Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.



ON SOME ASPECTS OF SECOND ORDER

RESPONSE SURFACE METHODOLOGY.

A thesis presented in partial fulfilment of the
requirements for the degree of M.Sc. in Mathematics

at Massey University.

Vernon John Thomas

1972



e
be

Abstract

A unified development of the theoretical basis of
response surface methodology, particularly as it

applies to second order response surfaces, is

1B
-
Bada
(e
i)

presented. A rigorous Jjusti ation of the various
tests of hypothesis usually used is given, as well
as a convenient means of making tests on whole
factors, rather than on terms of a given degree,
as is customary at present. Finally, the super-
~imposition of some elementary classificatien

desigrs on a response surface design is considered.
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1« Response Surface Methodologzye

Introdnction

Response surface methodology secks to estimate,
by regression methods, that linear combination of
previously specified graduating functions of a number
of independent variables which provides, in some sense,
the best fit to an observed response.

While the techniques of fitting are identical
with, or closely related to, those of multiple linear
is glightly different, in

[&]

regression, the emphasi

L4y]

that considerable stress ie laid on the design aspect
o b

of the problem. It is assumed that the levels of the

independent variatles may be pre-specified at will,

within broad limitse. The space defined on the independent

region of opera
in whick estimates of response are of interest tc the
experimenter, is termed the reglon eof interest.

Typically, a number of experiments are carried
out, accerding tc some previcusly decided experimental
plan. Each experiment consists of the measurement of
an observed response at a point defined bty some
combination of the independent variables. In some
cases, sequential designs are used - that is, the
curve fitted to date is used as information to assist
in the specification of the combination of independent
variables to be used in the next experiment.

The basic variability of the observed response



is measured by replication of experimental points,

or by the residual erro£ of the observed response

from the fitted surface. This latter error can arise
from a true observational error or from inadequate
specification of the model,.whereas the error based
on point replication estimates true experimental error
only. For this reason, when point replication is used,

the residual error may be used to test model adequacy.

The model is developed by assuming p independent

variables, given by

§= (&, -.r €))7 |
and k pre-specified vector graduating functions of
these variables, given by

X = 5(5) where x is kx1

The observational response is assumed (or known)

to be

Yy =1N+¢€
where € is a random variate with zero mean, and the
so-cal}ed "true response" n is given by the exact
relationship

7 =x8 (1.1)
where 8 is a vector of unknown coefficients. The
measurement of an observed y, for some known §, is

termed an experiment. The values of € arising from

different experiments are assumed to be statistically



incdependent, with constant, unknown, variance 02.

The aim of the sequence of experiments is to
estimate £ by bk, and, from this, to estimate the response
at any point of the region of interest by

y=xb

s

To achieve this, n experiments are conducted,
at the points gu, u=1, «ss n, yiclding n obsorved

responses

T
¥ = (y1 N yn)
Now let
= \T . .
= = (&, «o¢ § )" of dimension nxp
r it et 4 |
_ b
X =X
%, (Cu;
qﬁ
and X = (51 i gn)' of dimension nxk

so that y is the observed value of the true responsec Xg.

Properly epeaking, .= is the design matrix, since
is chosen, asccording
to some design criterion, it is convenient to refer to
X as the design matrix, since all operations are in
terms of X.

In the vast majority of applications, x consisis
of all powers of the §, separately or topgether, up to
some maximum degree d. The design is then referred
to as a dth order design. Thus, for a second order
design

X(E) = (15 & o+v €3 €7 o0 607 £,y «ooE 6"

For this type of desigi, it is convenient to

use the subscripts occurring in the corresponding



element of x to identify the elements of 8, thus,
for second order designs,
(ﬁ;ﬁ .‘.B;ﬁ oooﬁ ;ﬁgcraﬂ )T
0 1 P 11 PE 12 (p-1)p
In general, for a dth order design, there will
+d
be (pd\) coefficients.
Within this framework, _‘_’_ﬁ is a general dth
order polynomial in p variables.
The exceptions to this kind of polynomial are
of two tyyes. In the first type, the elements of x
are not jpowers of the elements of €. For example,

MedeBox (19068) considerdd the functions

X, = exp(gi)

0
+
e
<
)
B

5
ez

as well as other non-polysonmial functions.

of the polyneaial % B cannot be estimated, and must,

therefore, be omitted. For example, in the bivariate

™ E L 3
case (p=2), ify specified the points of a 3x5 fsctorial

design, necessarily the polynomial elements of x must

cq

be a subset of

s Bt s o e S e BB B
which omits the combinations E‘j’:, {;, and {‘;’62, whose
coefficients cannot be éstimated because an insufficient
number of levels of 61 was used. Similarly only two
coefficients of degree five or higher may be estimated
from this design. In practice it is unlikely that an
attempt wou;d bg_made %o estimate‘the coefficients

l s .
of €1§£ or &;éé. If it were, and if the factorial



were unreplicated, an exact fit would be obtained.

