Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

VETERINARY ANTHELMINTICS:

THEIR EFFICACY AND EFFECTS ON ABOMASAL PHYSIOLOGY

A thesis presented in partial fulfilment of the requirements for the degree of MASTER OF VETERINARY SCIENCE in Veterinary Clinical Pharmacology at Massey University

> NICHOLAS CHARLES WHELAN March 1998

For Pauline, with all my love

ABSTRACT

PART 1. A Review of the Veterinary Anthelmintic Literature

A comprehensive review was undertaken of the pharmacology, efficacy, side effects and toxicity of veterinary anthelmintics used against nematode parasites. Anthelmintics reviewed for use in cattle, sheep, goats, horses, dogs and cats include copper, nicotine, arsenic, tetrachlorethylene, phenothiazine, diethylcarbamazine, piperazine, toluene, cyacethydrazide, bephenium, thenium, organophosphates, and methyridine. The review was limited to cattle for the benzimidazoles, pyrantel, morantel, tetramisole, levamisole, avermectin and milbemycins anthelmintics. Efficacy data is provided in a tabular format which classifies each anthelmintic according to method of administration and dose.

PART 2 Efficacy of two formulations of moxidectin pour-on and the effects of treatment on serum pepsinogen and gastrin levels and tissue gastrin in cattle

Three groups of eight yearling Friesian bulls were used to compare the efficacy of two 5 g/L pour-on formulations of moxidectin applied at 1ml/10kg (500 mcg moxidectin per kg bodyweight) in removing naturally acquired gastrointestinal parasites.

At slaughter, 14-16 days after treatment, the burdens of *Ostertagia* spp. and *Trichostrongylus axei* were significantly lower in both the treated groups versus the controls (P<0.01). Anthelmintic efficacies (based on geometric mean worm burdens of treated and control groups) were all greater than 99.8% for *Ostertagia* spp. and *Trichostrongylus axei* in both treated groups compared with the controls. A significantly lower burden of adult *Cooperia* spp. was recorded for Formulation 1 (P<0.05). The anthelmintic efficacy of the two treatments against *Cooperia* adults, early L4 and late L4 were 96.25% (P<0.05), 97.31% and 91.08% respectively in calves treated with Formulation 1, and 71.44%, 67.14% and 64.29% respectively for calves treated with Formulation 2. Low numbers of large intestinal worms, *Trichuris ovis* and *Oesophagostomum* spp. in the control cattle precluded any valid efficacy assessment of these species.

Based on these results, Formulation 1 is distinguished from Formulation 2 by its significantly greater efficacy against adult *Cooperia* spp.

Serum pepsinogen and gastrin levels were monitored in the three groups of calves after treatment. All groups showed a steady decline in levels of both pepsinogen and gastrin until termination on day 14. On only one occasion was there a significant difference in serum pepsinogen between treated and untreated calves. Following treatment there was a more rapid and significant decrease in gastrin levels in calves treated with Formulation 1 than Formulation 2. At no stage was there a significant difference between the controls and calves treated with Formulation 2. There was no correlation between pepsinogen and gastrin levels for any of the groups. Neither was there a correlation between numbers of *Ostertagia* spp. and serum pepsinogen or gastrin. It is suggested that the decreases seen in the control group were due to lack of larval challenge and normal loss of adult worms resulting insufficient numbers to sustain a hypergastrinaemia.

Gastrin concentrations were also measured in tissue samples from the pyloric antrum or the proximal duodenum. There was no significant difference in antral and proximal duodenal gastrin concentrations between the treatment and the control groups. Antral levels were between 1148-1323 pM/g which were 25-35 times those found in duodenal tissue (32.3-50.9 pM/g).

ACKNOWLEDGEMENTS

The present thesis could not have been completed without the help and assistance of numerous people. The two people who deserve a special mention are, my wife Pauline, for her continuous moral support, seemingly endless patience, as well as considerable technical assistance; and my Chief Supervisor, Associate Professor Tony Charleston of the Department of Veterinary Pathology and Public Health, Faculty of Veterinary Science, for his excellent guidance, tolerance and undying patience, especially in the closing stages of this thesis.

