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Chapter 1

What’s this all about?

R is a statistical programming language and environment. The up-front learning curve is

somewhat steeper than other statistical software systems as R does not have the Graphical

User Interface (GUI) that other packages have; browsing the menus for inspiration is not

an option.

This means that R is best suited to users who know what they want, or in educational

situations where students are encouraged to know what they want before they play around

in a particular application. The difficulty most people will have when encountering R is

that knowing what you want is different to knowing how to get what you want. This

manual is aimed at developing a set of instructions for doing tasks that might be required

in all introductory statistics courses — basic data analysis, manipulation and presentation.

It is not intended to be a comprehensive textbook although some theory might be thrown

in to help explain particular topics when this is necessary.

This collection should be useful as a reference guide; it might be useful as a series of

tasks for undergraduate learning but is not specifically intended for that purpose. If there

is something you think you want to do that isn’t here let me know and I will endeavour to

add it into the next iteration.

I’ve tried to keep the order of topics fairly linear, but to be honest it’s difficult to talk

about some things in such a constrained order. Most chapters will state what is assumed

before the chapter is worked through. For example, if it’s a simple matter of loading the

data then it’s done on the spot, assuming the reader can work out what is happening for

themselves. The index is therefore an invaluable resource for finding where commands

were introduced or explained in greater detail. This means that jumping around should
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2 CHAPTER 1. WHAT’S THIS ALL ABOUT?

be possible. In the end, skipping chapters and sections of little interest is advisable; there

is so much you could learn about using R. You should avoid getting bogged down by

unimportant topics; note they are there and move on. There’s always time to come back

if you find you need to later.

1.1 Getting started

OK, lets assume that you’ve got this manual because you also have R and are ready to

go. If you haven’t installed R, then please do, and if you really know little about how to

choose the best options for the questions that get asked during the installation, choose the

default answer. I install new versions of R as they become available, and happily use the

default settings without any downstream pain and suffering.

1.2 Versions of R

R is a collaborative project and development is ongoing. Most users do not need to update

R with the release of every new version. I recommend staying with one R version for as

long as you can. I only change versions to keep up with the latest version my students

might be using and because some of the additional packages created by other R users are

built on recent versions.

As it happens, this manual was compiled using version 3.2.3 which was released on 10

December, 2015. All code should work on other versions equally well. Please report any

faults with the code to the author. Be warned though that if it works for me then it might

be because you have an antiquated version of R!



Chapter 2

LURN. . . To Work R Blind

OK. Cards on the table here. I am blind. Many people know this and perhaps that’s why

you’ve obtained this document in the first place. I use R as my software of preference

because I find it the most useful tool available to me; partly because I am blind, partly

because of the work I do as a lecturer. I have used other packages like SAS and SPlus

with almost as much success, Minitab and SPSS with differing levels of success (mostly

depending on the version of that software), and have tried a number of other options with

little or no success.

I do use Microsoft EXCEL at times, but not for doing the tasks described in this

document. I do not regard EXCEL as statistical software but do use it to do some basic

calculations and for editing large data sets. To this extent, EXCEL is just an example of a

spreadsheet application and has no advantage or disadvantage over any other spreadsheet

application. They are therefore all as equally useful/useless to me.

My software experiences have all been gained as a blind person. I had some useful vision

for handling print while I was an undergraduate but I found using low-vision software was

slower than operating as a blind person. Some of what follows might prove useful to people

using software which enlarges the screen’s contents but I have had little opportunity to

test any low-vision software applications. I would, of course, be interested in learning how

anyone using low-vision software gets on using R but the first two users I have worked

with were running R quite easily. The low-vision user of R can choose whether operating

as a sighted or blind user is better for them so reading through this chapter may prove

important if they are to make the best choice.

The material that follows in this chapter has been tested by blind users of R on all three

3



4 CHAPTER 2. LURN. . . TO WORK R BLIND

operating systems mentioned here. I am grateful to the organizers of the second Summer

University of the ICCHP, held in the Czech Republic from 29 July to 3 August 2011. This

gave me an opportunity to showcase R to a wide audience of blind students from many

European countries, and to verify the usefulness of the software on platforms other than

Windows.

If you’re a sighted user of R and want to know how your blind student is going to get

on, you need to talk to them. It might help to read on, but it is going to be much more

use if the blind student solves as many of their problems themselves — perhaps with your

supervision and assistance.

2.1 Screen readers

Blind people use screen reading software to listen to what gets printed on the screen.

Screen readers are good at processing text and generally less useful when a picture or

graph needs to be described. I use a product known as JAWS, but other commercial

screen readers should work equally well with R; I also test the usefulness of R with one

open source screen reader called NVDA. JAWS is a Windows application. Few blind people

are serious MacIntosh users, but some are taking up Linux as their operating system of

choice. The screen reader in many Linux distributions is called ORCA, and Macintosh

users have VoiceOver as part of the standard operating system.

This document assumes the blind user has a good working knowledge of their screen

reader and operating system. Most of us know where to find help with our screen reader

problems, and in any case the solution I have for using R as a blind person requires little

more than the basic knowledge for either screen reader or the Windows operating system.

2.2 R and braille displays

A braille display provides the blind user with information in refreshable braille. The

equipment that gets connected to the user’s computer is certainly not cheap but can make

access to otherwise printed information available to the blind user so that there can be

little confusion about the syntax of commands or output. Many blind programmers I have

spoken with, swear by their braille display for giving them true access to the printed word.
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Sound from screen readers is wonderful, but there are opportunities to make mistakes when

relying on sound alone.

At the 2011 Summer University I was able to see how students using a braille display

could use R. The results were very pleasing indeed. The Windows users with braille displays

relied on their screen reader to provide the information to the user via the braille display

and as the screen readers were working well with R already, the access was further improved

with braille.

A Linux user at the Summer University was able to make use of his braille display

without explicitly using a screen reader. The interesting aspect to this discovery was that

this means R is available to the deaf-blind user as well.

I still need to learn how well the braille display would work with R on a Mac, but expect

the experiment would show similarly pleasing outcomes.

2.3 Setting up R as a blind Windows user

Most R users install the software and run it as the default installation allows. The main file

that is executed is called “rgui.exe" but in spite of its name, little of R’s use is found within

the graphical user interface (GUI). Most R users operate by either typing commands one at

a time or by executing a whole bunch of commands together. In either case, the commands

are all generated by typing standard text somewhere. Standard text is of course totally

accessible to the blind user.

The standard R application window is not accessible to the blind user. We can hear a

command being typed in but can’t hear what gets returned. This behaviour is somewhat

strange as the sighted user sees what appears to be plain text on screen. Unfortunately

it’s not plain text and it’s also not easy to explain. Please send an email if you want a

more detailed explanation of the phenomenon. The most reassuring thing about the way

a screen reader interacts with the “rgui.exe" application is that when you try to close the

application using ALT+F4, JAWS will actually speak the dialogue perfectly well. It is in

fact the only dialogue that works this well.

Obviously, it’s not all bad news. R does come with a terminal window system and this

is accessible; it’s actually what the Linux user gets anyway! This terminal has the look and

feel of a standard command prompt window that many users will be familiar with. This

window is where all text is entered and where all non-graphical output will be printed.
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Your screen reader will speak the contents of the terminal window as output is added.

The default installation of R places a shortcut on the desktop. Once you’ve installed R in

the default way, you will need to edit this shortcut’s properties. Find it, hit “ALT+Enter"

and make sure you are on the dialogue box that is for the target file. The full path is given

here and the last element is “rgui.exe". Change this last bit to read “rterm.exe" and hit

OK.

Test it now. The shortcut should run R in a terminal window which looks like a DOS

window. You will hear an introduction message about R and ultimately the prompt which

is a greater than symbol. To get out of R, we need to type q() and answer a question

about saving the workspace. This should all be heard if things are going correctly. Note:

your answer needs to be followed by hitting the enter key.

Change in software is inevitable and R does undergo changes all the time. When version

2.10.0 came out the standard functionality of R’s help was fundamentally altered. In version

2.9.2 and before, typing ?Mean would open an internet browser with the help page. This was

very readable by screen reader software. In version 2.10.0, this default behaviour changed.

In version 2.10.1 however the developers fixed the problem. We expect this problem not

to arise again, but just in case here is the solution.

If for some reason, the help functionality doesn’t work as we suggest, you can force

the html help pages to be displayed by performing the following task. You will need to

find the folder where R was installed. It should be in the “Program Files" folder if you

installed using the default settings when you installed R. We are looking for a file called

Rprofile.site; it is in the “etc" folder. Open this file in your favourite text editor. We

are looking for a line that contains the text options(help_type="html"). If there is a

hash or number sign (call it what you will) at the beginning of the line, it will stop the

command from being executed. Remove the character so that the line starts with options.

Save the file.

If you’ve changed the shortcut on the desktop and checked the options for html help,

then open R and type ?mean. You should be able to see full html style help complete with

the ability to link to other help pages.
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2.3.1 Solution for the problem of the screen reader losing focus

I have encountered a problem where the screen reader loses focus when using the terminal

window. This happened under both Windows Vista and Windows 7 using the JAWS screen

reader. For more than two years, my only solution was to use the original RGui form of

R, and learn to redirect your output to an external file. See Sections 2.6 and 9.4 which

present a way of gaining access to the output. It is still a good idea to look at the suggested

material, but a solution has come to hand.

In January 2014, Dr Robert Erhardt (Assistant Professor of Mathematics at Wake

Forest University) contacted me with a solution. His suggestion is to hit the ALT key when

the focus gets lost. I’ve tested this with JAWS 14 and NVDA with R 3.0.2 running under

Windows 7 and it worked for me.

2.3.2 Super fast default installation of R

In May 2014 I learnt how to install R from a command line. Having downloaded the

installation file, I created a batch file with the single line R-3.1.0-win.exe /silent that

I put in the same folder. This single line is what could be typed in at a command prompt

to get R installed silently. Usin a batch file means that when the next version of R comes

out, I will only need to change the version number in the filename.

2.4 Setting up R as a blind Mac user

If you’re reading this section I assume you know how to work using a Mac. The following

instructions were provided to me by Bram Duvigneau(a blind Mac user himself) at the

Summer University in 2011, who had read this document and then given me some pointers

to share.

Like Windows users, Mac users will find the screen reader for Mac works better if you

use the terminal version of R instead of the GUI version. Having obtained the installer for

the Mac from CRAN, follow the following steps:

1. Install R using the .pkg installer package you downloaded.

2. Ignore the shortcut that is put in /Applications/R, as this is the GUI version.

3. Launch Terminal: press cmd+shift+u in Finder and open the Terminal application.
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4. Enter R (Note this is a capital R) to start the terminal version of R.

2.5 Setting up R as a blind Linux user

If you’re reading this section I assume you know how to work in Linux. This means you

know how you will obtain the installer for R yourself. Further I assume you know how your

screen reader works.

Once you’ve downloaded the installer and installed R, you should be able to run it by

typing “R" at the command prompt. Pretty simple really.

Many installations of Linux offer the user the opportunity to install directly so that the

download step is not explicitly required.

I have witnessed (first-hand) a blind Linux user operate R without the speech synthesis

turned on. His comfort in Linux with a braille display alone was sufficient.

There are a number of reasons why I’d like to be using Linux and R one day. Chief

among these is the ability to set up each R script file as an executable file that will run

without needing to actually open R itself.

Linux users have a much greater range of options available to them for improving the

accessibility of any software. Re-direction of output from an R session is an example.

2.6 Getting the most out of the R window

In this case I actually mean getting anything out of R! Windows users of screen readers

will find it difficult to copy and paste any output from R for insertion into a document.

The solution is to create a text file that contains the output from the current session.

Use of the sink() command is explained in Section 9.4. For the blind user, this text

file can be the means by which we gain access to R output as it is created, albeit in a

different window. Better ways of working do exist. This suggestion is great for users who

must work interactively with an open R session. Improved functionality for doing this is

discussed in Section 15.1, but if a blind user can move to working with R in batch mode

(one way or another) life will get even easier.

Once the sink is in place, the blind user opens the text file that is being created (and

continuously updated) in their preferred browser. After a set of commands that would
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normally print output in the terminal/console window have been issued, the blind user

only needs to refresh the browser so that the latest output appears.

The result is that the output appears in the sink file if the command was successfully

issued. Warning and error messages are printed in the terminal window and are read aloud

by the screen reader. Users of the R console window will need to review the screen to see

why nothing was added to the sink file.

2.7 More advanced ways of running R programs

Sometimes we will want to run a series of commands. Typing out lots of commands can

prove tedious and to be honest no sighted R user does it by issuing commands via the

command line one at a time.

R does have its own script window that the GUI version uses. In that window users

edit the set of commands they want to run. Sometimes it’s easier to obtain the code we

want from another R program we used before, or by copying commands from an alternate

source. R users often share programs and re-run them locally. Opening a R program in

the script window of the GUI version of R, is an option available to the blind user but the

outputs from running commands all gets pumped into the main console window where the

screen reader may not be able to read it all.

The most advanced users of R who have large jobs to run will run them on another

computer, and it is from this approach that my favourite method of running my R programs

was developed.

All necessary commands are typed up in a standard text file. R command files are

often given the single capital letter R as their extension but they are just plain text files,

editable in any text editor program you choose.

For the moment, assume a valid set of commands has been placed in the file testing.R

and this file has been placed in your working directory. You can see how the sighted R

user runs batch jobs and the use of multiple working directories in Chapter 10 on what I

think are good ideas.

My first approach uses what the geeks call “piping". We pipe our set of commands into

R and pipe out all output to a text file. This is done using a batch file. Batch files are just

text files themselves, with commands that are issued in a DOS window, sometimes known

as the command prompt. All we need to do is create a new text file and give it the name
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we want. This text file will have just one command in it which will look something like

"c:\program files\r\r-3.0.2\i386\bin\rterm.exe" --no-save < testing.R > testing.Rout

You’ll need to edit this command to suit your installation, especially the full path to the

executable file which will also depend on your operating system.

When you save this file, it can be called whatever you like but needs to have the bat

extension. I tend to keep the files together with the same name so would recommend

testing.batJust clicking on it in windows explorer runs the file, its single command,

and therefore the commands in the testing.R file. All output is then printed in the

testing.Rout file including the commands you issued. The output file is just plain text

and can be opened in a text editor or browser.

It’s certainly not essential that you come to grips with using the batch file approach

to run R in the background. It is fairly essential that you are comfortable writing up the

R commands in a text file and pulling them into R using the source() command if you

intend doing more than just simple jobs.

For the time-being, my recommendation is to run R using the terminal window until

you gain some confidence in its operation. Come back to the batch file approach once you

know that R is going to do what you need done.



Chapter 3

LURN. . . To Enter Data

The purpose of this chapter is to show the novice R user how R stores data by introducing

the shortcuts that make data entry a fairly simple task.

Entering screeds of data is not fun in any software tool. It’s more common for the R

user to have the data they need already available from another source. This is covered in

Chapter 4 on importing data from alternate sources.

Of course, if you really must enter data manually then you’d better read on; we can at

least try to make it as painless as possible.

3.1 Using R as a simple calculator

R can be used to do basic operations whose results do not get stored as objects. We can

also assign the answers to a variable. For example

x=100/7

x

## [1] 14.29

This means we can use the variable by name later. For example

12*x

## [1] 171.4

11
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We can also use some basic mathematical functions such as the logarithm and square

root via the log() and sqrt() commands — many other commands like this exist! For

example

x=sqrt(169)

y=log(500)

x*y

## [1] 80.79

OK, these manipulations are trivial, but they can be used in conjunction with other

data objects as we will see later. More detail on how to use R as a scientific calculator can

be found in Chapter 17.

3.2 A simple set of numbers

Operating on single values is rare. We are usually faced with numbers that we wish to use

as a set. Entering them as a set is therefore necessary. The most basic way of entering a

set of numbers is using the c() command. For example

y=c(1, 4, 9, 16, 25, 36, 49, 64, 81, 100)

y

## [1] 1 4 9 16 25 36 49 64 81 100

is the list of the squares of the first ten natural numbers. We can obtain the numbers

from 1 to 10 faster by issuing

x=1:10

x

## [1] 1 2 3 4 5 6 7 8 9 10

and therefore can obtain the desired set of the squares for the first ten natural numbers

using shorter code based on a simple sequence.



3.3. A SIMPLE SET OF TEXT VALUES 13

y=(1:10)^2

y

## [1] 1 4 9 16 25 36 49 64 81 100

This is much more efficient than typing out the actual results as done previously. Note

that the colon symbol is used for generating series of integers and that in terms of the order

of mathematical operators, it comes after the exponent; the brackets around the sequence

are essential. In this case, squaring a number is achieved through use of the carat symbol

followed by a 2.

3.3 A simple set of text values

The c() command is good for entering any kind of data. We may need to enter a set of

categories for example.

Names = c("Jonathan", "Elizabeth", "Peter", "Jenna", "Olivia", "Callum", "Annabelle",

Names

## [1] "Jonathan" "Elizabeth" "Peter" "Jenna"

## [5] "Olivia" "Callum" "Annabelle" "Cordelia"

Note two important features of this command. I capitalized the variable name here

on purpose. The vast majority of R commands are in lower case and there is one called

“names". I don’t want to confuse my data and an existing R command so my preference

is to use an upper case letter on the front of all my variable names that mean anything.

The second point is that the character-valued data I entered were encapsulated by quote

marks. This means that the actual names (mine, my last dog and some family members)

were stored. If I had omitted the quote marks, R would have looked for variables with the

appropriate names — not defined in this instance. You could remove a quote or two to see

what happens if you must.
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3.4 Logical indicators

R often uses logical indicators to tell us something. These variables take the values “TRUE"

or “FALSE".

Human = c(TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE)

You might suspect that this variable tells you if the name given in the Names variable

are for humans. The fourth name is therefore the dog. To extract the names of the humans

we use the command

Names[Human]

## [1] "Jonathan" "Elizabeth" "Peter" "Olivia"

## [5] "Callum" "Annabelle" "Cordelia"

Note here that the brackets used are square brackets. Use round brackets for functions,

square for elements of an object.

It’s pretty simple to extract the dog’s name:

Names[!Human]

## [1] "Jenna"

In this situation the exclamation mark should be read as “not" and therefore picks up

the elements where the logical variable is set to FALSE.

3.5 A note on subscripting

We’ve seen that we can find a subset of the set of names using the indicator variable, but

it’s frequently useful to be able to extract one or more elements by their location. For

example

Names[1]

## [1] "Jonathan"
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gives the first name, and

Names[2:3]

## [1] "Elizabeth" "Peter"

extracts the second and third names. The set of names entered is a vector and has

only one subscript to monitor. We will see how to subscript elements within a matrix or

data.frame later.

It’s also often necessary to understand how R has stored an object. The class()

command is useful, and so is the str() command. For example

class(Names)

## [1] "character"

str(Names)

## chr [1:8] "Jonathan" "Elizabeth" "Peter" ...

We can get the names of all the people that aren’t me by

Names[-1]

## [1] "Elizabeth" "Peter" "Jenna" "Olivia"

## [5] "Callum" "Annabelle" "Cordelia"

which of course assumes you know my name was given first. The subscripts have used

square brackets in these examples. The type (and number) of brackets is crucial. If you

open a bracket it must be closed, and closed by a bracket of the same type. Nesting

brackets is quite acceptable.

3.6 A patterned set of numbers

In many instances we need to generate series of values in a patterned way. Let’s say we

want to generate variables that represent the twenty working days over a four week period.
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We want a list of the week number, and then a list of the weekday names. In both situations

we will use the rep() command. It has three arguments; the list of values, the number of

times each value is to be repeated, and the number of times the whole series should be

repeated. The second and third of these arguments have default values so may not need

to be stated explicitly.

