Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

‘%ﬁ Massey University

J2EE Application for Clustered Servers

--- Focus on balancing workloads among clustered servers

A thesis presented in partial fulfillment of the requirements for the degree of
Master of Information Science
in

Computer Science

at Massey University, Albany,
New Zealand.

Supervised By: Dr Chris Messom
Xi Chen

[2006]

Acknowledgment

Special thanks go to my supervisor Dr. Chris Messom for his guidance, enthusiasm
and technical support during the year. He impressed me with his broad knowledge,
background and attitude on every issue. He teaches me not only the latest technologies

but also solving problem skills. Thanks a lot.

I also would like to thank the system administrator James Chai for his support to
make my project run smoothly, e.g. increasing shared memory size and resetting

network routes etc.
Thanks also go to all the developers who have contributed to open source software.

Meanwhile, I appreciate my parents who gave me full support and took care of my

sons during my study.

Abstract

J2EE has become a de facto platform for developing enterprise applications not only
by its standard based methodology but also by reducing the cost and complexity of
developing multi-tier enterprise applications. J2EE based application servers keep
business logic separate from the front-end applications (client-side) and back-end
database servers. The standardized components and containers simplify J2EE
application design. The containers automatically manage the fundamental system level
services for its components, which enable the components design to focus on the

business requirement and business logic.

This study applies the latest J2EE technologies to configure an online benchmark
enterprise application — MGProject. The application focuses on three types of
components design including Servlet, entity bean and session bean. Servlets run on the
web server Tomcat, EJB components, session beans and entity beans run on the
application server JBoss and the database runs on the database server PostgreSQL. This
benchmark application is used for testing the performance of clustered JBoss due to

various load-balancing policies applied at the EJB level.

This research also focuses on studying the various load-balancing policies effect on
the performance of clustered JBoss. As well as the four built-in load-balancing policies
i.e. FirstAvailable, FirstAvailableldenticalAllProxies, RandomRobin and RoundRobin,
the study also extend the JBoss LoadbalancePolicy interface to design two dynamic
load-balancing policies. They are dynamic and dynamic weight-based load-balancing

policies.

The purpose of dynamic load-balancing policies design is to ensure minimal
response time and obtain better performance by dispatching incoming requests to the
appropriate server. However, a more accurate policy usually means more
communications and calculations, which give an extra burden to a heavily loaded

application server that can lead to drops in the performance.

I

Table of Contents

AT CISN SRR NTEITT s cocaniiuanaims i s s A A RS AR I
UL BLE P Bl O TR SO II
TABLE OF CONTENTS suusessssssssusssisisssssmssnsissssssssisissssssiasstsssisoss sossissimssassmmsonnes I
LIST DF TABLER ... ns ey s s ssssss s imimis s s i VI
LAST IF FIGTTRIERS i iimsisassssnsonenssnomnansxsepans assanssnss s sssnsbn censsssiusosnssssesssnssbss VIl
CHAPTER 13 INTRODUCTION qoisanisswmisssssssssnsssnsssissieanirsiiis isiisissmsesmmenss 1
L] WHY CHOUEE LR cmcnsmmiimsnmmmmistomesamsarmssssbismsntismiosss o stosmetis 1
1.2 THE PURPOSE OF THE STUDY . ocmnsemnsssnsasiimrrsssssssmasssnsrens sassssssastssnssssoniss 2
1.3 HOW THE THESIS 1S ORGANIZED....ucunammsssssmmssssssssssersassmsassssiss 3
CHAPTER 2: BACKGROUND OVERVIEW.......utvireennenneisesssessissessessosssssssassns 5
Bl R i ittty it e e s A oo it 5
Bt & DRI PUTTIOFI oo coinsmmnisnsssmnsninnsans s or A e s sn BA AA HS 4
2.1.2 The 2EE Containers Gng APIS ..cusewnmisnssimnssioissimiimssisssssarmass 7
N RPN IR SR SO NSO VR U 8

2ol i BBIUIEE DA o emnvinesmmmasngans s s oy A AN BN B s Sl e s 10

2. 1.3 J2BE Depltryment SErHCIIG. . v vimiamsiscisminsicisiinssinsesmssoss sasssss 11