Estimation

Methods, culminating in the estimates b and ?,
may be divided into design procedures and estimation
prozedures. Design procedures are those used to specify

Lanip | - . . N - . -
o and hence X. Discussion on methods of seclecting the

design is outside the scope of this thesis. Bstimation

o
n
-3

The commonest estimator arises from minimizaticn

A A s il

ef the sum o squarcs of the errors y -y « This is
known as the least sguares estimater, and ie, in fact,

i

identical to tkat obtained when € is assuma2d to have a

-—

normal distribution, and maximum likelihood estimation

The quantity tec be minimized is
(y-x2) T (y-xb) (1.2)
Differentiation with respect to bt and equation to

zero yields

1o

—‘ij(E-}:E) =

from which

(X x)—1 T

o
I

(xTx)~"x 3

H
I

or



T T
. ~ EN . . . .
provided that XX is non-singular. If X'X is singular,

a generalized inverse may be used, but is unnecessary
in the present case.
This straight-forwerd estimator has many desirable

preperties. In particular,

E(b) = (XX Txg - B (1.3)
1 . 3 T \‘"‘1.T - ..T.. "'1 !'
Var(b) = (X“X) "X™ Varly) (X (1.4)

A

= 02 (.’( X)
from the assunptions abcut € « Hence the estinator
is unbiaced frow (1.3). Tt can also bhe shown
(1.4) gives the minimum variance arising from an unbiased
linear estimators.
Finally

T
Var(3) = Var(x b)

s

1

5
=
<
i3
o
o
o
('ﬂ
5
o]
=
i_ &

e
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o
©
[s]
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o
o
o
s
-
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©

tor srbitrary

T
¢
*

the various variances can easily be derived from (A7X

Thie leads naturally to the corcert of a rotatable
design, which is a polynomial design for which Var($)
depends only on.ca and 535- That is, Var(§) is invariant
under orthogonal rotation of the é-axes.

It should be emphasized that the estimator defined
above is not the only linear estimator pessible. In
particular, in conditions where the specified model
(1.1) is inadequate, that is, where y contains other
terms than those in a linear combination of the specified

x, a different estimator may assist in compensating,



in some degree, for this inadequacy, at the expense

of greater variance.

e n e A ¥
Hypothesis tesling

From this point hy

§
o

othesis testing will be

"

considered, and the additionnal assumption that the
€ are normally distributed will bte required.

Now let

1-x(xTx)~ T

N o= X(Xox)" %t

=
!

both ¥ and are idempoient matrices, nxn,

and that MN=0O, FX=C. Alsc

m A m
»t » i oy gt
te N o= tr{l\x )T}
iXa
= e (XN
g

since compatible matrices commu

operator. Hence

tr N g =5 5

I
PXp

tir Inxn - tr N = n-p

It

e M
The residual sum of sguares (1.2) is e¢qual, on

expansion, to

e (1.

i
g
e

It is necessary to recasll a theorem on the
distribution of quadratic forms (see, for example,

Graybill (1961)).
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Theorem: If y~u(u,0 "I), then z

is distributed

e
as X' (k,%), where X'  represents the non-central
- : T — 1 T . .
chi-squared distribution, and A= 5 pAp, if, and
20° 7
only if, A is an idexwpotert matrix and tr A = k.
. P e 2-—\
In the preyg sltuation, y~NiXB,09 1) and hence
m
o T My 2
e i) _ g 1 .
T = o X (n=-p,\)
o} o
T ) %)
where A= -—-——-ﬁ X"MXB = C» Thus SSE/o” has a central X°
pate]
distribution with n-p degrees of frecdom.
The s nd tern in (1.5) is the sum of sguares
accounted for by the regression, and is
T
SSR = y Ny
By a precess of reascning similar to that for
S8E, it is an easy matter to establish that
550 >
== '“(psA)
L
2 x P
v
A m m
BeRdE o - V"' '-"
rhere A= *—~ Ap ) LB
T 202
Aga;n Trom the theory of gquadratic forms, a
S— : 7, o
necessary and sufficient condition for y Ay and y By
to be independent is that AB=0.
Hence, since MN=0, SSE and SSR are independent
S8R .S8F
[ Py (L )
and F = [ —
p - u=p

has a non-central F-distribution wi
of freedom and non-centrality param
Thus F may be used to test the hypo
In response surface design it
subdivide S3E by taking advantage o
As a preliminary,

suppose tha

th p and n-p degrees

i L
E;Eié'k Xﬁ.

thesis that p=Q.

eter

is usual to further

f point replication.

+
-

the model



specification (1.1) is incorrect and that while the
model
B
N = %48y
has been assumed, the true model
T e
N = %BEBs

Using X1 and XR in an obvicus way,

(WA

[64]

m m
b = (x;x,)“1x;3
- i |~

In these circumstances

E(p) = (X

"
5ty
+
—
e
*
-
R
i
-~
-3
™
J

and b is a btiased estimator of ﬁh. The patrix

T.. y=1.T7, , i
A=(X X.) "A.X., is knosn as the aliazs matrix (Box and
Aa - 3
1} £.
Viilsor (1%51)) and measurces the extent of the biass
Putting
m m
I" = I - .l" (;-"‘.4" }—1”.
1 B T #
and using Lhe sanme expausion as before,
T
[od s - T, |
SOl = _l “1£

and ——--- x =Dy
howuve:‘, in the present case

Y Ii JL’P+ ap.\ e} ;

-

and thus

rT T.Ty.,
2 T 20l (P"”-'~ 1%q I (X4 Ry +X85)

= 1
_ﬁ Ty , £ 0
>0 2 ? 1 2

)%

in general, and the F-test described above is no longer
available.

Suppose, however, that point replication has

v
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been used, and that r distinct points have been included

in the design, the sth of them n_ times, s=1, ... r, and

e |

¢ H n_ = n. Also, let ¥ be the group mean of the

5=1 -85 s

y-values measured at the sth distinct point.

%ithout loss of genersality, the points may be
arranged in such a way that the n_ points in the sth
-l
group are together in the y and X matrices.