Special thanks are also due to Dr Alan Alexander, Associate Professor Brian Cooper and Professor Norm Williamson who in conjunction with Associate Professor Tony Charleston helped me design this course of study. I very much appreciated Dr Alan Alexander allowing me the opportunity to undertake this course of study while I was employed by the Animal Health Services Centre. Both Dr Alexander and Mr Steve Lees of the Animal Health Service Centre provided considerable assistance with the treatment and care of the animals as well as all the sampling that occurred throughout this trial.

Mrs Barbara Adlington and Ms Shirley Calder of the Department of Veterinary Pathology and Public Health provided excellent technical assistance and patience in assisting me with the worm counts. I also appreciated the assistance of Dr Bill Pomroy of the same department for technical assistance with speciation of the nematodes. I would also like to express my appreciation to Dr Heather Simpson and Ms Jane Candy for all their help with the serum and tissue gastrin assays, and I very much appreciated the assistance of Dr David Lawton in helping assay the pepsinogen samples.

The resources of the Kelvin Grove Hotel and the moral support of Mrs Barbara Adlington and Mr Bill Penman were always much appreciated. I would also like to express my appreciation to Mr Tim Knox, Chief Agricultural Compounds Officer, Ministry of Agriculture and Forestry for allowing me time to complete this thesis.

V

TABLE OF CONTENTS

		Page	
ABSTR	ACTS .		ĺ
ACKNO	WLEDO	EMENTS	6
PART	1.	A Review of the Veterinary Anthelmintic Literature	
		nam staunto venzatione, laiento investa - lai patrice sonte sonte sonte sonte en star sur "nost investigantes sonte and	
1.0		DUCTION	
1.0	INTRO	JUCTION	
2.0	COPPE	R, NICOTINE AND ARSENIC	
2.0	2.1	Introduction	
	2.2	Pharmacology	
	2.3	Efficacy	
	2.4	Side effects and Toxicity	
3.0	TETRA	CHLOROETHYLENE	
	3.1	Introduction and Pharmacology8	
	3.2	Efficacy	
		3.2.1 Sheep	
		3.2.2 Cattle	
		3.2.3 Other species	
	3.3	Side effects and Toxicity	
4.0	PHENC	THIAZINE	
	4.1	Introduction and Pharmacology	
	4.2	Efficacy	
		4.2.1 Sheep	
		4.2.2 Cattle	
		4.2.3 Horses	
	4.3	Side effects and Toxicity	
	4.3		1
5.0	DIETU		
5.0		LCARBAMAZINE	
	5.1	Introduction	
	5.2	Pharmacology	
	5.3	Efficacy	
		5.3.1 Ruminants	
		5.3.2 Horses	Ļ

×.

		5.3.3 Dogs and cats
	5.4	Side effects and Toxicity
6.0	PIPER	AZINE
	6.1	Introduction
	6.2	Pharmacology
	6.3	Efficacy
		6.3.1 Sheep
		6.3.2 Cattle
		6.3.3 Horses
		6.3.4 Dogs and cats
	6.4	Side effects and Toxicity
7.0	TOLUE	ENE
	7.1	Introduction and Pharmacology
	7.2	Efficacy
	7.3	Side effects and Toxicity
8.0	CYACI	ETHYDRAZIDE
	8.1	Introduction
	8.2	Pharmacology
	8.3	Efficacy
		8.3.1 Sheep and Goats
		8.3.2 Cattle
	8.4	Side effects and Toxicity
9.0	BEPHE	ENIUM AND THENIUM
	9.1	Introduction and Pharmacology44
	9.2	Efficacy, Side effects and Toxicity
		9.2.1 Sheep
		9.2.2 Cattle
		9.2.3 Dogs and Cats
10.0	ORGA	NOPHOSPHATES
	10.1	Introduction
	10.2	Pharmacology
	10.3	Efficacy