2:2 BENCHMARE J2EE APPLICATION cousaumsissssissmmemmminmmmmmmsismmsasiien 13
BT BUPE cscvmscmsconsm s o S B R S S RS ia
2:8.4 THe BOPER DBEIBR. .v.vcommmvsmsaropasssinescssmonsvovssesvis assisas buesveriesssssssinss s busisanss 13

2.3 LOAD-BALANCING POLICIES IN DISTRIBUTED SYSTEMccooevrerneerirnnns 15
43, 1 SISO YBIOI cisesoias vssivsvsmmsntssmstammmennsmnrann s e s e s AR RSN S 15
2.3.1.1 Distributed System with N-tier Architectiare ... mmnasnwisnsmsssissssssnisg 16
2.3.1.2 Clustered Distributed SYStemccesuereerianresveiressensuersnsaesessesssesseseneens 16

2.3.2 Common Load-balancing PoliCies....cuuewssssissiisssssssisssassmessrsssssrss 18
2.8.2.]1 Hardwiire Lo5d Balalorr w..cuavimumismsssmmmmnsmwas i imns i 18
2.3.2.2 Software Load Balancer.........c.cccevveereeeeesieneereieesensessessessesessessssensensnns 19
CHAPTER 3: HARDWARE & SOFTWARE FOR THE STUDY ...cccceevvrvsrnsanssssnns 21
il HARDIWARE .. cosmmmnommessassssesnsisssnmsosecesinsmasmsmssvsinesssnasisesessseesrsysis s ms innsss 21
32 SOFTNRRE oot et e o e e A S A AR 22
321 SDE — NetBEURS A1conivsirsvmmsssvmsssesussvisusmsrsnisimsmnsiessissssisssesssssssssisssas 22
3.2.2 Database — POSIGIreSQOL 7. 4.....eeeeereeeieeieseieeeeessseseesesse et ssssssssssenes 23
3.:2.3 Web Server— Tomeqh 3.5 iwivssosisis it il ammismiimim 24
e T T T L T T T R TS S — 25

3.2.4 J2EE Application Server — JBOSS 4.0coevvevormsineieesnreernisessisisssssssesesenes 26
3241 CIusteriBg i JBORE .c.cumuunmusnmsrmninsissvssssisimsssasiss sivmnsaissrsdio 26
3.2.4.2 Load-balancing Policy in JBOSS.....ccccceruertreresmrnresrersanesssssersssssesseseses 27

3.2.4.3 Transaction Commit Options in JBOSScccceerrrrireeversinssessensnsesensens 29

3 2 Papbveinince Ter ool = Jheter 20 2 vouonmmmmasssssm s st 30
CHAPTER 4: BENCHMARK J2EE APPLICATION — sirinn I
4.1 CREE BTURRY v s s s s s s s o siasis 32
4.2 DATABABRE DESIGH...cimissommnssiosmmissainss e 35
2L Diatabene Inplenmmlaiion.coucmmesammmis s s i S 37

4.3 J2EE COMPONENTS DESIGN & IMPLEMENTATIONcceevemrerreeneeseennns 38

#.3.1 EIB DeSiBn «anovmmmusasissmommmsasmasss s vss s s 38
FA1.] BB B ..oimmmmmsmmnssmmis it i s s savssdsaassissssmass it 39
8312 SesRIOn PRl st assriess s cianssasnsrsssnsnsn 45

4.3.1.2.1 Stateless Session Bean «conasesneasmmnsamsmissmssissssssiasssis 47
4.3.1.2.2 Stateful Session Bean..........ccceevereerrrreeeseerireriensesenesssssssesessssesennes 50

4.3.2 EJB Implementation in the MGProject Application.................cccceveeveueennn.. il
BT S ——— 51
0.3, 2.2 SOTRIONE BUBRI v oviciioncrs s s ssmes'oasis s i 4R Ay A v 53

433 Weh Companent DESTEI. cuceuiviinsinsmimitisers s issmimsnsmmssss sessasrsmmmnsns 54
4.3.3.1 Servlets DESIRI oumorssousmssossssssonmosevnssssseissmis s s s ey 55
4.3.3.2 User Interface Design - Servlets Implementation...........ccccoereerernrnerennes 58