Now define

23 0
i I
K:I—' . _‘_I—J
0 i
n_n
S
where J is the n_xn_ matrix with all unit elements,
.S s e
so that, without point replication, n_=1, and K-0O.
2

+ 2nd hence X4

«+«» n_ didentical rows, Jx1=x1 and JX_ =X_, from

ich KX . =K =0. Herce KM _ =K and N.=0.
which uxq_ixa o ence KI1 K and K\1 0

—
-
3

If the y-values are standardized by I

where }g is the group mean contalning Pyt then

z = Ky
= K(X B +X B, +€)
= K-E-

Now SSW, the sum of squares within groups of
observations at the same point, is given by
SSW = ET‘% 2 ETKX::- §TK§_

: y 2 ;
and since €~N(Q,0°I), and tr K = n-r,

UE“I‘J 2
==~ X (n-r)
o
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by the theorem quoted for 55X. Also, SSW and SSR are

independent, since

KN1 = KX, (x g, y~ g ; s B

Now consider SSF (for sum of squares duec to
lack of fit), defined by

™

e B s
S58F = BS5FE - S5S%

R

= i ( 1-}{,.{
Wmany L 1 2 = 1.1“73 - ¥ 1 =
INOW (.1 K) = I‘1 '1}\ r‘111 + K

tr (Eq-K) = tr M, = tr K

Hence, from the thecrem,

A m om n
where A= —— (BSX +4.%, ) (M, -K) (X, B, +X,B,)
Z%L F‘-_'I- H
=R R
20
This requires, rezsonably enough, r>gp
Finally, SSR= y M,y where N =X, (%)X,
and SSR has ax'd(y,h} distribution where
1 f—
A E — (ﬁ \ g‘f 1 O - PED -2
20r_ i (=S
1 T T T B Tl
- — tﬁ w B +”511 x_pﬁ 3000 e e W
2c (=5 1 o

Now note that, where L is an arbitrary matrix,

E(yTLy) = E(tr y'ly) = E(tr Lyy")

I

w ' o
tr [LE(X B +ESB, g,(x1g1+A

n

T
tr [L(Kié1+xzﬁz)(X1§1+X2F§)‘+5213
;1 B8 I 2
trEXLAf_S_+otrL
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where
Q1 g x’I

>4

g2 2

From this, the expected values of the various
g

sums of squares are readily derived. The analysis 1is

given in table 1.

Table 1

Basic response surface AICV

Source Sum of squares pr B(YE
T 3 a @ T

R ession SER = ¥ ¥k C g=f X R ¥
Regressio SR = ¥ AR P "I_é “ =

" N : I B R .
lack of Tit SSF by subtraction r~p o© 4—@B ¥ 1 Y. B

=" e £
= ' 4
Error within
R e o T 2
replicatad goints S8V = y Ky n-r @
- ¢y

Tetal 0T =y ¥ n

Note that without replication n=r; and if QE:S, this
table reduces to the simpler form derived earlier.

While the above argument establishes the theoretical
justification for the use of the F-tests, the test of the
whole regression is, in practice, of 1little use.

However, it is perfectly general, and not dependent on
a polynomial specification of x. In the event that a
polynomial is used, the SSR is ordinarily broken down

into the classification shown in table 2.



13

Conventional ANOV for regression

coefficients in polynomial model

Source D¥
Mean 1
toan, B
Linear terms r
4 1
Second order terms =p(p+1)
Third 3 3y e 1( 1)( '))
aird oraer terms &P ol § p+e
L A )
P d-1
dth crder terms i§1i

the importance, in the final response, of a particular

{. Section 3 of this thesis considers the structure of
T

gy second order polynomial m iy me
X"Xy for the ¢ crder polynomia odel, in sonm

detail, in order to facilitate tests aimed at establishing

the importance of particular elements ofé

Further topics

In field experimenis, each experiment usually
consists of a plot of ground. In most circumstances,
the number of such plots which can be assumed to
represent essentially the same external conditions

is quite limited.
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In order to control this type of environmental
variation, a block structure may be superimposed on
the response surface design, yielding a model of the

form

m

N =& +xp (1.6)

where ™ is the block effect associated with the wth

block, with Emw;o.
g
Designs including such block structures were
& &

introduced by DePazun (1956) and elaborzted by Box and

iy
572.)

Hunter (1257) in the case of rotatable desipgns. These

gipns allow adeguate ntrol of environmentzl
design 1low adeguate contre
variation.

A natural extensicn of this type cef desipgn is

something like a species effect. The model would be

where new T is the vth trealrzent effects As far as

treatments are concerned, suech a model is identica

(=]

to the analysis of covariance model, which uses the
regression variables x to reduce variation in the
response, major interest being focussed on the
superimposed treatment effects. A respounse surface
approach would have equal interest in both parts of
the fitted model.

Pursuing this line of ¢nquiry further, section 4
of this thesis considers‘the implications of combining

various classification designs with a response surface

design.



Cne obvious extension of the model described
by (1.6) is to allow B to vary with the block, giving
a model of the form

y
N IR

In many applicaticns the guestion of the degree

of corresrondence between the individual regressions

B, anc the overall regression B is of considerable importance.

"

D

{

Section 4 also considers, briefly, this aspect of

response surface methcdology.
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2 Historical Development

After a small number of related papers in the
nineteen-forties, Box and Wilson (1951) laid the
foundation for later work on response surface analysis.
They were primarily concerned with a seguential
series of experimsnts to determine the maximunm

or minimum point of a guadratic response surface.

.“

Their approach was to fit a linear model over the

region of interest and make additional experiments

5

ibley and then fit a second order model. They

lias matrix

]

aleo introduced the concept of the
to measure the bias arising from the use of an
inadequate mcdel. The designs they considered are
known as central compesite designs, consisting

as they do of a superimposition of two or morsa
centrally symmetric designs, usually a cuboidal

(or factorial) design and a simplex design (a type

of design which varies each variable in turn, setting
all others to the central level). An example of

a three-way design (that is, one involving 41, §2,
and éj) of this type is

(£1,21,4£1) (22,0,0) {0,+2,0) and (0,0,+2)
together with replicated central points (0,0,0).

