
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

XCorpus – An executable Corpus of
Java Programs

Jens Dietricha Henrik Scholeb Li Suic Ewan Temperod

a. Massey University, Palmerston North, New Zealand

b. Technical University of Dresden, Dresden, Germany

c. Massey University, Palmerston North, New Zealand

d. The University of Auckland, Auckland, New Zealand

Abstract Empirical studies on code require standardized datasets of signif-
icant size extracted from real-world programs in order to be reproducible
and generalisable. We argue that there is a need for such data sets that
are executable and can therefore be used for experiments using static and
dynamic analysis. A harness for such a data set should have high coverage
in order to facilitate the construction of comprehensive models of program
execution.

We present XCorpus, a set of 76 executable, real-world Java programs,
including a subset of 70 programs from the Qualitas Corpus. XCorpus
uses a harness that is a combination of built-in and generated test cases,
resulting in a branch coverage that is significantly better than what is
available from DaCapo.

Keywords data set, benchmark, Java, empirical study, program analysis,
test case generation, test coverage, dynamic program analysis

1 Introduction

Like all engineering disciplines, software engineering relies heavily on measurement.
The advent of code repositories such as SourceForge [sou], GitHub [git] (for source
code), and Maven [Mav] (for deployment artifacts) has given researchers in software
engineering and programming languages access to large amounts of data to study.
This allows them to gain a better understanding of the characteristics of real-world
software, i.e., what it looks like and how measurements taken on code correlate to
quality attributes.

Jens Dietrich, Henrik Schole, Li Sui, Ewan Tempero. XCorpus – An executable Corpus of Java
Programs. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In Journal of
Object Technology, vol. 16, no. 4, 2017, pages 1:1–24. doi:10.5381/jot.2017.16.3.a1

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.2017.16.3.a1
http://dx.doi.org/10.5381/jot.2017.16.3.a1
http://dx.doi.org/10.5381/jot.2017.16.3.a1

2 · jd hs ls et

Recently, there has been an increased emphasis on the reproducibility and gen-
eralisability of results obtained from empirical studies [CP16, Pen11]. In particular,
reproducibility is quickly becoming an expectation to publish in certain areas, exam-
ples include the artifact evaluations which are part of ACM SIGPLAN conferences
(including OOPSLA, POPL, PLDI and associated conferences like SAS, ECOOP and
ESEC/FSE) [KV15]. SIGMOD [Boi16] and the biostatistics journal [Pen11] use a
similar process, and there are efforts to standardise the artifact evaluation process 1.
It seems likely that this approach will be adapted by more conferences and journals in
the future.

An important aspect to facilitate reproducibility as well as generalisability (i.e., to
be able to generalise results to arbitrary programs of a certain class with reasonable
confidence) and comparability (the ability to compare results with other research) is
the use of standard data sets. The use of such data sets is common practice in many
areas of computing, examples include the UCI machine learning repository [Lic13] and
kaggle [kag]. In the context of studies on Java programs, two such data sets, DaCapo
[BGH+06] and the Qualitas Corpus [TAD+10], have become widely used in the last
10 years.

We observe that data sets consisting of programs can be classified using the
following categories according to their purpose:

1. Code Corpus: A corpus containing programs consisting of source and/or
byte code and perhaps additional resources, organised in a way that facilitates
static analysis. This can be achieved by using meta data and/or canonical file
structures.

2. Compilable: Static datasets with additional scripts that support the compila-
tion and building of datasets. This facilitates additional compile or build time
analyses, and requires that the respective compile time program dependencies
are resolved.

3. Executable: Compilable datasets with additional harnesses (drivers) to exercise
the respective programs, facilitating dynamic analyses.

4. Benchmarks: Executable datasets with harnesses that facilitate performance
studies. For instance, such harnesses include support for warmup runs and
repeated executions.

The Qualitas Corpus is a code corpus, while DaCapo is a benchmark. Both
datasets are curated, i.e. the programs used were actively selected to achieve certain
aims related to variety, size and other aspects. What is more, some manual work
was performed in order to facilitate experiments with those data sets. For instance,
DaCapo provides a customisable harness to execute the respective programs. Its
purpose is benchmarking, e.g., to compare the performance of different JVMs. The
Qualitas Corpus provides a canonical structure for programs and meta data that
facilitates measurements on code by means of static analysis.

The co-existence of several defacto standard data sets reflects their different focus
on benchmarks (DaCapo) and static analysis (Qualitas Corpus). We argue that
there are research questions where a dataset that combines the strength of DaCapo
(being executable) and Qualitas Corpus (being larger, more diverse and up-to-date) is
required. Use cases include studies that require a high level of soundness and precision

1http://www.artifact-eval.org/ [accessed 20 March 17]

Journal of Object Technology, vol. 16, no. 4, 2017

http://www.artifact-eval.org/
http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 3

of the program analysis used and achieve this by offsetting the shortcoming of a
particular analysis by combining it with a different analysis, or studies on program
transformations that use models built by means of static analysis, but assess the impact
of the transformation by executing programs before and after the transformation.

In this paper, we describe the construction of such a data set, the XCorpus.
According to our classification used above, the XCorpus is an executable dataset, but
not a benchmark. Use cases and requirements are discussed in detail in section 2. We
then review related work in section 3, followed by a discussion of the various aspects of
XCorpus in sections 4 (design) and 5 (implementation issues). We present the results
of some measurements on the data set in section 6, and provide basic instructions
how to obtain and use the XCorpus in section 7. A brief conclusion and discussion of
future work can be found in section 8.

2 Use Cases and Requirements

We describe two scenarios for the type of research that motivates the construction of
XCorpus. We then extract requirements for the data set from these use cases.

2.1 Assessing the Soundness and Precision of Static Program Analysis

Data sets such as the Qualitas Corpus consisting of large amounts of program code
are particularly suitable for static analysis, including the measurement of properties
by “looking at the code” without exercising it. While there is significant value in this,
there are many questions static analysis alone cannot answer.

Static analysis is often assumed to be inherently sound, but with limited precision
in order to maintain soundness [Ern03]. It has been noticed that in many real-world
scenarios certain aspects of the program under analysis are not captured by static
analysis and it is therefore also unsound [LSS+15]. This is often caused by the use
of dynamic programming language features such as reflection, dynamic proxies, class
loading, serialization and dynamic binding (invokedynamic). Those features are
notoriously difficult to capture by static analysis techniques [LSS+15]. There are many
analyses that are affected by this, including points-to and alias analysis, dependency-
related metrics, call-graph construction, and automated recognition of design- and
antipatterns. Programming language features that may cause unsoundness are seen
as exotic by some. Nevertheless they are heavily utilised by higher-level frameworks,
methods and patterns that are widely used in practice, such as dependency injection,
service locators, aspect-oriented programming, middleware for distributed computing
(CORBA, RMI, web services) and object-relational mapping frameworks (ORM).