CHAPTER 5: LOAD-BALANCING POLICIES DESIGN......ccoceerumcansansrnsnssssaasanns 67
5.1 DESIGN CONSTRUCTION — USING EJB TIMER SERVICE & JBOSS
G e N N O 67
5.1.1 The EJB TiMer SErViCeuucecveeeeesecrnssessnsssessissssessesissssessssessossonsessssonses 68
3.1:2 The JBoxs TreplOHBHE. ...isaisssinininmses s s imrmmssasissasamssmsrsn 68
5.2 DYNAMIC LOAD-BALANCING POLICY DESIGN.........ccoceeeeiieerreeeseenenesenns 69
3.2.1 The JBoss LoadBalancePolicy INCrIAce..........ciwnmiissivsisssnssonisasissssssinenss 70
3.2.2 Pseudo Coding for Dynamic Load-Balancing Policy.............c..ccccoovvveuenenn. 71
5.3 DYNAMIC WEIGHT-BASED LOAD-BALANCING POLICY DESIGN 72
3.3.1 Implementation for Dynamic Weight-based Load-Balancing Policy............ 72
CHAPTER 6: TEST PLAN coicicissssamasssismssnsssssssion AR 74
0.1 TESTPLAN I IMBTER. ... st 74
5.2 HTRERS TERT DY AN ... atssssmmmommsssss i e 76

0.2.1 PlAN_JOF JMELEE ..o e e ses et siese et es st ns 77

0.2 2 PIOHJOP FOMIBHE vvsvnvaresremmssissmsnssonssssmmssasnsssmssssssusnsmmnsssims ssemmmsstnnssmssnssingness 78

0.2.3 Plomt for JBoss .ot siis s pas s s s o 79

0.2.4 Plan for POStreSQOL............cuvuirvriniisresssisssisssssiessessessesssssessessesssssssessesssns 81

02,3 Test Plon SUBEIY o vomamoimisssimmnim aens s i sty 82

CHAPTER 7: TEST RESULTS AND DISCUSSIONccccecesssssssassssssssssssssssssssassasss 85
7.1 TO DETERMINE RAMP-UP PERIOD AND LOOPS VALUE........cccccouvererererernnns 86

7.1.1 For the Test Plan with Thinking Time..............c.c..cocceevveeeeeivreeirsriesesrinannns 86

7.1.2 For the Test Plan Without Thinking Timeccccouveeveeceecreeeeeeeireeenes 87

7.1.3 Choose the Appropriate Version for the Performance Test 89

7.2 TO DETERMINE TOMCAT LEVEL CONFIGURATION FOR STRESS TEST ... 89

2.2.d SIAELE TOMCEE ..cocoincosisissinisissssiassassmucsivssessvsvmisssancassyssssssvissyssssassvasissnissss 90

7.2.2 Clustering Two Tomcat With APACHRe...............ccooveeeeeeeieeeieeesecserecnansanins 9i

7.2.3 Directly Load Twe Tomcatl In JMBIET ..coucmnusiessimvsssmsssssran s 92

1.3 SCALABILITY TBET o cusucosvsesussonssrissamsssisnss s maissmmssss s i 93

7.3.1 Performance Test for a Single JBOSS...............cccccooeueceiireieeieeeieaeieireineenenn, 94

7.3.2 Performance Test for Clustered TWO JBOSSccccoeeeeeeeeeeeieeerirereinens 95

7.3.3 Comparison and DISCUSEION.cswsvimuswississssms s s sisn e 97

7.4 TESTING ON EQUAL MACHINE LOADoovorveeeeeeeeeeessesiesesesseeeseeessesssee 98

7.4.1 Performance Test for Two JBoss with Built-in Policies..................c.ccccc...... 99

7.4.2 Performance Test for Two JBoss with Dynamic Policies...................c........ 101

7.4.3 Conmiparison and DiSGUSFION . .ocmmamsmessisomsiemsca s sy 102

7.5 TESTING ON UNEQUAL-LOAD MACHINEScccoevviirereiernncscsisesssesessaens 104

IV

7.5.1 Performance Test for Built-in Policies ... is
7.5.2 Performance Test for Two JBoss with Dynam:c Pohc:es............................