These ideas were further developed by Box (1952)



who used rotations to minimize guadratic bias in
lincar models.
Elfving (1952) coasidered the two-variable
model ¥y =p.x. +B.%x. 4€_ with no constant term,
o5 SRS i 1 PN T
and showed that z particular design rinimized the
sum of the variances of the coefficicnts.
Elfving's paper, and tkat of Pox and %¥ilson
(1951), were reveiwed by Anderson (193Z).
Chernoff (1652) generalized Elfving
to mere than two dirmensious, &nd used

maximan likeliliosd informztion matrix to minimize

T

this to the probdliex of the confidence rezinn fer the

statioasry peint on 2 Jitted second order response
surface.

Boyx (195%2) has a comuent on a "confidence

P

cone" of an estimated wvecior which, in this cass,
is the vector of steepest ascent of a response
surface, as used by Box and “ilson (1951).

Hunter (1954, 1956) discussed, in general
terms, the problem of finding a stationary point
on a response surface, and pointed cut that a

general second order response surface could be

transformed to a canonical form

2
Y=By = Py&1+Pa8;



18

Box (195L4a) and Davies (1954) gave general
surveys of the then current state of response surface
methedology.

De 1la Garza (1954), discussing a dth degree
polyncmial regression; with one indeg nt variabley
showed that, Tor any arbitrary spucing of experimental
points; it is always possible to obiain the same X%
matrix, using not mere than d+1 distinct experimental
levels of §. He Luer considered how these points may
be selected Iin such a way as to minimize the variance
of that cecefficient which has the maximum variance.

on is krown a5 the ninimex varidgnce

’5.

This eriteri
-~ . -
criterion. Guest (1938) obiained general formulae

for minimax variznce spacing znd cempared this spacing

wd

,_;
“_1-

with a uniform spaci

™
2]

. = . S R 5
ered the applicalisin

£

) consi

\;‘I

RBox and Yeule (195
of response surfaces in the field of chenmistry.

DeBaun (1956) was the first to apply methods
of blocxking to central composite designs, with a
rather cursory survey of the possibilities. His
ideas were extended by Box and Hunter (1957), who
considered rotatable designs in general, and made
an extensive study of central composzite designs
in particular. Box and Hunter's paper gives what
is probably the best summary of the classical

approach to response surface experimental design.

The first discussions on response surface



methods to appear in textbooks were Davies, mentioned

above, DeBaun and Schneider (1958), who descrited
particular applications, and Plackett (1960), who

summarized the early optimum oriented work, in his

Many of the parers that appeared in the late
1950's znd early to middle 1960's wmerely list

particular dezigns or classes of designs. Hartley

juadratic respense surfaces, based
on fractional facterials, plus simplex designs

and centre points. Pese and Draper (1959) used

[z
n
o
F
b

a transformatien group to generate poin

leading to guadratic respense surfazeces in three
a

I-(<

dimencions. Box znd Echnken (1960%a) used superimposed
simpiex designs Lo derive second ordeér designs
zigns
they called simplex-sum desipgns. Das (19£3) and
Das and Narasizhan (1962) developed guadratic

desigrs from balanced incomplete bleock designs.

Draper (1960a) and Herzberg (1567a) gave rather

similar methods for generating second order designs

based on pernmuting point sets and building up designs

in p dimensions from designs in p-1 dimensions.
Then, together, (Draper and Herzberg (1968)) they

developed methods based on cemposite designs with
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more than one fractional factorial. Das (1961)
considered second order and third order designs
derived from factorials.

Third order designs are not, properly speaking,
within the scope of this thesis, however, third
order designs have been developed by Gardiner,
Grandage, and Hader (1959), Draper (1960b, 1960c,
1961t, 1962), and Herzberg (1964).

DeBaun (1259) and Box and Behrken (19€0b)
considered designs in which, for reasons depending
on the context of the experiment, each factor is
limited to only three levels. Draper and Stoneman
(1968) extended this work to the case where some
factors are restricted to two levels and others

to three or four levels. Herzberg (1966, 1967b)

ke

develcped cylindrical designs, in which one factor
was set at a predetermined number of levels, but
the design was rotatsble in the remaining factors.

A more complicated three-factor design,; using
the properties of dodecahedrons, was developed
by Hermanson et al. (19564).

Bose and Carter (1959) used complex numker
properties to examine some of the characteristics
of two-factor designs.

Missing values were considered by Draper
(1961a) and the effects of point replication by
Box (1959) and Dykstra (1959, 196C).

Kitagawa (1959) extended the early work on
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sequential experiments, Umland and Smith (1¢59)

gave an interesting example of the use of LaGrange
multipliers in fitting second order response surface
under a second order constraint, and Box and Tidwell
(1962) gave a useful summary of the effect of

tran: formations of the independent variables.

75 ™ + ]
Funter (1966). However, their emphasis was on
¥ i
applications, and many important theoretical rpavers

vere cmittede.

In the related field of multiple regression,

(9]
cr
2

- % < g © A e o H Ia o 2 ey ~
& munber of papers which. considered tie gife

model iradequsey aprsared in the late ninetecn-fiftie

Since they did not pertain direct

kiefer (158, 4959), iriefer and Wolfowitz (1959.,
and David znd Arens (19%9). In a Phl thesis Folks
{1958) compared various optimality criteria, with
response surfaces in wingd.