Many static analyses are not precise either, as many algorithms trade-off precision
for speed. This is particularly common for analyses that are based on high-complexity
algorithms, such as the cubic bottleneck in points-to analysis [Rep98]. Precise context-
sensitive points-to analysis is known to be NP-hard [Hor97]. Cross-referencing static
analyses with dynamic analysis techniques where the program is executed and the
respective program is observed is a possible approach to assess the level of (under– or
over–) approximation. Examples are the observation of actual types of variables in
order to assess the precision of call graphs in languages that use dynamic dispatch,
and the accuracy of dependency-related metrics.

It is important to point out the limitation of the data set proposed here. Firstly, a
user of the corpus presented here must still write additional scripts to gather data from

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

4 · jd hs ls et

program execution, for instance, by injecting byte code that logs type information
(instrumentation), or by gathering heap or thread dumps (sampling). Secondly, while
cross-referencing static analysis with data from program execution can provide an
estimate of the soundness and precision of the respective static analysis, it cannot be
used to accurately measure it. We cannot expect that automated program execution
will provide a “gold standard” against which soundness and precision of static analysis
can be assessed, as we cannot guarantee that the execution of the program will visit
all possible, or even just all meaningful (from the point of view of the user) states.

However, the use of a corpus of real-world programs is useful to assess the perfor-
mance of static analysis tools on real-world programs.

2.2 Correctness of Program Transformations

The second use case for an executable corpus is to use it in order to build models
of program correctness. While there is a large body of research on formal models of
correctness and how to verify programs against them by means of static analysis, these
approaches are not always useful to assess real-world programs as these models do
not exist for these programs, and the creation of these models is often not feasible.
However, some notion of correctness is necessary to demonstrate the impact changes
to a program have on its behaviour. Examples where this is required include changes
to the compiler or the runtime, and the (automated) refactoring of code. Having
an executable corpus will allow researchers to demonstrate (although not formally
prove) limited correctness using the same approach used in industry: re-compile and
re-execute the code after the changes made, and observe its behaviour, preferably by
means of regression tests with assertions describing valid program states. Therefore,
an executable corpus can provide an approximated model of correctness. A variant
of this use case is to assess the impact of transformation on non-functional quality
attributes, such as performance.

Again, it is important to understand the limitation of the corpus here. While there
are programs with good test suites that describe the semantics of the program well,
this seems to be the exception. Therefore we decided to complement existing program
entry points by generated tests. Test generation is driven by coverage goals and the
algorithms to generate tests are optimised for this goal. But tests also describe program
semantics through their output: constraints that express the state of the program
after the execution of tests. This is usually done through assertions2. Generating
concise assertions is an unsolved problem, known as the Oracle problem in the testing
community [MH81]. There is a large body of research on oracle generation [BHM+15].
While generated oracles are valuable, we cannot expect that they precisely capture
the semantics of the program as intended by the programmer.

2.3 Requirements

We start the presentation of the corpus with a discussion of requirements. We
adopted the first two requirements directly from DaCapo. For requirement 2, we add
customisation.

2Assertions in tests are used to express postconditions and invariants. Some testing frameworks
including junit also provide an explicit syntax for preconditions via assumptions, although this feature
is not widely used in our experience.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 5

REQ1 Diverse real-world applications. Real-world here means in particular non-
synthetic programs, i.e. the programs were not just created for the purpose of
being used in this data set.

REQ2 Ease of use. We want the applications to be relatively easy to use, measure
and customise.

REQ3 High coverage. This is to provide enough information to build comprehensive
and detailed models of program execution as motivated by the use cases discussed
above.

REQ4 Presence of Assertions. This is to provide enough information to build
comprehensive and detailed models of program execution as motivated by use
case two.

REQ5 Currentness. We want the corpus to be fairly up-to-date. In particular, it
should contain programs using modern language features, which might cause
some of the issues discussed in Section 2.1.

REQ6 Large, yet manageable. We want the corpus to be of a significant size so that
results obtained are generalisable – this requires size and diversity. However, it
should still be manageable, both in terms of size and time needed to process it,
i.e. to exercise all programs. Size is a necessary, but not a sufficient condition
for representativeness. A larger, more diverse corpus will be more representative
than a subset it contains, so representativeness and generalisability are relative,
not absolute concepts.

REQ7 Extensibility. We want to provide a data set that is easy to extend. In
particular, the scripts used to setup and exercise the programs in the data set
should work for additional programs that can be “dropped-in” by a users. This
facilitates a live data set that allows users to create and share extensions, taking
advantage of the infrastructure provided by XCorpus.

3 Related Work

Empirical studies on code from real-world programs started in the seventies, notable ex-
amples include the work of Knuth on 400 FORTRAN programs [Knu71] and Chevance
and Heidet on 50 COBOL programs [CH78]. For the reminder of this section, we focus
on data sets and benchmarks containing Java programs.

DaCapo [BGH+06] is a small benchmark that had two major releases, 2006 and
2009. DaCapo 2009 has 14 real-world programs, including a customisable test harness
to exercise those programs. DaCapo 2006 contains only 11 programs. The small size of
the data set makes it difficult to generalise results obtained with it. An example for this
is the study on novel high-performance algorithms for points-to analysis by Dietrich
et al [DHS15]. Experiments on DaCapo 2009 show that that a top-down refinement
strategy to compute the fix point of the iterative points-to algorithm has a very high
precision. However, the same experiment conducted on bloat (part of DaCapo 2006,
but removed from DaCapo 2009) yields a very different result as precision of the same
algorithm is as low as 40 %. This example illustrates that experiments on small data
sets often miss important aspects that are present in real world programs.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

6 · jd hs ls et

The Qualitas Corpus [TAD+10] is a large collection of real-world Java programs.
The first publicly available version was published in 2008, and frequently updated
after this. The last edition at the time of writing this was published in 2013 (version
20130901). This edition consists of 754 versions of 112 programs. The Qualitas Corpus
does not provide a harness.

Qualitas.class [TMVB13] is an extension of the Qualitas Corpus version 20120401,
making the respective projects compilable. In particular, library dependencies are
resolved. Qualitas.class does not provide a harness, it is still mainly used for static
analysis.