7.5.3 Comparison and Discussion... .. 108
CHAPTER 8: CONCLUSIONS 110
8.1 CONCLUSIONS FOR J2EE APPLICATION DESIGNooooeeieeieeeieeesesessssesns 110
8.2 CONCLUSION FOR LOAD-BALANCING POLICIES......ccccooevereresesesssessssssnes 111
5.3 FURTHER WORE . oo i s it 112
REFERENCE 115
APPENDIX 119
A TDE = NETBEANS imimammaa i i i ssirrnn s 120
By O O RED NS i ol i el e oS s TR e B Do i Bea o B e el il 121
R C (o T 123
D, APACHE & TOMUOAT wetueeteeeieeeeeeeereerseasssassasssasssassssessssnssssstesssssnsssnssnssssssssnssnnssans 125
E. JMETBR .ciciniarummsniissassin s i i s S wrnsssiiimssiisi 127
F. DATABASE = MG.SQL vetuuttuusssanssresssoeesesssamssssssssnsnssssssssssssssesessassssssnsssnsssnssssssnsseses 128
I Sy T WSS 1 oYy) o/ R RSP SR 132

List of Tables

Table 1: Hardware in Beowulf Cluster - Sisters

22

Table 2: Machines Allocation for Jmeter Parameter-Setting Test

86

Table 3: The Comparison of Performance for Different Version

89

Table 4: Stress Test with Only One Tomcat

90

Table 5: Performance Comparison among Various Web Level Configurations

Table 6: Stress Test with Starting Two Tomcat from Jmeter

92

93

Table 7: Machine Allocation for Scalability Test

94

Table 8: The Quantitative Analysis for Scalability Testing Systems

98

Table 9: The Throughput Comparison for Dynamic Policy

Table 10: The Throughput Comparison for Dynamic Weight-Based Policy

VI

107
107

List of Figures

Figure 1: Overview of J2EE Application Architecture 6
Figure 2: Modules view of a J2EE Application 12
Figure 3: Four Domains Workloads in ECperf 14
Figure 4: Middleware View of Distributed System 15
Figure 5: Working Principle of Hardware Load Balancer 19
Figure 6: Tomcat Clustering 25
Figure 7: Load Balancer Implementation in JBoss 28
Figure 8: Use Case Diagram of the Benchmark Application 34
Figure 9: Class Diagram Showing Database Design 34
Figure 10: The Strict Communication in This Benchmark Application 39
Figure 11: Example Deployment Descriptor of Entity Bean 40
Figure 12: Details of CMP Bean 41
Figure 13: Example of Local Home Interface Design for Entity Bean 42
Figure 14: Example of Local Component Interface Design for Entity Bean 43
Figure 15: Example of Bean Class Design for Entity Bean 45
Figure 16: Example of Remote Home Interface for Stateless Session Bean 48
Figure 17: Example of Component Interface for Stateless Session Bean 48
Figure 18: Example of Bean Class for Stateless Session Bean 49
Figure 19: Set HTTP Session for Stateful Session Bean 50
Figure 20: Get HTTP Session for Stateful Session Bean 50
Figure 21: XDoclet Tags for Entity Bean 52
Figure 22: The Next Primary Key Generator System 53
Figure 23: Session Beans Design and the Referenced Entity Beans 54
Figure 24: Example Codes for a Servlet Design and Session Management 57
Figure 25: Interface Design 58
Figure 26: The Home Page of MGProject 60
Figure 27: New Order Servlet 61
Figure 28: The Interface of priceQuote Servlet 61
Figure 29: addToCartServlet Appending with checkCartServlet 62
Figure 30: The Interface of registerSuccessServlet 63
Figure 31: The Interface of orderList 64
Figure 32: The Interface of cancelSelect Servlet 65
Figure 33: Display the Status of Outstanding Orders for the Customer 65
Figure 34: The Interface of custDetail Servlet 66
Figure 35: EJB Timer Service Creates an Interval Timer 68
Figure 36: The Transactions Processed after Time Out. 68
Figure 37: Using TreeCache as JBoss MBean Service 69
Figure 38: Pair of Information in JBoss TreeCache 70

Figure 39: Overloaded Method chooseTarget in JBoss LoadBalancePolicy Interface........coveeeesrenns

