − 50w.

(6.46)

Again the values for s = 5, 6, 7, 8, 9 repeat those for s = 0, 1, 2, 3, 4 respectively. Here,
equalising the values of N(s) gives x = −9, u = 0, v = −3 and w = −1. These values
satisfy (5.11) and hence by (5.10) once again give p = 41. Therefore we can generate a
MQDS for n = 10 and R∗ = C(0)∪C(2)∪ {0} for p = 41, provided we choose a primitive
root g such that indg2 ≡ 1 or 4 (mod 5). The cases ind 2 ≡ 0, 2 or 3 (mod 5) do not give
a MQDS here. We now give an example of a MQDS using ind 2 ≡ 1 (mod 5).

Example 6.9 The parameters n = 10, f = 4, t = 2, R = C(0) ∪ C(1) ∪ {0} and
k = tf = 8, yield a MQDS of modulus p = 41 and multiplicity λ = 2 when the primitive
root g = 6 is used.

Note firstly in Example 6.9 that the choice of g = 6 is consistent, since ind62 = 26 ≡
1 (mod 5). We now use the parameters in Example 6.9 to generate the set R∗ using
Equations (6.2) and (6.4). We also choose the qualifier m ≡ gσ ≡ 65 ≡ 27 (mod 41). We
therefore obtain the following sets

R∗ = {0, 1, 4, 5, 9, 32, 36, 37, 40}
mR∗ = {0, 3, 12, 14, 15, 26, 27, 29, 38}.

(6.47)

Inspection of the differences R∗−mR∗ between the elements of the two sets in (6.47) reveals
that each non zero difference modulo 41 occurs exactly twice and the zero difference occurs
exactly once. Thus R∗ is a MQDS with multiplicity λ = 2.

If we wish to generate the isomorphic MQDS R∗ = C(0) ∪ C(2z) ∪ {0} where z

is prime to p − 1 = nf , we use the primitive root g1 given by Equation (6.15) and
use the isomorphism described in Section 6.3 (Equations (6.14) to (6.17)). Note here
that the form of indg12 changes as follows. Let I = indg2 and I1 = indg12. We have
gI ≡ gI1

1 ≡ 2 (mod p) which, by Congruence (6.15), gives gzI
1 ≡ gI1

1 (mod p) and hence
zI ≡ I1 (mod p − 1). Therefore indg12 ≡ z indg2 (mod p − 1). As an example the set
R∗ = C(0) ∪ C(2z) ∪ {0} = C(0) ∪ C(4) ∪ {0} (= C(0) ∪ C(14) ∪ {0}) can be generated
by using z = 7 (note: z = 2 will not give a result since 2 is not prime to f = 4).
Using Equation (6.15) gives g1 = 30, and ind302 ≡ 7 ind62 ≡ 7(26) (mod 40) giving
ind302 = 22 ≡ 2 (mod 5). Applying (6.4), along with m ≡ gσ

1 (mod p), σ = 5, gives the
same sets as given in (6.47) and hence a MQDS.

To prove the second MQDS case in Theorem 6.7 we use (6.9) for the set R∗ = C(0) ∪
C(1)∪C(2)∪C(6)∪{0} with f even and σ = 5. Here we need to add 1 to the summations
for N(0), N(2), N(5) and N(7), and we need to add 2 to the summations for N(1), N(6)
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(since for s = 1 and s = 6 we note that both s ∈ E and s − σ ∈ E, from Section 6.3).
Using the cyclotomic constant equations for the case when ind 2 ≡ 1 (mod 5) from [67,
p. 108] we obtain

s = 0 : 400N(0) = 64p+ 224− 3x+ 100u− 50v − 75w
s = 1 : 400N(1) = 64p+ 464 + 32x− 50u+ 50v + 150w
s = 2 : 400N(2) = 64p+ 224− 28x+ 100u− 100v
s = 3 : 400N(3) = 64p− 16 + 12x+ 150u+ 50v − 150w
s = 4 : 400N(4) = 64p− 16− 13x− 300u+ 50v + 75w.

(6.48)

The values for s = 5, 6, 7, 8, 9 repeat those for s = 0, 1, 2, 3, 4 respectively. If we equalise
the values of N(s) we obtain x = −9, u = 0, v = 3, w = −1, satisfying (5.11) and yielding
p = 41 after substitution into (5.10).

As noted above, Whiteman demonstrated that the cyclotomic constants in the cases
ind 2 ≡ 2, 3 or 4 (mod 5) can be derived from the case ind 2 ≡ 1 (mod 5), but with
some transformation of the values of u, v and w [67, p. 107] . When we apply Equation
(6.9) and use the cyclotomic constants for these values of ind 2 along with the relevant
transformation in u, v and w we obtain the following results:

ind 2 ≡ 2 (mod 5) : x = −9, u = 3, v = 0, w = 1
ind 3 ≡ 2 (mod 5) : x = −9, u = −3, v = 0, w = 1
ind 4 ≡ 2 (mod 5) : x = −9, u = 0, v = −3, w = −1.

In each case the parameters satisfy (5.11) and after substitution into (5.10) give p = 41.
Note finally that for p = 41, the case ind 2 ≡ 0 (mod 5) is not possible and so there is
obviously no set in this case. Thus, there is a MQDS for p = 41 and R∗ = C(0) ∪ C(1) ∪
C(2) ∪ C(6) ∪ {0} with σ = 5 for all primitive roots of 41.

The remainder of the investigation for n = 10 revealed similar results to n = 6 and
are shown in Table 6.3. Here we also have, for f even, some QDS and MQDS that are
equivalent to known QRDS and MQRDS for n = 2 respectively with slight modifications
in the moduli p similar to those discussed in Section 6.5, and for f odd, QDS and MQDS
that are equivalent to RDS and complementary RDS for n = 2 respectively, with similar
modifications in p to those discussed in Section 6.6. The proof of Theorem 6.8 is complete.

�

6.8 Results for n = 12

In this section we have the following theorem.