Their work was extended and related more
directly tc response surface methods in an important
paper by Box and Draper (1959), who considered the
problem of estimating a response by

¥ = 5?10.

where X includes all terms up to degree d1, when

1

in fact the true 'model is

s
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T
n = by - §1E1*'§3§3

where 3 includes all terms up to degree d

d2 > dq‘

5 vith

They discums#d decign criteria based cn mini-

mization cf bias and of varia
the region eof interest. Their

that blas consideraticis were

varisnce minirmization.
Since Box and Draper's

1
3

n

ce, integraled over

mzin conclusicn was

[¢3]

likely to have &

agers have eppearcd considering response surface

of response surfage pethodology further in this
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L x
3« Form of XX for second order design

SNs
L

Non-guadratic effects

g of response surface results,

pan

In the analys

Lo

1

the only difficult caloulation step is the inversion
T
of the matrix S=X"¥X. For this reason, scme attentiorn

will be paid to the form of this matrix.

The general second order model is given by

P o) p""l

b p
- - 2 f'zj
N=p,+ EBG + TP+ T I B .EE (3
i=1 i=1 1= gdadag ™Y & ¥

& N won [ B
Nvo elcemence

aa

1ich sugpeste a ratuvral partition of S
related to the constant term, thcose related to the

Linear tergs, theose related to the qguaaratiec terms

-3
| &9
. . - . 5 0 .
(that is, termsz invelving &i; gnd those related to

03
'n
un
.

s

ca
~

interaction teras (tkat is, those involving

The introduction of zerps, or blecks ef zeros,
inte 8 will) not only simplify She dnversicn of 5,
but will enatle tests of hyzotheses on cortihcgonal
groupe of coefficienis to te made without refiiting
the paramecters.

Soxme progress in this direction may be made
by measuring the variables 51, e gp from their
respective means over the design. Using the subscript
u to range over the actual sample points, and making
this transformation,

Efiuzo 4. B Ty wwe P
This has the imrediate effect of making the

linear effects orthogonal to the constant term.

-3



Within this framework, attention will be
confined to designs for which all odd moments,
that is, moments which include at least one odd
power, about the mean of the indecpendent variables
éi’ up to the fourth moments, are zero. Such designs
include 2ll symmetric designs, that is, designs
Tfor which the inclusion of a point containing a

otherwise

co-ordinate E,i implies the inclusion of ur
similar peint with co-ordinate —& which may be
the szme point if ﬁi;O.

This restriction still includes all rotatable
designs, and, in particular, all central composite

IS«

desig his latter type of design has received

C‘i

by far the greatest attention in the literature.
As noted in section 2 of this thesis, they are

14 12 superimposition of cubcidal designs
formed by thz superimpositiorn of cubcidal designs,

simplex or "star" decigns, and centre pocints.

For symrmetric designs, for every term éiuﬁ’u‘
o

either éiu or ﬁ:u = 0, or there exists another
= - » Hence I Simil
term é_. gjv = z,‘iugju ence hc*ugau Similarly
=z . =0
61u ugﬁuggu

This requirement that odd moments be zero is
necessary for rotatability and convenient for
orthogonality, and in most cases does not restrict

the choice of design to any significant degree.
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The effect of the rpstriction is to make
the linear and interaction terms orthogonal to each
other and to all other terms. Hence the paris
of S correspornding to these terms are diagonal. Thus

it is possible to give the estimates for B. and

i
ﬁij (i£3) immediately as
bi - Eélijh/gc"u
2 e -
bij ) £ g‘u u’ eiugju /3

However, the quadratic terms are still
non-orthogonal to each cother and to the constant
term. Suppose now that the guadratic functions

2 . ; 5
ai are replaced by a guadratic psl
2 0.
- o+ Ay
Ciu élu alh &
The values of 6, and i, may be selected to improve
orthogonality. The orthogonality conditionz are

given in table 3.

Orthogonality conditions on 0., g

To achieve orthogozality

of C

Requiremen

|.u

‘I . CO".L: ant t Il ”C] "

2 1 . 4 . F'g g =

r 4 |ntcract]°n ter'_"t‘ I i - |£k
J' -~ L b uc..‘u u 1cu

4. Other quadratic terms

N
h
o, MV e

u-iu2ju
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Using the restriction on odd moments, and
expanding Ciu' condition 3 is automatically satisfied.

Condition 1 gives
~
e

E§¢u+npi

i
whence . = e—nET
p':1. nuélu

i
o

Condition 2 is automatically satisfied for ifj.

When i=j,

o, T65 =0
1 u2iu
or . = B
91
2 A gl
= ET o 2)
Hense ciu i c‘iu n fi‘c’iu (3.23
and T
fglu
Thus C% is ortlogonal to all terms except
wh
these in G, + To ensure this erthogonality for 143
iu & £ Jy
o
condition & must be satisfied, or
gl oF 1 el 2 fa, %)
2 P T . i
ra 5 i = e . " G i 3 .
uczuggu n uﬁiu EéJu 7 2.2

v )
This is equivaleat te the reguirement that &,
2 ) i 2 r 1 ¥
and éju have zero covariance, in any of the Zp(p=1)
combinationss Since n may be adjusted, by the addition
of centre points, which do not affect any of the
summations, if
g2 R R
vl 80 /28 €
WA W At g
is an integer greater than n, the design may be
made orthogonal by the addition of centre points,
thus increasing n to satisfy (3.3).
Consider, for example, the three-way central

composite design mentioned earlier, with the size

of the simplex part of the design made general.
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The design is

(£1,41,41), (28,0,0), (0,4§,0), (0,0,+8)

and
.- 2 :
2E, = 8+ 28 i=1,2,3
2 2 .? , 8 .%.
£éiubse = ENg

n="1%4+n
c
where n, is the number of central points (0,0,0).
Condition 4 then requires
2 2 2 2 &y 2
LE TR JTES T = 1N 87 = th e g
uélu uggu’uc;uégu 4 c
if the design is to be made orthogonal. This requires

iy
c g ¥ . T TaL AL TR R L ot ey
that (4 + §°)° ve an even integer. Practical possibilities

for this integer are 30, 32, 34, and so forth. If

and numbers of points must both be taken into
considerstiion.