Week = rep(1:4, each=5)

Week

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

Day = rep(c("Mon", "Tue", "Wed", "Thu", "Fri"), times=4)

Day

## [1] "Mon" "Tue" "Wed" "Thu" "Fri" "Mon" "Tue" "Wed" "Thu"

## [10] "Fri" "Mon" "Tue" "Wed" "Thu" "Fri" "Mon" "Tue" "Wed"

## [19] "Thu" "Fri"

These two variables can be brought together with the corresponding data using the

data.frame() command illustrated later in this chapter.

3.7 Less pattern and more repetition

The rep() command is very flexible, and to be honest can either be a lot of fun to play

with or just one big headache. Let’s say we want to generate the series of numbers which

has one 1, two 2’s, three 3’s, four 4’s, and five 5’s. Instead of using the constant for the

number of times each element is repeated, we can choose the number of repeats for each

element.

rep(1:5, times=1:5)

## [1] 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5

Whatever you do you should observe the way your series is coming out. I would have

expected the each to be used in the last example not times for example — always check.
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3.8 An incomplete pattern

Let’s say we want a set of numbers to be cycled, but know that we won’t use the full

cycle. The rep() has an argument that can stop the process early for us. Try using the

length.out argument as follows

rep(c(1,2,4), times=3, length.out=8)

## [1] 1 2 4 1 2 4 1 2

3.9 Dates and times

The current time and date can be extracted using the date() command but this is not an

object that can be manipulated — it is a character string only.

date()

## [1] "Wed Jan 13 15:41:23 2016"

class(date())

## [1] "character"

It might be useful to print this information as part of your documentation of an analysis.

We can come back to an R session at a later time and to keep track of when we do things

might prove useful. You can see from the output given here the exact time and date this

document was compiled. This format is not to be confused with what we would store or

manipulate; it is just a print out of the current time and date. The Sys.Date() command

stores the same information as number.

Sys.Date()

## [1] "2016-01-13"

class(Sys.Date())

## [1] "Date"
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This print out is different to what needs to happen when we want to store numerical

values that represent the times and dates particular observations were taken. The base

distribution of R does not cater for extracting the date and time in simple numeric terms.

This can be achieved, but is beyond the scope of this chapter. It may prove best to store a

date using its three constituent parts (day, month, and year) as separate numeric variables.

Times should be stored using 24-hour format and be careful not to use a separator between

the hour and minute values. Mathematical operations should not be done on these variables

unless we convert the minutes to decimal fractions of an hour. In any situation you should

decide what you will do with the data before choosing the format you wish to store it in.

An example for storing details of months might be useful here.

Months = as.factor(c(3,6,9,12,3,6,9,12))

Months

## [1] 3 6 9 12 3 6 9 12

## Levels: 3 6 9 12

The as.factor() command tells R that these numbers are to be thought of as non-

numeric data. A factor also has an associated attribute called levels. We can edit the

levels directly and this will change our entire variable.

levels(Months) = c("Mar", "Jun", "Sep", "Dec")

Months

## [1] Mar Jun Sep Dec Mar Jun Sep Dec

## Levels: Mar Jun Sep Dec

As it happens, we didn’t need to actually explicitly state the month number when the

variable was first created, but it is good practice to keep things logical!

3.10 Larger data objects

There are two data object types that are quite similar but not the same. A matrix is

a two-dimensional array of values of the same type — numeric, character, or logical. A

data.frame looks like a matrix but can have variables of different types embedded within it.
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For example, we can create a new data.frame by combining the names and human status

variables created earlier using

data.frame(Names, Human)

## Names Human

## 1 Jonathan TRUE

## 2 Elizabeth TRUE

## 3 Peter TRUE

## 4 Jenna FALSE

## 5 Olivia TRUE

## 6 Callum TRUE

## 7 Annabelle TRUE

## 8 Cordelia TRUE

We would usually assign the results of this command to a named object for storage.

MyFirstDF = data.frame(Names, Human)

str(MyFirstDF)

## 'data.frame': 8 obs. of 2 variables:

## $ Names: Factor w/ 8 levels "Annabelle","Callum",..: 6 4 8 5 7 2 1 3

## $ Human: logi TRUE TRUE TRUE FALSE TRUE TRUE ...

Now we can see why we should not confuse names and Names. We can ask for the names

of the variables in a data.frame using the names() command. For example

names(MyFirstDF)

## [1] "Names" "Human"

We can also now think about how we might extract the fourth name from the data.frame

because this is the data structure we will work with the most. There are several alternatives.
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MyFirstDF[4,1]

## [1] Jenna

## 8 Levels: Annabelle Callum Cordelia Elizabeth ... Peter

MyFirstDF[4,"Names"]

## [1] Jenna

## 8 Levels: Annabelle Callum Cordelia Elizabeth ... Peter

MyFirstDF$Names[4]

## [1] Jenna

## 8 Levels: Annabelle Callum Cordelia Elizabeth ... Peter

Notice that as well as the result we wanted, R has also printed the levels of the Names

variable. This is because this variable has been determined to be a factor.

3.11 Appropriate data labelling

The construction of our first data.frame is slightly flawed. If the MyFirstDF data was

going to be for all those beings I am in contact with, the details should be related to the

individual concerned. In this situation, allowing the Names object to be data rather than

a label was probably not the wisest move. Let’s say that we want the year and month of

birth for the individuals in the example, and that they should form a new data.frame.

Year = c(1971, 1945, 1925, 2003, 1982, 2010, 2012, 2013)

Month = c("October", "October", "July", "October", "December", "April", "June", "June"

MySecondDF = data.frame(Year, Month, Human, row.names = Names)

str(MySecondDF)

## 'data.frame': 8 obs. of 3 variables:

## $ Year : num 1971 1945 1925 2003 1982 ...

## $ Month: Factor w/ 5 levels "April","December",..: 5 5 3 5 2 1 4 4

## $ Human: logi TRUE TRUE TRUE FALSE TRUE TRUE ...
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3.12 Other approaches

Data entry is tedious. Efficiency is therefore an important weapon in your armoury. When

we plan experiments we are often interested in obtaining an observation (or multiple ob-

servations) for every combination of some factors. In this simple example, imagine there

are three experimental factors, given the names H, W, and Sex, and that each factor can

take either of two levels. The expand.grid() command is a useful way to construct a

data.frame.

MyThirdDF = expand.grid(h=c(60,80), w=c(100, 300), sex=c("Male", "Female"))

MyThirdDF

## h w sex

## 1 60 100 Male

## 2 80 100 Male

## 3 60 300 Male

## 4 80 300 Male

## 5 60 100 Female

## 6 80 100 Female

## 7 60 300 Female

## 8 80 300 Female

I’ve used a full printout of the resulting data.frame instead of using the str() command

to show what R has created because the str() command gives additional information that

we do not require at this point.

Let’s say we wish to add a new variable to this data.frame; a task common when

designing an experiment. We can use the $ notation shown earlier in a new way. We add

a set of eight random values extracted from a standard normal distribution here as an

illustration using the rnorm() function.

MyThirdDF$Response = rnorm(8)

MyThirdDF

## h w sex Response

## 1 60 100 Male -0.53954
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## 2 80 100 Male 0.09504

## 3 60 300 Male 0.16238

## 4 80 300 Male -0.40040

## 5 60 100 Female 0.07082

## 6 80 100 Female 0.06128

## 7 60 300 Female 0.22646

## 8 80 300 Female -0.66805

I like to create random data when planning an analysis. In this instance, the data are

normally distributed which is not particularly important, but they are random which is

important. There are many other functions that generate random data from other distri-

butions; by convention, these functions all start with a letter “r" followed by a shortened

form of the distribution’s name.

I do this because data that will be collected should be appropriate for the intended

analysis to be conducted, and likewise the analysis should reflect the way data were col-

lected. Creation of the random data means I can write the R commands that will generate

the analysis, and once I have checked that the analysis is possible, I can then collect the

data. When the data has been collected, I can then re-process the commands using the

real data instead of the random data. This can save time during the analysis but more

importantly, I can be confident that the data collection and analysis were planned well.
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LURN. . . To Import Data

This chapter covers the methods required to pull data from external sources into R. If you

want to create data within R, you should be reading Chapter 3.

4.1 Data from external files

While I prefer to use files extracted from EXCEL with comma delimited values, R handles

many common formats such as plain text files with space or tab delimiters. You need

to know what format a file is, probably by opening it and actually seeing if it is as you

expect. It is too easy to rename a file with various extensions which may have meanings

in your operating system that have little relevance to R. A specific case in point is when

you are presented with a file having the txt extension, which is commonly assumed to be

a text file. We need to know if the first line of information in the file is actual data or the

headings for the columns of data. We also need to know what symbol is used to separate

the columns of the data; spaces, commas, or tabs are the most common options. Each of

these options has a distinct R command associated with it, but all of these commands link

back to the same read.table() command.

The various commands are as follows

Delimiter R command Common Extensions

space read.table() DAT, TXT

tab read.delim() TXT

comma read.csv() CSV, TXT

23
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Note that the txt extension appears as possible extensions for all delimiter types. R

will not assume any extension for these commands. You will need to explicitly state the

full filename including extension when using these commands. Some extensions will have

a default program associated with them by your operating system. For example, txt files

will be opened in Notepad under Windows, and if Microsoft Office is installed on your

machine, a csv file will be opened in Microsoft EXCEL.

To import a comma delimited file called chickens.csv, you would issue the following

command

Chickens = read.csv("chickens.csv")

In this most basic form, the read.csv() command will look for the chickens.csv file

in the current working directory, and import it into R and store it as a data.frame called

Chickens. The default settings of the read.csv() command are to have a header row in

the file and to have no row.names attribute associated with the data in the file. If your

data file already had a column for the names of the chickens as the first column, you would

issue the command

Chickens = read.csv("chickens.csv", row.names=1)

and if the data did not currently have any column headings you would issue the com-

mand

Chickens = read.csv("chickens.csv", header=FALSE)

There are other settings to consider which you can investigate using the help for the

read.csv() command by typing ?read.csv at the command prompt. This help page is

actually a combined help page for the family of commands described in this section.

The working above assumed you could put the data file into the correct working di-

rectory. So where was that? To find out where R thinks you are currently working, use

the getwd() command. Note that the output may look a little strange to some users,

especially Windows users. What do I mean? Look at the following:
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getwd()

## [1] "C:/Users/ajgodfre/Documents/Publications/LetsUseRNow"

The full path to the working directory where this chapter was processed has been

displayed, starting with the letter associated with the hard drive, followed by a colon.

Then the fun begins. The folder structure is represented using forward slash signs, not

the backslash used in Windows operating systems even though the processing of this work

is done using a Windows machine. The rest should be as expected and you could find

the right folder by looking in the appropriate place on your hard drive. The reason for

R’s use of the foward slash is not entirely simple to explain, but in short it is because the

standard backslash symbols has a special use in R.For the moment, the choice of slash

versus backslash is not important. It is important when we need to type out the path to

the location of a file for ourselves.

4.2 Data stored in another directory

I do try to keep each separate project in its own distinct directory, and moving the raw

data file to that directory makes sense. It does not make sense to have multiple copies of

a dataset though, so we need to know how to pull a file from a different working directory

into R.

When I displayed the current working directory in the previous section using the

getwd() command, we saw the way that R used forward slash symbols to denote the

hierarchy of folders on our hard drive.

If we know the complete specification of the location of a file, right the way from the

name of the hard drive down the directory tree to the actual location, the way we specify

the location needs to match the way R has printed a path. That is, we use the forward

slash symbol not a single backslash. If we do want to use a backslash symbol, we would

need to use a double backslash, not just a single one. It is better to use a single forward

slash symbol however. This is because the single forward slash presentation works for all

operating systems and means our code can be shared to users of all operating systems.

You might not plan to do this right now, but let’s use good habits from the start.

It is common for data to be stored in a folder that is close to the one we are working in.
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We might have a folder called MyData which is within the working directory (a subfolder),

or it might be a folder at the same level in the directory tree as the current working

directory. In either case, we don’t need to specify the location using the full path. The

term used to describe the location is a relative path because the reference to the location

is relative to the current location having focus (our working directory).

If our data set is stored in the file chickens.csv in a subfolder called MyData, we can

use

Chickens = read.csv("MyData/chickens.csv")

to pull it into our current workspace. This is actually shorthand for the more complete

form

Chickens = read.csv("./MyData/chickens.csv")

where the current folder is denoted using the single period followed by the first slash.

Personally, I would prefer to see the more complete form of this relative path being used

but it is personal preference only.

If the MyData folder was not a subfolder, but was on the same level in the directory

tree as our current working directory, we would use the shorthand symbol for the parent

directory (one level up the directory tree). This is done using a double period.

Chickens = read.csv("../MyData/chickens.csv")

Relative paths are therefore quite useful because they avoid having to type out long

paths. The full specification of apath might also become a problem when files for a project

are moved from one storage device to another. For example, you might want to take your

work to a friend, tutor, or colleague on a memory stick or other portable storage medium.

Relative path referencing makes your work very transferable and transportable.

4.3 Data saved by other statistical software

Many statistical software packages use their own file types for storing data. R is no dif-

ferent actually! The chief problem we have is to find a way of transferring data from one
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application to another. Like most other statistics programs, R doesn’t handle all other file

types. Some files can be imported into R using the commands in the foreign package, but

it is probably best just to avoid the problems from the start.

In many instances it will prove easiest to use copy and paste functionality within your

operating system to take the data from whatever original source it was given to you in

and put it into a suitable spreadsheet program. Then save it using the comma separated

values format and read the data into R using the commands given in the previous section.

I recommend trying to obtain the data in an easily imported file type rather than

attempting to use the functions in the foreign package.

4.4 Data from files stored on the internet

Sometimes a data set is made available via the internet. If you can obtain the full URL for

the downloadable data file then it can be entered into the read.csv() or read.table()

commands. This exercise is seldom necessary except for data files that you know will

be updated for distribution through the web. Some government agencies and financial

database services do this.

4.5 Data contained in contributed packages

The base installation of R includes a package called datasets. These data sets are useful

for testing code and writing examples for insertion into documents like this one. Data sets

contained in the datasets package are actually ready and waiting to be accessed, but often

we want to bring the data into our current workspace using a command such as

data(airquality)

str(airquality)

## 'data.frame': 153 obs. of 6 variables:

## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...

## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...

## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...

## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
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## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...

## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...

ls()

## [1] "airquality"

The data() command looks in the datasets package by default. If we wanted to get

some data from another package we would need to state the name of the package explicitly.

For example,

data(anorexia, package="MASS")

(The MASS package is already installed by default.)

Often we will be using a particular data set because it is good for demonstrating

functions within a particular package. If we are loading the package using the library()

command, to get access to the functions, we will have also made the data available. This is

why the data from the datasets is ready for use; this package is loaded by default whenever

R is started.

4.6 Data cleanliness

Rather ironically, the suggestion for including this section came from my mother. All too

frequently, data are entered by people who will not actually need to use the data themselves.

Sometimes data are entered by different people and then compiled into a single dataset

and the various codes that some sources of data may use are not necessarily in common

with all other users. Take for example, the many ways we might enter data for the gender

of individuals answering a survey. You might easily realise that an “M" means male, but R

needs consistency.

It is extremely important that we have knowledge of the format of the data we import.

Use of the str() command is a good start, and use of the head() command might also be

useful.

Here are some pointers to look out for:
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• Have you mixed the case of the text in your data? Remember that R is case sensitive

and that “R" is not the same as “r" in R.

• Has R tried to be too smart and interpretted plain text information as if you wanted

a factor instead? This occurs frequently with date values which are notorious for the

variety of formats people choose. If you have a factor when you wanted just plain

text, investigate the as.character() command which changes the format to being

character valued data.

• Have a multitude of codes been used for variables like gender? If so, R will decide

that the variable is a factor and list the different values the variable can take. The

levels of the factor can be re-assigned using the levels() command. See how this

is done on 18 and note that two elements of the assignment can be the same if the

current codes mean the same thing.

• Have extra spaces crept into the codes for levels of factors somehow? This happens

when an extra space occurs between words or is added on the end of a text string.

Often, this problem is difficult to spot visually as we are talking about white space —

R will find it though! Use the levels() command to fix this if the problem is small,

but consider using a find/replace tool in a spreadsheet application as an alternative.

• Have numbers come into R as text for some reason? This happens for a number

of reasons. A blank space being entered in the cell instead of a code for a missing

value for example. R would see this as a character string “ ", not a empty cell.

Another reason is that the missing value code is textual and not recognized by R.

There are ways around this problem using either find/replace techniques in your

spreadsheet application to delete the missing value codes, or by changing the way

the read.table() or read.csv() command reads your data file. See the help for

these commands if this is the case.



Chapter 5

LURN. . . To Manipulate your

Datasets

This chapter explains how to rearrange your data to meet your needs. Basic sorting, data

extraction and re-combination are discussed.

To get the most of this chapter, you should have worked through Chapter 3 on entering

data manually. You do not need to have completely read through Chapter 4 on importing

data as the examples here do not rely on its content. Ultimately, you will want to use the

material in Chapter 4 in conjunction with what follows here.

This chapter starts using the functionality that is built into R, but we also take a look

at an add-on package called dplyr that is becomeing more and more commonly used.

5.1 Sorting the data into a different order

The sort() command is illustrated in this section. It works for sorting a single vector of

numeric values into ascending or descending order.

> x=round(rnorm(10),2)

> sort(x)

[1] -0.89 -0.67 -0.54 -0.40 0.06 0.07 0.10 0.11 0.16

[10] 0.23

> sort(x, decreasing=TRUE)

30
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[1] 0.23 0.16 0.11 0.10 0.07 0.06 -0.40 -0.54 -0.67

[10] -0.89

We use the order() command to work with data that are non-numeric vectors, as well

as data in matrix or data.frame format. For example, we first sort the names of the people,

the dog and the cat found in my home.

> Home=c("Jonathan", "Olivia", "Callum", "Annabelle", "Cordelia", "Hershey", "Quake")

> order(Home)

[1] 4 3 5 6 1 2 7

> Home[order(Home)]

[1] "Annabelle" "Callum" "Cordelia" "Hershey"

[5] "Jonathan" "Olivia" "Quake"

So we see that the order() command doesn’t actually do the re-ordering after all,

but that we need to use the subscripts to extract the elements (the full set) from the

pre-existing set.

We do need to take note of how the upper and lower case letters will be ordered.

> SomeLetters=c("A", "B", "a", "c", "b", "C")

> SomeLetters[order(SomeLetters)]

[1] "a" "A" "b" "B" "c" "C"

The order() command can prove a useful method of re-ordering experimental data if

the run order has been stored as a variable. To illustrate this point we create a data.frame

with two elements.

> x=round(rnorm(10),2)

> x

[1] -0.35 -1.14 0.53 -0.46 -0.02 -1.13 -0.05 0.56 0.50

[10] -0.73

> RunOrder=sample(10)
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Note that the sample() command used here has created a random permutation of the

numbers one to ten.

> RunOrder

[1] 9 4 10 3 2 6 5 8 1 7

> Data=data.frame(x,RunOrder)

> Data[order(RunOrder),]

x RunOrder

9 0.50 1

5 -0.02 2

4 -0.46 3

2 -1.14 4

7 -0.05 5

6 -1.13 6

10 -0.73 7

8 0.56 8

1 -0.35 9

3 0.53 10

5.2 Extracting data using information on one variable

To illustrate the extraction of a set of observations from a data.frame, we make use of one of

the internal datasets provided with the base installation of R. We retreiv the airquality

dat using:

> data(airquality)

An explanation of this command is given in Section 4.5. This data set has its own help

page that can be viewed by typing ?airquality at the R prompt.

We can ask for the rows of this data that match specified details using subscripting.

Various operators exist for numerical comparisons; the simplest of which are < and >. For
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the purposes of brevity in our examples that follow, we use the nrow() command to show

how many observations in the data meet the specified conditions. The following commands

extract hte number of days where the wind speed was less than ten miles per hour and

then the temperature was less than 60 degF.