Theorem 6.10 A MQDS created from the union of 12th power cyclotomic classes R∗ =
C(0) ∪ C(1) ∪ C(5) ∪ {0} exists for p = 73. The primitive root g to generate the MQDS
must be chosen such that indg2 ≡ 2 or 4 (mod 6), indg3 ≡ 2 (mod 4) and the parameter
c = β3 in (5.14). All other unions of 12th power cyclotomic classes are isomorphic to
previously known QDS, MQDS or residue difference sets.
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f Set p σ Comments

4 C(0) ∪ C(2) ∪ {0} 41 5 Single case with g chosen such
that indg2 ≡ 1 or 4 (mod 5)

4 C(0) ∪ C(1) ∪ C(2) 41 5 Single case,
∪C(6) ∪ {0} all g

even C(0) ∪ C(2) ∪ C(4) 20α+ 1 1, 3, 5, 7, 9 Isomorphic to QRDS
∪C(6) ∪ C(8) integer α with n = 2

even C(0) ∪ C(2) ∪ C(4) 20α+ 1 1, 3, 5, 7, 9 Isomorphic to MQRDS
∪C(6) ∪ C(8) ∪ {0} integer α with n = 2

odd C(0) ∪ C(2) ∪ C(4) 20α+ 11 2, 4, 6, 8 Isomorphic to RDS
∪C(6) ∪ C(8) integer α with n = 2

odd C(0) ∪ C(2) ∪ C(4) 20α+ 11 2, 4, 6, 8 Isomorphic to complementary
∪C(6) ∪ C(8) ∪ {0} integer α RDS with n = 2

Table 6.3: List of parameters of QDS and MQDS composed of unions of cyclotomic classes for
n = 10.

Proof. For R∗ = C(0) ∪ C(1) ∪ C(5) ∪ {0}, we use σ = 6 with f even, and choose a
primitive root g such that the parameter c in (5.14) is equal to β3 and ind 3 ≡ 2 (mod 4).
Along with these parameters, a MQDS exists for the two cases ind 2 ≡ 2 (mod 6) and
ind 2 ≡ 4 (mod 6). Again, we refer the reader to the work of Whiteman for the necessary
cyclotomic constants [68]. In both cases we use the cyclotomic constants from Table 1
of Whiteman’s article [68, p. 70]. For the case ind 2 ≡ 2 (mod 6) we use Whiteman’s
Table 1 as given. For the case ind 2 ≡ 4 (mod 6) we use the same table, but replace the
cyclotomic constant (i, j) with (5i, 5j)−B, and change the sign of B [68, pp. 70-73]. Here
the change in sign of B has no effect on the existence condition for the MQDS, which is
the same for both values of ind 2. We present the case when ind 2 ≡ 2 (mod 6). We use
(6.9) with f even and σ = 6. Note therefore that we need to add 1 to the summations for
N(0), N(1), N(5), N(6), N(7) and N(11) for a MQDS (see Section 6.3). Using (6.9) and
the relevant cyclotomic constants from [68, Table 1] we obtain

s = 0 : 144N(0) = 9p+ 117− 30x+ 8y + 16A− 24B
s = 1 : 144N(1) = 9p+ 117 + 18x
s = 2 : 144N(2) = 9p+ 9 + 6x+ 8y − 8A
s = 3 : 144N(3) = 9p+ 9− 18x+ 24y − 24B
s = 4 : 144N(4) = 9p+ 9 + 6x− 16y − 8A+ 24B
s = 5 : 144N(5) = 9p+ 117 + 18x− 24y + 24B.

(6.49)

The values for s = 6, 7, 8, 9, 10, 11 repeat those for s = 0, 1, 2, 3, 4, 5 respectively. Equalising
the values of N(s) in (6.49) gives y = B, y = A+ 9 and x = −3, which with (5.15) gives
the result p = 73 which is prime. For p = 73 with c = β3, ind 3 ≡ 2 (mod 4) and ind
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2 ≡ 2 (mod 6), we have the following possible list of primitive roots: g = 5, 28, 33, 40,
45 and 68. We now generate the MQDS using g = 5. The qualifier m must be in residue
class σ = 6, and hence we can choose from m = 3, 24, 27, 46, 49 or 70. Using m = 3 with
R∗ = C(0) ∪ C(1) ∪ C(5) ∪ {0}, (6.2) and (6.4) we have

R∗ = {0, 1, 5, 8, 9, 14, 20, 28, 33, 34, 39, 40, 45, 53, 59, 64, 65, 68, 72}
mR∗ = {0, 3, 11, 13, 15, 24, 26, 27, 29, 31, 42, 44, 46, 47, 49, 58, 60, 62, 70}.

(6.50)

Here, inspection of the differences R∗ − mR∗ between the elements of the two sets in
(6.50) reveals that each non zero difference modulo 73 occurs exactly five times and the
zero difference occurs exactly once. Therefore R∗ is a MQDS with multiplicity λ = 5.

The remainder of the results for the investigation for n = 12 are shown in Table 6.4.
Like the case n = 10 we have a lot of cases which correspond to previously known systems
of QRDS, MQRDS, RDS or MRDS. The proof of Theorem 6.10 is complete. �

f Set p σ criteria for g Comments

even C(0) ∪ C(6) 108α2 + 1 3, 9 ind 2 ≡ 0 (mod 6) Isomorphic to QRDS

α even for n = 6

odd C(0) ∪ C(6) 108α2 + 1 3, 9 ind 2 ≡ 3 (mod 6) Isomorphic to QRDS

α odd for n = 6

even C(0) ∪ C(6) ∪ {0} 108α2 + 25 3, 9 ind 2 ≡ 0 (mod 6) Isomorphic to MQRDS

α even for n = 6

odd C(0) ∪ C(6) ∪ {0} 108α2 + 25 3, 9 ind 2 ≡ 3 (mod 6) Isomorphic to MQRDS

α odd for n = 6

even C(0) ∪ C(4) ∪ C(8) 36α2 + 1 2, 6, 10 any Isomorphic to QRDS

α even for n = 4

odd C(0) ∪ C(4) ∪ C(8) 36α2 + 1 4, 8 any Isomorphic to RDS

α odd for n = 4

even C(0) ∪ C(4) ∪ C(8) 4α2 + 9 2, 6, 10 any Isomorphic to MQRDS

∪{0} α ≡ 2 or 4 (mod 6) for n = 4

odd C(0) ∪ C(4) ∪ C(8) 4α2 + 9 4, 8 any Isomorphic to MRDS

∪{0} α ≡ 1 or 5 (mod 6) for n = 4

6 C(0) ∪ C(1) ∪ C(5) 73 6 c = β3 from (5.14) Single case

∪{0} ind 2 ≡ 2 or 4 (mod 6)

ind 3 ≡ 2 (mod 4)

