
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



A MULTIVARIATE PLANNING MODEL CITY STRUCTURE 

A Thesis presented in partial fulfilment of the requirements for the 

degree of Master of Science in Statistics 

by 

Peter Crawford 

1972 

Massey University 



(j . 

Preface 

The genesis of this study is post graduate research in Urban Geography 

at Canterbury University in 1966. At that time a crude multivariate Centroid 

model of 95 New Zealand towns and cities was constructed. Based upon 60 socio­

economic variables two factors for each of the years 1951, 1956 and 1961 were 

extracted and compared. The present study, which is a considerable refinement 

upon the earlier research, incorporates not only tremendous advancement in 

multivariate design methodology and application, but also parallel advancements 

that have been made in computing facilities over the last five years. 

The objective of this research is to construct a multivariate 

statistical planning model that is both statistically precise and meaningful 

in its application. Particular emphasis is placed upon the need to organise 

in a systematic and meaningful manner the increasingly greater variety of 

statistics that portray urban growth. Stress is placed upon the utility of 

the multivariate technique as e tool in the author's profession of Town Planning. 
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I. 

1. 

MULTIVARIATE METHODOLOGY 

I ntroduction :-

Mu l t i varia t e methods are Stat istical techniques concerned with 

r e lationships between variables. These relationships attain a pa r tic ­

ular level of significance in association with the volume of urban area 

statistics produced in New Zealand and the need to use such statistics 

in Town Plann i ng . In particular, recent pr oposed legislation requiring 

the establishment of planning policy necess i tates a more precise under­

standing of the nature of relationships between statistics used to 

delineate city development . This l egislation is backed by precedence 

in decis i ons of the Town and Country Planni~g Appeals Board whic h has 

already stipulated that their determinations will be based upon planning 

po l icy where it exists. Few c i ties in New Zealand have established such 

po licy . The Planner will therefore be required by statute to der i ve 

planning policy which wi ll, on the whole , be obtained from a myriad of 

statistics all of varying degrees of importance. The problam is to 

develop a statistical technique which will incorporate and account fo r 

statistics used in Planning. The mu lti variate s tatistica l technique of 

Fac tor Analysis appears to have the most potential for such an analysis. 

2. Research Object i ve s: -

Research objectives in this study are two-fold - firstly to 

investigate the utility of a multivariate statistical technique in the 

delineation of urban relationships and hence the definition of planning 

policy , and secondly to assess problems of data dis t ribution and mathem­

atical meaningfulness inherent in multivariate modelling. Both t he 

former and the latter objectives are analysed i n terms of an examination 

of New Zealand's 18 cities over the 1951-71 period. The Multivariate 

Factor Analysis method is developed as the mathematical planning model . 
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3. Statistics:-

Multivariate statistical analysis is associated with a 

considerable body of statistical theory and knowledge which has 

developed since the 1940s from the work of Lawley. Earlier and simpler 

applications focussed upon univaria te and bivariate relationshi ps and 

the normal distribution. Much of the less systematic statistical 

methodology was developed by the early analytic psychologists; Charles 

Spearman, Cyril Burt, Karl Pearson, G,H. Thomson, J.C. Maxwell Garnett, 

Karl Holzinger, H. Hotelling, L.L, Thurstone, Galton and othe rs. More 

recently, and in particular in the last decade, the development of 

computer science and more flexible numerical techniques has led to the 

relaxation of computational limitations upon applications of multi ­

variate s tat istical theory. Work by Lawley, Howe, Anderson, Rao and 

Maxwell, Carroll, Ferguson, Neuhaus and Wrigle y , Saunders an d Kaiser 

on multivariate factor statistical methodology has been of considerable 

importance. At the same time refinement of the eigen-value problem by 

numerical analysts - Householder, Rutihauser, Francis and others - has 

gr eat ly contributed to developments in multivariate analysis. The 

breakthrough by Joreskog in the establishment of a numerical method for 

the minimisation of a function of many variables in 1966 is of consider­

able importance. Methodological improvement by Joreskog in collabor­

ation with others in the past few years has meant a simplification of 

the application of the technique's improved statistical base. Almost 

all of the improvements in the technique has meant an increase in 

ability to relate many variables in a statistically meaningful manner, 

4. Planning:-

Town Planning involves the establishment of policy for city 

development goals, formulated from an interpretation of the patterns of 

urban growth. This interpretation involves prior knowledge from a 
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determination of not only existing relationships and inter-relationships 

in cities, but also an understanding of the trends in such relationships 

and their relative degree of importance, Analysis of this kind, while 

implied under the Third Schedule of the Town and Country Planning Regul­

ations 1960, is not stipulated. 