V%hen condition U4 is satisfied,

56 g J58°
bii “u iu}u/ﬁciu

The only estimzte ¢f the coefficients in
(3.1) that is altered by the transformatiosn tc &,
is that for B,. Using the transformation, the
v

=1 . : .
element of S corresponding tc)ﬁo is 1/n. Hence,

in the transformed model, from the formula } = S_1XTX,
1 -~ A1
bO Thnwu T

Thus, tests of hypotheses on the transformed bo
are, in fact, tests on the sample mean.
The estimates and regression sums of squares

for the situation in which condition 4 is met
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are given in table 4. The only part of the table

that does not apply in the general case is that

for/ﬂiq-

Estimates and regression sums of sguares

o+

when individual coefficients are to lLe tested

=
Frd

Coofficient

=y

By (mean) b=y b

u -4 - vl
- b Lol b 3 ‘E > A
04 1 i 9 66 Gr U,
uriu? ju
Guadratic terms when srthosonulity dozz not hald

In the event that the cendition leading to
orthogonality ketween different gquadratisz terns

does not heold, it will be necessary teo invert that

submatrix of S that pertains to the guadratic terms.

Denote this submatrix by Q. That is, Q is the submatrix
1w = 3 1 } mant 4o ' P 33 .
whose (i,j)th element is %4;u€3u' The corresponding

elements of b will be called b,., or
~

T

b' -~ (b “es b )

>3 M pp

and those of the appropriate part of the transformed

X matrix will be called 2. That is, the (u,i)th
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element of Z will be (. -

1iu
Now
Q = ZTZ
-1,T
b. = Z
by = €

In order to test a subset of the ﬁ&i’ together
with their associated effects on the constant term,
it is necessary to refit the model. To do this,
one must specify which coefficients, of theﬁ3ii, are
to be tested, which are taken to be already fitted,
and which are to be ignored. These latter are accounted
for by deleting the corresponding columns of Z and
thereafter ignoring them. Thus, without loss of
generality, those to be ignored may be disregarded
entirely, assuming that 511, o ﬁpp consist only
of those to be tested and those considered already
fitted. Assume that the first P, elements of EQ
have been fitted, and that the last p-p, are to

be tested. Now assume that Q, Z and b, are appropriately

Q
partitioned. That is,
Q11 Q12 bQ‘l
Q = . " Z:(Z1ZE) pqz )
21 22 ~Q2

The reduction in the residual sum of squares

arising from fitting EQ is
pTzTy _ yT -1,T

Hence the improvement from fitting b is

~Q2
v (2Q7's" - 2.97120)y (3.4)
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Representing Q-1 by P, with suitable partitioning,

and using the formula for the inverse of a partitioned

matrix,
- -1
Q9 = P11“P12p22P21
Also
; SO i
ZPZ~ = Z1P11Z1+221.1222+u2P2222
; 44
since P12_P21.
The bracketed expression in (3.4) now becomes

T T T -1 T
24P 1420420 P 0ot TP 7o =0, (P, =P P 5P, )2

= (P..Z +P.__7 )TP'

i
2129 +P 0750 " Poo(Py 24P, ,2,)

2p 2

Hence the improvement in the residual sum of squares

from fitting an is

T 1
22220 Ppo(Py 24P, 52,0y = b

T -1
g2t 2282
T 7 -1
= BaoR02R0o"R0aR0199984 080, (345)

T
b 4 (P2121+P

When b 5 consists of a single element, bii' say,

Q

this reduces to

2
b, .75

B Sl Fo
where P is the ith diagonal element of P. This
enables a test to be made of the hypothesis bii=0,

in the presence of the other quadratic coefficients.

Special forms for Q

The above analysis covers the case of general
Q. However, in many cases it will be found that Q
can be put into the form
Q=A+ yiT

where A is easily inverted (usually diagonal) and
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Y is some vector. This pqttern arises particularly

in the case of permutation designs (which include
central composite designs based on full factorials).
These designs are such that if, for each point each
co-ordinate Qi is divided by the scale factor (Eéiu)%,
then for any particular point, every permutation of
these standardized co-ordinates exists in the design.
Thus, if, using é;u for the standardized co-ordinates,

there exists a point

* -
(Ciu e épu)
then for every permutation of these values, there
exists a point (which may be the same point if the
permuted co-ordinates are equal) whose co-ordinates
are these permuted values. This arrangement has the
. 2 gl
) i7j } 1 ¢Z. &
effect that uéiuCSu' i#Zj, has the form Cuélu uggu
where ¢ is a constant, independent of i or j. Thus
is proportional to (E§2 o E§2 )T. Then the
Z uiu u’pu
ith diagonal element of the diagonal matrix is
4 1 & w2 «
- Z = e e
Eéiu (C+E)(uéiu) =1 P
The inverse of this special form of Q is

"readily calculated as

-1 -1 15-1
Q = A -}1 Z TZA-‘]
: T A -1 -1
where p is the scalar 1+)y A Yo thus Q has the
same form as Q.

If A is block diagonal, with blocks &S, 821y ses T

and the corresponding blocks of Q_1 are Ps' then

-1 1A =1 T A=1
e = As - ;leslféyszxs

-~
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which has inverse

w

PP = A + —l—'yr
where = TZ&—1 )
us“Zﬁ s Vs’
Hence, using (3.5), the improvement from fitting
the sth block, in the presence of the other coefficients
is
T T 2 T pn=1 T A =1
EQSASEQS . (pQSZS) /(1+Z b Z-ZSAS ,,Ys)
and if A is diagonal, the improvemmnt from fitting
bii in the presence of the remaining quadratic

coefficients is

2 2 2 -

z
bii[dii'?,’i/( 1+j#i-r-j/djj )]
using dii for the diagonal elements of A .

