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3 Abstract 

Although skin structure and its physical properties have been extensively studied, little research 

has been devoted to understanding the links between them. A comprehensive study of the 

molecular components of four animal skins commonly used to manufacture shoes, clothing and 

furniture was therefore undertaken in order to attempt to identify a common indicator of skin 

strength. The molecular architecture of the protein components of each skin was analysed using 

polarising, confocal and transmission-electron microscopy (TEM), small angle X-ray scattering 

(SAXS) and amino-acid and cross-link analysis; glycosaminoglycans were quantified and 

visualised using TEM; and, for the sake of completeness, total carbohydrate and lipid content were 

measured using a colorimetric assay and thin layer chromatography respectively. Differences in 

these properties were then related to different physical characteristics of each skin. 

The results showed that an individual mechanical property of skin such as tensile strength is 

complex and related to different combinations of molecular properties. For example, deer and cow 

skins are the strongest of the skins examined, however they derive their strength from different 

combinations of molecular properties. Cow skin collagen fibrils have the largest diameter, but deer 

skin fibrils have the smallest. On the other hand, the fibrils in deer skin frequently change direction, 

and have a “wavy” or crimped appearance in contrast to the fibrils in cow skin which are aligned 

in two main directions approximately 60 and 90 degrees apart, differences that are also reflected 

in the types and amount of their collagen crosslinks. Deer skin fibrils contain a higher proportion 

of trivalent crosslinks while cow skin fibrils contain a higher proportion of tetravalent links. For 

the two weaker skins, goat skin fibrils are more crimped than those of sheep skin, but both fibrils 

have diameters intermediate between those of cow- and deer skins and have lower mature to 

immature crosslink ratio. In deer skin, glycosaminoglycans are observed by TEM to link fibrils in 



 
 

regular arrays and are present in higher concentrations than in cow, sheep and goat skins. This 

study showed the relationship between the molecular structure of skin and its mechanical functions 

is complex, arising from different combinations of molecular features rather than just one.  
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