Basic data used in the establishment of urban area inter-

relationships are generally available from Census publications or from 

carefully de signed sample su r veys, Muc h of this material req uires 

interpretation, particularly on complex issues where the outcome of a 

decision or policy implementation, may be consequential upon the complex 

interaction of a variety of variables, Indicative Planning in New 

Zealand has , until recently, been involved in the assessment of 

individual statistics or simple combinations of such statistics. More 

often t han not, only univariate analysis is undertaken and frequently 

the population statistic was the sole index used in indicative planning. 

Recent decisions of the New Zeal and Town and Country Planning 

Appeals Board have emphasised t he need for Pla nners t o take cognizance 

of the more complex issues in establishi ng Town Planning policy1 The 

definition of the complex issues of planning require a more refined 

analysis in terms of the available statistics, The problem of the Planner 

is to arrange these statistics in a meaningful manner so that they may 

portray the complex issues and clarify the important aspects of city 

growth and development, ,, 

Outside of the classificatory work of tne urban Geographers 

there has been little research undertaken in this area of statistical 

application, The American Ecological studies by Shevky-Bell, Haynes, 

Molotch and others have been concerned with spatial inter-relationships 

An example is the Board's recent decision in the case G~U,S, Properties Ltd. 
and others v. Timaru City Council 1971 4 N.Z,T,C.P,A. 1~. 
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and classification within urban areas. Most other studies including the 

above, criticised widely for lack of methodological framework, do not 

indicate an incorporation of a planning base. 

5, Experimental Multivariate Planning Model:-

Multivariate statistical models involving determination of the 

simple and complex inter-relationships between many different statistics 

appear particularly suitable for an analysis of the characteristics of 

cities. Moreover, the multivariate Factor Analysis model has considerable 

potential as a planning model because it incorporates the principle of 

parsimony, i.e. the ability to precipitate a simple relationship from a 

complex combination of many variables. This study is an attempt to 

construct an experimental Factor Analysis planning model and to examine 

the relationship between the model and observable reality. 

The study format is in three parts. In Chapter Two the mathem­

atical and statistical framework for the model is established. Chapter 

Three consists of a detailed analysis of the application of the model to 

the Ne w Zealand situation. In the final section, Chapter Four, the 

results and meaningfulness of the model are assessed in terms of the 

statistical accuracy and usefulness as a planning tool, 
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MATHEMATICAL MODEL - FACTOR ANALYSIS 

Theoretical Framework:-

A multivariate mathematical model forms an ideal analytical base 

for demonst rating developments in inter-relationships. Initially the 

pattern of variable distributions can be portrayed in a univariate 

situation. Then may be considered the bivariate distributions wh ic h 

describe the relationships between pairs of variables. Multivariate 

patterns in turn may be portrayed in a Factor Analysis model. The 

relationships are essential l y linear, but are systematic and the factor 

model is developed stage by stage (Figure 1 ) . 

Univariate ( 1 ) 
Bivariate ( 1 , 1 ) ( 1 , 2) 

Univariate (2) 
Bivariate (2,2) ( 2, 3) 

Univariate ( 3) 
Bivariate ( 3, 3) (3 , 4) 

Univariate ( 4) 
Bivariate ( 4, 4) ( 4, 5) 

Univariate ( 5) 
Bivariate ( 5, 5) ( 5, 6) 

Univariate ( 6) 
Bivariate (n,n) 

Univariate ( n) 

Stage I Stage II 

Figure 1. Staged Development of the 
Multivariate Factor Model 

...... ( 1 , n) 

..... ( 2,n) 
Multivariate 

.... ( 3, n) - Model 

... ( 4, n) 

.. ( 5, n) 

Stage II I 

The advantage of the technique is that in any partjcular application an 

int erpretati on may be placed upon the various stages of the structuring 

of the mode 1. 