> nrow(airquality[airquality$Wind<10,])

[1] 81

> nrow(airquality[airquality$Temp<60,])

[1] 8

If we want to know how many observations have an exact value, we use == not a single

equals sign because it has a different meaning in R. The double equals sign is the one used

for comparisons. For example, the number of days when the temperature was recorded as

69 degF can be found using:

> nrow(airquality[airquality$Temp==69,])

[1] 3

5.3 Extracting data using information on more than

one variable

To print out the rows of the airquality data.frame where the temperature was less than

60 degrees and the wind was less than ten miles per hour, we would use the & operator

between the two conditions that identify which rows are required.

> airquality[airquality$Wind<10&airquality$Temp<60,]

Ozone Solar.R Wind Temp Month Day

21 1 8 9.7 59 5 21

27 NA NA 8.0 57 5 27
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5.4 Use of dplyr for data manipulation

The dplyr package is an alternative to the basic R functionality shown in this chapter.

The package creator (Hadley Wickham) wants his package to make data manipulation

easier for the end-user, and more fficient with respect to computation time. He has simpli-

fied data manipulations to a small set of commands: filter(), arrange(), sample_n(),

sample_frac(), mutate(), and transmute() are discussed here, while the others will be

discussed in Chapter Section 8.5 where they are more relevant.

You’ll need to install the package (see Section 14.1 for instructions) before running the

function

> library(dplyr)

Attaching package: ’dplyr’

The following objects are masked from ’package:stats’:

filter, lag

The following objects are masked from ’package:base’:

intersect, setdiff, setequal, union

to gain access to the commands just listed. Note that the head() command is used

in many of the following examples to ensure that only a handful of rows are printed out

instead of the full result. An alternative is to create a new data structure using the

tbl_df() command. Let’s make a second copy of the air quality data that is the same as

the original except for being made ready for use with the dplyr functions.

> airquality2 = tbl_df(airquality)

and then see the structure of the data using the glimpse() function that is a substitute

for the str() command we’ve used previously.

> glimpse(airquality)

Observations: 153

Variables: 6
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$ Ozone (int) 41, 36, 12, 18, NA, 28, 23, 19, 8, NA, ...

$ Solar.R (int) 190, 118, 149, 313, NA, NA, 299, 99, 19...

$ Wind (dbl) 7.4, 8.0, 12.6, 11.5, 14.3, 14.9, 8.6, ...

$ Temp (int) 67, 72, 74, 62, 56, 66, 65, 59, 61, 69,...

$ Month (int) 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, ...

$ Day (int) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...

The glimpse() command works on a data.frame or the new structure called a tbl_df

equally well.

The filter() and arrange() commands make many of the examples seen earlier in

this chapter much easier. The filter() command is for extraction, while arrange() is

for rearrangement. For example,

> filter(airquality, Wind<10&Temp<60)

Ozone Solar.R Wind Temp Month Day

1 1 8 9.7 59 5 21

2 NA NA 8.0 57 5 27

extracts the rows of the airquality data that meet the combinations of conditions

specified. Use of filter() means we don’t need the data.frame attached, or to gain access

to the variables in it using the dollar notation; we also don’t need the square brackets for

common subscripting tasks. We could have stored the outcome in a new data.frame if we

wished.

If we wanted to find the hottest days, we can use the arrange() command instead of

the order() command seen earlier.

> arrange(airquality2, desc(Temp))

Source: local data frame [153 x 6]

Ozone Solar.R Wind Temp Month Day

(int) (int) (dbl) (int) (int) (int)

1 76 203 9.7 97 8 28
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2 84 237 6.3 96 8 30

3 118 225 2.3 94 8 29

4 85 188 6.3 94 8 31

5 NA 259 10.9 93 6 11

6 73 183 2.8 93 9 3

7 91 189 4.6 93 9 4

8 NA 250 9.2 92 6 12

9 97 267 6.3 92 7 8

10 97 272 5.7 92 7 9

.. ... ... ... ... ... ...

We can add more variables to sort the data by if we like. We used the desc to get the

temperatures to be in descending order in this example.

The temperatures just listed are measured on the Fahrenheit scale. I live in a coun-

try that uses the centigrade scale so a conversion is needed to make these results more

interpretable. Enter the mutate() and transmute() commands.

> head(mutate(airquality, TempC = (Temp - 32) * 5 / 9))

Ozone Solar.R Wind Temp Month Day TempC

1 41 190 7.4 67 5 1 19.44

2 36 118 8.0 72 5 2 22.22

3 12 149 12.6 74 5 3 23.33

4 18 313 11.5 62 5 4 16.67

5 NA NA 14.3 56 5 5 13.33

6 28 NA 14.9 66 5 6 18.89

will create a new column in the returned data. Again, notice that we didn’t need to do

all that much to add a new column and that this code is perhaps a little simpler than the

alternative:

> airquality$TempC = (airquality$Temp - 32) * 5 / 9

which we saw earlier. The main difference between the two commands is that this one

will add the new colun to the original data.frame. In this instance the difference is probably
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fairly trivial, but when we use much larger data sets, the storage of results is important

because of speed and memory usage concerns.

The command

> transmute(airquality2, TempC = (Temp - 32) * 5 / 9)

Source: local data frame [153 x 1]

TempC

(dbl)

1 19.44

2 22.22

3 23.33

4 16.67

5 13.33

6 18.89

7 18.33

8 15.00

9 16.11

10 20.56

.. ...

created the new variable as a stand alone object.

Finally, the dplyr package also gives users two simple ways to extract a random sample

from a data.frame. The commands sample_n() and sample_frac() extract a sample of a

predetermined size and a specified fraction respectively. For example:

> sample_n(airquality, 4)

Ozone Solar.R Wind Temp Month Day

123 85 188 6.3 94 8 31

38 29 127 9.7 82 6 7

18 6 78 18.4 57 5 18

41 39 323 11.5 87 6 10
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and

> sample_frac(airquality, 0.05)

Ozone Solar.R Wind Temp Month Day

40 71 291 13.8 90 6 9

108 22 71 10.3 77 8 16

112 44 190 10.3 78 8 20

111 31 244 10.9 78 8 19

102 NA 222 8.6 92 8 10

31 37 279 7.4 76 5 31

68 77 276 5.1 88 7 7

30 115 223 5.7 79 5 30

This package is under active development and so we should expect more functionality

to become available, but there is also work being done to make the processing of data even

faster so that it can handle huge data sets.
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LURN. . . To Export a Dataset

This chapter assumes you’ve got some data to export, and I mean data; not results from

analyses which is discussed in Chapter 9. You may also wish to use this information once

you know how to tabulate various numerical summaries, discussed in Chapter 8.

6.1 Creating external files

This section is just the inverse action of importing data from an external file as discussed

in Chapter 4. All the read type commands have corresponding write commands.

If you read Chapter 4 you’ll know that my preference is to use files that are easily

transferred and easily checked for their accuracy using other software. In particular, I

prefer to create comma separated value (csv) files using the write.csv() command. If

there was a data.frame called Chickens in my current workspace that I wanted to export

for sharing with another user, I would issue the following command.

write.csv(Chickens, file="chickens.csv")

If R had created rownames for the data.frame, I might not want to include them. A

simple additional argument is all that is required.

write.csv(Chickens, file="chickens.csv", row.names=FALSE)

If another file type is required then the help page for write.csv() may be useful. This

page also gives the help on the write.table() command.

39
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6.2 Exporting data for use in alternative software

The better statistical software options allow users to import data from a range of sources

and file types. If for some (very strange) reason you need to create files in a specific format

for importing into another statistics package then you will need to investigate the foreign

package.
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LURN. . . To Create Simple Graphs

This chapter illustrates the construction of some basic exploratory data analysis graphs.

More complex graphs are considered in Chapter 13, although at times we will see graphs

presented in conjunction with particular statistical analysis techniques. We concentrate on

data taking continuous values initially, but a short section on graphs for discrete valued

variables is included at the end.

We will use the air quality data set that is distributed in the datasets package which

is part of the default installation of R. This data set is immediately accessible from your

R session and can be investigated using

> str(airquality)

'data.frame': 153 obs. of 6 variables:

$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...

$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...

$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...

$ Temp : int 67 72 74 62 56 66 65 59 61 69 ...

$ Month : int 5 5 5 5 5 5 5 5 5 5 ...

$ Day : int 1 2 3 4 5 6 7 8 9 10 ...

It is common for R users to access the variables after issuing the command

41
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> attach(airquality)

The detach() command undoes the attach() command. To remove the “attachment",

you will issue the command detach(airquality).

You could look at the help file for this data if you wanted to learn its complete story

using ?airquality. It tells us that the data are for daily readings of the following air

quality values for May 1, 1973 (a Tuesday) to September 30, 1973.

• Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

• Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms

from 0800 to 1200 hours at Central Park

• Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia

Airport

• Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

This data suits our purposes for the majority of examples in this chapter but we will also

need to look at another data set for the discussion of graphs for discrete valued variables.

7.1 Histograms

Like many graphical functions in R, the hist() command will attempt to make a suitably

attractive histogram with the minimum of input from the user. Exhibit 7.1 shows what

results from the simplest application of the hist() command.

Note that the figure created has default settings for the main title, axis labels and that

the number of classes (also called bins) and the cutoffs between them have been chosen

automatically. Various methods exist for these choices, but it is my recommendation that

the user find out what happens when the default settings are chosen and then alter only

what is actually necessary. For example, graphs in this document do not always need the

default title inserted so we need to suppress the default action if we want to remove the

title. We may also want more informative axis labels. Both of these alterations are done

for the creation of Exhibit 7.2.
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Exhibit 7.1 Histogram of Average wind speed in miles per hour at 0700 and 1000 hours

at LaGuardia Airport. Obtained from the air quality data set.

> hist(Wind)
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Exhibit 7.2 Histogram of Average wind speed at 0700 and 1000 hours at New York’s

LaGuardia Airport. Obtained from the air quality data set.

> hist(Wind, xlab="Average wind speed (mph)", main="")
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7.2 Basic annotations to graphs

Variable names should be informative but aren’t always what we want to see in graphs.

Notice that in Exhibit 7.2, I’ve made the x-axis label more informative by indicating the

units of measurement for the wind speed. As I already have a caption for my Exhibit, I

have chosen to remove the default title by adding the argument main="" to the hist()

command.

Aside from the alteration of the default axis label and the change in the main title for
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our histograms, we could make quite a number of changes. The hist() function allows

the user various options for the way the bars are filled in for example. It’s often worth

checking the default behaviour and then seeing if the resulting graph is what you want. If

it isn’t, then investigate your options by looking at the relevant help file; in this case type

?hist to get to the help for the hist() function.

Other graphs we create will show points marked with small hollow circles; we may

wish to make these circles smaller, joined by line segments, filled in, a different colour

or combinations of all of these attributes. The par() function should be investigated

to find out what is possible. Most graph functions allow the user the option of adding

arguments that will be passed directly to the par() function to obtain the same behaviour.

Investigate the graphical parameters at some stage using ?par but be warned, there are

lots of adjustments that can be made. Experimenting is really the only option when it

comes time to get your graph looking perfect.

Additional text and/or lines can be added to some graph types. It may prove useful to

show the line of best fit along with the data (illustrated in Chapter 12) for example. We’ll

see how to do the fancy things in Chapter 13.

7.3 Other univariate summary graphs

Histograms aren’t the “be all and end all" for univariate summary graphs. As a case in

point, they aren’t at all useful for small sample sizes. Various other graphs appear in

introductory statistics courses and that is why they appear here. I don’t mean to support

one over another at all — that’s up to you to determine.

7.3.1 Boxplots

Boxplots show us quickly the shape of the distribution of a sample. They show the median,

lower and upper quartiles, and the minimum and maximum of a sample. They will also

identify points as outliers if these points are too far from the bulk of values in the sample.

Exhibit 7.3 shows us the boxplot for the average wind speed at LaGuardia airport.

Notice that I have added an additional command to set up the size of the graph window.

The windows() command has various aliases — x11(), X11(), win.graph() — none of

which are required if the standard width and height of the graph window are acceptable.
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Exhibit 7.3 Boxplot of Average wind speed in miles per hour at 0700 and 1000 hours at

LaGuardia Airport. Obtained from the air quality data set.

5 10 15 20

Wind speed (mph)

You may wish to see why I’ve changed the height of the graph window by ignoring the

windows() command from Exhibit 7.3

Notice that I’ve changed the default orientation of the boxplot by adding the argument

horizontal=TRUE to the boxplot() command. I have also ensured the more informative

axis label for wind speed is included using the xlab argument in the command.

7.3.2 Comparative boxplots

Boxplots are often useful for comparing several small samples at once. We must ensure

that the same axis is used for the units of measure of interest and the easiest way to ensure

this is to put the various samples into the same graphic with only one axis rather than

having a series of single boxplots each having their own axis.

For the purposes of illustration, I want to show the distribution of the daily average

wind speeds for the five months separately. The comparative boxplot is created using a

formula to describe the relationship between the two variables that are referred to in our

graph. The use of the tilde symbol between Wind and Month could be read as something
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Exhibit 7.4 Comparative boxplots for the Average wind speed in miles per hour at 0700

and 1000 hours at LaGuardia Airport separated into groups for the months of May to

September 1973. Data was Obtained from the air quality data set.

> boxplot(Wind~Month, xlab="Month", ylab="Wind speed (mph)")
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Exhibit 7.5 Dotplot of the Average wind speed in miles per hour at 0700 and 1000 hours

at LaGuardia Airport. Obtained from the air quality data set.

5 10 15 20

like “average wind speed depends on the month" — well a theory that might be illustrated

in our graph anyway. Certainly it is the potential for this relationship to exist that may

be exposed through use of the comparative boxplot.

7.3.3 Dotplots

Dotplots aren’t everyone’s cup of tea but they are frequently offered as substitutes for

boxplots and histograms. Again, I chose to alter the default window size for the example

given in Exhibit 7.5 because I didn’t like the way the regular graph window presented this

graph.

Some people find the standard dotplot that R creates a little artificial. The spacing

between points horizontally and vertically is captured by the human eye, but this graph

is a single dimensional representation. Adding jitter to the data allows points where there

are ties to be represented by a pair of points on the graph rather than two perfectly

overlaid points which look like a single point. The jitter() command can be embedded

within the command for creation of a dotplot, but is not required for our example data as

there are no ties. If there were a large number of ties, we would have used the command

dotchart(jitter(Wind)).

7.3.4 Simple line plots

Occasionally it’s useful to see how a measurement changes over the time data were collected.

R does this very simply using the plot() command as shown in Exhibit 7.6 which is for
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Exhibit 7.6 Line plot of the maximum daily temperatures from 1 May to 30 September

1973, measured in degrees Fahrenheit, at LaGuardia Airport. Data were obtained from

the air quality data set.

> plot(Temp, ylim=c(50,100))
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the maximum daily air temperatures at LaGuardia airport from 1 May to 30 September

1973. We can see periods of time where the maximum temperatures were fairly consistent

and periods where it was fairly volatile. The middle of the graph is for the month of July

which is the height of summer in New York and as a consequence we expect to see few

points nearer the lower part of the graph during this period.

Notice that we have altered the range of values covered by the y-axis using a specific

command. The ylim has a corresponding xlim to create limits for the x-axis. Adding
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Exhibit 7.7 Line plot of the maximum daily temperatures from 1 May to 30 September

1973, measured in degrees Fahrenheit, at LaGuardia Airport. Data were obtained from

the air quality data set.

> plot(Temp, ylim=c(50,100), type="l")
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one more argument to the plot() command will change the plotting from points to lines

(shown in Exhibit 7.7). Combinations of points and lines can be obtained (not shown);

the user can also alter the style of the points and lines being printed.

There is a simpler way to generate time series plots which we demonstrate in Chapter ??.

It is easier to augment this line plot than the time series plot and in so doing, we will gain

an insight into how other plots like the time series plot are created.

7.4 Quantile-quantile plots

The most common quantile-quantile plot we might wish to create is used to investigate the

usefulness of the normal distribution to model a variable’s distribution. Normal quantiles

are created automatically for the normal quantile plot when it is generated using the

qqnorm() command. The default plot for this is shown in Exhibit 7.8.

If these data were normally distributed, the points on the plot would lie on a straight

line. The qqline() command adds the straight line to the plot to assist with determining

the linearity of the points.

7.5 Scatter plots

Scatter plots are created using the plot() command by one of two methods. Exhibit 7.9

was created using

> plot(Wind, Temp)

but the same plot can be generated using what is known as a formula. In this case,

only one argument is given to the plot() command but both variables of interest are in

that argument.

> plot(Temp~Wind)

The tilde symbol is often read as “. . . is distributed as. . . " but we might simplify this

to be read as “follows". This makes some sense as we generally create a scatter plot to see

if one variable follows the other; in this case we are seeing if temperature depends on wind

speed in some way.
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Exhibit 7.8 Normal probability plot of the Average wind speed in miles per hour at 0700

and 1000 hours at LaGuardia Airport. Obtained from the air quality data set.

> qqnorm(Wind)

> qqline(Wind)
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Exhibit 7.9 Scatter plot of the maximum daily temperature against the Average wind

speed at 0700 and 1000 hours, both recorded at LaGuardia Airport. Data were obtained

from the air quality data set.

> plot(Wind, Temp)
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7.6 Scatter plot matrices

A scatter plot matrix is just a matrix of scatter plots where each variable is plotted against

all other variables. This graphic is therefore very useful for a preliminary look at multi-

variate data. In R, we obtain this graphic using the pairs() command as illustrated in

Exhibit 7.10.

Only four of the variables within the air quality data have been used in this example

because the variables for the month and day take discrete values and therefore do not suit

scatter plots — take a look for yourself if you must but it’s probably better to think about

why this is the case before you look at the graphs. To select the four variables of interest, I

have created a data.frame with the variables I want included,; this data.frame() command

is then nested within the pairs() command.

Note that the names of the variables appear in the spaces on the leading diagonal and

that the graphs on either side of the diagonal plot the same data but with the axes reversed.

Sometimes the human eye will pick up a relationship when the data are presented one way

better than the other way.

7.7 Graphs for discrete valued variables

R does not contain many graphs for discrete valued variables.

7.7.1 Bar charts

If a variable is considered by R to be a factor, then the default action of the plot()

command is to construct a bar chart. This is illustrated using a data set which is part of

the default installation of R called state.region examined using

> str(state.region)

Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2 2 ...

> levels(state.region)

[1] "Northeast" "South" "North Central"

[4] "West"
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Exhibit 7.10 A scatter plot matrix of the numeric variables within the airquality data

set. .

> pairs(data.frame(Ozone, Solar.R, Wind, Temp))

Ozone
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Exhibit 7.11 A bar chart showing which of the regions each of the fifty U.S. states belongs

> plot(state.region)

Northeast South North Central West

0
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Given this variable is a factor with four levels it is well suited to presentation in a bar

chart, as seen in Exhibit 7.11.

This figure was created from the raw data, that is the regions for each of the fifty states

in the U.S. If we had summary data with counts for each of the categories, we would need

to use the barplot() command. The summary() command shows us how many states fall

into each category in this instance.

> summary(state.region)

Northeast South North Central West
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Exhibit 7.12 A bar chart showing which of the regions each of the fifty U.S. states belongs

> barplot(summary(state.region))

Northeast South North Central West
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These values are then plotted in Exhibit 7.12.

While this data set is rather trivial, it is useful for demonstrating one more feature.

Note that both in the output above and in Exhibit 7.11, the Western region is the last

category. To reorder the regions in the bar chart is actually fairly straight forward. All we

need to do is make a small addition to the existing commands.
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Exhibit 7.13 An improved bar chart showing which of the regions each of the fifty U.S.

states belongs

> barplot(summary(state.region)[c(4,2,3,1)])

West South North Central Northeast

0
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15

> summary(state.region)[c(4,2,3,1)]

West South North Central Northeast

13 16 12 9

and re-create the bar chart accordingly (see Exhibit 7.13).
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Exhibit 7.14 A pie chart showing which of the regions each of the fifty U.S. states belongs

> pie(summary(state.region))

Northeast

South

North Central West

7.7.2 Pie charts

OK, if you must do so, make a pie chart using the pie() command. Even the help for

this command says they are a bad representation for data, stating “Pie charts are a very

bad way of displaying information. The eye is good at judging linear measures and bad at

judging relative areas. A bar chart or dot chart is a preferable way of displaying this type

of data."