Figure 40: Downloaded Information in Client Stub 71
Figure 41: Pseudo Code for Dynamic Load-Balancing Policy 71
Figure 42: Calculation the Ration for the Weight-Based Policy 72
Figure 43: Design a serializable object cRatio 73
Figure 44: The Interface of Jmeter 74
Figure 45: An Example of __regexFunction using in Jmeter 75
Figure 46: Clustered JBoss with Reside Tomcat for Web Application 78
Figure 47: Define Read-Only Methods via XDoclet 79
Figure 48: Read-Only Methods in the jboss.xml 80
Figure 49: Define EJB Container Configuration for EJB 80
Figure 50: Clustering Stateless Session Beans with Load-balancing Policy via XDoclet.........ccceueuus. 81
Figure 51: Clustering Stateful Session Beans with Load-balancing Policy via XDoclet........c.oeseurann. 81
Figure 52: Row Level Locking for SeqidBean Entity Bean 82
Figure 53: The Scenario of Testing Configuration 83
Figure 54: Ramp-up effect on Throughput Figure 55: Ramp-up effect on Average Delay............ 87
Figure 56: Ramp-up effect on Throughput Figure 57: Ramp-up effect on Average Delay......88
Figure 58: Loops Effect on Throughput Figure 59: Loops Effect on Average Delay........88
Figure 60: The Architecture of Stress Testing System 93
Figure 61: Throughput from Single JBoss Figure 62: Average Delay from Single JBoss 95
Figure 63: Throughput from Two JBoss Figure 64: Average Delay from two JBoss........... 96
Figure 65: Throughput Comparison Figure 66: Average Delay Comparisonessseesnsnss 97
Figure 67: Policies Effect on Throughput 99
Figure 68: Policies Effect on Average Delay 100
Figure 69: Policies Effect on the Throughput Figure 70: Policies Effect on Average Delay..... 101
Figure 71: The Policies Effect on the Throughput without Extra Load 102
Figure 72: The Policies Effect on the Average Delay without Extra Load 103
Figure 73: Throughput of Built-In Policies 105
Figure 74: Average Delay for Built-In Policies 105
Figure 75: Throughput of Various Policies 108
Figure 76: Average Delay of Various Policies 109
Figure 77: Adding check-dirty-after-get to JBoss Deployment Descriptors 113
Figure 78: Try to Create Entity with unknown-pk for J2EE Application 114

VIII

Chapter 1: Introduction

Summary: The chapter describes some brief reasons why the J2EE
platform was selected. And then presents the purpose of the study and aims
of the study. Finally, the overall structure of the thesis and main contents in

each chapter are listed.

1.1 Why Choose J2EE

Since the 1990s, middleware technology i.e. middle-tier software has developed to
simplify distributed assembly of components, which is a collection of services including
managing communication, security and threads etc. to enable multiple processes on
different working machines to interact across the network. For a distributed enterprise
application, usually we use middleware to connect separate applications such as linking
between web applications to a database system, the technique provides an abstraction
capability to simplify the construction of a distributed enterprise system and allows the
application developers to only focus on business logic [52]. The most attractive
middleware today are CORBA, J2EE and .NET. All of them are deployed as standard
components / objects. But CORBA (Common Object Request Broker) provides only
middleware techniques to model a standard and consistent component architecture
framework such as clients’ request for services from servers via well-defined interfaces
across network. J2EE and .NET are the two most popular software development

platforms to design server-side enterprise applications.

Both J2EE and .NET are emerging and competing platforms that contribute to
simplifying writing enterprise applications. .NET is restricted to MS Windows-based
platforms although some limited open source multi-platform .NET systems are in
development, such as the Mono Project [16]. This research will utilize Massey Beowulf
Clustered computers that are running the Linux operating system. In addition, the
advantage of J2EE is that it is programmed in Java that can be deployed cross-platform.
Moreover, this research extends a previous study, Zhou’s Master's research that used
SUN ECPerf --- a benchmark J2EE application as the testing application to study “A
scalable application server on Beowulf Cluster” [1]. As a result, the J2EE platform is a
natural choice for the study.

1.2 The Purpose of the Study

This research addresses techniques that support the development of distributed
enterprise applications particularly its non-functional requirements including security,
scalability, fault tolerance and load-balancing etc but focuses specifically on load-
balancing policies. Due to the dramatically dropping hardware price, using more than
one server has become affordable for more and more companies, including most small
companies. Moreover, the Internet is providing a potential e-market for enterprises since
the network has effectively shortened distances for international or national trade. The
quality of e-commerce services, such as securing customer information, ensuring
minimal online waiting time to increase returning customers has been a priority.
Improving the performance of servers, particularly clustered servers are now being
addressed. Load balancing is one of the key technologies behind clustering that affects

the performance of the clustered servers when the servers face heavy loads.