2. Data Cube:-

Consider a set of variables or characteristics, X1, x
2 

••••••••• Xn 

describing particular entities over a set time period. A standard 'Data 

Cube' is formed. Such variables are selected on the basis of a particular 

hypothesis or research goal. In this instance the formation of a Data 

Cube which describes not only entities and their characteristics also 

allows for occasion~, provides the basis1for an analysis overtime. Such 
' 

analysis forms a fundamental structure in· the delineation of a planning 

model. The data cells of the three dimensional Data . Cube form the basis 
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for the model. In this particular research application occasions are 

combined in the final model with entities, and the standard data cube 

becomes two-dimensional. Separate time slices are used to study the 

structure of this model . The factoring matrix, therefore, conforms to 

the R-factor analysis. The significance of the datum cell is in the 

patterns of variation between characteristics over entities. Character­

istics are the variables. 

occasions 

entities 

datum cell 

Figure 2. The Data Box 

3. Means and Standard Deviations:-

The mean is a central value of a characte ristic calculated as 

X. = 
1 

~ X .. /N 
/_, 1J 
j 

and indicating the general numerical location of the characteristic. 

Averaging of one characteristic for different entities at different points 

in time can reveal a simple pattern of change or a trend. 

X. t 
1, 1 

t = 

x. t 
1, 2 

time i 

X. t 
l., 3 

= 1 , n 

The measure of location, however, may in particular instances , not take 

cognizance of the arrangement or spread of the individual values of the 

characteristics. Thus, in some situations the mean value may.not provide 
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enough information about the data distribution, Therefore, a measure of 

spread may be particularly useful in demonstrating patterns of change. 

Most commonly used is the variance value for the variable, 

2 
0. 

l 
= 

or its square root, the standard deviation, 

0 
i 

which has the advantage of being on the same scale as the variable . For 

a no rmal variable , 68.26% of the sample lies within one standard deviation 

of the mean, etc, Thus, as a consequence a more precise description of 

data distribution is possible, 

-------95.46% 

·--68 , 26% s = standard deviation 

X = mean 

X - 2s X - s X X + s X + 2s 

Figure 3. Areas Under a Normal Curve 

Hence the standard deviation for a particular variable assessed 

for different entities et different points in time can reveal a pattern 

of change or a trend, 

t"' time, icr1,2, • • • • • • n. 

More eo, if the changes in standard deviations ere interpreted with the 

patterns of change associated with the development of the everege values. 
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4. Correlation and Covariance:-

Until now the basic ' descriptive statistics have been associated 

with un i variate situations. Fundamental in data analysis is the bivariatt 

consideration - the pattern of relationships between two variables. The 

measures of covariance and correlation demonstrate the bivariate relation-

ship. In the latter instance, however, the measure is a scaled quantity 

while the former retains the numerical data distribu tion . 

C av ( X • t X • ) = 
l. J 

r .. 
1,J = 

L (xi _ x) ( x . - x j) 

/ [L( xi - ;,2]t~(xj- ~)21 
2 Further, r .. represents the amount of v ariance which the two variables 

1,J 

have in common. Either the covariance or the correlatio n coefficient can 

be used in an analysis of trends in a particular pair of characteristics. 

A relationship between two variables may intensify and the refore there 

will be greater inter-dependence . On the other hand, the converse 

si tu ation may apply . 

r. . t 
l.' J ' 1 

r .. t 
l., J, 2 

i,j = 1,2, .....•. n, 

(x.,x.) 
l. J 

(x . ,x.) 
l. J 

= time 

Both methods provide systematic measures whic h may be used to define 

changes in a bivariate relationship over a particular time period. 

5. Principal Component Multivariate Model:-

Unlike partial, multiple and canonical correlations which are 

used to analyse the dependence structure of a multinormal population, the 

primary problem in correlation is the definition of dependent and indep-



- 9 -

endent variables. While the choice of dependent variable may be based 

upon response patterns and hence the research hypot hesis, it is inevitable 

in a multivariate situation that the responses are symmetric or 

there are no a priori patterns of causa lity available, 

Techniques developed to establish a dependence structure of 

observed responses based upon hypothetical independent variables come 

within the genera l category of Fac tor Analysis. Such statistical tech­

niques attempt to define those hidden factors whic h have generated the 

dependence relation between, and the variation in, the responses. 

Observable variables are represented as functions of a smaller number of 

latent fact or variables. These functions are such that t hey will 

generate the covariances or correlations amongst the responses. In this 

study we are concerned with generating the correlations amongst responses. 

The objective of the technique is to establish f rom amongst the r e sponses 

of many variates a more simple or parsimonious description of dependence 

• 
structure. It is assumed that the generating model is linear in form. 