The pie chart for the state.region data is given in Exhibit 7.14.
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7.8 Closing

If you are carrying on working with R you might wish to remove direct access to the data

sets we used in this chapter by issuing the following commands

> detach(airquality)



Chapter 8

LURN. . . To Examine Data

Numerically

In this chapter we see how to obtain and present simple numerical summaries suitable for

describing data. The same data set used in Chapter 7 on creating graphs is used again.

8.1 Obtaining basic numerical summaries of data

The summary() command is a very useful tool. It behaves differently for R objects depend-

ing on the nature of the object it is working on. The air quality data we used for Chapter 7

for demonstrating basic graphing techniques is a data.frame object as evidenced by asking

R what class the object is using the class() command

> class(airquality)

[1] "data.frame"

Applying the summary() command to the air quality data gives:

> summary(airquality)

Ozone Solar.R Wind

Min. : 1.0 Min. : 7 Min. : 1.70

1st Qu.: 18.0 1st Qu.:116 1st Qu.: 7.40
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Median : 31.5 Median :205 Median : 9.70

Mean : 42.1 Mean :186 Mean : 9.96

3rd Qu.: 63.2 3rd Qu.:259 3rd Qu.:11.50

Max. :168.0 Max. :334 Max. :20.70

NA's :37 NA's :7

Temp Month Day

Min. :56.0 Min. :5.00 Min. : 1.0

1st Qu.:72.0 1st Qu.:6.00 1st Qu.: 8.0

Median :79.0 Median :7.00 Median :16.0

Mean :77.9 Mean :6.99 Mean :15.8

3rd Qu.:85.0 3rd Qu.:8.00 3rd Qu.:23.0

Max. :97.0 Max. :9.00 Max. :31.0

The summary() command finds the common numeric summary statistics for the continuous-

valued variables and does a particulary useless job on the variables for month and day. Well

it’s not really R’s fault. The month didn’t need to be stored numerically, but in any case

we got what we asked for! It’s not R’s fault we asked to be told what the minimum day

number was!

Notice that the summary() command extracted the minimum, maximum, median and

mean for the variables in the data.frame. These are all available using corresponding

min(), max(), median(), and mean() commands separately but they work in different

ways on data frames. For example we might have thought to use the mean() command

on a data.frame, but it is better practice to use the more specific colMeans() command

instead.

> colMeans(airquality[,1:4])

Ozone Solar.R Wind Temp

NA NA 9.958 77.882

> colMeans(airquality[,1:4], na.rm=TRUE)

Ozone Solar.R Wind Temp

42.129 185.932 9.958 77.882
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> mean(airquality[,1], na.rm=TRUE)

[1] 42.13

Note that I’ve told R which columns of the air quality data.frame to work with using

the appropriate subscripting code. I’ve also needed to tell R to ignore the missing data for

the two variables Ozone and Solar.R using the na.rm=TRUE. The output for the summary()

command did tell us how many values for each variable were missing. Recall that missing

values are represented by a “NA".

The min() and max() commands all work on the data by assuming we want the statistic

for the whole list of numbers over all columns. For example

> #median(airquality[,1:4], na.rm=TRUE)

> min(airquality[,1:4], na.rm=TRUE)

[1] 1

> max(airquality[,1:4], na.rm=TRUE)

[1] 334

It used to be possible to ask R to use the median(), in a command like this, but as of

version 2-14-0, an error message was returned instead of an answer.

We will need to see how to get the relevant medians, minima, and maxima for the

columns separately later in this chapter, but for now let’s see how the relevant summary

measures can be obtained for a single column of the air quality data. The attach()

command allows us direct access to the variables by name.

> attach(airquality)

> min(Temp)

[1] 56

> max(Wind)

[1] 20.7
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> median(Solar.R)

[1] NA

> median(Solar.R, na.rm=TRUE)

[1] 205

Notice that a consequence of missing values in our data is that some functions will

return the NA value. If we want the quantity returned to be estimated using the available

data we simply add the argument na.rm=TRUE which removes the values denoted with the

NA.

The first and third quartiles are not so easily extracted however. We can get the first

and third quartiles from the five number summary by extracting elements of the output

returned by the fivenum() command. For example

> fivenum(Ozone)

[1] 1.0 18.0 31.5 63.5 168.0

There are some minor differences between the methods used by the summary() and

fivenum() commands for the first and third quartiles. See the relevant help page using

?fivenum for an explanation.

Knowing how these commands work on simple sets of numbers is very useful for the

more elegant presentations in the following sections.

8.2 Obtaining slightly more elegant summaries

When preparing reports it is unlikely that we would want a single statistic all that often.

Rather, we are usually interested in exposing patterns or differences within the data. We

do this graphically but we may need to extract the exact quantities plotted in the graph

as well.

The tapply() command is very useful for creating tables of results. It has three

arguments; the main variable of interest, the grouping variable(s), and the function we
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want performed on each group within the data. It is of course, easier to show how the

tapply() command works in action so we’ll use the air quality data again.

Let’s say we want to know the mean() Wind speed over the five months data were

collected.

> tapply(Wind, Month, mean)

5 6 7 8 9

11.623 10.267 8.942 8.794 10.180

This does the job very nicely. We could ask for other quantities such as the minimum,

maximum, or standard deviation within each month by referring to the relevant R command

in the third argument.

If we had multiple response variables of interest, we would need to repeat the command

for each one. If we had more than one way of asking for the grouping though, the tapply()

command is very useful indeed. The air quality data doesn’t have a second factor we can

use for this illustration, so I’ve created a second variable which asks if the day of the month

is in the second half of the month. See what happens.

> tapply(Wind, list(Month, Day>15), mean)

FALSE TRUE

5 11.313 11.912

6 10.787 9.747

7 9.360 8.550

8 8.907 8.688

9 9.547 10.813

If we wanted more than one statistic of interest, we would need to repeat the command

and change the function being referenced in the third argument. We can use the summary()

command here though as it gives us more quantities.

> tapply(Wind, Month, summary)

$`5`
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Min. 1st Qu. Median Mean 3rd Qu. Max.

5.7 8.9 11.5 11.6 14.0 20.1

$`6`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.7 8.0 9.7 10.3 11.5 20.7

$`7`

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.10 6.90 8.60 8.94 10.90 14.90

$`8`

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.30 6.60 8.60 8.79 11.20 15.50

$`9`

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.80 7.55 10.30 10.20 12.30 16.60

This printout isn’t particularly attractive, but it is quick and informative. If presen-

tation was more important than getting results efficiently, we would look to improve the

appearance — this means more difficult coding though.

There is one more feature of the tapply() command that must be pointed out. The

simple commands shown thus far use the default settings of the relevant functions. In

particular, the mean() command does not ignore missing values by default.

> tapply(Ozone, Month, mean)

5 6 7 8 9

NA NA NA NA NA

We now know that there are missing Ozone observations in each month. We can add

a fourth argument to the command which will be passed on to the function mentioned in

the third argument.
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> tapply(Ozone, Month, mean, na.rm=TRUE)

5 6 7 8 9

23.62 29.44 59.12 59.96 31.45

gives us the means of the observed data.

8.3 Getting things printed how we want them

We will often need to watch the way R chooses to print out results. When a direct reference

to data is sought, the order of the data is maintained. In our example using the tapply()

command above, the months were numeric values. The order was probably the most logical

one as it was in chronological order.

If we had a long list of results and it was the extremes we wanted to focus attention

towards, the sort() and rev() commands would be most useful. For example, say we

want to order the monthly average wind speeds found above in ascending order, then we

would use

> sort(tapply(Wind, Month, mean))

8 7 9 6 5

8.794 8.942 10.180 10.267 11.623

So we now know that August has the smallest average wind speed and that May is the

windiest month.

To get the data listed in reverse chronological order we would use:

> rev(tapply(Wind, Month, mean))

9 8 7 6 5

10.180 8.794 8.942 10.267 11.623

and we can combine both commands to get the months ordered from windiest to least

windy using:
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> rev(sort(tapply(Wind, Month, mean)))

5 6 9 7 8

11.623 10.267 10.180 8.942 8.794

8.4 Correlation structure within a data set

The summaries given thus far in this chapter all refer to variables as single objects. Often

we have multivariate data and want to know more about it. Looking for inter-relationships

among variables can be achieved using correlation coefficients; this gives us a numerical

equivalent to the scatter plot matrices shown in Section 7.6.

In fact, the commands used here resemble those used to generate the scatter plot matrix.

I like to do this to save effort. My ability to copy and paste is better than my typing!

> cor(data.frame(Ozone, Solar.R, Wind, Temp))

Ozone Solar.R Wind Temp

Ozone 1 NA NA NA

Solar.R NA 1 NA NA

Wind NA NA 1.000 -0.458

Temp NA NA -0.458 1.000

Having said this, it is now obvious that the missing values in some variables is causing

grief. An additional argument is required.

> cor(data.frame(Ozone, Solar.R, Wind, Temp),

use = "pairwise.complete.obs")

Ozone Solar.R Wind Temp

Ozone 1.0000 0.34834 -0.60155 0.6984

Solar.R 0.3483 1.00000 -0.05679 0.2758

Wind -0.6015 -0.05679 1.00000 -0.4580

Temp 0.6984 0.27584 -0.45799 1.0000
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Often, R will allow arguments to be abbreviated. Unfortunately, this isn’t the case

for this additional argument. It is the case for choosing the preferred correlation measure

to be found though. The default is to calculate Pearson’s correlation coefficient. My

personal preference is to use both this measure and Spearman’s rank correlation coefficient

as it does not require the relationship to be linear, nor does it require the samples to be

normally distributed. As well as finding Spearman’s measure, I’ve decided that printing

correlations to five decimal places is unnecessary so have restricted the output using the

round() command.

> round(cor(data.frame(Ozone, Solar.R, Wind, Temp),

use = "pairwise.complete.obs", method = "s"), 3)

Ozone Solar.R Wind Temp

Ozone 1.000 0.348 -0.590 0.774

Solar.R 0.348 1.000 -0.001 0.207

Wind -0.590 -0.001 1.000 -0.447

Temp 0.774 0.207 -0.447 1.000

8.5 Use of dplyr for data summarisation

In Section 5.4, we saw how the dplyr package offers an alternative to base R functionality

for manipulating data. We now see that this package offers commands for summarising

data. In particular, the commands: group_by(), summarise(), and count().

You’ll need to install the package (see Section 14.1 for instructions) before running the

function

> library(dplyr)

to gain access to the commands just listed. We will also make use of the dplyr data

structure called a tbl_df instead of the common data.frame using:

> airquality2=tbl_df(airquality)
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The summarise() and group_by() commands can be used instead of the tapply()

command introduced earlir in this chapter. To get the overall average wind speed from the

airquality data, we could use:

> summarise(airquality, mean(Wind, na.rm = TRUE))

mean(Wind, na.rm = TRUE)

1 9.958

which is more long-winded than just using the mean() command alone. The value of

summarise() becomes more evident when we seek the means for groups within our data,

such as:

> summarise(group_by(airquality, Month), mean(Wind, na.rm = TRUE))

Source: local data frame [5 x 2]

Month mean(Wind, na.rm = TRUE)

(int) (dbl)

1 5 11.623

2 6 10.267

3 7 8.942

4 8 8.794

5 9 10.180

We could use other functions seen in this chapter for alternative summary statistics

within these functions. A common task is to check on how much data we have for each

group of interest. We could use summarise() and length() to count up the data, but the

dplyr package gives us the count() function to make this even more efficient.

> count(airquality, Month)

Source: local data frame [5 x 2]

Month n
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(int) (int)

1 5 31

2 6 30

3 7 31

4 8 31

5 9 30

The main strength of the dplyr package is that it includes a process that helps put all

of its functionality into a workflow that might be easier to follow for some users than the

standard approaches to summarising, grouping, filtering, arranging etc. that help generate

the informative tables we want for an analysis. The process is called piping. It can make

the code much easier to read in many circumstances.

For example, say we wanted to show the hottest months by their average temperature

within the air quality data. One way to do this using commands from the dplyr package

is to:

> Grouped = group_by(airquality, Month)

> Summarised = summarise(Grouped, AveTemp=mean(Temp, na.rm = TRUE))

> arrange(Summarised, desc(AveTemp))

Source: local data frame [5 x 2]

Month AveTemp

(int) (dbl)

1 8 83.97

2 7 83.90

3 6 79.10

4 9 76.90

5 5 65.55

Which has stored data at each step. Note in particular that a new variable was created

by name in the summarise() command; this helps in the subsequent arrange() step. We

might want to store the results at each step, but if we didn’t want to, then we could use

the piping process like this:
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> airquality2 %>%

group_by(Month) %>%

summarise(AveTemp = mean(Temp, na.rm = TRUE)) %>%

arrange(desc(AveTemp))

Source: local data frame [5 x 2]

Month AveTemp

(int) (dbl)

1 8 83.97

2 7 83.90

3 6 79.10

4 9 76.90

5 5 65.55

8.6 Closing

If you are carrying on working with R you might wish to remove direct access to the data

sets we used in this chapter by issuing the following commands

> detach(airquality)



Chapter 9

LURN. . . To Save Results for Later

Inspection

In this chapter we see how we can save our results, both graphical and numerical, in files

for later use. I find it useful to be able to generate tables and figures for documents as

individual files because I use the LATEX system for typesetting documents. I like the ad-

vantage this approach has because it means I do not need to sift through larger documents

to delete or repair old tables and figures if data is updated or errors in my working are

found. In fact the document you are reading is prepared in exactly this way. All tables

and figures generated by R were stored as separate files for later use.

This chapter is not about saving data. If you want to know how to save your data for

sharing or storing then you need Chapter 6 on exporting data.

This chapter also assumes you already know how to create a graph.

9.1 Copying and pasting graphs

OK you can do it if you must. If you are using a word processor then this is the simplest

way to get a graph into your document. You need to go through all the steps again if the

figure turns out to be substandard in some way so watch what you’re doing!

R will open a new window if required, or a pane in the existing graph window for each

graph created, regardless of the mode you choose to run R. The menus offer the choice of

copying the current window to the clipboard and indicate the hot-key for doing this. You

can then place the graph in your word processed document where you want it by pasting

73
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it as required.

9.2 Saving a graph using the menus

R does give the user a range of options for saving graphs within the pull down menus. You

should choose the file type that best suits your needs. The problem with this way of saving

graphs, and the copy and paste approach, is that it is labour intensive. When it comes

time to develop a program that will generate lots of graphs, you will want to have them

saved automatically.

9.3 Saving a graph using commands within your R

program

There are several ways to save a graph created within your R program. I offer one suggestion

that I think provides some degree of flexibility, especially if you need to change the file

type for some reason. First of all, recall that R will open a new graph window if necessary

or add a new graph to the existing graph window device. I make sure that I close all graph

windows immediately after creating and saving them in my R scripts. To close a graph

window we use the dev.off() command. This keeps things tidy and means we don’t have

lots of graph windows to worry about. Opening graphs is a slightly different story.

For a basic graph such as a histogram where the default size of the window suits my

purposes, I use the x11() command to open a new graph window; we’ll see how to change

this soon. I then create my graph as required and save it using the savePlot() command.

Providing an example now seems appropriate.

The following code will result in a graph similar to that given in Exhibit 9.1 — similar

because random data are used and you will get something slightly different.

It should be fairly obvious what each command does so the only one that really needs

further explanation is the savePlot() command. The first argument is the intended file-

name for our graph. The filename may need some further explanation. It is in several parts

— .\\figures\\HistRandValsStandNorm.eps has a path, a filename and the extension.

The .\\figures\\ is the path that shows R to save the file in a subfolder off the current

working directory. I’ve called the file HistRandValsStandNorm.eps because I want to use
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Exhibit 9.1 Histogram of 10,000 random numbers drawn from a standard normal distri-

bution.
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LATEX to compile these notes into a presentable document. Note that I have explicitly

stated the extension in the complete filename to be the same as the second argument for

the entire command, “eps" in this instance. You can change this to suit other file types

that you might need using find/replace techniques in your script files. Other file types

available include “jpg", “bmp", and “pdf". See the help on the savePlot() command for

a complete listing.

The x11() command can be replaced by a number of others which are all aliased with

one another. The example above doesn’t supply any arguments to this command, but

width and height quantities can be supplied. The default size is 7×7 inches but apparently

this doesn’t always behave properly under the Windows operating system. You might be

advised to re-run the code above with the first command replaced by x11(7,5) or similar,

changing the second number to alter the aspect ratio of the resulting figure window. Once

you get the size you want for certain types of graphs you’re bound to look back to your old

code and replicate the same size graph windows every time. A boxplot is a key example
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where the default window size is often inappropriate.

9.4 Saving output in a text file

One simple way to redirect the output from the main R window is to use the sink()

command. In this case, you will type in or execute commands as per normal but not see

any of the output as this is appended to a separate text file. Try the following code on for

size.

> x=1:20

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20

> sink(".\\other\\JustPrintX.txt")

> x

> ## sink()

This creates a text file called JustPrintX.txt in a subfolder called other, within the

current working directory (which I created earlier). The file is worth looking at because it

should show exactly what would have been printed in the R window if the sink were not

active. Note that the second use of sink() stops the sink from being active.

Just typing the name of an object implicitly calls the relevant print() function for

that object type. This does not work when a sink is active however, so we must use the

print() command explicitly to get the output into our sink file. For example

> sink(".\\other\\JustPrintX2.txt")

> print(x)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20

> ## sink()
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Check this file out and note the contents are what we might expect. It’s cleaner to use

the cat() command in place of the print() command here though. For example

> sink(".\\other\\JustPrintX3.txt")

> cat(x)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> ## sink()

An even quicker method useful for a single result is to use the cat() command’s full

potential:

> cat(x, file=".\\other\\JustCatX.txt")

9.5 Saving the entire R Console

Windows users of R who use the RConsole have an option to save the entire console using

the menus. At present, however, this is not an option that can be invoked via the command

line.

It is possible to save the history of commands using the savehistory() command, and

of course your data and command history can be saved at the end of a session.

You’ll soon see that you do not need to save a copy of the R console as it takes so little

time to re-run a set of commands and re-generate the output desired.
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LURN. . . To Become More Efficient

in your Workplace

This chapter is aimed at the efficient use of R. To make use of the functionality described

here you must have read the material on storing your results in Chapter 9.

10.1 Managing R when you have multiple projects on

the go

One of the greatest frustrations for novice users when using software like R is the manage-

ment of the various datasets and projects they have. The temptation to give objects short

names that mean something now and are utterly mystifying in six months time (perhaps

when you go to do a clean out) is a common trap. If it is something temporary, give

it a useless uninformative name; if it’s actually going to be important, give it a useful

informative name when you first create it.

It’s also common to just start working in the main working directory and just keep on

adding various data sets and analysis objects until such time as the working directory has

hundreds of objects and becomes unwieldy. If you plan to use R for one or two analyses

and then move on this might work, but this is not good practice.

My recommendation is to use different folders for the different projects you wish to

work on. I make folders and subfolders for my R work in the same way I would for my

word processed documents. By changing the working directory, we end up with a command
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history and stored workspace specific to the one project. It also means your graphs are

saved here and are then easier to find. It might even prove useful to keep the R work and

the associated word processed documents in the same folder.

If you change working directory, either using the menus or the setwd() command and

save the workspace when quitting R, you will see that files called .RData and .Rhistory

have been created. When you open R and change to this working directory, you will have

access to the relevant data and command history.