Rotatable designs

The conditions for a second order design
to be rotatable are (Box and Hunter (1957)) that
all the moments containing an odd power be zero,
and that the two kinds of standardized fourth moment
each be constant. Also, the relationship
X = nﬁéiugaju = a ngégu
CORLE e
must hold for all i, j, and 1. Thus )h is the
basic parameter for the design.
In the present notation these conditions
become, using (3.2)
= 302 = OGN=1(EE2 )P/m

2 2
Eciuc%u = (Aﬁ-1)Ecqu€ﬁu/n

935

qij
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Nowy, using the notation of the previous

subsection,
A -1
h 2 2 2 T
¥ - =) (B gépu)
and
2)@ (§&1u . @
£y &g ke
0 (¢
from which
2\,
= 1
B 1+Y ZS 7 Aﬁ(p+2)-p

Evidently, from the definition of k and
quation (3.3), orthogonality is achieved if hk=1'
which would imply y=0.

The (i,3)th element of Q' is

n [ Sij A 4

2 el y &
M \(z€2 )° )h(p+a\-p zg

5 (3.6)

luuéju

where Sij is the Kronecker delta and has the value
1 if i=j, and otherwise zero. From (3.6) the diagonal

elements of Q-1 are
n[K“(p+1)—p+1] "

P
1 o6 I (pe2)-p) (gciu)a

and

2
B = Eéiuyu N1 uéguyu

ii 2 2
2xhﬁgiu Egiu )»(p+2) -P J zcau

from which the effect of fitting bii is easily

2

calculated by b11/p
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k. Overlaid Experimental Designs

Introduction

As noted in section 1, the control of error
by blocking has been considered by a number of
authors. The design requirements in this case are
recapitulated below.

It is natural to extend this to the two-way
classification situation, both with and without
interaction. Further extension, to multiple classification
models is likely to make the scheme unwieldy in
practice, but is conceptually straightforward.

Another natural development is to assume
that more accurate information may be wanted on
the classification part of the design than on the
regression part. In this situation, a split-plot
arrangement might be used, with closely related
sub-plots containing representatives of each of
the classification treatments, and each whole plot
concerned bearing only one combination of the
regression treatments. Alternatively, the emphasis
may be placed on the regression part of the model.

All these designs are generalizations of the
analysis of covariance model, except that the

regression aspect is fully analysed.
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General experimental design model

In the succeeding discussion, the overall
mean will be assumed to be part of the regression
model rather than the experimental design or
qualitative model.

The design matrix for these compound designs
will be represented by the partitioned matrix

W = (D X)
where X is the regression design matrix discussed
earlier, and D is the superimposed experimental
design matrix.

Suppose now that D, (mxr), is an arbitrary
design matrix, with the imposed constraint that
the sum of the r effects is zero (in order to
include the overall mean in the regression model).
This constraint can now be used, as in normal
experimental design, to reparameterize the
qualitative part of the model in order to make
all the effects orthogonal to the mean. This means
that, where jm is an mx1 vector, all of whose

elements are unity,

where D is the reparameterized design matrix.

Now generate a design in which the whole
design matrix D is repeated n times, each repetition
corresponding to one poigt of some regression

design with matrix X. If the rows of X are represented



by EE’ e zi, the overall design now has the

Consider now the submatrix

i xT
T
W, = 1% ’ s (B XT)
b 3 i . ~M~1
| ©
.
1
§ ™l
Now
T
D
P T
WoW, = ( o) D3 x5)
Xr )
“~l-~m
DTD 0§ s
_ ~m=1
Ex o ARH e, B0
%idm Xidmdn¥y
pTD 0
0 nx. x.
s Laars B
and
T
WW = Zww= [D2PD O
g A & T
0 mX~ X

hence, with this arrangement, qualitative and

quantitative effects are orthogonal. Thus, any

form

36

experimental design in which the effects may be made

orthogonal to the mean méy be combined with an

arbitrary rsponse surface model in such a way that
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qualitative and quantitative effects may be estimated
separately.

The simplest way to analyse any of these
“full replication'" designs, is to analyse the
qualitative model, regarding the quantitative points
as a further classification effect, akin to
replications, then sum over the qualitative model
before fitiing the regressicn. An interaction
between elements of the qualitative design, and
the replications arising from the quantitative
model would indicate that the regression model
was dependent on the classification, and varied
according to the classification model effects
invelved.

Hovwever, the above strategy of repeating
the entire design could well be extravagant in
experimental points. In practice, more compact
designs are possible.

In the materizl that follows, the X designs
are assumed to satisfy the constraint requiring

zero odd moments.

One-way classification

The simplest design is the one-way classification,

with design matrix, before reparameterization,

b, ©
D = .o (401)
0 3
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with R,+ eee +0 = Do The design matrix, after

reparameterization, becomes

dn,
D = ‘ I
- o n An2
An
r
T . .
where n~ = (n1 - nr). This has the required

Pl
property that inD‘O‘

Now introduce the subscript w, to range over the
classification effects, giving independent regression
Variables é-iwu’ i=1' ese D, w:‘]. s I', u="l, e nw. The
full design matrix, using D defined above, is W=(D X).
Under these conditions, the requirement for
orthogonality between the linear term and the ith
regression variable, and the wth classification effect

is
n r n

W n W
$ & £ &
u=1"idwu n w=1 u=1""iwu

However, by the requirement of zero odd moments,
the latter term must be zero. Hence the classification

effects are orthogonal to the linear effects if

n
W

LS.

wZ1%wn ™ 0 for all i, w

The equivalent for the regression interaction

effects is derived in an identical way, and gives
n

2216 08, = O for all i#j, all w

For quadratic effects, the requirement is

n r n
w

2 By L%
u§1§iwu =5 w£1 uETEiwu

which is identical to the proportionate variance
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requirement derived in a more intuitive manner by

Box and Hunter (1957).