1 C(0) ∪ C(1) ∪ C(6) 13 3, 9 ind 2 ≡ 1 or 5 (mod 6) Isomorphic to single

∪C(7) ∪ {0} case of MQDS for n = 6

even C(0) ∪ C(2) ∪ C(4) 24α + 1 1, 3, 5, any Isomorphic to QRDS

∪C(6) ∪ C(8) ∪ C(10) integer α 7, 9, 11 for n = 2

odd C(0) ∪ C(2) ∪ C(4) 24α + 13 1, 3, 5, any Isomorphic to QRDS

∪C(6) ∪ C(8) ∪ C(10) integer α 7, 9, 11 for n = 2

even C(0) ∪ C(2) ∪ C(4) 24α + 1 1, 3, 5, any Isomorphic to MQRDS

∪C(6) ∪ C(8) ∪ C(10) integer α 7, 9, 11 for n = 2

∪{0}
odd C(0) ∪ C(2) ∪ C(4) 24α + 13 1, 3, 5, any Isomorphic to MQRDS

∪C(6) ∪ C(8) ∪ C(10) integer α 7, 9, 11 for n = 2

∪{0}

Table 6.4: List of parameters of QDS and MQDS composed of unions of cyclotomic classes for
n = 12.
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Chapter 7

Applications of Qualified

Difference Sets

7.1 Introduction

In this chapter we discuss the potential uses of QDS and MQDS in physical applications.
Like the difference sets, QDS and MQDS possess similarly attractive properties that
suggest potential applications in many areas. One such application, explained in detail
below, is coded aperture imaging. In this application a sheet of opaque material, called
the aperture, which has open elements, or ‘holes’, in it is placed between an energy source
and a position sensitive radiation detector. The source casts a shadow of the aperture onto
the detector and the source distribution is determined by the nature of the shadow. The
distribution of holes in the aperture can be generated from difference sets, QDS or MQDS,
as well as other systems. Here the parameter v represents the total number of elements
in the aperture and k represents the number of holes. Therefore, the transparency of the
aperture is given by k/v. In astronomical applications, the transparency used is typically
0.5. [56, 69, 70]. This value of k/v allows a large number of photons to pass through the
aperture and hence provides a high sensitivity to weak energy sources. However, other
values of k/v are often desirable. For example an aperture having such a high proportion
of holes will be structurally weak and so smaller transparencies are sometimes considered
to prevent disintegration of the aperture [1, 15, 33]. Other applications, such as aperture
synthesis, require extremely low values of k/v [44]. While RDS and MRDS can be used,
the values of v and k related to these sets are restricted to certain conditions, as outlined
in Section 2.2. As a result, only certain values of k/v are available. The introduction of
QDS and MQDS, which have different conditions for v and k, allow a greater freedom of
choice of systems to use.

The attraction of QDS and MQDS lies in the cross-correlation function of certain
binary sequences that can be generated from the sets. Typically this cross-correlation
function is similar to the Kronecker delta function, but with the restriction that it is
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periodic. We thus define here a periodic delta function ∆j for an integer period v, as
follows:

∆j =

{
1 if j ≡ 0 (mod v)
0 otherwise.

(7.1)

Notationally we call the value at j ≡ 0 (mod p) the peak of the function and the region
outside this peak the sidelobes of the function. Note that the sidelobes of ∆j are a constant
(= 0). This point is discussed with respect to an imaging application in Section 7.2. In
Section 7.3 we present a discussion of the theory behind the implementation of QDS and
MQDS in physical applications. In Section 7.4 we give a specific numerical example, in
the form of a QRDS of modulus v = 17. Finally in Section 7.5 we discuss potential
applications of QDS and MQDS.

7.2 Example of a Practical Application

We now present in detail an example of a physical application for which QDS and MQDS
have a potential use.

Coded aperture imaging has become the standard technique for forming images of
objects that emit X-rays and gamma-rays [23]. Because of the penetrating nature of
these high-energy rays, conventional imaging techniques are not possible, since mirrors
and lenses do not have any effect on the radiation. One alternative is to replace the
mirror or lens with an aperture, which consists of a sheet of opaque material (such as lead
or tungsten) that has a single pinhole to allow some radiation from the object to pass
through. This aperture is placed between the object and a position sensitive radiation
detector and after a period of time an inverted image of the object will form on the
detector, in the manner of a standard pinhole camera. Unfortunately in many situations
that involve the collection of X-rays and gamma-rays, the source intensities are typically
very weak compared to the presence of background ‘noise’, such as radiation in the local
environment, or in the form of noise in the electronics of the data collecting systems and
so on. As a result the observation times using this arrangement would be prohibitively
long. The situation can be remedied by allowing more of the rays from the source to reach
the detector by including more pinholes in the aperture to increase its transparent area.
For example in most astronomical applications the transparent area is 50% of the whole
aperture. As a result we obtain many inverted images of the object on the detector in the
form of a shadowgram. However, the individual images from each pinhole often overlap to
the extent that the shadowgram is unrecognisable as a representation of the object being
observed. We therefore need to apply a decoding algorithm to the shadowgram to form
a reconstruction of the object that is hopefully as close a representation to the object as
possible. The whole process is shown schematically in Figure 7.1.

Let the shadowgram be represented by the function P , the aperture by A and the
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Figure 7.1: The steps involved in coded aperture imaging. Radiation from the object passes
through the pinholes in the aperture and is collected by the detector to form a
shadowgram. The shadowgram is decoded to form a reconstruction of the object.

object by O. For the data collection stage we have

P = (O ∗A) +N (7.2)

where ∗ is a correlation operator and N is some noise function. We call the function for
the aperture the incidence vector. In most practical applications the incidence vector is a
binary function, as defined below.

Definition 7.1 We call the function B a binary function if B : Zv → {0, 1}.

Therefore, the incidence vector A is an array of ones and zeroes where a one represents a
transparent element of the aperture and a zero represents an opaque element (see also
(7.5) below). A major reason for using binary functions is that their use simplifies
implementation in many physical applications, or because the constraints of a given
application may render the use of multiple valued functions impossible.

If we represent the postprocessing function by G (see also (7.7)) then for the decoding
stage we have

Ô = P ∗G (7.3)

where Ô is the reconstructed image, with the caret ˆ being used to indicate that the
quantity is an estimate. Combining (7.2) and (7.3) gives Ô = (O ∗ A) ∗ G + N ∗ G and
hence

Ô = O ∗ (A ∗G) +N ∗G. (7.4)

Therefore, if G can be chosen such that A ∗ G is a delta function similar to (7.1) then
from (7.4) we will have Ô = O+N ∗G and the object will thus be perfectly constructed,
except for the presence of the noise term (the finer points of the mathematics behind the
above reasoning can be found in [29, pp. 337-339] and [11, pp. 514-515]).

One important restriction on the function G is that it must be two-valued. We define
a two-valued function as follows.
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Definition 7.2 A function U : Zv → R is said to be two-valued if its range is {u1, u2}
with u1 6= u2.

Gottesman and Fenimore demonstrated the importance of having a two-valued
postprocessing function, using G : Zv → {+1,−1} in their analysis. They showed that if
the postprocessing function is two-valued then the imaging performance of the system is
optimal in the sense that the signal to noise ratio is independent of the source structure
[32, p. 4346]. This same range for the postprocessing function has been used by other
authors, notably Calabro and Wolf [22], Fenimore and Cannon [29, p. 339] and Byard [16,
pp. 263-264].