The following is useful as a Windows user of R. As an additional step towards efficiency,

I copy the shortcut used to start R into each working directory. It will need slight editing

to make sure the shortcut doesn’t quite take the default action by deleting the contents of

the “Start in" dialogue box for the shortcut’s properties. In this way, I can use Windows

Explorer to move to the folder for a certain project and click the shortcut for R to get

started on a project at the point where I left off.

10.2 Batch processing commands

When your R program gets to have a lot of commands that must be processed in order, it’s

a good idea to use the R script window or a text editor to create a file with the commands

in it. Keeping your commands in a text file means you can share them with colleagues

very easily.

If you choose to use the R script window, then the commands are typed up and are not

executed until you specifically request for them to be executed. This is achieved using the

pull down menus.

If you have saved the commands in a text file, and this text file is placed in your working

directory, you will be able to execute the commands using the source() command.

As a simple experiment, type up some commands in a new script window. Execute

them using the pull down menus. Now save the commands in a text file, and go to the

R console and type source("myfile.R") — note that I used the extension “R" in the

filename here. This is common practice among R users.

If you’re not using the main Windows version of R, you will be entering commands

in a terminal window. In this case, it’s probably easiest to use your favourite text editor

software to type up and save your R commands. It doesn’t matter which version of R is

being used, the source() command will behave consistently.
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10.3 Running an R script without opening R under

Windows

Running your R programs on another computer is a great idea because it means you can

get on with another project while a long program is running. You’ll probably need some

support from your local network administrator to achieve that, but in the meantime you

can see how it’s done by running some jobs in the background on your own machine.

In the previous section I discussed the ability to use the source() command to import

a text file of commands into an R session.

To continue with the rest of this section we need to know where to find R on our local

machine. On my computer this was

C:\Program Files\R\R-3.2.3

because I installed this version of R using the default settings. This folder is often called

R_HOME. If you haven’t installed R using the default settings, you will need to find out

where your R_HOME is and remember it in the instructions that follow.

What we actually want is to find a file called rterm.exe which is in the bin subfolder.

The full filename including its path is going to be

C:\Program Files\R\R-3.2.3\bin\Rterm.exe

Note that this is the file that will run R in a terminal window, not rgui.exe which is for

the standard R console. Note also that as from version 2.12.0, R running under Windows

had an extra element in the folder structure which depends on the machine you are using.

Many Windows users are now moving to 64 bit operating systems and software, while

others still use the older 32 bit software. Check your path carefully.

We now need to create a batch file. This is just a text file with the extension bat instead

of the normal txt. If you open a text file it is readable in a text editor like notepad; a

batch file is a set of commands that are executed when you run the file. On Windows, this

is as simple as pressing <Enter> when the filename is highlighted in the Explorer window,

or double clicking as if you were opening the file.

So let’s start by creating a text file in the chosen working directory. Do this using the

menus in Windows Explorer. Open the file so that we are able to add the following text.

"C:\Program Files\R\R-3.2.3\bin\Rterm.exe" < mycommands.R > myoutput.txt
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This single command has three parts; the first part in quotes is the full path to the

program we want to run, and the quotes are essential. The second is the set of commands

we want executed in that program, and the last is the file where we want the results to be

saved. The symbols between the three parts are essential and the direction is important.

This process is often called “piping". The contents of the commands file are piped into R.,

and the results are piped out to another file.

Save the text file and change its filename so that the extension is bat. Run the file.

If the full path to the rterm.exe was correct for your machine, and the file of commands

mycommands.R exists in the current directory, you should see that a new text file called

myoutput.txt has been created. You can open this file to see what happened.

A word of warning

This approach works well for programs that have no bugs. Finding where a bug exists

is not impossible but can be frustrating if there are too many bugs to fix. The program

will stop if a line of code contains an error of any kind. Unfortunately, experimentation is

probably the only way to know if things will work properly.

You could re-run your programs frequently in order to ensure that you are getting what

you want. If it proves slow and frustrating to do this, it’s probably because you have a

large data set or some computationally intensive elements in your program. If this is the

case, you could use a subset of your data while you test your programs.

10.4 Using file associations in Windows

When I want to edit an R script file, I want it to open in my text editor of choice. Under

Windows operating systems, this can be achieved by ensuring a file association is created.

The simplest way to do this is to select the default program to be use when you want to

open a file with the extension “.R".

If you do this, then the next logical thing to want to do is to have that R script processed

using R itself. You could use the approach given earlier in this chapter but an even better

way exists that uses file associations again.

We need to make a batch file again, just like in the example on piping. This batch file

will have just one line in it and it needs to be put in a folder that is on the system path.
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The single line is

"C:\Program Files\R\R-3.2.3\bin\R.exe" CMD BATCH --vanilla --quiet %1

Now look for an R script and select the default program to open it again. This time,

browse for the batch file you just created. Now every time you click on an R script, it will

be processed by R. All output including commands will be put into a file of the same name

with an extension that has the three extra letters “out" on the end. Use the process for

file associations again to get this file opened automatically; use the viewer of your choice,

whether that be a text editor or a browser.

The use of the two arguments vanilla and quiet ensure you have a fresh workspace

and that the normal announcements of version number etc are not included in the output

file. You might want to include these welcome messages so remove the quiet argument

if you want. Another argument that might be useful is the save argument. Add that in

if you want to be able to open R again in interactive mode later and be able ot continue

from where you left off.

You might want to go back now and re-assign the default program for an R script to be

the text editor, and use the “open with" menu item to have it processed using your batch

process.

10.5 Don’t re-invent any wheels

Sometimes it is obvious that you will need to write out some quite detailed and complex

sets of commands, but when you can’t find the functionality within the base distribution of

R, you might be tempted to write the code yourself. Before you do that though, I suggest

you stop and think if the task is something that someone else is likely to have done before.

If the answer is yes, then you should look at the vast list of contributed packages

available via the Comprehensive R Archive Network (CRAN) accessible under

http://CRAN.R-project.org

be warned though that this is not necessarily a successful way of finding the right code. I

prefer to do an internet search and hope the supporting documentation for any contributed

packages has the same key words as you are thinking about. The data for many textbooks

is also available as contributed packages so don’t be tempted to enter data unnecessarily.

http://CRAN.R-project.org
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LURN. . . To Do Basic Inference

This chapter is all about finding confidence intervals and performing hypothesis tests.

While many textbooks separate these activities there is little point doing so when it comes

time to using R as both are done at the same time in the majority of cases.

11.1 Confidence intervals and hypothesis tests for the

mean of one population

The datasets package contains a set of annual precipitation values (in inches) for 70 U.S.

cities. If we could assume this set to be a random sample (and we will even if it is not

true), then we can find a confidence interval for the mean annual precipitation for U.S.

cities on the whole.

You could use a manual approach to find the 95% confidence interval for the population

mean (µ) yourself using the mean(), sd(), length(), and qt() commands as follows:

> mean(precip)

[1] 34.89

> sd(precip)

[1] 13.71

> length(precip)
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[1] 70

> qt(0.975, length(precip)-1)

[1] 1.995

Note the use of the qt() command here. It has two arguments; one for the level

of confidence (95% confidence relates to an upper tail area of 0.025) and the degrees of

freedom (based on the sample size). The 95% confidence interval is therefore found using

> mean(precip) - qt(0.975, length(precip)-1) * sd(precip) / sqrt(length(precip))

[1] 31.62

> mean(precip) + qt(0.975, length(precip)-1) * sd(precip) / sqrt(length(precip))

[1] 38.15

or, with a nicer (quicker) command:

> mean(precip) + c(-1,1) * qt(0.975, length(precip)-1) * sd(precip) / sqrt(length(precip))

[1] 31.62 38.15

These calculations include all the commands needed for a hypothesis test, except the

need to find the specific p-value of a hypothesis test. Let’s test the notion that the annual

precipitation is actually greater than 30 inches per annum. This is a one-sided hypothesis

test where the null hypothesis is that µ = 30.

> TestStat= (mean(precip)-30)/(sd(precip) / sqrt(length(precip)))

> pt(TestStat, length(precip)-1, lower.tail=FALSE)

[1] 0.001976

Note that the pt() command required us to think about the degrees of freedom and

that the upper tail area was important to us. We now see that the null hypothesis is

rejected as the p-value is very small.
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These calculations are fine, but there is a quicker way! The t.test() command does

it all for us — both confidence interval and hypothesis test.

> t.test(precip)

One Sample t-test

data: precip

t = 21, df = 69, p-value <2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

31.62 38.15

sample estimates:

mean of x

34.89

This gives a confidence interval with the default level of confidence (95%), while

> t.test(precip, mu=30, alternative="greater")

One Sample t-test

data: precip

t = 3, df = 69, p-value = 0.002

alternative hypothesis: true mean is greater than 30

95 percent confidence interval:

32.15 Inf

sample estimates:

mean of x

34.89

gives us the results for a one-sided hypothesis test and the corresponding confidence

interval.
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The t.test() command is used for many t-tests, notably for comparing two population

means, whether the data are paired or not.

11.2 Confidence intervals and hypothesis tests for the

difference of two population means

The first question you must ask yourself when working with two sets of values you wish

to compare is if they are two independent samples or two measurements taken on one

sample. If the latter is the case, then we have paired samples and will need to add an

extra argument to our command to allow for the link. In both cases, the difference of the

two population means is denoted µ1 − µ2, although as we will see, the linked sample case

is really a reduction of the paired values to a one-sample t-test.

First, we see how to do a basic two sample t-test using the ... data.

11.2.1 Two paired samples

The sleep data that is in the datasets package has two recordings for each of ten indi-

viduals. In an experimental design sense, we would think of the individuals as a blocking

factor. In fact we will see how this is done in Section ??.

The data set lists the twenty observations in a single column. This is a little unusual

for paired data that will be analyzed using the t.test() command. Caution must be

expressed because the variable that shows how the observations are paired is not stated.

If the observations are not ordered the same for each group, then the paring will be done

incorrectly. If for any reason you cannot be sure of the ordering of the data then the use

of the aov() command as discussed in Section ?? is strongly advised.

Using the attach() command to be able to refer to the variables directly speeds up

this process.

> attach(sleep)

We employ the t.test() command with the paired argument set to TRUE. We can use

either of two approaches. Either we separate the two groups apart using subscripting
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> t.test(extra[group=="1"], extra[group=="2"], paired=TRUE)

Paired t-test

data: extra[group == "1"] and extra[group == "2"]

t = -4.1, df = 9, p-value = 0.003

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.4599 -0.7001

sample estimates:

mean of the differences

-1.58

which is the way we would normally work when we have the two measurements stored

using two distinct variables; or, use the formula approach:

> t.test(extra~group, paired=TRUE)

Paired t-test

data: extra by group

t = -4.1, df = 9, p-value = 0.003

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.4599 -0.7001

sample estimates:

mean of the differences

-1.58

You could of course alter the analysis by adding arguments to these commands to

suit your needs. Experiment a little before detaching the sleep data using the detach()

command:
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> detach(sleep)

11.3 Confidence intervals and hypothesis tests for a

proportion from one population

11.4 Confidence intervals and hypothesis tests for the

difference of two population proportions

11.5 Hypothesis tests and confidence intervals for Cor-

relation coefficients

In Section 8.4 we examined the correlation of the variables in the airquality data set

using the cor() command. If we require a formal hypothesis test for the significance of

the correlation coefficient we will need to use the cor.test() command. The difference

between the two commands is that we could offer the entire data set as the object to work

on with the cor() command while we need to specify two vectors for the cor.test()

command.

There are problems with cherry-picking one pair of variables from a set to perform a post

hoc test like this. We should probably consider finding the significance of all correlations of

interest and adjusting the way we think about the likelihood of getting the set of hypothesis

tests we observe as a combination using a Bonn Ferroni adjustment in our analysis; that

is beyond the scope of this exposition so for the moment just assume we are (and were

before data was collected) interested in only the correlation that exists between a single

pair of variables. We use the Ozone and Wind variables from the airquality data.

To test the notion that there is zero correlation between the two variables we would

probably consider using Pearson’s correlation coefficient which measures the strength of

the linear relationship between a pair of variables, but use of Spearman’s rank correlation

coefficient will measure the strength of any monotonic relationship that might exist. I

prefer to use both at the same time in many circumstances.
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> attach(airquality)

> cor.test(Ozone, Wind)

Pearson's product-moment correlation

data: Ozone and Wind

t = -8, df = 110, p-value = 9e-13

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.7064 -0.4709

sample estimates:

cor

-0.6015

> cor.test(Ozone, Wind, method="spearman")

Warning in cor.test.default(Ozone, Wind, method = "spearman"): Cannot compute

exact p-value with ties

Spearman's rank correlation rho

data: Ozone and Wind

S = 410000, p-value = 3e-12

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

-0.5902

> detach(airquality)

So it seems the two variables are correlated and have a monotonic relationship that

implies that as wind increases the amount of ozone decreases and that this relationship is

fairly linear. We will look at this relationship again when we look at linear regression in
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Chapter 12.

11.6 Testing the independence of two categorical vari-

ables

using the chisq.test command. Refer graphical representation to the vcd package.

11.7 Testing the normality of a distribution

norm test package here.

We can use the ks.test() function for the Kolmogorov-Smirnov test. It is suitable for

comparing two samples, or a single sample against a theoretical distribution.



Chapter 12

LURN. . . To Perform Regression

Analyses

This chapter presents the most basic regression models. To really get the most out of R

and regression techniques (such as those taught in second or later statistics courses) you

will need to look for guidance from a suitable textbook, many of which incorporate use of

R as the preferred software tool.

12.1 Data and suitable exploratory graphs

The easiest way to fit regression models is using data that are contained in a data.frame.

This means we can use the attach() command to get at the separate components if we

need them. An alternative is to have direct access to each variable independently within

our current workspace. For neatness, I prefer to keep data in the data.frame format.

We can use the air quality data described in Chapter 7. Recall that it is available

from your current workspace as it is contained within the datasets package. Typing

> data(airquality)

will make the data explicitly available to you in your current R workspace.

We can look for relationships among the variables within this data set using the tech-

niques described in Chapter 7. Note in particular the scatter plot matrix presented in

Exhibit 7.10.
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12.2 The simple regression model

To obtain the equation for a straight line relationship of the form

y = α + βx (12.1)

we use the lm() command. The first argument for this command is a formula which is the

main component of any lm() command you issue. It is of the form y≈ x where the y is

the response variable and the x is the predictor variable. We will see how to modify the

right hand side of the formula in subsequent sections.

A second common argument is the data statement. This means that the model formula

can be stated using variable names from within the data.frame mentioned in the data

statement. Models to explain the amount of Ozone using Wind and subsequently Temp are

as follows.

> Ozone.lm1 = lm(Ozone~Wind, data=airquality)

> Ozone.lm1

Call:

lm(formula = Ozone ~ Wind, data = airquality)

Coefficients:

(Intercept) Wind

96.87 -5.55

> summary(Ozone.lm1)

Call:

lm(formula = Ozone ~ Wind, data = airquality)

Residuals:

Min 1Q Median 3Q Max

-51.57 -18.85 -4.87 15.23 90.00
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 96.87 7.24 13.38 < 2e-16 ***

Wind -5.55 0.69 -8.04 9.3e-13 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 26.5 on 114 degrees of freedom

(37 observations deleted due to missingness)

Multiple R-squared: 0.362,Adjusted R-squared: 0.356

F-statistic: 64.6 on 1 and 114 DF, p-value: 9.27e-13

> anova(Ozone.lm1)

Analysis of Variance Table

Response: Ozone

Df Sum Sq Mean Sq F value Pr(>F)

Wind 1 45284 45284 64.6 9.3e-13 ***

Residuals 114 79859 701

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> Ozone.lm2 = lm(Ozone~Temp, data=airquality)

> summary(Ozone.lm2)

Call:

lm(formula = Ozone ~ Temp, data = airquality)

Residuals:

Min 1Q Median 3Q Max
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-40.73 -17.41 -0.59 11.31 118.27

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -146.995 18.287 -8.04 9.4e-13 ***

Temp 2.429 0.233 10.42 < 2e-16 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 23.7 on 114 degrees of freedom

(37 observations deleted due to missingness)

Multiple R-squared: 0.488,Adjusted R-squared: 0.483

F-statistic: 109 on 1 and 114 DF, p-value: <2e-16

> anova(Ozone.lm2)

Analysis of Variance Table

Response: Ozone

Df Sum Sq Mean Sq F value Pr(>F)

Temp 1 61033 61033 109 <2e-16 ***

Residuals 114 64110 562

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There are very good reasons for creating the new objects in this example. Aside from the

use of the summary() method and anova() command to extract more useful information

about the model, we will refer back to the object using other commands in subsequent

sections of this chapter. It also means we can investigate the model object, and extract

some quantities on their own. For example, it’s common to want to extract the R2 for a

model. We can’t do this from the model object itself, but we can from the summary() of

the model.
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> names(Ozone.lm1)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "na.action"

[10] "xlevels" "call" "terms"

[13] "model"

> names(summary(Ozone.lm1))

[1] "call" "terms" "residuals"

[4] "coefficients" "aliased" "sigma"

[7] "df" "r.squared" "adj.r.squared"

[10] "fstatistic" "cov.unscaled" "na.action"

> summary(Ozone.lm1)$r.squared

[1] 0.3619

12.3 Presenting the straight line model’s suitability

in a graph

Adding a fitted line to the scatter plot when a simple relationship has been fitted is actually

a very simple task. Note that when we saw the outcome of the simple model above, we

obtained just the intercept and slope coefficient values until we employed the summary()

method to extract more useful information. These two values will be used by the abline()

function to add the straight line to an existing plot. See Exhibit 12.1 for example.

We can see from these graphs that our straight line model might be appropriate for

explaining Ozone using Temp as the predictor, but that the straight line model using Wind

as the predictor is not a good idea as there is fairly obvious curvature in the relationship.

As it happens neither of these models are perfect and more work is required.
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Exhibit 12.1 Two simple regressions with the straight line added onto the scatter plots.

> attach(airquality)

> plot(Wind, Ozone)

> abline(Ozone.lm1)
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12.4 Model validation using diagnostic plots

R has many useful built-in methods for doing common tasks efficiently. Obtaining residual

plots for a model is a great example. The plot() command acts on a lm object by

generating a series of plots. The most commonly used of these plots are the plot of residuals

vs the fitted values and the normal probability plot of residuals. These plots are generated

by many statistical applications but the other two presented by default in R are not always

given by other programs. R also provides a Scale-Location plot of the square root of the

absolute value of residuals against the fitted values, and a plot of residuals against the

leverages. These approaches for diagnosing problems in a regression model are seldom

taught in introductory statistics courses. The scale vs location plot is another means of

determining if the residuals have constant variance. Leverage is a measure of how much

influence an observation has on determining the model. A rule of thumb says that a

leverage of more than twice the average leverage is a problem.

The diagnostic plots for the inadequate model for Ozone being predicted by a linear

function of Wind are presented in Exhibit 12.2. These plots are enhanced by R to add

more information than the basic user is familiar with. Additional lines are added to three

of the plots to assist in diagnosing problems. We can see from this plot that the model

is inadequate as there is a nonlinear relationship between the response and predictor, and

further that the residuals might not have very constant variance.

It might be easier to extract just the information we want, so we can build simpler

plots ourselves. We need to find the residuals, fitted values and leverages for the model.

These are found using the resid(), fitted(), and hatvalues() commands respectively.

> Ozone.resid1 = resid(Ozone.lm1)

> Ozone.fitted1 = fitted(Ozone.lm1)

> Ozone.lev1 = hatvalues(Ozone.lm1)

The various plots can be constructed using the plot(), and qqnorm() commands as

needed, but if we want the information on the leverages in text form we will need to do

tasks like
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Exhibit 12.2 Residual plots for the simple regression using Wind to predict the Ozone

level.