Spec [spe] has published several Java benchmarks, in particular SPECjvm2008
[SCWP09]. SPECjvm2008 contains a combination of several executable synthetic data
sets and incorporates several real-world programs such as sunflow and derby. The
focus of the benchmark is on CPU-intensive tasks such as compression, encryption and
mathematical calculations such as matrix multiplication and floating point operations.
SPECjvm2008 also incorporates the SciMark 2.0 benchmark [PM00].

The Software-artifact Infrastructure Repository (SIR) [DER05] is a widely
used data set consisting of a combination of synthetic and real-world programs. SIR
contains programs implemented in different languages, 68 of them are Java programs,
and in some cases different versions of the same program are part of SIR. Some
(synthetic) programs are tiny (for instance, wronglock has only 38 LOC). SIR’s focus
is on testing, i.e., there are meta-data to expose test cases and fault data (both real
and seeded).

The Purdue Benchmark Suite (PBS) by Grothoff et al. [GPV01] was created
and used in a study of confined types. It is relatively small, consisting of 33 Java
systems of which 5 have more than 200 classes, and a total of 46,165 classes. It was
influential in the design of the Qualitas Corpus.

Table 1 summarised related data sets and benchmarks.
Table 1 – Overview of Java datasets and benchmarks (ver. - whether the data set con-

tains multiple versions of some programs, synth / r.w. - whether the program contains
synthetic / real-world programs).

name year updated programs harness ver synth rw
DaCapo 2006 2009 14 yes no no yes
Qualitas Corpus 2008 2013 112 no yes no yes
qualitas.class 2013 - 111 no no yes yes
Sir 2005 - 68 yes yes yes yes
SPECjvm2008 2008 2008 10 no yes yes yes
PBS 2001 - 33 no no no yes

In recent years, numerous studies have used open, un-curated repositories such
as Maven, GitHub and GoogleCode. Examples include the work of Raemakers et
al. on evolution and semantic versioning using data from Maven [RvDV16], Lopes’s
and Ossher’s work on how scale affects the structure of Java programs [LO15] using
projects hosted on GoogleCode, and the work by McDonnell et al. on API stability of
Android applications using projects from GitHub [MRK13].

To facilitate the work with various large repositories, Bajracharya et al. have
proposed sourcerer [BOL14], an infrastructure for analysis and search of various
online repositories. Sourcerer contains crawler plugins to collect projects from several
popular open source repositories.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 7

4 The Design of XCorpus

This section discusses the design decisions we made, driven by the requirements
presented in Section 2.3. Requirements such as ease of use and manageable size are
highly subjective. Therefore, we do not claim that we meet those requirements, this is
for future users to decide.

4.1 Diverse Real-World Applications

The core of the XCorpus is a subset of 70 programs from the Qualitas Corpus version
20130901. The criteria used to include programs in the corpus are discussed in
[TAD+10], and ensure that a wide range of diverse real-world applications are used.

However, the XCorpus does not contain all programs from the corpus for a variety
of reasons.

1. Blacklisted classes: Classes and entire packages are blacklisted by the evosuite
tool we used for test case generation3. Example of corpus programs affected by
this are cobertura and myfaces_core.

2. Unresolvable dependencies: We used the Maven repository to resolve depen-
dencies. In some cases, transitive dependency resolution failed. This was the
case for springframework and jasperreport.

3. Failing built-in tests. We excluded roller as all tests resulted in an un-
recoverable error (“Forked Java VM exited abnormally”).

4. Environment configuration. An example is hsqlda which requires a sql server
connection to be exercised.

5. Timeouts. As discussed below in Section 5.3, the XCorpus utilises automated
test case generation. This is very resource intensive, and in some cases generation
timed out after one week. An example is heritrix and we decided to exclude
those programs.

6. Test case generation failure. In one case (xmojo) test case generation failed.
As this program did not have any built-in tests either, we removed this from the
corpus.

4.2 Ease of Use

The corpus uses a canonical internal structure described in section 4.10 that facilitates
many kinds of analysis.

For the harness, we use a different approach to DaCapo, which uses a Java
executable. We provide standard ant [ant] build scripts with dedicated targets to
exercises the respective programs. There are project-specific local scripts to build and
exercise individual programs as well as a global script to exercise all programs. The
ant scripts can be customised to enable pre- and postprocessing, facilitating tasks like
instrumentation.

3https://github.com/EvoSuite/evosuite/blob/master/runtime/src/main/resources/
excluded.classes [accessed 20 March 17]

Journal of Object Technology, vol. 16, no. 4, 2017

https://github.com/EvoSuite/evosuite/blob/master/runtime/src/main/resources/excluded.classes
https://github.com/EvoSuite/evosuite/blob/master/runtime/src/main/resources/excluded.classes
http://dx.doi.org/10.5381/jot.2017.16.3.a1

8 · jd hs ls et

4.3 High Coverage

Generally, the coverage provided by built-in executables and test cases is very low,
and often there are no built-in tests or executables. We address this problem by
augmenting built-in tests with generated tests. This is sufficient to attain a better
coverage. Details are reported below in Section 6.

4.4 Presence of Assertions

While many programs contain assertions, either in the form of Java assert statements,
assertion checks in built-in test cases or some other contractual mechanisms such
as contract APIs, test case generation can be used to provide more assertions. As
discussed in Section 2.2, those have to be used with caution.

4.5 Currentness

The XCorpus is derived from the Qualitas Corpus version 20130901. This was the latest
version available when the project started, and compares favourable with DaCapo,
last updated in 2009. XCorpus also contains some additional programs with versions
released in 2016/17. Appendix B provides an overview of language features used by
programs in the corpus, it clearly demonstrates the use of modern language features
such as annotations, generics and lambdas.

4.6 Large, yet manageable

The XCorpus contains 76 programs, the total size of the distribution is 633.2 MB
(735.5 MB uncompressed). The size of the distribution is greatly reduced by using
declarative dependencies. As the harness consists of ant scripts, ant is also used to
build the respective projects. We manually created the respective scripts and represent
library dependencies by symbolic dependencies pointing to the Maven repository. This
is achieved by using ivy4. The dependencies are transparently resolved during build
before the programs are exercised.

We were able to run all generated tests on commodity hardware. We tested on
a Ubuntu 16.04 LTS with a 2.7 GHz Intel Core 7 Processor, using a Java(TM) SE
Runtime Environment (build 1.8.0_111). Executing all generated tests took 20 hours,
21 mins, and executing all built-in tests took 1 hour 33 min.

4.7 Extensibility

While it is desirable to have a stable core of programs to facilitate comparable and
reproducible research, it is equally important to have the flexibility to extend the data
set in order to add programs that have particular features or characteristics. The
XCorpus supports this through extension sets. Extension sets are programs stored
in a canonical data structure with a root folder named xcorpus-extension-<id>. The
XCorpus then offers support to work with these extensions, for instance, scripts to
run tests across the core data set and all present extensions.