Two~way classification designs

In the two~way classification, without
classification interaction, the one-way conditions
must be satisfied for each of the classifications.

In addition, if the two sets of classification
effects are to be orthogonal (using v as the eubscript
for the second classification)
n.. = nwnv/n
is required.

If a classification interaction term is
included in the model, a further condition is
reguired to ensure that this interaction is ortlogonal
to the quadratic term in the regression.

In this case the model needs to be
reparameterized in such a way that the main effects
and classification interaction are orthogonal to
the mean. The reparameterization is more complex,
and is not readily expressible in matrix notation.
Table 5 summarizes the distinct elements of the design
matrix for a particular combination (w,v).

In this form the columns of the matrix may be
added readily, to show that each column sum is zero,
and hence that each effect is orthogonal to the

overall mean. The condition for orthogonality between
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main effects is conceptually straightforward and is
obtained from:

Sum over rows of table (Number of similar rows x
w-treatment effect x v-treatment effect) = 0O

which, noting the common factor (n 4n_ J)(n +n ) is
‘4 wv v WV

nWV :'
(n +4n )(n +n ) ( -=) =0
W WV v wv’''n n n
W Vv
Table 2

Summary of reparameterized design matrix for

the two-way classification with interaction case.

From Number W v (w,v)
of similar effect effect effect
rows
(n +n__ J)x (n_+n__J)x n _x
w wv Vv WV wVv
Both 1 1 1 1 1 1 1
n - - — el
w & v wv n n n n n n
w v wv w v
w but 1 1 1 1 1
n _-n - - - (= —
not v W OwWV n n n n
w w
v but 1 1 41 i I
n_~-n - - - (= -
not w v WV n n. n n
v v
0P pnsn b b 1
terms w VvV WV n n n

Hence, as before, the orthogonality requirement, for
main effects, is -
n., = nwnv/n

The condition for orthogonality of the w-effect
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and the interaction, obtained in the same way, is
n
WV)
n n
wv
which leads to the same condition as before.

1

B K gn. )= a =0

In discussing orthogonality between classification
effects and regression effects, it is convenient to
define

¢ =& & o4 or gngu
wvu iwvu' ZiwvuSjwvu’

as required. Also, use the dot notation to denote

i = .
summation, thus for example (1) - wvu?swvu

Now the orthogonality requirements can be
derived quite quickly from table 5, and summarized
as: ‘

For orthogonality of regression
effects with:

: \

¢

w - effects:

= 0

1
éW'l o- ;
W
" L |
v - effects: vaP =

Bl Bl

w, Vv interaction: % q’wv-- %‘bw”" %‘b.v.*' %é.f 9
WV w v

or, using the main effects conditions in the interaction

condition,

1 1
7 By =g

LA

The main effects conditions are implied by this
condition, which is thus the requirement for orthogonality
of regression effects and classification effects. In
terms of the original regression variables, this
condition becomes

£

u’iwvu ﬁaiwvucjwvu

TE e Y el
u‘iwvu n wvu“iwvu

=0
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As an illustration, consider the case in whic~
the whole of a response surface design is repeated
for each w, v combination. In this case the first
two conditions above are automatically satisfied.
Also
Eéiwvu = Ky eay
is constant, and since n _ is constant (equal to
the size of the regression design) the last condition
reduces to

n
WV n
Kz === (E—*~K)
wv
which is also satisfied. Thus the design satisfies

the conditions, in agreement with the gereral result

on the full replication model derived earlier.

Regression model dependent on classification

A natural extension of the classification model
is to allow the regression coefficients to vary with
the classification effect. Thus @ is replaced by a
series éw’ w=1, «.. r. To achieve orthogonality with
this scheme, the full replication type of design is
required.

The simplest and most natural way to proceed, is
to fit the regressions separately, and combine the
results for an overall analysis of variance

afterward.



43

5« Summary

After a general development of the theory
behind response surface methodology, with particular
reference to polynomial models and rotatable designs,
section 1 of this thesis gives a rigorous development
of the justification of the standard F-tests used.

In particular, the lack of fit test, using an error
estimate based on point replication, is justified.

Section 2 surveys the literature relating to
response surfaces, with the exception of recent
bias-oriented work. The emphasis is on thecretical
development, rather than on applications.

In section 3 the analysis of second order
designs is considered in some detail, the aim
being to provide a means of testing hypotheses
abtout individual coefficients. This separation
is acheived for the slightly restricted case in
which the dependent variables have zero odd moments
about their means. Conditions for orthogonality
between different quadratic terms are develbped-
Methods are derived for testing subsets of the
quadratic terms when orthogonality does not hold,
and, in particular, the case in which the part
of the sums of squares and cross-products matrix
relating to the quadratic terms has a particular form

is considered. Finally, the ideas developed are
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applied to rotatable designs.

Section 4 considers the combination of response
surface designs with ordinary qualitative experimental
designs. The first design considered is a general
one enabling the combination of any response surface
design with any experimental design in which the mean
is orthogonal to the treatment effects. Since the
design described is likely to be extravagant in
experimental points, consideration is given to
orthogonality conditions for general one- and two-way
classification designs. In particular, the two-way
classification with interaction is studied in some
detail. Finally, brief mention is made of the
possibility of regression coefficients differing

with treatments.
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