7.3 Theoretical Outline

In this section we outline the generic theory behind the implementation of QDS and MQDS
in practical applications. Although different applications may use QDS and MQDS in
slightly different ways depending on the peculiarities of each application, the fundamental
idea behind the use of these sets is the same. Binary functions are generated using the QDS
or MQDS and then employed accordingly, depending on the requirements and restrictions
of the individual application.

Here we discuss the detailed implementation of a QDS. Because the argument for
MQDS is very similar, we restrict the analysis for MQDS to a brief description below.

Let R = {r1, r2, r3, . . . , rk} be a QDS with k elements, modulus v, multiplicity λ and
qualifier m, as given in Definition 2.24, where k, v and λ satisfy the incidence relation
(2.12). Define the incidence vector A : Zv → {0, 1} for the set R as follows

A(i) =

{
1 if i ∈ R
0 if i /∈ R

(7.5)

where i = 0, 1, 2, . . . , v − 1. Note that for a QDS A(0) = 0 since 0 /∈ R. Now construct
the set M = mR as follows:

M = mR = {mr1,mr2,mr3, . . . ,mrk} (mod v). (7.6)

Note from Definition 2.24 that ri /∈ mR for all i since the zero difference ri−mrj (mod v)
does not occur. Therefore, similarly mrj /∈ R. Let G : Zv → {g1, g2} be the two-valued
function defined by

G(i) =

{
g1 = 1− k/λ if i ∈ mR
g2 = 1 otherwise.

(7.7)

We will use G for the postprocessing function of the set R. We now define the cross-
correlation function F of A and G as follows:

Definition 7.3 For a given incidence vector A and postprocessing function G, the cross-
correlation function F of A and G is given by

F (j) =
v−1∑
i=0

A(i)G(i+ j) (7.8)
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where i+ j is taken modulo v.

In Theorem 7.5 below, we will show that the cross-correlation function of A and G defined
by (7.5) and (7.7) is a delta function. Firstly we need the following lemma.

Lemma 7.4 For d ∈ {1, 2, . . . , v − 1} ∑
ri ∈ R

ri − d ∈ mR

1 = λ. (7.9)

Proof. By the definition of a QDS (Definition 2.24) for ri ∈ R and rj ∈ R the value
ri−d ≡ mrj (mod v) occurs λ times for each d as 1 ≤ i, j ≤ k. Thus we have ri−d ∈ mR
when ri ∈ R exactly λ times and hence the lemma. �

Theorem 7.5 For a QDS the cross-correlation function F is given by:

F (j) = k∆j =

{
k if j ≡ 0 (mod v)
0 otherwise

(7.10)

where ∆j is the delta function of (7.1).

Proof. Assume R = {r1, r2, r3, . . . , rk} is a QDS of k elements and modulus v. Suppose
that A is the incidence vector of R given by (7.5), and let G be the postprocessing function
as defined in (7.7). From (7.8) we have

F (−d) =
v−1∑
i=0

A(i)G(i− d) (7.11)

with i − d taken modulo v. By (7.5), A(i) has a value of unity when i ∈ R and zero
otherwise. Therefore we can rewrite (7.11) as

F (−d) =
∑
ri∈R

G(ri − d) (7.12)

with ri − d taken modulo v. Firstly assume d = 0. We have from (7.12)

F (0) =
∑
ri∈R

G(ri). (7.13)

However, since ri /∈ mR for all i then combining (7.7) with (7.13) gives

F (0) = kg2 = k. (7.14)

Secondly, assume d 6= 0. We can rewrite (7.12) as follows

F (−d) =
∑

ri ∈ R
ri − d ∈ mR

G(ri − d) +
∑

ri ∈ R
ri − d /∈ mR

G(ri − d). (7.15)
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Noting that there are k elements in R, we combine (7.15) with (7.7) to obtain

F (−d) = g1
∑

ri ∈ R
ri − d ∈ mR

1 + g2

(
k −

∑
ri ∈ R

ri − d ∈ mR

1

)
. (7.16)

Now, using Lemma 7.4 with (7.16) gives F (−d) = 0 when d 6= 0. The proof of Theorem
7.5 is complete. �

Note that here we have chosen the values for the postprocessing function G in (7.7) in
order to normalise the peak of F to equal the number of open elements in the aperture
and to give the sidelobes a value of zero, although different values can be used if desired,
such as the values of +1 and −1 of Gottesman and Fenimore, as mentioned above. Note
also that the delta function cross-correlation function is similar to that obtained when
using difference sets and G = A [34, pp. 488-490]. Calabro and Wolf have also generated
two-dimensional arrays with a similar property [22].

Once the functions A and G have been generated they can either be used in one or
two dimensions, depending on the application. For two-dimensional applications, such as
coded aperture imaging, the incidence vector A can be mosaiced onto either a rectangular
or a hexagonal lattice. Some methods for doing this are outlined in [29], [30] and [32].
The author has investigated optimal mosaicing onto a square lattice [13].

The analagous analysis for MQDS reveals similar properties. Here, let R∗ be a MQDS
of k+1 elements with modulus v and multiplicity λ, calculated from Equation (2.13) (see
Definition 2.25):

R∗ = {0, r1, r2, . . . , rk} (mod v) (7.17)

and, for a suitable value of m (Section 2.3), construct the set M∗ = mR∗:

M∗ = mR∗ ≡ {0,mr1,mr2, . . . ,mrk} (mod v). (7.18)

Here we define the binary incidence vector A∗(i) and two-valued postprocessing function
G∗(i), both of length v, where i = 0, 1, 2, . . . , v − 1, as follows:

A∗(i) =

{
1 if i ∈ R∗

0 if i /∈ R∗ (7.19)

G∗(i) =

{
λ/(λ− 1) if i ∈ mR∗, i 6= 0
1− k/(λ− 1) otherwise.

(7.20)

In this case, the cross-correlation function F ∗ is also a perfect delta function, as given in
the following theorem, which we present without proof.

Theorem 7.6 For MQDS the cross-correlation function F ∗ is given by:

F ∗(j) = (k + 1)∆j =

{
k + 1 if j ≡ 0 (mod v)
0 otherwise

(7.21)

where ∆j is the delta function of (7.1).
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7.4 Numerical Example

The principles described in the previous section are now demonstrated by means of a
numerical example. Consider Example 2.30. We have n = 4, v = p = 17, k = 4, λ = 1
and R = {1, 4, 13, 16}. Let m = 2. Then

M = mR = {2, 8, 26, 32} ≡ {2, 8, 9, 15} (mod 17). (7.22)

So, by (7.5) we have

A(i) =

{
1 if i = 1, 4, 13, or 16
0 otherwise

(7.23)

and we use the set M to create the postprocessing function G(i) as per (7.7) to give

G(i) =

{
−3 if i = 2, 8, 9 or 15
1 otherwise.