4ant.apache.org/ivy/

Journal of Object Technology, vol. 16, no. 4, 2017

ant.apache.org/ivy/
http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 9

4.8 The Standard Extension

At the time of writing, XCorpus contains one extension xcorpus-extension-20170313,
we refer to it here as the standard extension. It consists of six programs, selected
based on popularity and the use of interesting dynamic language features that are
of particular interest for researchers interested in the differences between static and
dynamic analysis. An overview of the features used by programs in XCorpus in general
and in the standard extension in particular is provided in Appendix B.

1. guava-21.0 is a utility library that uses many modern language features and
system APIs, including lambdas / invokedynamic , sun.misc.Unsafe , weak
and soft references

2. mockito-all-1.10.19 is a testing framework that makes comprehensive use of
dynamic proxies

3. drools-7.0.0.Beta6 is a rule engine that compiles code at runtime using the
JSR199 compiler API [jsra]

4. asm-5.2 is a byte code analysis and manipulation framework

5. jmeter_core-3.1 is a stress test framework that uses an embedded language
through the JSR223 scripting API [jsrb]

6. jasperreports-1.1.0 is a reporting framework, we use a version compiled with the
dynamo compiler [JD16], this will create invokedynamic instructions not related
to lambdas and therefore not using LambdaMetaFactory for bootstrapping

4.9 Limitations

XCorpus does not explicitly support multiple runs of the same harness and JVM
warmup runs. It is therefore not suitable to run performance benchmarks.

4.10 The Structure of the XCorpus

Figure 1 shows the file structure of the XCorpus distribution. The /tools folder
contains the global scripts and several utility classes, in particular the assertion
adapters that will be discussed in section 5.4 in more detail. The global exercise script
/tools/build.xml has several targets to process all programs.

The /data/qualitas_corpus_20130901 contains the binaries and required re-
sources of the actual corpus projects. Each project has its own folder, such as
/data/qualitas_corpus_20130901/antlr-3.4. Project specific scripts and gener-
ated tests are located in folders <project>/.xcorpus. The source code of the gen-
erated tests is included. The respective source code folders are compressed in a file
evosuite-tests.zip.

Some corpus projects contain several binaries (jar files). An example is aspectj-1.6.9
with several binaries for its tools, runtime and weaver components. In these cases
we decided to keep the structure and create a layer of virtual subprojects that were
processed separately.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

10 · jd hs ls et

/

data misc

dacapo-9.12 featureanalysisqualitas_corpus_20130901 xcorpus-extension-20170313

tools

build.xml src lib res build

antlr-3.4 guava-21.0

.xcorpus

exercise.xml

ivy.xml

evosuite-tests.zip evosuite-report

statistics.csv

output

<timestamp1> <timestamp2>

junit-report jacoco-reports

project

...
<binaries and resources>

<other> <other>

Figure 1 – XCorpus folder structure (simplified). Exercise scripts are highlighted with
bold borders. Folders represented by boxes with dashed lines are generated during the
execution of exercise scripts, and are not part of the distribution.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 11

5 Implementation Issues

5.1 Scripts and Dependency Management

The exercise scripts are implemented as ant scripts. This ensures platform indepen-
dence, and strikes a good balance between comprehensibility and the flexibility to
customise and modularise scripts in particular when compared with similar tools such
as maven and gradle.

One particular design objective was to keep the size of the distribution manageable
(REQ6). In particular, the XCorpus is hosted on bitbucket.com, which imposes
an overall repository size limit. The distribution size was first reduced by making
the decision to not include source code, as pre-compiled binaries are available as
part of respective Qualitas Corpus distribution. Furthermore, libraries XCorpus
programs depend on are not distributed in most cases either, as most libraries can be
found in the Maven repository. We used ivy [ivy], an ant extension for automated
dependency management, in order to transparently resolve (potentially transitive)
library dependencies. We always reference specific versions instead of version ranges
in order to ensure reproducibility of results5.

The XCorpus does not support the compilation of programs from sources. This
has some impact on the usability of the corpus, in particular for the kind of appli-
cation discussed in Section 2.2 where the impact of source code transformations is
to be assessed. A user interested in such experiments would have to provide scripts
to compile programs, for instance, by integrating XCorpus with the Qualitas.class
project [TMVB13] that provides a compilable version of the Qualitas Corpus, or by
integrating project-specific build scripts.

5.2 Existing Program Entry Points

There are several ways to exercise a program. Firstly, there are a few programs
that do have main methods that can be directly executed without supplying runtime
parameters or input files. Examples include jgraph and jrat. Often, while invoking these
main methods will start a program, the program does not always execute automatically
in a meaningful way as it runs in an interactive mode where user input is required.
Typical examples are programs that use a graphical user interface, such as jrat. While
it is possible to simulate the events caused by user interaction, the setup is tedious and
has the side effect that XCorpus-based experiments must be conducted on a machine
that supports user interfaces6. Therefore, we decided against the use of main methods
as entry points to exercise the program.

An alternative approach is to use test cases. The use of unit / regression tests
is widely considered as best practice by Java programmers, and therefore many of
the corpus programs have built-in unit tests. If this was the case, we integrated these
tests into the execution scripts. We looked for junit test cases, and found 33 programs
with at least one junit test. For those programs, we found and integrated 31,906 test
cases (junit methods, counting methods in parametrised tests as one) organised in

5The use of version ranges is based on the idea of semantic versioning [sem] which stipulates that
certain version changes imply compatibility. However, several empirical studies have demonstrated
that developers do not adhere to the principles of semantic versioning and incompatible API changes
are common even if only the micro version of a program is changed [DJB14, RvDV16].

6For instance, a Linux machine would have to provide an xserver.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

12 · jd hs ls et

4,536 classes 7.
We are aware of at least one program (tapestry) that uses the alternative testNG

testing framework. We did not integrate these tests.
However, there is still a large number of programs without built-in tests, and even

if the program has tests, test coverage is often low, indicating that large parts of the
respective program are not exercised by tests.

5.3 Generated Tests

For this reason, we complemented built-in tests by generated tests using the evosuite
1.0.3 test generation framework [FA11]. Evosuite uses a search-based approach to
generate test suites. Test generation is guided by coverage criteria that can also be
customised [RCV+15]. By default, branch coverage is used as a criterion. It has
been demonstrated that evosuite can generate tests with high branch coverage [FA16].
There are multiple alternative coverage criteria supported by evosuite, including line,
method and top-level method coverage.