> par(mfrow=c(2,2))

> plot(Ozone.lm1)
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> mean(Ozone.lev1)

[1] 0.01724

> max(Ozone.lev1)

[1] 0.08854

> Ozone.lev1[Ozone.lev1>2*mean(Ozone.lev1)]

9 18 22 48 117 121 126

0.07994 0.05822 0.03951 0.08854 0.03703 0.04753 0.04256

148

0.03951

The last command in this block has printed out the 8 observations that have excess

leverage on this model. We should probably see if these are days that had extremely high

wind. This is not done as this model has already been shown to be poor at explaining the

amount of Ozone in the atmosphere.

12.5 Polynomial regression models

Given the obvious curvature in the relationship between Ozone and Wind appears mono-

tonic, we can probably try both transforming the variables, and polynomial regression to

explain the relationship. We take advantage of the fact that R has an in-built way of

producing polynomial terms for insertion into models, and use the poly() function in this

instance. This command needs to know which variable to work with and the degree of the

polynomial desired. For example, to fit the quadratic model we would use the commands

> Ozone.poly2 = lm(Ozone~poly(Wind,2, raw=TRUE), data=airquality)

> summary(Ozone.poly2)

Call:

lm(formula = Ozone ~ poly(Wind, 2, raw = TRUE), data = airquality)
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Residuals:

Min 1Q Median 3Q Max

-52.29 -16.00 -4.66 12.44 64.04

Coefficients:

Estimate Std. Error t value

(Intercept) 162.572 14.185 11.46

poly(Wind, 2, raw = TRUE)1 -19.444 2.735 -7.11

poly(Wind, 2, raw = TRUE)2 0.649 0.124 5.22

Pr(>|t|)

(Intercept) < 2e-16 ***

poly(Wind, 2, raw = TRUE)1 1.1e-10 ***

poly(Wind, 2, raw = TRUE)2 8.3e-07 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 23.9 on 113 degrees of freedom

(37 observations deleted due to missingness)

Multiple R-squared: 0.486,Adjusted R-squared: 0.477

F-statistic: 53.4 on 2 and 113 DF, p-value: <2e-16

Note that in order to obtain a model with the correct coefficients for the polynomial

terms in the model, we need to use the raw argument, setting it to TRUE.

We usually justify the use of a quadratic form by determining there is no practical

benefit in making the model more complicated. To do this, we need to investigate the

model for the cubic form of the relationship using

> Ozone.poly3 = lm(Ozone~poly(Wind,3, raw=TRUE), data=airquality)

Rather than continuously investigate the summaries of the various models, we can

employ the anova() command to compare the models.
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> anova(Ozone.lm1, Ozone.poly2, Ozone.poly3)

Analysis of Variance Table

Model 1: Ozone ~ Wind

Model 2: Ozone ~ poly(Wind, 2, raw = TRUE)

Model 3: Ozone ~ poly(Wind, 3, raw = TRUE)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 114 79859

2 113 64360 1 15499 27.62 7.1e-07 ***

3 112 62858 1 1502 2.68 0.1

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can compare all three models created thus far because they are a series of nested

models. We could not include the model using Temp as the predictor in this command for

example.

On the basis of the output from our anova() command, we might assume that the

quadratic form was sufficient to explain the relationship between Ozone and Wind because

there is little to be gained by adding the cubic term to our model. Validation of the chosen

model via the residual analysis is suggested as a next step.

12.6 Presenting the polynomial model’s suitability in

a graph

The abline() command demonstrated earlier is only useful for straight lines. We have

seen that the quadratic function is better at explaining the relationship between Ozone

and Wind. One solution is to store the fitted values from this model and plot them against

the Wind variable, but this will only show the series of points not a smooth curve.
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> plot(Ozone~Wind, data=airquality)

> points(airquality$Wind[!is.na(airquality$Ozone)], fitted(Ozone.poly2), col=2)
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Note that the points() command used here includes the col argument to change the

colour of the points to red — the second colour in the list of colours.

Also note that there are missing values in the records for Ozone. The fitted values from

the model are only calculated for the observations where Ozone was recorded, so we have

employed the !() logical operator and is.na() command to include only complete cases

for Ozone and Wind.

Another solution that plots a curve instead of points, is demonstrated in Section ??.

It is much more elegant, especially given the missing data problem encountered in this

example.
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12.7 Multiple regression models

The addition of multiple terms on the right hand side of the formula in the lm() command

is very simple. We can put both Wind and Temp into a model as predictors using

> Ozone.lm3 = lm(Ozone~Wind+Temp, data=airquality)

If we want to combine the models for the quadratic form for Wind and the linear form

of Temp we would

> Ozone.lm4 = lm(Ozone~poly(Wind,2)+Temp, data=airquality)

This then allows us the opportunity of using the anova() command as demonstrated

above to compare these two models and one constructed earlier which used only Temp as a

predictor.

> anova(Ozone.lm2, Ozone.lm3, Ozone.lm4)

Analysis of Variance Table

Model 1: Ozone ~ Temp

Model 2: Ozone ~ Wind + Temp

Model 3: Ozone ~ poly(Wind, 2) + Temp

Res.Df RSS Df Sum of Sq F Pr(>F)

1 114 64110

2 113 53973 1 10137 25.7 1.6e-06 ***

3 112 44213 1 9760 24.7 2.4e-06 ***

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The creation of interaction variables is also simple in R Changing the “+" sign in the

model to a “*" sign tells R that we want the two main variables and their interaction to

be included. The interaction term uses a “:" between the variable names in the output.



104 CHAPTER 12. LURN. . . TO PERFORM REGRESSION ANALYSES

> Ozone.lm5 = lm(Ozone~poly(Wind,2)*Temp, data=airquality)

> summary(Ozone.lm5)

Call:

lm(formula = Ozone ~ poly(Wind, 2) * Temp, data = airquality)

Residuals:

Min 1Q Median 3Q Max

-44.70 -10.54 -3.25 10.60 82.56

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -91.113 18.779 -4.85 4.1e-06

poly(Wind, 2)1 108.281 262.970 0.41 0.68

poly(Wind, 2)2 99.235 177.521 0.56 0.58

Temp 1.688 0.237 7.13 1.1e-10

poly(Wind, 2)1:Temp -3.301 3.290 -1.00 0.32

poly(Wind, 2)2:Temp -0.147 2.273 -0.06 0.95

(Intercept) ***

poly(Wind, 2)1

poly(Wind, 2)2

Temp ***

poly(Wind, 2)1:Temp

poly(Wind, 2)2:Temp

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20 on 110 degrees of freedom

(37 observations deleted due to missingness)

Multiple R-squared: 0.65,Adjusted R-squared: 0.634
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F-statistic: 40.9 on 5 and 110 DF, p-value: <2e-16

Note that this model includes two interaction terms, and on the face of it, neither term

looks like it is contributing towards explaining the amount of ozone in the atmosphere.

This can be tested using

> anova(Ozone.lm5, Ozone.lm4)

Analysis of Variance Table

Model 1: Ozone ~ poly(Wind, 2) * Temp

Model 2: Ozone ~ poly(Wind, 2) + Temp

Res.Df RSS Df Sum of Sq F Pr(>F)

1 110 43801

2 112 44213 -2 -412 0.52 0.6

Multiple regression models can be checked using the approaches described in Sec-

tion 12.4 above, but it may also prove useful to plot residuals from the current model

against each current and potential predictor variable in the data set.

12.8 Indicator variables

When working with a variable that can take one of two values, such as gender, many

statistical packages need the user to create an indicator variable if this effect is to be

incorporated into a regression model.

An indicator variable takes the values zero or one, where a “1" indicates one of the

two possible values. Normally, the software will create an indicator for each of the values

of the original variable, and when the original variable takes three levels, three indicator

variables are made.

The advantage of the indicator is that the model fitted has a coefficient for the indicator

variable that reflects the constant difference between the two groups within the data implied

by the original variable.

R does not need explicit creation of indicator variables as it will see the form of the

variable and create indicator variables in the background. The output for an indicator
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variable in the regression summary is only ever so slightly different in that you will see

GenderM where you might have thought to see just Gender. This is because R tells you that

the indicator variable created, and therefore the coefficient printed in the output, is for the

Male level of Gender. For reasons not explained here, you will not see both GenderF and

GenderM in the output unless you explicitly ask R not to fit the intercept term.

As an example,



Chapter 13

LURN. . . To Create Complex

Graphs

This chapter assumes an understanding of the material in Chapter 7 on creating simple

graphs. That material included adding simple elements of good graphing practice, like

meaningful titles and axis lables. In this chapter we see colour, multiple graphs in one

window, multiple sets of points on a single set of axes, adding extra points or lines, and

introduces colour, different symbols and the legends that will then become necessary ad-

ditions.

13.1 More than one graph in a single window

We have already seen how to combine a set of graphs to be collected into one window so

that they form a single object for inserting into documents. The par() command controls

a large number of graphical parameters, including the layout of the graph window. One of

its common uses is to split up the graph window quickly.

Exhibit 12.2 shows the residual analysis plots for a regression model. Four separate

graphs form that residual analysis by default. If we do not combine them into a single

window using the par() command we need to manipulate the four graphs separately when

it comes time to include them in a report.

The mfrow argument in the par() command tells R how to divide up the graph win-

dow. Note that it divides the existing window so that the aspect ratio of the separate

panels may change from what you expect unless you either change the overall shape of the

107
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graph window (see Exhibit 7.3 where we did this for a boxplot) or you divide the window

up equally in both vertical and horizontal directions (see Exhibit 12.2). In all examples

presented thus far, the window has been divided up into four equal sections. R then inserts

successively created graphs into those sections until the window has four graphs in it. A

fifth graph would appear on a new window that had four sections in it; this would fit

graphs five to eight, with the ninth going onto a new sheet and so on. You can split the

window into what ever size grid you like. Keeping the aspect ratio of the graphs is a good

idea, but making them slightly wider than they are high is better than the reverse. That

is, five rows of four graphs is better than four rows of five graphs, unless you are prepared

to change the overall height and width of the window.

To illustrate creation of a lot of graphs and the efficiency of managing them as a single

graph window, we will create the histograms of twelve distinct random samples of size 100,

taken from the standard normal distribution.

The final graph appears in Exhibit ??, but there are a couple of functions that need

explaining. First, the par() command with the mfrow argument opens a graphing window

and splits it into twelve sections. The second line uses the for() command to create a loop

which is just a set of commands that are grouped together and run over and over until the

end of the loop. In this case, the loop is run a total of twelve times with an arbitrary lable

given to the counter used. A loop’s counter is often not used in the processing of the code

so is given a meaningless name; in this instance, the word Counter is used to point out

where the counter appears in the code. The third line creates a histogram with the hist()

command, of a set of 100 random values taken from the standard normal distribution,

found using the rnorm() command. Note the code also adds a title to each of the distinct

graphs. This is done using the paste() command which joins some text with the counter

number to form the title that will, as a consequence, change for each graph. If there had

been two or more commands inside the loop, they would need to be grouped together using

curly braces. Ignoring the braces would mean only the first line of the set would be issued.

The braces are included here as an example of good practice.
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Exhibit 13.1 Twelve samples of size 100 drawn from the standard normal distribution,

plotted using separate histograms in a single window

> par(mfrow=c(4,3))

> for(Counter in 1:12){

hist(rnorm(100), main=paste("Sample", Counter))}
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13.2 Allowing different sized graphs to be included in

a single window

The layout() command is very powerful, but can be a nightmare to sort out. Before

demonstrating how to implemet the command, I need to show you what is possible by

explaining how to think about the way the command works.

Regardless of the size and shape of the particular graphs and how you want them

arranged, you need to think of the graphing winow as a rectangle that can be split into

any number of rows and columns. The shape of the sections of the window are dependent

on the number of rows and columns of course so for the time being let’s work with a 4×4

grid. This means the 16 sections are the same shape as the overall window.

We tell the layout() command how to use up the sections by giving each section a

label. The sections that get used for the first graph will be given a “1", sections for the

second graph get a “2" and so on. For illustration, let’s use up nine of the 16 sections for a

large graph (a scatter plot), and place three smaller ones down the side of it; below those,

we will add a pair of boxplots which each need two sections of the window.

The layout() command needs to interpret these labels as a matrix. It would probably

help to write out what you want for the arrangement, create the matrix of labels, check

that the two agree, and then worry about the code for the various graphs. So for my

description, I want a 4×4 matrix, with a total of six different numbers in it. Nine of them

will be ones, a two, a three, a four, two fives, and two sixes. They will be laid out as

follows:

1 1 1 2

1 1 1 3

1 1 1 4

5 5 6 6

Getting this matrix in R means identifying its contents, naming exactly how many rows

or columns are needed and how to insert the values into the defined structure. We use

the matrix() command to create the object for our arrangement, and the c() command

to combine the labels into a single object. Arguments to the matrix() command we need

are either the nrow or ncol (one will do) and the byrow switch that tells the matrix()

command to fill up the matrix by row until it is full.
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> Arrangement.mat = matrix(c(1,1,1,2,1,1,1,3,1,1,1,4,5,5,6,6), byrow=TRUE, nrow=4)

> Arrangement.mat

[,1] [,2] [,3] [,4]

[1,] 1 1 1 2

[2,] 1 1 1 3

[3,] 1 1 1 4

[4,] 5 5 6 6

Having established the success of the code for the arrangement structure, we just open

the graph window using the layout() command, and add plots in the order our labels

specify. The full set of instructions is given in Exhibit 13.2. Note that the graphs are

chosen for the illustration of the layout() command, not for the purposes of showing

anything of interest in any of the graphs created. The quakes data set distributed with

the base installation of R is used in this illustration.

Note that the way the points have been plotted and the way the text appears in these

graphs, differs. The addition of the cex argument in the third and fourth plot() commands

forces the size of the plotted symbol to be reduced. This is known as character expansion,

and can be applied to the text that appears on the graphs as well. Individual elements of

text are adjusted using the cex.main, cex.sub, cex.lab, and cex.axis arguments. See

the help for the par() command for further details on their use.

13.3 Using colour or different symbols

We show how to create a graph with different colours and symbols without passing judge-

ment on the suitability of the colours or symbols used. The important feature to remember

when you are about to create such a graph is that the reader will not necessarily see the

difference in colour as you do. Similarly, the selection of symbol should be thought out

carefully. We do not want a solid symbol to appear bigger than a hollow one or vice versa.

The iris data supplied with R for this example. It has five variables in all; four are for

numeric measurements and the fifth is the species. In Exhibit 13.3 we use three colours for

the species and in Exhibit 13.4 we use different symbols. There is no reason why you might

not use both arguments in combination to use different colours for the different symbols.
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Exhibit 13.2 A selection of differing size graphs combined into one graph window

> attach(quakes)

> layout(Arrangement.mat)

> plot(long, lat)

> plot(depth, mag, ylim=c(4,6.5))

> plot(lat, mag, ylim=c(4,6.5), cex=0.5)

> plot(long, mag, ylim=c(4,6.5), cex=0.25)

> boxplot(mag, xlab="Magnitude", horizontal=TRUE)

> boxplot(log(mag), xlab="log(Magnitude)", horizontal=TRUE)
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> detach(quakes)
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Exhibit 13.3

> attach(iris)

> plot(Sepal.Length~Sepal.Width, xlab="Sepal width", ylab="Sepal length", col=Species)
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> detach(iris)
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Exhibit 13.4

> attach(iris)

> plot(Petal.Length~Petal.Width, xlab="Petal width", ylab="Petal length", pch=as.numeric
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> detach(iris)
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Note that we needed to convert the species names to numbers using the as.numeric()

command to get the symbols to be plotted.

R seesm to have converted the species names to numbers when we called for different

colours, starting with 1 for black, 2 for red, and 3 for green. As an aside, the colour can be

specified by name or by a number. There are well over 600 named colours to choose from

so the full list is therefore not printed here. Type

> colors()

if you are really keen to know what they all are. If this list is still not sufficient to meet

your needs, you can design your own colour using a combination of red, green, and blue

components. This is explained under the help for the par() command.

13.4 Adding points to an existing graph

13.5 Using lines instead of points

The default action for any scatter plot is to mark each point. If the set of x-values are

ordered we can create a line plot. This is often seen as a time series plot. We create a

time series plot very easily using the plot() command on an object that has been stored

as a time series. There are many examples of time series i the datasets package. We use

the ldeaths series which counts the number of deaths due to lung diseases in the United

Kingdom, and its associated series for male and female deaths.

In Exhibit 13.5, we see a set of three commands. The first plots a time series on a set

of axes and the axis labels. The second and third each add a set of line segments from the

other two series using the lines() command.

We will see that the plot can be improved by adding a legend in Exhibit 13.7.

13.6 Adding lines to an existing graph

In Section 12.3 we saw how to add a fitted line from a simple regression model to a plot of

the data used to fit the model, using the abline() command. This command has other uses

that are explained here. This section is only interested in the addition of a single straight

line at a time; a series of line segments joined together was covered in Section 13.5.
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Exhibit 13.5 Deaths from lung diseases in the United Kingdom

> plot(ldeaths, ylim=c(0,4000), xlab="Year", ylab="Number of deaths")

> lines(fdeaths, col="red")

> lines(mdeaths, col="blue")
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Perhaps the easiest tasks of adding lines to a plot is to add either a horizontal or a

vertical line. In Exhibit 13.6, we see the locations of the quakes marked by their latitude

and longitude. On this occasion, the graph window has been left square and the spacing

on the graph itself would be different for the latitude and longitude if we did not force

the axes to have similar length for each direction. The xlim and ylim arguments create

the axes, but note the need to correctly define the axis for latitude from a large negative

number to the less negative number so that the orientation of north and south is kept

consistent with convention. Fiji is in the southern hemisphere after all!

The plot() command creates the axes and plots the points for the earthquakes in

Exhibit 13.6. We then add two vertical and two horizontal lines to the plot, both using

the abline() command. Notice that the four commands used to add the four extra lines

state the horizontal or vertical placement with a single letter, and that the line type has

been chosen in three instances. It turns out that line type 1 (a solid line) is the default.

More types do exist but those given are the most commonly chosen. The thickness of the

lines can be altered also, using the lwd argument. The default line width is 1.

It is also possible to add a straight line that is niether vertical or horizontal using

the abline() command. To achieve this we need to know the slope and intercept of the

line. This is the form of this command used when we added the fitted line for a simple

linear regression model to the plot in Section 12.3. The plotted line will have the equation

y = a + bx and we need only supply the values of a and b to the abline() command.

Exhibit ?? shows an example using the

13.7 Adding a curve to a graph

Use of abline() is great if you have a straight line to add to a plot, but as soon as the

line needs to be curved the problems begin. We will see that it isn’t actually too difficult if

we use the curve() command. First, we add a curve representing the normal probability

density function to a histogram of random values.

> hist(rnorm(1000))

> curve(dnorm(x), -3,3, add=TRUE)
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Exhibit 13.6 Horizontal and vertical lines added to a scatter plot

> attach(quakes)

> plot(long, lat, xlim=c(160,190), ylim=c(-40,-10))

> abline(h=-30)

> abline(h=-20, lty=1)

> abline(v=180, lty=2)

> abline(v=170, lty=3)
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> detach(quakes)
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Histogram of rnorm(1000)
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The curve() function has four arguments in this example. First is the function being

plotted, which in this case is dnorm() —the density function for the normal distribution.

We then supply the range of values over which this function is to be evaluated using two

arguments, and finally we ask that the curve be aded to the existing plot. There are other

arguments that we could add, including n, the number of points to be evaluated over the

specified range.

The second example shown here is the addition of the quadratic fitted line for a regres-

sion model. We use the example given in Section 12.5.