The principal component model de veloped by K. Pearson as a method 

of fitting planes by orthogonal least squares and extended by Hotelling 

for analysing correlation structures is the simplest of the Factor models 

and it is usual to use this model as the first step in estimating the 

structure of a factor model. The technique has widespread use in a 

variety of fields including human biology, cognitive psychology, 

mineralo r~y. 

The model which merely partitions the variance amongst the 

computed components is derived from x
1

, •••••••••• Xp random variables with 

r mu:tivariate distribution mean vector .H., and covariance matrix 

Both the elements of J:, and ~ are finite with the rank of ~ 
r ~ p and that the q largest characteristic roots 

being 
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of are distinct , Further, an N ~ p data matrix is established from 

a sample of N independent observation vectors. 

X X 
11 • • • • • • • • • • • • • • . • • • • • 1 p 

X = 

X X 
N 1 • • • • • • • • • • • • • • • • • • • Np 

Note that neither 2 nor X need be of full rank p, and furthe r 2, need 

not contain more than one characteristic root, Full rank, however, 

ensures simplicity in structure description and is generally assumed in 

practice. 

An estimate of is either the variance-covariance mat rix or 

the correlation matrix R. The latter is preferred ins tead of the former 

because of the scaling properties of the correlation coefficient, The 

first principal component of the observations Xis the linear compound 

= 

of the responses whose sample var iance 

2 I I Sy = ai1aj1sij 
1 i = 1 j = 

= ~ 1 (The largest characteristic root) 

Continual factoring generates linear compounds of the original variates 

which account for a progreeeively smaller amount of the variance, The 

significant features of the model are thet:-

a) the principal component analysis factorises R 

b) principal component analysis factorization is unique 

Because of the model's inherent charecteristice it ie therefore 
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possible to construct principal component models portraying the relation­

ships between many variables at different points in time. Moreover, a 

comparison between the models can be attempted on the basis of the changes 

in relationships and variation. 

Principal Component = PC 

p~t p~t prt .. ....... . 
1 2 3 

PC2 t 
, 1 

PC2 t 
, 2 

PC2 t .......... 
, 3 

PC. t l., . 
Principal Component 

J i = 1 ..•. • p, t = time j = 1, ... end of period. 

Since t he correlation between the original var i ab l es a nd the 

individual components c&n be obtained through the formula a . . A 
l.J J 

where a . . are the estimated component loadings and A. the charac t eristic 
l. J J 

r oot of the jth component, it is possible to relate componen t s and 

variables. Moreover, a simpler or parsimonious description is now possible 

in terms of a single l~near component if it accounts for the greater part 

of the variance of the original variables. 

6, Factor Analysis Multivariate Model:-

Despite its simplicity the Principal Component Multivariate model 

has shortcomings. While the model does factorise the covariance matrix 

the factorisation is more of a transformation rather than the consequence 

of a fundamental model for covariance structure. Further, the forms of 

components are not invariant under response scale changes and there is no 

strict criteria for deciding when sufficient variance has been accounted 
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for. It is significant that no provision is made for error variance 

estimations. 

This partition of the variance relates to the factor model in 

that "each response variate is represented as a linear function of a 

smaller number of unobservable common f actor variates and a single latent 

specific variate. Common factors generate the covariances among the 

observable responses while the specific terms contribute only to the 

variances of their particular responses " (Morrison, 1967). This refine­

ment in description over the Principal Component model is, however, gained 

at the expense of two assumptions: 

a} the observations arose from a multinormal population of 

ful l rank. 

b) the exact number of common factors can be specified before 

analysis. 

Both these assumptions are an essential part of the Factor philosophy. 

The mathematical model is based upon a multivariate system of p 

responses characterise d by observed random variab l es x
1 
••••.••••• x .x. 

p J. 

having a nonsingular multinormal distribution. The model is of the form: 

X 
p 

y. 
J 

= 

= 

= 

a.. ::: 
J.J 

e . = 
J. 

+ 

+ + e 
p 

jth common factor variate, j = 1,2 .•••• m 

parameter reflecting importance of jth factor in the 
composition of the ith response (loading of the ith 
reponse on the jth common factor} 

ith specific factor variate 
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In matrix notation the factor model becomes X = .A Y + (, 

Now let them common factor variates in y be distributed normally 

with zero means and unit variances i.e. y .,.,,....N(0,1). Further assume 

t rv N(O, q;i ). 4' i 
'+'1 

being the specificity of the ith response. 