(7.24)

Now, if we cross-correlate the two functions A(i) and G(i) from (7.23) and (7.24) by using
(7.8) we obtain

F (j) =
16∑
i=0

A(i)G(i+ j) =

{
4 if j ≡ 0 (mod 17)
0 otherwise

(7.25)

(where i+ j is taken modulo 17) which agrees with (7.10).
The graph of this cross-correlation function is given in Figure 7.2. Note from (7.25)

and Figure 7.2 that the cross-correlation function graph is a periodic delta function, with
a peak value of k = 4, zero sidelobes, and a period of p = 17.

Figure 7.2: Cross-correlation function for a QRDS with n = 4, p = 17, k = 4 and λ = 1.

7.5 Potential Applications of QDS

In this section we discuss the possible potential applications of QDS. The most obvious
application is in the field of coded aperture imaging, as described in Section 7.2. The
simplest type of QDS (and MQDS) are the quadratic QRDS, i.e., n = 2 (see Section
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4.2). These have already been proposed for coded aperture imaging by Gottesman and
Fenimore, albeit in a different guise [32]. These authors refer to the resulting fully
mosaiced two-dimensional aperture as a modified uniformly redundant array (MURA).
This term was coined following their minor modification to the uniformly redundant arrays
(URA), previously proposed for coded aperture imaging by Fenimore and Cannon [29].
Furthermore the author has demonstrated that a subset of these MURA arrays possess
90◦ antisymmetry, which may be useful in removing systematic background noise that
may be present in a physical application [14].

To date only those QDS with n = 2 have been proposed for actual coded aperture
applications. These include the MURAs. Therefore the results in Chapters 4 and 6 offer
many new possible aperture patterns that may be of use in such applications.

Any application that employs the coded aperture technique can potentially employ
QDS. To date the most commonly proposed use of coded aperture imaging is in the field
of high energy astronomical imaging. The first example of a coded aperture instrument
being used in a real astronomical application was in an observation of the sun in 1972 by
Blake et al. [11]. The aperture used consisted of a plate of randomly positioned pinholes,
as the optimum aperture systems such as URAs or those based on difference sets or QDS
had yet to be developed. More recent examples of high energy telescopes that have used
the coded aperture technique are the XRT [69], and SIGMA [56] experiments. A major
high-energy astronomical project is the INTEGRAL mission [70], which has on board
three separate coded aperture experiments: IBIS [62], SPI [63] and JEM-X [50].

A second important use of the coded aperture technique is in medical imaging. Many
medical applications have made use of gamma radiation and so forming the resulting
images is important in many areas of medical diagnosis [43]. Barrett investigated the use
of a Fresnel zone plate in nuclear medicine imaging [4] and coded apertures have been
used to form images of the thyroid [45], and heart [58]. One disadvantage of the coded
aperture technique in medical imaging is the presence of image artifacts due to the near-
field geometry of such systems, although recent advances have made the technique an
increasingly viable possibility [1, 59].

Latterly the coded aperture technique has also been proposed as an alternative method
to detect flaws in mechanical structures when normal radiographic techniques are not
possible. Conventional radiography requires the radiation to pass through the structure
to be analysed and for the transmitted radiation to be measured. However, if a structure
is too thick to allow a sufficient amount through to be measured, or if access to both
sides of the structure is impossible, then backscattering of the radiation is an alternative
possibility. Thangavelu and Hussein have studied the feasibility of using the coded
aperture technique for producing the resulting images [61]. Woodring et al. have discussed
the possibility of using the coded aperture technique in tracking radiation contamination
[71]. They propose a data collection and storage system which gives both the position
and intensity information of the radiation and they present superimposed pictures of the
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gamma ray coded aperture images onto video images for easy location.
Sequences and arrays generated from QDS may have applications in signal processing.

To date much of the research effort invested in signal processing has been into the search
for sequences that have a delta function autocorrelation function. The autocorrelation
function is similar to the cross-correlation function in Definition 7.3 but with the restriction
G = A. Luke has conducted a detailed search for such sequences that have a delta
function autocorrelation function [49] and he presents a list of many such sequences. A
lot of his sequences are many-valued [49, pp. 289-290], but unfortunately these are often
either difficult or impossible to implement in practice. However, if the restriction for the
postprocessing function G to be the same as the incidence vector A is relaxed, then we
are more readily able to use two-valued sequences that are often easier to implement in
practice, for example in an application requiring on/off states, such as the open/closed
elements of a coded-aperture.

QDS may have potential uses in radar applications, where it is important to
discriminate a signal from the cluttering effect of interfering signals [65], and position
location using map-matching [57]. Also, time-frequency coding, which often requires
binary patterns having correlation functions with minimum sidelobes may benefit from
QDS [31], as may built-in testing of very large scale integration circuits, such as
microprocessors [3]. In radio astronomy the earth’s rotation is often used to acquire
information from a large number of baselines, although this technique in not always
feasible for those astronomical objects that exhibit temporal variability on timescales that
are shorter than that of the earth’s rotation. Klemperer proposed the idea of placing the
receivers in a pattern in the form of a nonredundant array so as to sample many spatial
frequencies simultaneously [44]. He also gives two possible antenna configurations, one of
12 elements and another of 24 elements, both of which he demonstrates to have a transfer
function that possesses flat sidelobes out to some radius [44, p. 451]. QDS may be of use
here, due to the similarly flat sidelobes of their cross-correlation functions.
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Chapter 8

Summary and Conclusions

This thesis discusses qualified difference sets (QDS) and modified qualified difference sets
(MQDS). Using the theory of cyclotomy with respect to the integer order n, the sets are
generated modulo a prime modulus p. Both types of set are defined in Section 2.3 of
Chapter 2. Special cases of these sets are the qualified residue difference sets (QRDS)
and modified qualified residue difference sets (MQRDS) respectively. These sets are also
defined in Section 2.3 of Chapter 2.

We prove that for n = 2 QRDS and MQRDS both exist for all p = 4α+1 where α is a
positive integer. For n = 4, we demonstrate the existence of QRDS for all p = 16α2+1 and
MQRDS for all p = 16α2 +9 where α is an integer in each case. For n = 6 we demonstrate
the existence of QRDS for all p = 108α2 + 1 and MQRDS for all p = 108α2 + 25 where
α is an integer in each case. We demonstrate the nonexistence of all QRDS and MQRDS
for n = 8, 10, 12, 14 and 18.