The goal of load balancing among clustered servers is to ensure minimal response
time and obtain better performance by dispatching incoming requests to the appropriate
server. When Zhou [1] studied the scalability of Beowulf clustered servers using JBoss,
he found the different load-balancing policies could get different performance results.
His study indicated that a better scalability result could be achieved by using First
Available Load-Balancing policy than using default Round Robin Load-balancing
policy, but both of them became a bottleneck under heavy workloads [1]. In order to
improve this situation, this research will focus on studying the load-balancing
mechanism. The study will extend the JBoss LoadbalancePolicy interface to design a
more appropriate load-balancing policy --- dynamic and dynamic weight-based load-

balancing policies.

In order to test the performance of clustered servers using various load-balancing

policies, this study also includes building a benchmark J2EE application. It consists of:

» Client side: client view of dynamically generated HTML pages using server side

technology Servlets that is implemented on Tomcat, a servlet container.

» Server-side: refers to both web server and application server. The web server
(Tomcat) focuses on user interface design via web component Servlets and the
application server (JBoss) which handles business processes via designing J2EE

enterprise Java beans components entity beans and session beans

» Database: used for store business persistent data that is implemented on the open

source database application PostgreSQL
1.3 How the Thesis Is Organized

The thesis focuses on the J2EE application and load-balancing policies design. The
entire thesis will be focused on these two main topics and organized into eight chapters.

The overall structure is as follows:

» Chapter 1 describes some brief reasons why the J2EE platform was selected.
And then presents the purpose of the study and aims of the study. Finally, the

overall structure of the thesis and main contents in each chapter are listed.

» Chapter 2 overviews the knowledge background and terminology needed to
understand this thesis. J2EE is introduced including the architecture of the
J2EE platform, containers and APIs and the structure of deployment of J2EE
applications. Secondly the well-known benchmark J2EE application — ECperf
design is introduced. And finally the n-tier clustered distributed system and

common load-balancing policies in use are presented.

» Chapter 3 covers the hardware system for this study - the clustered systems
built in Massey University Albany campus. The detail of the open source
software chosen for this study including J2EE application design IDE, web
server Tomcat, application server JBoss, database PostgreSQL and

performance test tool Jmeter are discussed.

» Chapter 4 details the entire benchmark J2EE application - MGProject design,
including database, EJB and web components design. A brief introduction of
the EJB and Servlet design, including the life cycle of the EJBs and Servlets,
including the main concerns on designing these components is given. In
addition, example coding of the design to explain the components are given.
Moreover, how the web component and EJB components interact with each
other in the application and how to use XDoclet in the NetBeans IDE to

generate JBoss specific deployment descriptors is presented.

» Chapter 5 covers the detailed design of the dynamic and dynamic weight-
based load-balancing policies for clustered JBoss. The policies will extend
JBoss LoadBalancePolicy interface and utilizes EJB timer service and JBoss
TreeCache. The LoadBalancePolicy interface exposes the cluster members’

information. The EJB timer service performs tasks in a regular period and JBoss

TreeCache provides shared storage for all timer session beans located in different

machines. In addition, the chapter also lists the pseudo code design.

Chapter 6 The test plan in this chapter has two meanings. One refers to
establishing a test plan in Jmeter. The plan will simulate a large number of
independent clients performing online actions to interact with back-end
servers. Another means to plan a test procedure for testing the performance of
JBoss under various load-balancing policies. This plan should provide a
sequence of testing steps to achieve the testing goal. Meanwhile, techniques to
ensure the benchmark application runs as smoothly as possible under the very

heavy loads are discussed.

Chapter 7 presents the details of the tests implementation on the Sisters
cluster. The main tests are classified into two kinds — scalability tests and
load-balancing policy comparison tests. The scalability refers to a single JBoss
and clustering two or more JBoss performance test. The load-balancing policy
tests will apply various load-balancing policies on the EJB level to identify if

each of them affects the final performance of clustering JBoss.

Chapter 8 gives the final conclusions of the thesis. The conclusions include a
critique of the J2EE application design and the effect of the various load-
balancing policies on the system performance. Finally, the chapter also

presents potential further work.