't' 2 

Moreover, it is required that the variates y and t be independently 

distributed. Variance on the ith response from the properties of the 

latent variates are: 

2 
(J. = 

l. + •••••••••• +a . im 
2 

+ 

and the covariance of the ith and jth response variate as 

That is 

Now 

er 
ij = 

2 er. 
l. 

= 

= 

+ 

j =1 
I 

+ 

2 
a .. 

l.J 

+ a. a. im Jm 

'I:' 

are the diagonal elements of AJ\.and are called the communelities of 

the responses. 

common factor. 

aij is the covariance of the ith response with the jth 

However, when 2 is the population correlation matrix,R, 

the eij ae in the ceee of the principal component model is the correlation 

of reeponees end common factors. 

The basic problem in factor analysis is the determination of the 

eij with the elements of 't' following ae a constraint imposed upon the 

communelities. The fundamental aspect of the factor model, however, ia 

that linearity becomes part of the research philosophy. Further, the 

reeearch hypotheeie is related directly to the number of factors. If there 

is not a fit between the hypothesised factors and the observed veluea then 
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both the factor hypothesis and the linearity hypothesis may be rejected. 

Normally further factors may be hypothesised to test the fit. Some work 

by MacDonald has been undertaken on the problem of non-linearity rejection, 

but this work is in its early stages of development. Linearity is assumed 

throughout this research application, 

Similar to the Principal Component technique, but at a more 

refined leve l of statistical analysis it is possible to relate not only 

variables to the factors, but also to construct factor models representing 

different analyses at different points in time, In addit ion , it is there­

fore possible to attempt a comparison between models on t he basis of the 

changes in relationships and variations. 

F 
1 , t 

1 

F 
2,t1 

F. t 
l., . 

J 

= 

7. Varimax Rotation:-

F 
1, t2 

F 
1 , t3 

.......... 

F F , .... ... .. 
2,t2 2,t3 

Factor 

i = 1, •• ••• m number of factors hypothesised 

t. = 1, ..•.• end of period under study 
J 

As a corollary to factor production, maximisation of associations 

between factors and variables may be obtained by a rotation, The signif­

icant feature of the Principal Component model is not only the unique 

factorisation but also the orthogonal relationship between components. 

Thus Components are independent and theoretically unrelated, On the other 

hand, the factor model does not have the condition that the sums of the 

squares become successively smeller as one passes from the first to the 
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final factor. As a consequence orthogonal rotation of the loading matrix 

J\. does not affect the generation of covariances. In fact, it is to be 

appreciated that in factor analysis an infinity of loading matrices may be 

obtained from the correlation matrix. 

As a result, a mo r e "meaningful" application of the concept of 

simple structure may be applied to make a clearer definition of l oadings. 

Further, it is reiterated by some that the "particular configuration of 

numbers obtained in an unr otated factor analysis loading matrix is largely 

a function of the method used to extract the eigenvalues and eigenvectors 

and therefore may have no empirical meaning ". The concept of simple 

structure is a non-mathematical technique setting out several criteria for 

a rotation o f factors: 

a) existence of a positive manifold (i.e. a minimum number 
of negat ive values in the factor loading matrix) 

b) a smal l number of high l oadings and a large number of 
near zero loadings 

c) each row of the factor loading matrix to have at least 
one near zero factor loading and at least one other 
large positive l oading 

d) it must account for the relative position of zeros and 
important high loadings 

The principle is one of an application of Occam's Razor to the factor 

loading matrix and is felt by most to give a better or improved description 

to the factors. 

Most commonly used, and the technique used in this application, is 

Kaiser's (19 58) varimax rotation method which maximises the fourth power 

of the factor loadings and therefore maximises the scatter amongst the 

loadings. As the method retains the property of orthogonality which leaves 

the factors uncorrelated it is as a consequence widely used. In genera l a 

transformation matrix 'I' is developed over a cycle of rotations with the 
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angle of each rotation chosen such that a function 1U1 of the factor 

matrix is max imised . 

m 

n 

g .. 
l. J 

h 2 
i 

u = 

= 

= 

= 

n m 

mL I 
i = 1 j = 

number of factors 

number of variab l es 

m n 

L 
j = i i = 1 

element of factors matrix J.J1Cler rotation for ith variable 
jth factor 

communality 

2 

The rotated Factors assume particular importance because of this relation­

ship, particularly in respect of the relationship between vari ables, 

factors and factor scores. Factor scores · for particular entities are 

deriv ed from the fa ctors and demonstrate the relationship between individ­

ual entities in terms of the hypothesised factor constructed from many 

related variables . The degree of rotation and hence the domi nance of a 

particular variable must be assessed in terms of the rotation. Differ ent 

rotations applied for separate models representing different points in 

time tend to high light differences between dominant variables. 