QDS and MQDS created from the unions of cyclotomic classes are discussed in Chapter
6. We present the results of an exhaustive search for QDS and MQDS composed of unions
of cyclotomic classes for orders n = 4, 6, 8, 10 and 12. For each value of n studied, some
cases were discovered that are simply equivalent to known systems, including QRDS,
MQRDS and residue difference sets. In the case n = 4, no new systems were found.
However, there were positive new results for the other values of n studied. In the case
n = 6 a new isolated system for p = 13 was found, and for n = 10, two new MQDS, both
for p = 41 were discovered, one consisting of a union of two cyclotomic classes and another
of four cyclotomic classes. In the two-class case, the choice of ind 2 is important. In the
case n = 12 a new MQDS for p = 73 consisting of a union of two cyclotomic classes was
found. For n = 8, two new entire families of QDS were discovered. Both created from the
union of two cyclotomic classes, one family exists for all p = 64z4+128z3+144z2+80z+17
and the other exists for all p = 64z4 + 48z2 + 1 where z is an integer in each case.

QDS and MQDS have potential uses in various physical applications, largely due to the
delta function cross-correlation function of certain binary sequences that can be generated
from the sets. Potential uses of QDS and MQDS are discussed in Chapter 7.
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Appendix A

Cyclotomic Constants

This appendix contains those cyclotomic constants that are required in the calculations
in this thesis. The cyclotomic constants are given in terms of the prime p, order n and
the integer f where p = nf + 1. The literary source of the cyclotomic constants in each
section is referenced accordingly.

A.1 Cyclotomic Constants for n = 2

The cyclotomic constants for n = 2 and prime p = 2f + 1 are from Dickson [25, p. 394].

f even:
(0, 1) = (p− 1)/4

A.2 Cyclotomic Constants for n = 4

The cyclotomic constants for n = 4 are from Dickson [25, p. 400, (48), (52)]. For n = 4
and prime p = 4f + 1 the cyclotomic constants depend on the quadratic partition

p = x2 + 4y2 (A.1)

where x and y are integers and x ≡ 1 (mod 4) [25, p. 400, (51)].

f even:
16(0, 2) = p− 3 + 2x
16(1, 2) = p+ 1− 2x

A.3 Cyclotomic Constants for n = 6

The cyclotomic constants for n = 6 are from Dickson [25, pp. 408-410]. For n = 6 and
prime p = 6f + 1 the cyclotomic constants depend on the quadratic partition

p = A2 + 3B2 (A.2)
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where A and B are integers and A ≡ 1 (mod 6) if f is even and A ≡ 4 (mod 6) if f is
odd.

f even, ind 2 ≡ 0 (mod 3):
36(0, 3) = p− 5 + 4A
36(1, 3) = p+ 1− 2A
(2, 3) = (1, 3) [25, Equation (91)]

f even, ind 2 ≡ 1 (mod 3):
36(0, 2) = p− 5 + 4A− 6B
36(0, 4) = p− 5− 8A
36(1, 3) = p+ 1− 2A− 6B
36(1, 4) = p+ 1− 2A+ 12B
36(1, 5) = p+ 1− 2A− 6B
36(2, 4) = p+ 1 + 10A+ 6B
(0, 3) = (0, 2)
(2, 3) = (1, 4)
(2, 5) = (1, 3)
(3, 5) = (1, 4)

f even, ind 2 ≡ 2 (mod 3):
36(0, 2) = p− 5− 8A
36(0, 3) = p− 5 + 4A+ 6B
36(1, 3) = p+ 1− 2A− 12B
36(1, 4) = p+ 1− 2A+ 6B
36(2, 4) = p+ 1 + 10A− 6B
(0, 4) = (0, 3)
(1, 5) = (1, 2)
(2, 3) = (1, 4)
(2, 5) = (1, 3)
(3, 5) = (1, 4)

A.4 Cyclotomic Constants for n = 8

The groundwork for calculating the cyclotomic constants for n = 8 was laid down by
Dickson, who presented criteria in the form of a set of simultaneous equations for the
calculation of the constants [25, pp. 410-413]. Lehmer used Dickson’s results to calculate
the cyclotomic constants specifically [48, pp. 115-117]. For n = 8 and prime p = 8f + 1
the cyclotomic constants depend on the quadratic partitions

p = x2 + 4y2 and p = a2 + 2b2 (A.3)
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where x, y, a, b are all integers and x ≡ a ≡ 1 (mod 4).

f even (p = 16α+ 1), 2 is a biquadratic residue of p:
64(0, 3) = p− 7 + 2x+ 4a− 16y + 16b
64(0, 4) = p− 7− 2x+ 8a
64(0, 5) = p− 7 + 2x+ 4a+ 16y − 16b
64(1, 4) = p+ 1 + 2x− 4a
64(1, 5) = p+ 1 + 2x− 4a
64(1, 6) = p+ 1− 6x+ 4a
64(2, 4) = p+ 1− 2x
64(2, 5) = p+ 1 + 2x− 4a
(2, 6) = (2, 4)
64(2, 7) = p+ 1− 6x+ 4a
(3, 6) = (2, 5)
(3, 7) = (1, 4)
(4, 7) = (1, 5)

f even (p = 16α+ 1), 2 is a biquadratic nonresidue of p:
64(0, 3) = p− 7 + 2x+ 4a
64(0, 4) = p− 7− 10x
64(0, 5) = p− 7 + 2x+ 4a
64(1, 4) = p+ 1 + 2x− 4a+ 16y
64(1, 5) = p+ 1 + 2x− 4a− 16y
64(1, 6) = p+ 1 + 2x− 4a+ 16b
64(2, 5) = p+ 1− 6x+ 4a
64(2, 6) = p+ 1 + 6x+ 8a
64(2, 7) = p+ 1 + 2x− 4a− 16b
(3, 4) = (1, 5)
(3, 6) = (2, 5)
(3, 7) = (1, 4)
(4, 7) = (1, 5)

A.5 Cyclotomic Constants for n = 10

The cyclotomic constants for n = 10 are from Whiteman [67, pp. 107-109]. For n = 10 and
prime p = 10f + 1 the cyclotomic constants are given in terms of the following equations

16p = x2 + 50u2 + 50v2 + 125w2 (A.4)

xw = v2 − 4uv − u2 (A.5)

where u, v, w, x are all integers and x ≡ 1 (mod 5).
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f even, ind 2 ≡ 0 (mod 5):
200(1, 5) = 2p+ 2 + x+ 25w
200(2, 5) = 2p+ 2 + x− 25w

f even, ind 2 ≡ 1 (mod 5):
200(1, 5) = 2p+ 2 + x+ 50v + 25w
400(2, 5) = 4p+ 4− 23x+ 50u− 25w
200(3, 5) = 2p+ 2 + x− 25u− 25v