Test case generation with evosuite is highly customisable and new versions are
published frequently. Therefore, we provide generated test suites as part of the
distribution but acknowledge that some users might want to regenerate the tests with
settings that suit their particular needs. For this reason, the XCorpus distribution also
contains scripts that can be used to re-generated all tests. This is discussed further in
section 5.6.

We generated a total of 295,843 tests (junit methods) organised in 62,574 classes.
The respective source code can be found in the repository in the <project>/.xcorpus/
folders.

5.4 Dealing with Assertions

Evosuite can also generate assertions. Tests with generated assertions sometimes
fail during the execution of generated tests, for instance, due to non-deterministic
program execution. The XCorpus provides a built-in mechanism to disable assertions
in generated tests by using the AssertionAdapter. The adapter uses standard JUnit
assertions if assertion checking is enabled, and ignores assertions otherwise. The
respective setting is an entry in /tools/res/commons.properties, and is used by
the global exercise script as well as by the local, project-specific scripts.

5.5 Dealing with Exceptions and Errors

The execution of Java programs can fail for many reasons. This results in exceptions
being thrown, usually runtime exceptions, indicating that the program has reached
an illegal state. Programs may also fail with checked exceptions, for instance if main
is declared with a throws Exception clause, or with errors, indicating problems in
the JVM, usually related to memory allocation (insufficient heap or stack space) or
linking.

In order to build some fault tolerance into the exercise scripts, unit tests are
executed with the ant junit task with the fork flag set to true, and forkMode using
the default perTest value. This means that each tests is executed in a separate JVM
instance, and exceptions and errors during test execution will not prevent other tests

7The respective script to count builit-in and generated tests is available from the
/misc/featureanalysis folder in the XCorpus repository.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 13

from being executed. Two parameters can be configured to set the timeout of forked
JVMs, and the amount of heap memory forked JVMs can use.

A drawback of this design is that some operating systems with a graphical user
interface, in particular OSX, detect problems in crashed JVM instances and try to
notify the user with modal warning dialogues, therefore interrupting the execution of
the script. It is recommended to disable those OS functions, or to run experiments on
a headless server operating system.

5.6 Regenerating Test Cases

Users may want to re-generate tests in order to obtain better coverage. This could be
done either by (1) using an improved updated version of evosuite, (2) changing the
coverage criteria in the evosuite settings or (3) by granting more resources (time and
memory) to evosuite to generate tests.

To facilitate this, we added a generate-tests target to the exercise.xml script.
This is very expensive to run, and based on the configuration and the hardware used,
this script could take multiple weeks to complete.

However, this task can easily be parallelised by generating tests separately per
program.

6 Coverage Data

One of the main requirements for the XCorpus was to obtain a harness with high
coverage. To this end, we measured branch coverage for three data sets.

First, we used the jacoco coverage tool [jac] to measure branch coverage for the
programs in DaCapo 2009, exercised with the provided driver using the default
workload 8. The average coverage is 16.10%. Details are shown in figure 2. This
figure shows the projects ordered by coverage with their respective branch coverage
value. The programs with the highest coverage are tradebeans (25.82%) and tradesoap
(21.93%) 9, followed by sunflow (21.59%), the programs with the lowest coverage are
xalan (7.65%), jython (9.94%) and batik (10.05%).

Next, we measured the branch coverage of the 28 XCorpus programs with built-in
junit tests, again using jacoco. The average coverage is 34.42%, details are shown
in figure 3. The programs with the highest coverage are jFin_DateMath-R1.0.1
(77.60%), commons-collections-3.2.1 (75.72%) and checkstyle-5.1 (72.10%), whereas
freecol-0.10.7 (1.26%), wct-1.5.2 (1.66%) and findbugs-1.3.9 (3.96%) have all a very
low coverage.

We investigated the branch coverage of generated test cases using the evosuite-
generated branch coverage reports when test cases are generated. The result is shown
in figure 4.The average evosuite branch coverage for the 70 projects is 55.86%. Projects
with high coverage include jFin_DateMath-R1.0.1 (93.33%), emma-2.0.5312 (87.63%)
and commons-collections-3.2.1 (85.57%), the programs with the lowest coverage are

8Using the large workload does not generally lead to higher coverage, and the larger workload is
not available for all programs. These issues are discussed in [BSSM10] in more detail.

9The two daytrader benchmarks are described in http://dacapobench.org/daytrader.html [ac-
cessed 30 March 17]. Both tradebeans and tradesoap use the same server workload but interact with
the server using a web client via soap (tradesoap) or a direct api (tradebeans), respectively. The use
of different client packages explains the difference in the coverage values measured. There is also a
small difference in coverage for the daytrader core package org.apache.geronimo.samples.daytrader
caused by the precense of an additional method TradeAction#runDaCapoTrade in tradesoap.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dacapobench.org/daytrader.html
http://dx.doi.org/10.5381/jot.2017.16.3.a1

14 · jd hs ls et

Figure 2 – Branch coverage of DaCapo programs exercised with the DaCapo harness with
the default workload (as reported by jacoco)

Figure 3 – Branch coverage of programs from the XCorpus taken from the qualitas corpus,
exercised using built-in tests (as reported by jacoco)

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 15

Figure 4 – Branch coverage of programs from the XCorpus taken from the qualitas corpus,
exercised using generated tests (as reported by evosuite)

freecs-1.3.20100406 (20.87%), megamek-0.35.18 (25.75%) and jparse-0.96 (32.08%).
These results are consistent with the results evosuite has achieved in the recent SBST
competition, reported in [FA16]. These results clearly show that generated test cases
yield high coverage. This should allow building models that can provide a good
approximation of all possible program behaviours.

Finally, we measured the coverage for the projects in the standard extension
separately. The average coverage is high with 62.35 % for built-in and 60.25 % for
generated tests. Details are shown in figures 5 and 6, respectively. We do not include
built-in tests for jasperreports because we use a version that was compiled with dynamo
compiler [JD16].

7 Obtaining and Using the XCorpus

7.1 Obtaining the Corpus

The XCorpus can be cloned from a mercurial repository using the following command:

hg clone https://jensdietrich@bitbucket.org/jensdietrich/xcorpus

On the project web site, the current version can be found. To obtain a certain
version, the corpus should be cloned using the -u option, such as:

hg clone https://bitbucket.org/jensdietrich/xcorpus -u 1.0.0

This will create the file structure shown in figure 1 on the local hard drive. We
plan to actively maintain and update the corpus and release new versions, an explicit
(semantic) versioning policy can be found in Appendix C.