> Ozone.poly2 = lm(Ozone~poly(Wind,2, raw=TRUE), data=airquality)

> Coeffs=coef(Ozone.poly2)

> attach(airquality)

> plot(Wind, Ozone)

> curve(Coeffs[1]+Coeffs[2]*x+Coeffs[2]*x^2, min(Wind), max(Wind), add=TRUE)



120 CHAPTER 13. LURN. . . TO CREATE COMPLEX GRAPHS

5 10 15 20

0
50

10
0

15
0

Wind

O
zo

ne

> detach(airquality)

13.8 Adding text to an existing graph

13.9 Adding a legend for different information within

a graph

13.10 More complex bar charts

A bar chart, as seen in Section 7.7.1, has a bar showing the frequency of each level of

a single factor. A cluster bar chart has a bar for each combination of two factors. The

clustering indicates how the bars are grouped together. A stack bar chart on the other

hand has a single bar for each level of one factor split into sections for each level of the
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Exhibit 13.7 Deaths from lung diseases in the United Kingdom (with legend added)

> plot(ldeaths, ylim=c(0,4000), xlab="Year", ylab="Number of deaths")

> lines(fdeaths, col="red")

> lines(mdeaths, col="blue")

> legend("topright", legend=c("Total", "Men", "Women"), col=c("black", "blue", "red"),
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second factor; it therefore appears to stack the bars on top of one another.

To create an example, we will first create a list of frequencies of outcomes and the two

categorical variables required. The cluster bar chart and stack bar chart then appear in

Exhibits 13.8 and 13.9 respectively. Our data consist of the counts of males and females

of ages 17 to 20.

> Frequency=c(12,19, 22, 18, 11,13, 13, 12)

> Gender=rep(c("Male", "Female"), 4)

> Age=rep(c(17,18,19,20), each=2)

To create the two types of bar chart, we need to create a matrix for the counts to

be used in the graphs. In this instance, this is done using the tapply() command The

actual plotting is done using the barplot() command which recognizes it is working on

this matrix and acts accordingly, including the ability to generate a legend for the graphs.

13.11 Contour plots

A scatter plot indicates the presence of an observation at pairs of x and y values. When a

third variable is also measured, we run into some trouble when comparing it to the values

of x and y in a single graph. Three-dimensional displays can be employed but require the

interpretation of the creator and the reader to turn the two-dimensional graph on paper

or the screen into the three-dimensional object actually being displayed.

A contour plot is a two-dimensional display. It shows a set of curves that represent

common values of a variable plotted against two other variables. They are commonly seen

in weather charts where barometric pressure lines (contours) are plotted on the map of a

country or region (latitude and longitude are the two other variables).

Exhibit 13.10 shows the contour lines for the altitude of a volcano in Auckland, New

Zealand. Mt Eden is also known by its Maori name Maunga Whau and the data we need

for this illustration is provided in the datasets supplied with base installations of R.

This provides a black and white image that has the contours marked with the value of

the third variable. A coloured version of the plot is available using the filled.contour()

command in place of the contour() command in Exhibit 13.10. An even more impressive
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Exhibit 13.8 An example of a cluster bar chart

> barplot(tapply(Frequency, list(Gender, Age), sum), col=c(2,4), legend=TRUE, beside=TRUE

> title("Cluster bar chart of age and gender", ylab="Count", xlab="Age")
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version of this plot can be obtained by looking at the example that accompanies the help

for the volcano data. Typing:

> example(volcano)

generates the plot using the code given in the help file.

The volcano data is stored as a matrix of altitudes. The contour() command uses

this to interpolate the coordinates of the points where the altitude is constant.

A further example is generating the contours for a function. Let’s plot the function

z = 0.75x2 + 0.5y2 − 0.4xy + x − y − 1
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Exhibit 13.9 An example of a stack bar chart

> barplot(tapply(Frequency, list(Gender, Age), sum), col=c(2,4), legend=TRUE)

> title("Stack bar chart of age and gender", ylab="Count", xlab="Age")
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over the range −5 ≤ x, y ≤ 5. All necessary codes are given in Exhibit 13.11 which includes

the contour plot of the function.

Note the contour() function needed to know the unique values of the x and y variables

we created, but that the z matrix needed these values repeated enough times so that the

function was evaluated over the entire set of combinations of x and y.
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Exhibit 13.10 Contour plot of Mt Eden, a volcano in Auckland, New Zealand.

> contour(volcano)
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Exhibit 13.11 Contour plot showing values of z, where z = 0.75x2+0.5y2−0.4xy+x−y−1

> xUnique=((0:100)-50)/10

> yUnique=((0:100)-50)/10

> x=rep(xUnique, 101)

> y=rep(yUnique, each=101)

> z=matrix(0.75*x^2 + 0.5*y^2-0.4*x*y+x-y-1, nrow=101)

> contour(xUnique, yUnique, z)
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Chapter 14

Extending R beyond the base

installation

This chapter explains how you do some tasks that are not part of the basic installation of

R. This includes instructions on how to add extra functionality via add-on packages and

pointers to some user interfaces.

14.1 Installing additional packages

Many R users find that the vast range of functions that are built into the basic R installation

are not enough to meet their specific needs. R is relatively easy to adapt to meet their

needs because additional functions are easily created to perform specific tasks.

In order to let others use their creations, R users often make their functions available

in add-on packages that can be downloaded by any R user. The network of servers that

store these package is is known as CRAN, which is short for Comprehensive R Archive

Network. There are over 4000 add-on packages currently available via CRAN as well as

others that do not meet the CRAN criteria. To make it to CRAN, an add-on package

must meet standards of presentation, quality of documentation, and be available for all

operating systems. Add-on packages that do not meet these criteria do exist, especially

those that are specific to one operating system.

Installing an add-on package requires two actions. First, you must ask R to install a

package of a certain name, either using the install.packages() command or the Packages

pull-down menu item.
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The second task is necessary only once in each R session. When you go to install a

package from CRAN, R will ask you to select a CRAN mirror. This just wants you to

choose which one of the servers scattered around the world is the one you should point

your internet connection towards.

These tasks are most commonly achieved by selecting the menu items and associated

dialogue boxes. If you do not want to use the dialogue box approach for selecting a CRAN

mirror, there is a text based alternative. If you type

> chooseCRANmirror(FALSE)

you will be given a list of the available CRAN mirrors and a different prompt. Type in

the number linked to the CRAN mirror you prefer and press the Enter key. If you want

to choose the first item on the list (which is a cloud-based server anyway) then you could

avoid reviewing the list using:

> chooseCRANmirror(ind=1)

Installation of individual packages can be achieved using the install.packages()

command. Investigate its help page to ensure you get the most out of its use.

One key argument for this command is dependencies. There are many packages that

rely on the work of other packages for their success. It’s probably a good idea to get into

the habit of installing all dependent packages. For example:

> install.packages("Dodge", dependencies=TRUE)

which will install the Dodge package. If this package used another package that was

not currently installed on your machine, that package would also have been downloaded

and installed.

14.2 Updating add-on packages

If you want to be sure you have the latest version of the packages you have downloaded

are being used, then every once in a while you should issue the command
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> update.packages(ask=FALSE)

Note that the ask argument is set to FALSE here. The default action is to ask the user

if they want a particular package updated. I find this frustrating, especially if it’s been a

while since I updated my packages.

You do not need to do this task very often. I would recommend doing it after installing

a new version of R, or if you see a warning message about the version of a package you

use.

Finally, note that if you have not established a connection with a CRAN mirror in the

current R session, then you will be prompted to do so before anything is downloaded.

14.3 Using an enhanced graphical interface

The base installation of R doesn’t offer much statistical functionality in its menu system

(assuming you use one!). Various projects are under development that enhance the way

users can interact with R.

Perhaps the most well-known is the R Commander project. This interface has been

given a lot of development over a number of years now and can support the needs of most

introductory level statistical analyses. Its implementation is via the Rcmdr add-on package

downloadable from CRAN.

I don’t use this package as it is more suited to novice to intermediate R users. It also

creates a host of new functions that improve on similar functions included in base R that

I don’t need. The idea of working with mouse clicks is counter-intuitive to reproducible

research ideas that most medium to advanced R users like.

14.4 Use of an integrated development environment

(IDE)

The best integrated development environment (IDE) for R users is R Studio. Some people

find this way of working to be a bewildering experience. Others love the convenience of

having each project contained in a structured environment.
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My advice for anyone wanting to use RStudio or any new IDE is to find someone to

give you a hands-on demonstration. Perhaps watching videos from the internet are a useful

alternative, but you need to know that this tool is what you need before investing time in

its use.

Be warned: RStudio is a very powerful and useful tool for even the most advanced R

users. As such, it can be too much for the novice R user.



Chapter 15

LURN. . . To use the BrailleR

add-on package

This chapter explains how the BrailleR add-on package can be used by blind people to get

many tasks done quickly and effectively. In general, the package does three things:

1. creates a copy of hte R console/terminal in a text file including all standard output.

2. creates text descriptions of some graphs. These tools should help the blind user

create graphs (with confidence) for the sighted world we must work in.

3. provides convenience functions for novice users who do not know enough R commands

to survive. Sighted people have the benefit of graphical user interfaces (GUI) to help

them, but none of them are accessible by screen reading software.

Initially, the package was built on top of functionality I wrote to support my own work

practices, but additions to meet the needs of other blind R users have been made on request.

You will need to install the BrailleR package before continuing on with the examples

in this chapter. It is available from CRAN. Use the examples in Chapter 14 to help install

this package. Then use the library() command to make sure the package is ready for

action.

> library(BrailleR)

The BrailleR.View, option is set to FALSE.
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Attaching package: ’BrailleR’

The following objects are masked from ’package:graphics’:

boxplot, hist

The following object is masked from ’package:utils’:

history

This chapter was created using version 0.23.8 of the BrailleR package. This version of

the package has a number of other packages that it depends on for functionality. When

you make the BrailleR package available, you may see a few introduction messages that tell

you about the other packages being loaded. You will be told about some default settings

for the package that can be altered later to suit your needs.

15.1 Creating a copy of the R console window

In Chapter 2 I mentioned the need to save the content of the console window to a text file

to be able to copy and paste its content to a report or document. One major feature of

the BrailleR package is that this functionality can be done easily and efficiently.

There are three types of content printed in the console window.

1. The commands we type,

2. The output valid commands generate, and

3. Any error or warning messages that arise from our commands.

The sink() command does not currently record the commands or the errors and warn-

ing messages. It is therefore a valuable tool for those R users that are confident about the

validity of their scripts.

Saving the commands typed into an R session can be achieved using the savehistory()

command. For example

> savehistory("WhatIDidToday.txt")

will save all the issued commands into a text file called WhatIDidToday.txt in the

working directory.
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If I just want to have everything I do during a session recorded for posterity, I want all

contents of the console window to be saved. A plain text file is sufficient but it is possible

to use add-on packages to create other file formats.

I have included a convenience function in the BrailleR package that starts a text file

with the date and time in its filename. It gets saved in the current working directory. To

get this file started, just type

> txtOut()

In fact this command starts several files, one for the complete console and one for the

issued commands. The command actually runs the txtStart() command but specifies

particular options for the user’s convenience. If you are happy to use the defalt filename

then you just need to hit <enter>, but if you want to specify the filename, you type the

name, and then hit <Enter> twice (once for your file and once to get out of the filename

requesting prompt).

See the help page for the txtOut() command as it includes the history of the command

and its relatives. The other related commands add comments to the text file or stop the

processing entirely. Also note that the help page mentions how to get the packages needed

for other file formats.

You can open the text file that is being created and modified as you work in any browser.

Once you have the file open and have done some work, you must refresh your browser to

see the latest changes. Keep the browser open as you work and remember to refresh often

to keep on top of what is happening with complete access via your screen reader.

15.2 Text interpretation of graphs

Statistics is an inherently visual discipline. Many statistical analyses lead to a graphic

representation of data that is easy for the sighted world to interpret. Through use of R

we can create functions that can interpret the graphs using text descriptions. We’ll start

with a histogram.

In most circumstances, the user will create a histogram using the hist() command.

This command takes data and creates a number of values needed to construct the his-

togram. We can see what has been created by storing these values in an object. For

example:
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> x=rnorm(1000)

> MyHist =hist(x, plot=FALSE)

The plot argument stops the graph being plotted. We can get the graph anytime by

issuing the plot() command but we are interested in seeing what R has stored in the

MyHist object.

> MyHist

$breaks

[1] -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

[12] 2.0 2.5 3.0 3.5

$counts

[1] 1 8 13 49 100 138 203 180 154 84 51 13 4 2

$density

[1] 0.002 0.016 0.026 0.098 0.200 0.276 0.406 0.360 0.308

[10] 0.168 0.102 0.026 0.008 0.004

$mids

[1] -3.25 -2.75 -2.25 -1.75 -1.25 -0.75 -0.25 0.25 0.75

[10] 1.25 1.75 2.25 2.75 3.25

$xname

[1] "x"

$equidist

[1] TRUE

$xaxp

[1] 0 1 5

$yaxp
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[1] 0 1 5

attr(,"class")

[1] "histogram"

> str(MyHist)

List of 8

$ breaks : num [1:15] -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 ...

$ counts : int [1:14] 1 8 13 49 100 138 203 180 154 84 ...

$ density : num [1:14] 0.002 0.016 0.026 0.098 0.2 0.276 0.406 0.36 0.308 0.168 ...

$ mids : num [1:14] -3.25 -2.75 -2.25 -1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 ...

$ xname : chr "x"

$ equidist: logi TRUE

$ xaxp : num [1:3] 0 1 5

$ yaxp : num [1:3] 0 1 5

- attr(*, "class")= chr "histogram"

> class(MyHist)

[1] "histogram"

The full print out has everything we need but is not in a friendly format. The str()

command gives us a condensed version of the data being stored but isn’t sufficient, and

the class() command just tells us that this information is stored in an object of type

histogram. The class of the object is the most important as it is what tells R how to work on

the object when we use the plot() command on the MyHist object. The plot() command

is actually a family of commands, one of which is purposely designed for histograms. The

plot.histogram() command is actually what constructs the graph when the user calls

the plot() command on an object of type histogram. This family of commands is known

as a method.

The BrailleR package includes a method for creating text interpretations in a similar

way. The VI() command is actually a family of commands that includes the VI.histogram()

command. When we issue the VI() command on the MyHist object, the VI.histogram()



136 CHAPTER 15. LURN. . . TO USE THE BRAILLER ADD-ON PACKAGE

function does the work. Let’s see what we get:

> VI(hist(x))

Histogram of x
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This is a histogram, with the title: Histogram of x

"x" is marked on the x-axis.

Tick marks for the x-axis are at: -3, and 3

There are a total of 1000 elements for this variable.

Tick marks for the y-axis are at: 0, 50, 100, 150, and 200

It has 14 bins with equal widths, starting at -3.5 and ending at 3.5 .

The mids and counts for the bins are:

mid = -3.25 count = 1

mid = -2.75 count = 8

mid = -2.25 count = 13

mid = -1.75 count = 49

mid = -1.25 count = 100
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mid = -0.75 count = 138

mid = -0.25 count = 203

mid = 0.25 count = 180

mid = 0.75 count = 154

mid = 1.25 count = 84

mid = 1.75 count = 51

mid = 2.25 count = 13

mid = 2.75 count = 4

mid = 3.25 count = 2

Other functions exist for boxplots and dotplots. Try:

> VI(boxplot(x))
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This graph has a boxplot printed vertically

but has no title

No label appears on the x-axis.

No label appears on the y-axis.

Tick marks for the y-axis are at: -3, and 3

This variable has 1000 values.

An outlier is marked at: 3.171 2.782 2.819 3.144 -2.716 -2.753 2.733 -2.9 -3.005

The whiskers extend to -2.676 and 2.583 from the ends of the box,

which are at -0.6895 and 0.6447

The median, -0.02724 is 50 % from the lower end of the box to the upper end.

The upper whisker is 0.98 times the length of the lower whisker.

and

> VI(dotplot(x))

Warning in dotplot.default(x): The dotplot command is a wrapper for stripchart,

and is not a base R function.
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−3 −2 −1 0 1 2 3

This graph has a dotplot printed horizontally

but has no title

No label appears on the x-axis.

No label appears on the y-axis.

Tick marks for the x-axis are at: -3, and 3

the data that range from -3.00520712717559 to 3.17125282201477 has been broken into 6

The counts are:

: 23 161 363 325 112 16

The dotplot() command is not part of base R which uses the stripchart() command

instead. The hist() and boxplot() commands used here are actually commands from

the BrailleR package that use the standard commands indirectly. At this point in time, I

haven’t worked out how to get the stripchart() command to work as a BrailleR command

so I needed to use a different name for my version. The BrailleR versions of these three

commands store the additional information we need to get the text interpretation that is

not possible from the standard version of the commands.
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15.3 Basic descriptions of variables

The UniDesc() function is designed to quickly generate a text summary of a single variable.

It also saves several graphs. It can also save the text in a file and use the VI() command

from the BrailleR package to add text descriptions to the output file.

One obvious issue is that saving lots of files could become problematic. Default file-

names are used and all files can be put into a folder of the user’s choosing.

An example will help. Try

> data(airquality)

> Ozone=airquality$Ozone

> UniDesc(Ozone, Folder="AirQuality")

Take a look in the AirQuality folder that has been created in your working directory.

It has a number of files that all start with “Ozone" — the name of the variable being

analysed. You will also have three files stored in the current working directory which have

the filename Ozone-UniDesc.* where the star is for the extension which is one of html, R,

and Rmd.

The most useful one at first is the Ozone-UniDesc.html file. Open this file in a browser

to see what analyses have been included. This file is specifically formatted for use with

screen readers. I hope you find it valuable. If you are reading this document on the web,

then the link Ozone-UniDesc.html will open it in your browser. The link will not work if

you are using the pdf version of LURN.

The commands used to generate parts of this HTML document are given in the R script

file; the third file is called an R markdown document. This is the file that gets converted

into the other two files. It might prove useful to learn how to write this kind of file for

yourself one day.

In the airquality subfolder you will find that graphs have been saved in a variety

of formats. They each have their uses and hopefully the filetype you need is there. Spe-

cial attention is made for those users of LATEX who need specific formats for graphics.

Some more advanced information is presented in LATEX formatted tables and put into files

with the tex extension. For example, the content of Table 15.1 were presented in the

Ozone-UniDesc.html document and included in this document using the LATEXversion of

that table.

Ozone-UniDesc.html
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Statistic P Value

Shapiro-Wilk 0.8787 0.0000

Anderson-Darling 4.5211 0.0000

Cramer-von Mises 0.8033 0.0000

Lilliefors (Kolmogorov-Smirnov) 0.1480 0.0000

Pearson chi-square 73.7241 0.0000

Shapiro-Francia 0.8786 0.0000

Table 15.1: Tests for normality: Variable is Ozone

Whenever the VI() function is employed on an object that does not yet have an explicit

function tied to it, then you will be told that this is the case. This package is a work in

progress after all. Please feel free to send an email if you’d like any extra functionality.

15.4 Altering R output to make it easier to read

Some R output is arranged in nice tables that are easy for the sighted user to read, but

are difficult to understand if using synthesised speech to read the information back to you.

The VI() command is used again here but is now employed on a data.frame object. We’ll

compare it with the summary() command used frequently.

> summary(airquality)

Ozone Solar.R Wind

Min. : 1.0 Min. : 7 Min. : 1.70

1st Qu.: 18.0 1st Qu.:116 1st Qu.: 7.40

Median : 31.5 Median :205 Median : 9.70

Mean : 42.1 Mean :186 Mean : 9.96

3rd Qu.: 63.2 3rd Qu.:259 3rd Qu.:11.50

Max. :168.0 Max. :334 Max. :20.70

NA's :37 NA's :7

Temp Month Day

Min. :56.0 Min. :5.00 Min. : 1.0

1st Qu.:72.0 1st Qu.:6.00 1st Qu.: 8.0



142 CHAPTER 15. LURN. . . TO USE THE BRAILLER ADD-ON PACKAGE

Median :79.0 Median :7.00 Median :16.0

Mean :77.9 Mean :6.99 Mean :15.8

3rd Qu.:85.0 3rd Qu.:8.00 3rd Qu.:23.0

Max. :97.0 Max. :9.00 Max. :31.0

> VI(airquality)

The summary of each variable is

Ozone: Min. 1 1st Qu. 18 Median 31.5 Mean 42.1 3rd Qu. 63.2 Max. 168 NA's

Solar.R: Min. 7 1st Qu. 116 Median 205 Mean 186 3rd Qu. 259 Max. 334 NA's

Wind: Min. 1.7 1st Qu. 7.4 Median 9.7 Mean 9.96 3rd Qu. 11.5 Max. 20.7

Temp: Min. 56 1st Qu. 72 Median 79 Mean 77.9 3rd Qu. 85 Max. 97

Month: Min. 5 1st Qu. 6 Median 7 Mean 6.99 3rd Qu. 8 Max. 9

Day: Min. 1 1st Qu. 8 Median 16 Mean 15.8 3rd Qu. 23 Max. 31

The output generated by the summary() command is difficult to follow as variables are

represented in columns while rows that are read aloud by a screen reader are for the sample

statistics.