A.6 Cyclotomic Constants for n = 12

The cyclotomic constants for n = 12 are from Whiteman [68, pp. 69-73]. For n = 12 and
prime p = 12f + 1 the cyclotomic constants are given in terms of the following quadratic
partitions

p = x2 + 4y2 and p = A2 + 3B2 (A.6)

where x, y,A and B are integers, x ≡ 1 (mod 4) and A ≡ 1 (mod 6)

f even, ind 2 ≡ 2 (mod 6), ind 3 ≡ 2 (mod 4), c = β3 [68, Table 1]:
144(1, 6) = p+ 1 + 2A+ 12B + 8y
144(2, 6) = p+ 1− 4A− 6x+ 8y
144(4, 6) = p+ 1 + 2A+ 12B + 8y
144(5, 6) = p+ 1 + 8A− 12B + 6x+ 8y

f even, ind 2 ≡ 2 (mod 6), ind 3 ≡ 0 (mod 4), c = 1 [68, Table 3]:
144(1, 6) = p+ 1 + 6A− 8x
144(3, 6) = p+ 1− 6A+ 4x

f even, ind 2 ≡ 2 (mod 6), ind 3 ≡ 0 (mod 4), c = −1 [68, Table 4]:
144(1, 6) = p+ 1− 2A+ 24B
144(2, 6) = p+ 1 + 12B + 14x
144(3, 6) = p+ 1 + 10A− 12x
144(4, 6) = p+ 1 + 6A+ 8x
144(5, 6) = p+ 1 + 4A− 24B − 6x

f even, ind 2 ≡ 0 (mod 6), ind 3 ≡ 2 (mod 4), c = β3 [68, Table 7]:
144(1, 6) = p+ 1 + 2A+ 12B + 8y
144(5, 6) = p+ 1 + 2A− 12B + 8y

f even, ind 2 ≡ 0 (mod 6), ind 3 ≡ 0 (mod 4), c = 1 [68, Table 9]:
144(1, 6) = p+ 1 + 6A− 8x
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144(2, 6) = p+ 1− 2A

f even, ind 2 ≡ 0 (mod 6), ind 3 ≡ 0 (mod 4), c = −1 [68, Table 10]:
144(1, 6) = p+ 1− 2A+ 24B
144(2, 6) = p+ 1 + 6A+ 24B + 8x

A.7 Cyclotomic Constants for n = 14

The cyclotomic constants for n = 14 are from Muskat [52]. For n = 14 and prime
p = 14f+1 the cyclotomic constants are given in terms of the following quadratic partition

p = T 2 + 7U2 (A.7)

where T and U are integers and T ≡ 1 (mod 7). We define the quantity S as follows:

S =
6∑

i=0

Ciζ
i
7 (A.8)

where ζ7 = exp (2πi/7) and the Ci are integers, such that

SS̄ = |S|2 = p. (A.9)

There are two sets of cyclotomic constants: (a) ind 2 ≡ 0 (mod 7), (b) ind 2 6≡ 0
(mod 7). In the case where ind 2 6≡ 0 (mod 7) we let m = ind 2 and M ≡ m (mod 7)
with M odd, giving the following separate cases: m = M = 1; m = 2,M = 9; m = M = 3;
m = 4,M = 11; m = M = 5; m = 6,M = 13 (see Section 5.5 and [52, p. 271]).

f even, ind 2 ≡ 0 (mod 7):
196(1, 7) = 5p− 7 + 2T + 14U − 14C1 − 7C2 − 14C4 + 7C5

196(2, 7) = 5p− 7 + 2T + 14U − 14C1 − 14C2 + 7C3 − 7C4

196(3, 7) = 5p− 7 + 2T − 14U + 7C1 − 14C3 − 14C5 − 7C6

196(4, 7) = 5p− 7 + 2T + 14U − 7C1 − 14C2 − 14C4 + 7C6

196(5, 7) = 5p− 7 + 2T − 14U − 7C3 + 7C4 − 14C5 − 14C6

196(6, 7) = 5p− 7 + 2T − 14U + 7C2 − 14C3 − 7C5 − 14C6

f even, ind 2 6≡ 0 (mod 7):
196(M, 7) = 5p− 7 + 2T + 14U + 14Cm − 14C3m − 28C6m

196(2M, 7) = −44p+91+2T +14U +49Cm +63C2m +56C3m +49C4m +49C5m +49C6m

196(3M, 7) = 5p− 7 + 2T − 14U − 21Cm − 7C2m + 14C3m − 14C4m

196(4M, 7) = 5p− 7 + 2T + 14U − 14Cm − 28C2m + 7C4m + 7C6m

196(5M, 7) = 5p− 7 + 2T − 14U − 28C3m + 7C4m − 7C6m

196(6M, 7) = 5p− 7 + 2T − 14U − 7Cm − 7C2m − 28C4m + 14C6m
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A.8 Cyclotomic Constants for n = 18

The cyclotomic constants for n = 18 are from Baumert and Fredricksen [5, 6]. For n = 18
and prime p = 18f + 1 the cyclotomic constants are given in terms of the following
quadratic partition

4p = L2 + 27M2 (A.10)

where L and M are integers and L ≡ 7 (mod 9). We define the quantity S as follows:

S =
5∑

i=0

Ciζ
i
9 (A.11)

where ζ9 = exp (2πi/9) and the Ci are integers, such that

SS̄ = |S|2 = p. (A.12)

f even, ind 2 ≡ 0 (mod 9), ind 3 ≡ 0 (mod 3):
648(1, 9) = 2p+ 2 + 2L+ 18C1 − 18C4 − 18C5

648(2, 9) = 2p+ 2 + 2L− 18C1 + 18C2

648(3, 9) = 2p+ 2 + 2L− 54M + 54C3

648(4, 9) = 2p+ 2 + 2L− 18C2 + 18C4 + 18C5

648(6, 9) = 2p+ 2 + 2L+ 54M − 54C3

f even, ind 2 ≡ 0 (mod 9), ind 3 ≡ 1 (mod 3):
648(1, 9) = 2p+ 2 + 2L− 18C1 + 36C2 − 18C4 − 18C5