7.2 Using the Corpus

7.2.1 Stability of Execution Environment

Given the large number of tests being executed, the actual test results might differ
between execution platforms and potentially even between execution runs on the same

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

16 · jd hs ls et

Figure 5 – Branch coverage of programs from the standard extension, exercised using built-
in tests (as reported by jacoco)

Figure 6 – Branch coverage of programs from the standard extension, exercised using gener-
ated tests (as reported by evosuite)

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 17

platform. While this might sound unsatisfactory, we believe it is unavoidable given
the size and the complexity of the corpus. Some of the programs have dependencies
to certain operation systems and configurations (e.g., whether a xserver is available),
some long running tests might time out on some slower system, but succeed on faster
systems, and some programs have non-deterministic features.

To exercise the XCorpus, two aspects are desirable from the users point of view:
speed and stability of results. We describe two methods how to use the XCorpus, each
representing a different trade-off between those two qualities.

7.2.2 Native Execution

To use the corpus directly using Java on the host operating system, the following
software must be installed :

1. Java 8 must be installed and the java and javac executables must be in the path

2. ant-1.9.7 or better, ANT_HOME set to point to the ant installation root folder,
and the ant executable must be in the path

3. ivy-2.4.0, junit-4.12.jar and hamcrest-1.3.jar must be installed by copying the
jar into $ANT_HOME/lib

To run the tests for a particular program, execute ant with the respective project-
specific build script <project>/.xcorpus/exercise.xml. There are three relevant
targets to run built-in tests (builtin-tests), generated tests (generated-tests) or
all tests (all-tests). For instance, the following command runs all built-in tests.

ant -f exercise.xml builtin-tests

Global scripts that can be used to exercise all programs are located in tools/-
build.xml. In particular, the run-all-test target exercises all tests in all programs.
The build scripts also contains targets to regenerate the evosuite tests. Test case
generation and execution can be customised in tools/res/commons.properties. In
particular, assertion checking can be switched on by editing this file, and the timeouts
and maximum heap size for the forked JVMs used to execute tests can be set.

The README.md file included in the distribution and the various wiki pages (https:
//bitbucket.org/jensdietrich/xcorpus/wiki/Home) provide further information.

7.2.3 Execution in a Container

The distribution contains a Dockerfile to build a light-weight, linux-based container.
The detailed instructions are in the project README.md file. Using the docker
container has the advantage that a more stable and repeatable environment is provided.
In particular, fixed versions of the OpenJDK, ant and the various libraries required
are used.

8 Conclusion and Future Work

In this paper, we have introduced XCorpus, a data set suitable for both static and
dynamic analysis that addresses the shortcomings of several other data sets widely
used in studies on Java code.

An obvious limitation of XCorpus is that it will quickly age, and new versions have
to be compiled frequently in order to keep it relevant. At the moment, this process is

Journal of Object Technology, vol. 16, no. 4, 2017

https://bitbucket.org/jensdietrich/xcorpus/wiki/Home
https://bitbucket.org/jensdietrich/xcorpus/wiki/Home
http://dx.doi.org/10.5381/jot.2017.16.3.a1

18 · jd hs ls et

very expensive due to (1) the manual work required to build the projects and (2) the
computing resources required to generate the test cases. We expect that both aspects
can be addressed in the near future as many projects move to formats with a canonical
project structure and rich meta data (addressing (1)), and test case generation can be
automated using cloud computing.

9 Acknowledgement

This project was supported by a gift from Oracle Labs Australia to the first author.

A List of Programs in XCorpus

Table 2 – List of XCorpus programs

Programs from Qualitas Corpus 20130901
aoi-2.8.1 jasml-0.10 mvnforum-1.2.2-ga
aspectj-1.6.9 javacc-5.0 nekohtml-1.9.14
axion-1.0-M2 jedit-4.3.2 openjms-0.7.7-beta-1
batik-1.7 jena-2.6.3 oscache-2.4.1
c_jdbc-2.0.2 jext-5.0 picocontainer-2.10.2
castor-1.3.1 jFin_DateMath-R1.0.1 pmd-4.2.5
checkstyle-5.1 jfreechart-1.0.13 pooka-3.0-080505
colt-1.2.0 jgraph-5.13.0.0 proguard-4.5.1
commons-collections-3.2.1 jgraphpad-5.10.0.2 quartz-1.8.3
displaytag-1.2 jgrapht-0.8.1 quilt-0.6-a-5
drawswf-1.2.9 jgroups-2.10.0 sablecc-3.2
emma-2.0.5312 jhotdraw-7.5.1 sandmark-3.4
findbugs-1.3.9 jmoney-0.4.4 squirrel_sql-3.1.2
fitjava-1.1 jparse-0.96 sunflow-0.07.2
fitlibraryforfitnesse-20100806 jpf-1.5.1 tapestry-5.1.0.5
freecs-1.3.20100406 jrat-0.6 tomcat-7.0.2
galleon-2.3.0 jrefactory-2.9.19 trove-2.1.0
htmlunit-2.8 jspwiki-2.8.4 velocity-1.6.4
informa-0.7.0-alpha2 jsXe-04_beta wct-1.5.2
itext-5.0.3 log4j-1.2.16 webmail-0.7.10
Ivatagroupware-0.11.3 lucene-4.3.0 weka-3-7-9
jag-6.1 marauroa-3.8.1 xalan-2.7.1
james-2.2.0 megamek-0.35.18 xerces-2.10.0
freecol-0.10.7 10

Programs from xcorpus-extension-20170313
guava-21.0 mockito-all-1.10.19 drools-7.0.0.Beta6
asm-5.2 jmeter_core-3.1 jasperreports-1.1.0
Table 2 lists the names and versions of the programs contained in the XCorpus.

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 19

B Language Features used by Corpus Programs

Table 3 provides an overview of the features present in XCorpus programs. These
numbers were obtained by means of byte code analysis 11. We analysed properties
of implemented artifacts (superclasses, interfaces, method flags, ..), and call sites of
certain methods. This includes allocation sites represented as call sites of <init>.
We distinguish between programs from the Qualitas Corpus and programs from the
extension, and report the total number of programs in which a feature occurs, and the
average of occurrences for all programs that contain the respective feature at least
once.

The features were selected taking three aspects into account: (1) the presence of
byte code that make feature detection possible (for instance, the use of auto-boxing
or annotations with a SOURCE retention policy cannot be detected in byte code) (2)
the currentness of a features (for instance, the use of lambdas / invokedynamic is of
interest as lambdas were only introduced in Java version 8) (3) whether a feature is
relevant for studies related to one of the motivating use cases (for instance, the use of
reflection is of interest as it often hampers the soundness of static analysis).