The VI() method has given us a summary of the variables one by one. This should

prove easier to navigate and interpret as either a braille or screen reader user.

15.5 Reading a scatter plot

One challenge facing blind people is the inability to glance at a graph and understand what

is intended just as sighted people can. The most difficult graphs to deal with are multidi-

mensional representations of data. Two dimensional scatter plots are the first example of

such graphs.

When a sighted person looks at a scatter plot, they are looking for a number of things.

A relationship between the variables is the most common thing to look for, but there is

also a need to identify points that are unusual in the context of the data presented.

One possible way to describe how the data points are summarised at a glance is that

the graphing window is broken up into areas and a rough guess at the density of points
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within each region is evaluated. If this evaluation of density can be guessed, it can be

counted more exactly by a purposely written function. The WhereXY() function does this

counting for us. It assumes equal-sized rectangular regions in the graph window. We can

choose how many regions but the illustrations here all use a 5×5 grid.

Let’s work with a number of examples, all based on a set of predetermined x-values

and various possible y-values.

> x=(0:100)/100

> y1=5*x+rnorm(101)

> y2=(2*x-1)^2+rnorm(101)/6

> y3=11*x+rnorm(101)

> y4=y3; y4[100]=0

What we might guess from the above is that a graph of (x, y1) pairs would show quite

a lot of noise; (x, y2) pairs are a parabola with some noise; (x, y3) pairs are for a straight

line with some noise; and, (x, y4) pairs are the same as the previous straight line, but one

point is some distance from the line.

The WhereXY() command for each plot is now given.

> WhereXY(x,y2, grid=c(5,5))

1 2 3 4 5 Sum

5 1 0 0 0 1 2

4 7 0 0 0 7 14

3 10 2 0 2 10 24

2 3 10 7 13 2 35

1 0 8 13 5 0 26

Sum 21 20 20 20 20 101

> WhereXY(x,y2, grid=c(5,5))

1 2 3 4 5 Sum

5 1 0 0 0 1 2

4 7 0 0 0 7 14

3 10 2 0 2 10 24
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2 3 10 7 13 2 35

1 0 8 13 5 0 26

Sum 21 20 20 20 20 101

> WhereXY(x,y3, grid=c(5,5))

1 2 3 4 5 Sum

5 0 0 0 1 11 12

4 0 0 0 10 9 19

3 0 6 18 9 0 33

2 11 13 2 0 0 26

1 10 1 0 0 0 11

Sum 21 20 20 20 20 101

> WhereXY(x,y4, grid=c(5,5))

1 2 3 4 5 Sum

5 0 0 0 1 10 11

4 0 0 0 10 9 19

3 0 6 18 9 0 33

2 11 13 2 0 0 26

1 10 1 0 0 1 12

Sum 21 20 20 20 20 101

We might also alter the number of cells in the grid to see how sensitive we want to

make our investigation. Personal preferences will determine which combination of rows

and columns works best.

15.6 What else?

Future developments in the BrailleR package will be made to meet demand. If you do

want some additional functionality that you think is likely to be wanted by others then

please do add to the wish list. Current ideas on the wish list include:

• Easier to interpret multiple regression output.
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• Easier to interpret principal component analysis output.

• More graph types being described using the VI() command.

• Easier to interpret factor analysis output.



Chapter 16

LURN. . . To create maps

This chapter explains how to create simple maps using some add-on packages. You will

need to have installed the maps, mapdata, and ggmap packages to complete the examples

in this chapter. If you have not installed an add-on package before, you should take a look

at Chapter 14 first.

After installing the packages, load them into your R session using:

> library(maps)

# ATTENTION: maps v3.0 has an updated ’world’ map. #

# Many country borders and names have changed since 1990. #

# Type ’?world’ or ’news(package="maps")’. See README_v3. #

> library(mapdata)

> library(ggmap)

Loading required package: ggplot2

16.1 Creation of maps

The creation of maps is actually a simple task in R, as long as the database for the desired

land mass is available. There are a number of these data bases available as downloadable

packages from CRAN.
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I first created a map when I wanted a map of New Zealand (my home country) for a

presentation I gave when I was overseas. I also wanted to show a portion of the country to

highlight how far my home town is from the nation’s capital. The rectangle that appears on

the map of New Zealand was created using the polygon() command. The box() command

places the frame around the map which is created using the map() command. Exhibit 16.1

shows the first map, while Exhibit 16.2 shows the central part of the country.

The maps in these graphs are based on latitude and longitude data. The map() function

ensures the aspect ratio of the resulting plot is in keeping with the actual view you would

have from space if you were directly above the centre of the map being plotted. Note that

this rule doesn’t apply for the world map options that exist.

16.2 Adding cities to a map

The map.cities() function extracts data from a database of the world’s cities. Judicious

selection of the criteria for population was required to get Palmerston North marked, and

the capitals argument was used to get the point for Wellington. I have used some colours

to distinguish the different cities for my plot.

One challenge in making this graphic presentable for this document was assuring myself

that the aspect ratio was correct. Latitudes and longitudes do not take up equal space

especially as you move further from the tropics. R will get the aspect ratio correct but

being sure is another matter.

The graph I first created for this example was 5.7cm high and just over 10cm wide. Was

it in proportion though? If each degree of latitude in the map used 1cm of space, we would

expect each degree of longitude to take up at most 1 cm of space. An approximation for

this is found by multiplying the latitude space by cos(θ) where θ is the latitude. So each

degree of longitude in my plot should take up about 0.76 of the space of each degree of

latitude. I’ve plotted three degrees of latitude and seven degrees of longitude, so I expect

my 5.7cm high graphic to be

5.7

3
× 7 × 0.76 == 10.1

centimetres in width. This was about right.

You can see the way we would do this calculation using R in Chapter 17.
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Exhibit 16.1 Map of New Zealand with a rectangle marked on it that bounds the area

used in a subsequent map.

> map("nzHires", ylim=c(-48,-34), xlim=c(166,179), fill=T, col=3)

> box()

> polygon(x=c(172, 179, 179, 172), y=c(-42,-42, -39,-39), border=1, lty=2)
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Exhibit 16.2 Map showing the central part of New Zealand in order to show two cities in

the lower North Island.

> map("nzHires", ylim=c(-42,-39), xlim=c(172,179), fill=T, col=3)

> box()

> map.cities(minpop=70000,maxpop=80000, pch=16, col=2, cex=2)

> map.cities(capitals=1, col=4, pch=19)

 Palmerston North

 Wellington

16.3 Using Google’s services to map locations of in-

terest

The ability to search Google for specific locations is really useful, especially if you intend

plotting maps with points of interest such as universities rather than just cities. Our first

example does look for cities though, so that it builds on examples from previous sections

in this chapter.

In mid-2015, I will attend the UseR conference in Aalborg, which is in Denmark. I know

Denmark has a coastline and is bordered by Germany, but actually I don’t know much

else (especially where individual cities are!). I want ot know where the city of Aalborg is

in relation to Copenhagen (the capital of Denmark). Witht he help of the ggmap package

tapping into Google maps, I can find the latitute and longitude for both cities and then

plot them on the map of Denmark as follows:
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> Places = geocode(location=c("Aalborg", "Copenhagen"))

Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=Aalborg&

Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=Copenhag

> Places

lon lat

1 9.922 57.05

2 12.568 55.68

> map('worldHires', 'Denmark')

> title('Denmark')

> points(Places, pch=16)

Denmark



Chapter 17

LURN. . . To Use R as a Scientific

Calculator

This chapter explains how to use R as a scientific calculator, including its use of trigono-

metric functions. We’ll also plot some of the functions for illustrative purposes.

17.1 Trigonometric functions

R has a series of commands that all perform quite similarly. The only real issue is to find

out what actual commands get what we want. First of all, we need to know how R will

work with degrees or radians.

> pi

[1] 3.142

> sin(pi/6)

[1] 0.5

> sin(30)

[1] -0.988

So our experiment shows us that R is working in radians.
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The functions sin(), cos(), and tan() give the sine, cosine, and tangent respectively.

To find the inverse sine, sometimes called the arcsine, we use the asin() command. The

hyperbolic functions associated with these functions also exist; use sinh(), cosh() and

tanh() and for the inverse, just add an extra a before the command named here.

17.2 Graphs of trigonometric functions



Chapter 18

LURN. . . To Use R for Basic

Calculus Tasks

This chapter explains how various tasks in introductory calculus can be undertaken using

R.

18.1 Creating mathematical expressions

Before we embark on doing those fun things we want to do, we need to learn how to store

a mathematical expression as an object in R. There are many keywords that appear in

these expressions which are translated to symbols when seen printed in a graph window

but remain in ordinary text in R commands. Such symbols include Greek letters, hats and

bars, all of which have a meaning.

18.2 Plotting functions

This can be a lot of fun if you set things up right to start with. We create a function to

represent the mathematical expression using the function() command, then plot it using

either the plot.function() or curve() commands.

> MySine <- function(x){ sin(x)}

> curve(MySine, -4*pi, 2*pi, n = 2001)
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You can use any valid mathematical expression in the function you create. You might

find it useful to test your idea= values for your inputs that are easy to work with, such

as zero and one. You could then use integers, including negative integers, but it could be

easier to test your functions using values that lead to identifiable results such as multiples

of π when working with trignometric functions. For example: «» MySine(c((0:4)*pi/2)) @

18.3 Differentiation

The internal code used for differentiation in R is not as comprehensive as other mathemat-

ical software. It can handle arithmetic operators +, −, ∗, / and ,̂ and the single-variable

functions exp(), log() (natural logarithm), sin(), cos(), tan(), sinh(), cosh(), sqrt(),

pnorm(), dnorm(), asin() (inverse sine), acos() (inverse cosine), atan() (inverse tan-

gent), and various gamma() functions. The functions pnorm() and dnorm() are restricted

to the standard normal distribution.

The easiest way to find the derivative of an expression is to store the mathematical
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function using the expression() command, and then use the D() or deriv() commands.

> y=expression(exp(2*x))

> D(y,"x")

exp(2 * x) * 2

The second argument to the D() function needs quote marks around it.



Chapter 19

LURN. . . To Use R for Linear

Algebra

This chapter explains how some tasks commonly taught in introductory algebra courses

can be undertaken using R. The functionality is built into R because so many tasks in

statistical analyses require manipulation of vectors and matrices, although much of this

work is hidden behind other commands and functions.

19.1 Basic notes on storage of vectors and matrices

We will concern ourselves with only numeric valued vectors and matrices in this chapter.

Other types of data can be stored in vectors and matrices (as well as other data structures)

but they have little relevance for linear algebra at this time.

In linear algebra, a vector is a one dimensional set of numbers. It is usually referred

to as a row vector or a column vector to indicate its orientation. This orientation does

matter for the ability to perform certain tasks when working with two or more vectors and

matrices.

A matrix is a two-dimensional array of numbers, having a number of rows and columns.

Many mathematical software applications do not explicitly distinguish a vector from a

matrix because they store a row vector as if it were a matrix having just one row. Similarly,

a column vector is stored as a matrix having just one column.

R does distinguish betweena vector and a matrix, but it does not state whether a vector

is a row or column vector. This does have its advantages, and probably some disadvantages
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as well. If for any reason you need to force the orientation of a vector, then create it as a

matrix with one of its dimensions set equal to one. For example, we create a simple vector:

> x=1:4

> x

[1] 1 2 3 4

> class(x)

[1] "integer"

We can convert this to a column matrix using

> X=matrix(x, ncol=1)

> class(X)

[1] "matrix"

> X

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

Notice that I’ve used a capital letter for the matrix version of the same set of numbers

here which is possible because R is case sensitive. The ncol argument can be replaced by

using the nrow argument if a row vector is required.

19.2 Creating some simple matrix structures

The identity matrix is a diagonal matrix so we use the diag() command to create it. For

example
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> I3=diag(3)

> I3

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

We often need to find the transpose of a matrix. The t() command does this.

> M=matrix(1:6,nrow=2)

> M

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> t(M)

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

A Hilbert matrix can be created using a formula. The row() and col() commands use

the size of the argument to create objects of the same size.

> row(I3)

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 2 2 2

[3,] 3 3 3

> Hilb3=row(I3)+col(I3)-1
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Notice that the Hilbert matrix is created by adding two matrices together and then a

constant is subtracted from all elements of the result.

19.3 Matrix and vector calculations

We saw a simple addition of elements of two matrices of the same size as well as a subtrac-

tion in the previous section. R uses the standard arithmetic operators on pairs of matrices

(or vectors) on an element-by-element basis.

Addition of a constant to a vector or matrix is effected on all elements

> x+2

[1] 3 4 5 6

> 2+x

[1] 3 4 5 6

Similarly, we can multiply a vector or matrix by a scalar using:

> 5*x

[1] 5 10 15 20

> x*5

[1] 5 10 15 20

> 5*X

[,1]

[1,] 5

[2,] 10

[3,] 15

[4,] 20
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which retains the size of the vector or matrix. Also note that pre-multiplying by a

scalar is equivalent to post-multiplying by a scalar, as should have been expected. This is

of course different to matrix multiplication.

Matrix operations use different symbols from simple arithmetic operators to distinguish

the different results that might be desired. For example,

> A=matrix(1:4, nrow=2)

> B=matrix(7:10, nrow=2)

> A*B

[,1] [,2]

[1,] 7 27

[2,] 16 40

creates a matrix with elements based on simple multiplication of the paired elements,

not those based on proper matrix multiplication.

If we want to multiply two matrices, the order is important.

> A%*%B

[,1] [,2]

[1,] 31 39

[2,] 46 58

> B%*%A

[,1] [,2]

[1,] 25 57

[2,] 28 64

Multiplying a matrix by a vector is easily achieved, and R will orient the vector to

conform to the rules of matrix multiplication as required.

> y=c(3,4)

> A%*%y
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[,1]

[1,] 15

[2,] 22

> y%*%A

[,1] [,2]

[1,] 11 25

19.4 Inverting a matrix

The inverse of a matrix is used in many statistical procedures. The solve() command

inverts a square matrix.

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> solve(A)

[,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

For matrices that are not square, a generalised inverse can be found using the ginv()

command found in the MASS package that is part of the standard R distribution.

> M

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6
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> require(MASS)

> ginv(M)

[,1] [,2]

[1,] -1.3333 1.0833

[2,] -0.3333 0.3333

[3,] 0.6667 -0.4167

Of course, the product of the matrix and its generalised inverse should be an identity

matrix.

> M%*%ginv(M)

[,1] [,2]

[1,] 1.000e+00 -2.22e-16

[2,] 6.661e-16 1.00e+00

Like many other applications, R does not recognize the number zero very well. This is

due to the way decimal numbers are stored.

19.5 Solving a set of linear equations

If we want to solve the set of equations, represented in matrix form as Ax = b, we use the

solve() command

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> b=c(5,7)

> solve(A,b)

[1] 0.5 1.5
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19.6 Determinants and traces

The det() command is used for finding the determinant of a matrix.

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> det(A)

[1] -2

The trace of a matrix is not so easily found. There is a command that is called trace()

but this is not an algebraic function. If you want the trace of the matrix, you will need to

sum the eigenvalues of the matrix.

19.7 Eigenvalues and eigenvectors

Calculation of eigenvalues and their associated eigenvalues is fairly simple, but extracting

the elements required might pose a little difficulty. Let’s create a 4×4 Hilbert matrix and

find its eigenvalues:

> H4=matrix(-1,nrow=4, ncol=4)

> H4=H4+row(H4)+col(H4)

> H4

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 2 3 4 5

[3,] 3 4 5 6

[4,] 4 5 6 7

> eigen(H4)
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$values

[1] 1.717e+01 4.441e-16 -3.522e-16 -1.165e+00

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.3147 -0.5477 0.0000 0.77521

[2,] -0.4275 0.7303 0.4082 0.34244

[3,] -0.5402 0.1826 -0.8165 -0.09032

[4,] -0.6530 -0.3651 0.4082 -0.52309

If we only wanted the eigenvalues, we could add the argument only.values=TRUE; if

the eigenvectors were of interest, then we would need to extract the second element of the

above result:

> eigen(H4)$vectors

[,1] [,2] [,3] [,4]

[1,] -0.3147 -0.5477 0.0000 0.77521

[2,] -0.4275 0.7303 0.4082 0.34244

[3,] -0.5402 0.1826 -0.8165 -0.09032

[4,] -0.6530 -0.3651 0.4082 -0.52309
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filled.contour function, 122

filter function, 34, 35

fitted function, 97

fivenum function, 64

for function, 108

foreign package, 27, 40

formula class, 92

function class, 153, 154

function function, 153

gamma function, 154

getwd function, 24, 25

ggmap package, 146, 149

ginv function, 161

glimpse function, 34, 35

group_by function, 69, 70

hatvalues function, 97

head function, 28, 34
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histogram class, 135

identity matrix, 157

install.packages function, 127, 128

is.na function, 102

jitter function, 48

ks.test function, 90
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lines function, 115

lm class, 97
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map function, 147

map.cities function, 147

mapdata package, 146

maps package, 146
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mean function, 62, 65, 66, 70, 83

median function, 62, 63

method, 135

min function, 62, 63

mutate function, 34, 36

names function, 19

nrow function, 33

order function, 31, 35

pairs function, 54

par function, 45, 107, 108, 111, 115

paste function, 108

pie function, 59

piping, 71

plot function, 48, 51, 54, 97, 111, 115, 117,

134, 135

plot.function function, 153

plot.histogram function, 135

pnorm function, 154

points function, 102

poly function, 99
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polygon function, 147

print function, 76, 77

pt function, 84

qqline function, 51

qqnorm function, 51, 97

qt function, 83, 84

Rcmdr package, 129

read.csv function, 23, 24, 27, 29

read.delim function, 23

read.table function, 23, 27, 29

relative path, 26

rep function, 16, 17

resid function, 97

rev function, 67

rnorm function, 21, 108

round function, 69

row function, 158

sample function, 32

sample_frac function, 34, 37

sample_n function, 34, 37

savehistory function, 77, 132

savePlot function, 74, 75

sd function, 83

setwd function, 79

sin function, 152, 154

sinh function, 152, 154

sink function, 8, 76, 132

solve function, 161, 162

sort function, 30, 67

source function, 10, 79, 80

sqrt function, 12, 154

stack bar chart, 120

str function, 15, 21, 28, 34, 135

stripchart function, 139

summarise function, 69–71

summary function, 56, 61–65, 94, 95, 141, 142

Sys.Date function, 17

t function, 158

t.test function, 85, 86

tan function, 152, 154

tanh function, 152

tapply function, 64–67, 70, 122

tbl_df class, 35, 69

tbl_df function, 34

trace function, 163

transmute function, 34, 36

transpose of a matrix, 158

txtOut function, 133

txtStart function, 133

UniDesc function, 140

vcd package, 90

vector class, 15

VI function, 135, 140–142, 145

VI.histogram function, 135

WhereXY function, 143

win.graph function, 45

windows function, 45, 46

write.csv function, 39

write.table function, 39

X11 function, 45

x11 function, 45, 74, 75
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