8. Multivariate Statistical Factor Model:-

If occasions are combined with entities and the resultant two-

dimensional data base is factor analysed a more general combined multi-

variate statistical factor model may be constructed. The model is still 

the simple format 

X = A y + l 

In this instance, however, the entities become entities for different 

occasions with the unique and distinct characteristics being associated 

with each particular point in time. Further, the descriptive basis allows 

the use of the factor hypothesis to delineate aspects of particular 

entities, and comparisons can be made betwaen the different factor models 
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F factor 

F . i = 1,2, ..... m number of hypothesised factors 
i 

t. j = 1,2, .... . k time period under consideration 
J 

The particular significance of such a combined model is two-fold. Firstly, 

not only can the model be rotated wi th some consistenc y , but also the 

singular time scale models can be related in terms of specific variable -

factor r e lationships. Secondly, hypothesised factor comparisons can be 

made . In this latter instance the factor scores, which relate entities 

and factors defining variation can map a particular trend in patterns of 

c hange as shown in the scores ove r a set time period. The former instance 

allows a check between the final factor model and observed reality. In 

fact the s taged development from simple arithmetic means, variances, 

covariances, correlation, single time scale principal component and 

simple time scale factor models relates the cumulative model to the 

observable situation. A patter n of growth and inter-relationships may be 

defined i n a complex multivariate situation through such a refine me nt of 

the application of the multivariate factor model. 

9. Data Distribution:-

Basically the Factor Analysis model outlined focuses upon a 

delineation of similarities and differences, relationships and associations. 

Kendall (1957) stipulates that the application of Factor Analysis is a 

search for inter-relationships rather than dependency. The preciseness 

of the definition of such inter-relationships will be dependent upon a 
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variety of factors. Not t he least amongst these factors will be the data 

distribution . 

It is only in rece nt years that a more sophisticated philosophy of 

factor analysis has been established from a multivariate nor ma l hypothesis. 

Lawley ' s work in the early 1940s demonstrated the need for a sound data 

base while applications of the maximum likeli hood phi l osophy has given a 

more formal theoretical statistical framework. J or eskog ' s br eakthrough in 

1967 has meant this theoretical framework can be applied to specific 

research applications. More specifically factors can be tested for 

sign ificance i n terms of a normal s ampling situation. 

Deve l opment of such a body of theory and techniques for application 

i s a breakthrough of considerab l e importance, but is not undertaken in this 

study because the need to develop the technique , not ye t available in New 

Zealand , was beyond the scope of the study. The re was, howe ver, a ne ed to 

establish a reasonably consistent framework in which to de velop the model. 

The normality of the data distribution a nd its e ffect on t he fu ndamental 

model is the secondary ob jective of this piece of experimental research. 

Data Distribution and normality considerations assume a particular 

degree of importance when it is considered that a bi variat e nor mal 

distribution has the property that the regression relation between two 

variables is linear (Kendall and Stuart , 1958, vol . 1, p. 387). Further 

linearity in the bivariate inter-relationship of the data is a basic 

assumption of the model . Moreover, a sufficient condition for the 

correlation coefficients to be a true measure of statistical independenc e 

between two variables is that the bivariate distribution of the variables 

be normal. Thus, the importance of the normality of data distribution is 
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a prime consideration not only in correlation, but in the final factor 

model. 

In the development of the factor model it is proposed to examine 

this relationship between normality of data distribution and the model at 

its various stages of construction. Not only will the effect of normal­

ising data be studied in derived c orrelat ion coefficients, but also the 

implications in terms of the fundamenta l factor model which is constructed 

from the correlation coefficients. 

It is proposed to develop the mod~l from basic data and repeat the 

application using the same data with a normal transformation. Both models 

will be assessed - the crude data model and the statistically exact model. 

Final examination will be the relationship between the model and its 

ability to portray the nature of the variat i on in relati onsh ips between 

variables. 