This table is no replacements for a systematic study on “how language feature X is
used by real-world Java programs”, it is intended to illustrate the feature richness of
the programs in the XCorpus, and to inform the user on whether it is suitable for a
certain purpose.

The source code of the scripts used for feature extraction is available from the
XCorpus repository, and can easily be customised and extended to extract other
features.

11The respective scripts are available from the /misc/featureanalysis folder in the XCorpus
repository, these scripts also produce (rather large) CSV files with details about how features are
used by particular programs

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

20 · jd hs ls et

Table 3 – Features in programs included in the XCorpus (c.s.- call site, $j - java, $l - lang,
$u - util, $r - reflect, $jx - javax, # - method or constructor in, - wildcard)

qualit. corp. std. extension
group feature count avg count avg
proxies impl. of $j.$l.$r.InvocationHandler 10 1.40 3 1.67
proxies c.s. of $j.$l.$r.Proxy#newProxyInstance 10 1.60 3 1.33
reflection c.s. of $j.$l.$r.Method#invoke 47 15.60 5 9.00
reflection c.s. of $j.$l.$r.Constructor#newInstance 37 5.05 5 6.60
reflection c.s. of $j.$l.$r.Field#get* 29 3.83 4 6.25
reflection c.s. of $j.$l.$r.Field#set* 12 3.75 3 3.00
reflection c.s. of $j.$l.Class#newInstance 58 11.50 4 20.75
reflection c.s. of $j.beans.Introspector#* 13 3.62 2 4.00
reflection c.s. of $j.$u.ServiceLoader#* 0 n/a 1 2.00
reflection c.s. of $j.io.ObjectInputStream#* 39 22.79 5 26.40
reflection c.s. of $j.beans.XMLDecoder#* 5 4.60 0 n/a
classloading c.s. of $j.$l.ClassLoader#* 51 19.51 6 21.00
classloading c.s. of $j.security.SecureClassLoader#* 2 2.50 0 n/a
classloading c.s. of $j.net.URLClassLoader#* 20 4.80 1 2.00
classloading c.s. of $j.rmi.server.RMIClassLoader#* 0 n/a 0 n/a
invokedyn. subtype of any type in $j.$u.function 0 n/a 1 12.00
invokedyn. c.s. of $j.$u.function.*#* 0 n/a 2 59.50
invokedyn. c.s. of $j.$u.invoke.*#* 0 n/a 0 n/a
invokedyn. invokedynamic c.s. 0 n/a 3 430.67
generics generic method signature 34 446.26 4 2662.50
generics generic type signature 32 92.78 4 498.50
generics generic field signature 33 223.27 4 536.75
generics generic local variable signature 27 944.85 4 4941.75
dynlang c.s. of $jx.tools.JavaCompiler#* 0 n/a 1 2.00
dynlang c.s. of $jx.tools.ToolProvider#* 0 n/a 1 1.00
dynlang c.s. of $jx.script.*#* 0 n/a 1 37.00
reference c.s. of $j.$l.ref.WeakReference#* 23 13.04 4 7.50
reference c.s. of $j.$l.ref.SoftReference#* 11 13.55 2 4.00
reference c.s. of $j.$l.ref.PhantomReference#* 3 1.00 1 3.00
reference c.s. of $j.$u.WeakHashMap#* 19 10.42 2 1.00
threads c.s. of $j.$l.Thread#* 47 12.96 5 4.40
threads subclass of $j.$l.Thread 39 10.31 1 6.00
threads impl. of $j.$l.Runnable 44 26.18 5 13.60
threads c.s. of $j.$u.concurrent.Executors#* 7 1.71 3 3.67
annotation declares annotation 10 23.30 3 8.33
annotation uses type annotation 16 78.38 4 235.25
annotation uses field annotation 10 140.60 4 97.25
annotation uses method annotation 20 196.10 4 484.25
annotation uses type use annotation 0 n/a 0 n/a
annotation uses type parameter annotation 0 n/a 0 n/a
system native method definition 4 73.25 0 n/a
system c.s. of $j.$l.Runtime#* 40 13.23 4 6.00
system c.s. of sun.misc.Unsafe#* 0 n/a 1 30.00
misc synthetic method definition 68 233.71 6 993.00
misc bridge method definition 35 115.43 4 1001.50

Journal of Object Technology, vol. 16, no. 4, 2017

http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 21

C Version Policy

1. The first XCorpus release is version 1.0.0, this is the version this paper refers to.

2. The micro number is increased when non-functional changes take place, e.g.
when new analysis scripts, are added.

3. The minor number is increased when changes are made that affect the coverage
of any of the programs, e.g. when new tests or other entry points are integrated,
or when tests are re-generated.

4. The major number is increased when new programs (including new program
versions) are added to the dataset, or when existing programs are removed from
the dataset.

The version info is defined in the version property in tools/build.xml. This number
is kept consistent with repository tags.

References

[ant] Apache ant. http://ant.apache.org/, [accessed 25 May 2016].

[BGH+06] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, et al. The dacapo benchmarks: Java
benchmarking development and analysis. In Proceedings OOPSLA’06.
ACM, 2006.

[BHM+15] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and
Shin Yoo. The oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering, 41(5):507–525, 2015.

[Boi16] Ronald F. Boisvert. Incentivizing reproducibility. Communications of the
ACM, 59(10):5–5, September 2016.

[BOL14] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An
infrastructure for large-scale collection and analysis of open-source code.
Science of Computer Programming, 79:241–259, 2014.

[BSSM10] Eric Bodden, Andreas Sewe, Jan Sinschek, and Mira Mezini. Taming
reflection (extended version). Technical report, TUD-CS-2010-0066,
CASED, 2010.

[CH78] RJ Chevance and T Heidet. Static profile and dynamic behavior of cobol
programs. ACM SIGPLAN Notices, 13(4):44–57, 1978.

[CP16] Christian Collberg and Todd A Proebsting. Repeatability in computer
systems research. Communications of the ACM, 59(3):62–69, 2016.

[DER05] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering, 10(4):405–435,
2005.

[DHS15] Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. Giga-scale
exhaustive points-to analysis for java in under a minute. In Proceedings
OOPSLA’15. ACM, 2015.

Journal of Object Technology, vol. 16, no. 4, 2017

http://ant.apache.org/
http://dx.doi.org/10.5381/jot.2017.16.3.a1

22 · jd hs ls et

[DJB14] Jens Dietrich, Kamil Jezek, and Premek Brada. Broken promises: An
empirical study into evolution problems in java programs caused by
library upgrades. In Proceedings CSMR’14. IEEE, 2014.

[Ern03] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In
Proceedings WODA’03, 2003.