648(2, 9) = 2p+ 2 + 2L− 18C1 − 18C2 − 36C4

648(3, 9) = 2p+ 2 + 2L+ 54M + 54C3

648(5, 9) = 2p+ 2 + 2L− 36C1 + 18C2 + 54C4 − 18C5

648(6, 9) = 2p+ 2− 16L+ 36C0 − 18C3

648(7, 9) = 2p+ 2 + 2L− 18C1 − 18C2 + 36C4 + 36C5

648(8, 9) = 2p+ 2 + 2L+ 54C1 − 18C4 + 18C5

f even, ind 2 ≡ 1 (mod 9), ind 3 ≡ 0 (mod 3):
648(1, 9) = 2p+ 2 + 2L+ 18M + 72C1 + 36C3 − 72C4 + 36C5

648(3, 9) = 2p+ 2 + 5L− 9M − 6C0 − 24C1 + 12C2 + 12C3 + 12C4 − 42C5

648(4, 9) = 2p+ 2 + 2L+ 18M − 54C1 + 36C3 + 54C4

648(6, 9) = 2p+ 2 + 5L− 9M − 6C0 + 12C1 − 42C2 − 42C3 − 24C4 + 30C5

648(7, 9) = 2p+ 2 + 2L+ 18M − 18C1 + 36C3 + 18C4 − 36C5

f even, ind 2 ≡ 1 (mod 9), ind 3 ≡ 1 (mod 3):
648(1, 9) = 2p+ 2 + 2L+ 18M + 36C0 + 36C1 + 36C2 − 36C3 − 36C4

648(2, 9) = 2p+ 2− L− 63M − 48C0 − 12C1 + 6C2 + 42C3 − 12C4 − 12C5

648(3, 9) = 2p+ 2 + 5L− 9M − 42C0 − 24C1 + 12C2 + 48C3 + 12C4 − 6C5
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648(4, 9) = 2p+ 2 + 2L+ 18M + 36C0 + 18C1 − 36C2 − 36C3 − 18C4

648(5, 9) = 2p+ 2− L+ 45M + 6C0 − 12C1 + 6C2 + 42C3 + 24C4 + 6C5

648(6, 9) = 2p+ 2 + 5L− 9M − 42C0 + 12C1 − 6C2 − 6C3 − 24C4 − 6C5

648(7, 9) = 2p+ 2 + 2L+ 18M + 36C0 − 54C1 − 36C3 + 54C4

648(8, 9) = 2p+ 2− 19L− 9M + 42C0 + 24C1 − 12C2 + 24C3 − 12C4 + 6C5

f even, ind 2 ≡ 1 (mod 9), ind 3 ≡ 2 (mod 3):
648(1, 9) = 2p+ 2 + 2L+ 18M − 36C0

648(2, 9) = 2p+ 2− L+ 45M − 12C0 − 12C1 + 6C2 + 6C3 + 24C4 + 24C5

648(3, 9) = 2p+ 2 + 5L− 9M − 6C0 − 24C1 − 24C2 + 48C3 + 12C4 − 6C5

648(5, 9) = 2p+ 2− 19L− 9M + 78C0 + 24C1 − 30C2 − 66C3 − 12C4 + 6C5

648(6, 9) = 2p+ 2 + 5L− 9M − 6C0 + 12C1 − 6C2 − 6C3 − 24C4 + 30C5

648(7, 9) = 2p+ 2 + 2L+ 18M − 36C0 + 18C1 + 36C2 − 18C4 − 36C5

648(8, 9) = 2p+ 2− L− 63M + 42C0 − 12C1 + 24C2 − 48C3 − 12C4 − 30C5

f even, ind 2 ≡ 3 (mod 9), ind 3 ≡ 0 (mod 3):
648(1, 9) = 2p+ 2 + 2L+ 54C1 − 54C2 − 54C4 + 54C5

648(2, 9) = 2p+ 2 + 2L+ 36C1 + 54C2 + 18C4 − 36C5

648(3, 9) = 2p+ 2 + 2L+ 54M
648(4, 9) = 2p+ 2 + 2L+ 54C2 + 54C4

648(5, 9) = 2p+ 2 + 2L+ 18C1 − 18C2 − 54C4 + 54C5

648(7, 9) = 2p+ 2 + 2L− 54C1 − 54C5

648(8, 9) = 2p+ 2 + 2L− 54C1 − 36C2 + 36C4 − 18C5

f even, ind 2 ≡ 3 (mod 9), ind 3 ≡ 1 (mod 3):
648(1, 9) = 2p+ 2 + 2L+ 18C1 + 18C2 − 54C4 − 18C5

648(2, 9) = 2p+ 2 + 2L− 36C1 + 18C2 + 18C4 − 36C5

648(3, 9) = 2p+ 2− 16L+ 36C0 + 36C3

648(4, 9) = 2p+ 2 + 2L+ 36C1 − 18C2 + 18C4

648(5, 9) = 2p+ 2 + 2L+ 18C1 + 18C2 + 18C4 + 18C5

648(6, 9) = 2p+ 2 + 2L− 54M − 54C0

648(8, 9) = 2p+ 2 + 2L+ 18C1 − 36C2 − 36C4 + 18C5

f even, ind 2 ≡ 3 (mod 9), ind 3 ≡ 2 (mod 3):
648(1, 9) = 2p+ 2 + 2L+ 18C1 − 18C2 − 18C4 + 18C5

648(2, 9) = 2p+ 2 + 2L+ 18C2 + 18C4

648(3, 9) = 2p+ 2 + 2L− 54M
648(8, 9) = 2p+ 2 + 2L− 18C1 − 18C5
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Appendix B

Complementary QDS

Consider a QDS R of modulus p where R = {r1, r2, r3, . . . , rk} is composed of
the union of t cyclotomic classes derived from E = {c1, c2, . . . , ct}, and let mR =
{mr1,mr2,mr3, . . . ,mrk} (mod p) where m is a qualifier of the QDS. Now let A(i) be
a binary sequence, defined such that

A(i) =

{
1 if i ∈ R
0 if i /∈ R

(B.1)

and define another binary sequence, G(i) such that

G(i) =

{
1 if i ∈ mR
0 if i /∈ mR

. (B.2)

By the properties of a QDS we have

p−1∑
i=0

A(i)G(i+ j) =

{
N0 if j ≡ 0 (mod p)
λ if j 6≡ 0 (mod p)

(B.3)

where N0 is the number of zero differences and λ is the number of non-zero differences
between the elements of the sets R and mR (compare Equation (7.10)). Now, if we let
R∗ be the complement of R, we now have R∗ = Zp − R, composed of the residue classes
E∗ = Zn − E with the residue zero. Here the corresponding sets A∗(i) and G∗(j) are
simply obtained by replacing zeroes for ones in Equations (B.1) and (B.2), and vice-versa.
It can be readily seen that this transformation has the effect of simply altering the values
of the double summation in Equation (B.3) to give, say, N∗

0 and λ∗. Therefore, we now
have a MQDS R∗, which is simply the complement of the original QDS, R.
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