[FA11] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite gener-
ation for object-oriented software. In Proceedings FSE’11. ACM, 2011.

[FA16] Gordon Fraser and Andrea Arcuri. Evosuite at the sbst 2016 tool com-
petition. In Proceedings SBST’16. ACM, 2016.

[git] GitHub. https://github.com/, [accessed 9 October 2016].

[GPV01] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects
with confined types. In Proceedings OOPSLA’01. ACM, 2001.

[Hor97] Susan Horwitz. Precise flow-insensitive may-alias analysis is np-hard.
ACM Transactions on Programming Languages and Systems (TOPLAS),
19(1):1–6, 1997.

[ivy] Apache ivy. http://ant.apache.org/ivy/, [accessed 25 May 2016].

[jac] Jacoco java code coverage library. http://www.eclemma.org/jacoco/.
Accessed: 2016-09-30.

[JD16] Kamil Jezek and Jens Dietrich. Magic with dynamo–flexible cross-
component linking for java with invokedynamic. In Proceedings
ECOOP’16, volume 56. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2016.

[jsra] JSR 199: Java Compiler API. https://jcp.org/en/jsr/detail?id=
199 [accessed 12 March 17].

[jsrb] JSR 223: Scripting for the Java Platform. https://jcp.org/en/jsr/
detail?id=223 [accessed 12 March 17].

[kag] Kaggle datasets. https://www.kaggle.com/datasets. Accessed: 2016-
09-30.

[Knu71] Donald E Knuth. An empirical study of fortran programs. Software:
Practice and Experience, 1(2):105–133, 1971.

[KV15] Shriram Krishnamurthi and Jan Vitek. The real software crisis: Re-
peatability as a core value. Communications of the ACM, 58(3):34–36,
2015.

[Lic13] M. Lichman. UCI machine learning repository, 2013. URL: http://
archive.ics.uci.edu/ml.

[LO15] Cristina V. Lopes and Joel Ossher. How scale affects structure in java
programs. In Proceedings OOPSLA’15. ACM, 2015.

[LSS+15] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej
Lhoták, José Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,
Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. In defense
of soundiness: a manifesto. Communications of the ACM, 58(2):44–46,
2015.

[Mav] Apache maven. http://maven.apache.org/, [accessed 25 May 2016].

Journal of Object Technology, vol. 16, no. 4, 2017

https://github.com/
http://ant.apache.org/ivy/
http://www.eclemma.org/jacoco/
https://jcp.org/en/jsr/detail?id=199
https://jcp.org/en/jsr/detail?id=199
https://jcp.org/en/jsr/detail?id=223
https://jcp.org/en/jsr/detail?id=223
https://www.kaggle.com/datasets
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://maven.apache.org/
http://dx.doi.org/10.5381/jot.2017.16.3.a1

XCorpus An executable Corpus of Java Programs · 23

[MH81] Edward Miller and William E Howden. Tutorial, software testing &
validation techniques. IEEE Computer Society Press, 1981.

[MRK13] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study
of api stability and adoption in the android ecosystem. In Proceedings
ICSM’13. IEEE, 2013.

[Pen11] Roger D Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, 2011.

[PM00] Roldan Pozo and Bruce Miller. Scimark 2.0. http://math.nist.gov/
scimark2/credits.html, 2000. Accessed: 2016-09-30.

[RCV+15] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and
Andrea Arcuri. Combining multiple coverage criteria in search-based unit
test generation. In Proceedings SSBSE’15. Springer, 2015.

[Rep98] Thomas Reps. Program analysis via graph reachability. Information and
software technology, 40(11):701–726, 1998.

[RvDV16] S Raemaekers, A van Deursen, and J Visser. Semantic versioning and
impact of breaking changes in the maven repository. Journal of Systems
and Software, 2016.

[SCWP09] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.
Specjvm2008 performance characterization. In Proceedings SPEC Bench-
mark Workshop. Springer, 2009.

[sem] Semantic versioning 2.0.0. http://semver.org/, [accessed 25 May 2016].

[sou] sourceforge.net. https://sourceforge.net/, [accessed 9 October 2016].

[spe] The standard performance evaluation corporation. https://www.spec.
org/. Accessed: 2016-09-30.

[TAD+10] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. The qualitas corpus: A
curated collection of java code for empirical studies. In Proceedings
APSEC’10. IEEE, 2010.

[TMVB13] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and
Roberto S. Bigonha. Qualitas.class Corpus: A compiled version of the
Qualitas Corpus. Software Engineering Notes, 38(5):1–4, 2013.

Journal of Object Technology, vol. 16, no. 4, 2017

http://math.nist.gov/scimark2/credits.html
http://math.nist.gov/scimark2/credits.html
http://semver.org/
https://sourceforge.net/
https://www.spec.org/
https://www.spec.org/
http://dx.doi.org/10.5381/jot.2017.16.3.a1

24 · jd hs ls et

About the authors

Jens Dietrich is an Associate Professor at Massey University in
New Zealand. Jens’ research interests are in the areas of software
componentry and evolution and static analysis.

Contact him at j.b.dietrich@massey.ac.nz, or visit https:
//sites.google.com/site/jensdietrich/.

Henrik Schole studies computer science at the Technical Uni-
versity of Dresden. Henrik created the ant-based setup for the
XCorpus during an internship at Massey University in 2016.

Contact him at Henrik.Schole@gmx.de.

Li Sui is a PhD student at Massey University. Li’s research topic
is a study into the unsoundness of static analysis tools.

Contact him at leesui0207@gmail.com.

Ewan Tempero is Associate Professor at the University of Auck-
land. Ewan’s main area of research is of research is measuring
software design quality. Ewan manages the original Qualitas Cor-
pus.

Contact him at e.tempero@auckland.ac.nz, or visit https:
//www.cs.auckland.ac.nz/~ewan/.

Journal of Object Technology, vol. 16, no. 4, 2017

mailto:j.b.dietrich@massey.ac.nz
https://sites.google.com/site/jensdietrich/
https://sites.google.com/site/jensdietrich/
mailto:Henrik.Schole@gmx.de
mailto:leesui0207@gmail.com
mailto:e.tempero@auckland.ac.nz
https://www.cs.auckland.ac.nz/~ewan/
https://www.cs.auckland.ac.nz/~ewan/
http://dx.doi.org/10.5381/jot.2017.16.3.a1

MASSEY UNIVERSITY

MASSEY RESEARCH ONLINE http://mro.massey.ac.nz/

Massey Documents by Type Journal Articles

XCorpus – An executable corpus of java programs

Dietrich JB
2017-09-25

14/03/2024 - Downloaded from MASSEY RESEARCH ONLINE