3

vii

		10.3.1 Sheep
		10.3.2 Goats
		10.3.3 Cattle
		10.3.4 Horses
		10.3.5 Dogs and Cats
	10.4	Side effects and Toxicity
11.0	METHY	YRIDINE
	11.1	Introduction
	11.2	Pharmacology
	11.3	Efficacy
		11.3.1 Sheep
		11.3.2 Cattle
		11.3.3 Dogs
	11.4	Side effects and Toxicity
12.0	BENZI	MIDAZOLES
	12.1	Introduction
	12.2	Pharmacology
	12.3	Efficacy
		12.3.1 Thiabendazole
		12.3.2 Phenzidole
		12.3.3 Parbendazole
		12.3.4 Cambendazole
		12.3.5 Mebendazole
		12.3.6 Oxibendazole
		12.3.7 Thiophanate
		12.3.8 Fenbendazole
		12.3.9 Oxfendazole
		12.3.10 Albendazole
		12.3.11 Febantel
		12.3.12 Netobimin
	12.4	Side effects and Toxicity
13.0		NTEL AND MORANTEL
	13.1	Introduction
	13.2	Pharmacology

viii

	13.3	Efficacy
	13.4	Side effects and Toxicity
		.8
14.0	TETR/	AMISOLE AND LEVAMISOLE 127
	14.1	Introduction
	14.2	Pharmacology
	14.3	Efficacy
	14.4	Side effects and Toxicity
15.0	AVER	MECTINS AND MILBEMYCINS 144
	15.1	Introduction
	15.2	Pharmacology
	15.3	Efficacy
	15.4	Side effects and toxicity
16.0	DISCL	JSSION
17.0	REFE	RENCES

ix

LIST OF TABLES

Table	Page
3.1	Percentage efficacy of tetrachlorethylene against gastrointestinal nematodes
	of sheep
3.2	Percentage efficacy of tetrachloroethylene against gastrointestinal nematodes
	of cattle
3.3	Percentage efficacy of tetrachloroethylene against gastrointestinal nematodes
	of dogs and cats
4.1	Excretion of various particle sizes of phenothiazine in sheep following intraruminal
	or intra-abomasal injection
4.2	Percentage efficacy of phenothiazine against gastrointestinal nematodes of sheep 19
4.3	Percentage efficacy of phenothiazine against gastrointestinal nematodes of cattle 19
4.4	Percentage efficacy of phenothiazine against gastrointestinal nematodes of horses 20
5.1	Percentage efficacy of diethylcarbamazine against gastrointestinal nematodes
	of dogs and cats
6.1	Percentage efficacy of piperazine against gastrointestinal nematodes of sheep33
6.2	Percentage efficacy of piperazine against gastrointestinal nematodes of cattle 34
6.3	Percentage efficacy of piperazine against gastrointestinal nematodes of horses 35
6.4	Percentage efficacy of piperazine against gastrointestinal nematodes of dogs
	and cats
7.1	Percentage efficacy of toluene against gastrointestinal nematodes of dogs
	and cats
7.2	Percentage efficacy of toluene against gastrointestinal nematodes of horses
8.1	Percentage efficacy of cyanacethydrazide against pulmonary nematodes of sheep $\ 43$
9.1	Percentage efficacy of bephenium salts against gastrointestinal nematodes of
	sheep
9.2	Percentage efficacy of bephenium hydroxynaphthoate against gastrointestinal
	nematodes of cattle
9.3	Percentage efficacy of bephenium and thenium against gastrointestinal
	nematodes of dogs and cats
10.1	Percentage efficacy of organophosphates against gastrointestinal nematodes
	of sheep
10.2	Percentage efficacy of organophosphates against gastrointestinal nematodes
	of goats
10.3	Percentage efficacy of organophosphates against gastrointestinal nematodes
	of cattle
10.4	Percentage efficacy of organophosphates against gastrointestinal nematodes

х

	of horses
10.5	Percentage efficacy of organophosphates against gastrointestinal nematodes
	of dogs and cats
11.1	Percentage efficacy of methyridine against gastrointestinal nematodes of sheep75
11.2	Percentage efficacy of methyridine against pulmonary nematodes of sheep
11.3	Percentage efficacy of methyridine against gastrointestinal and nematodes of cattle . 77
12.1	Time to peak plasma concentration following of benzimidazole administration
	to sheep or cattle
12.2	Percentage efficacy of thiabendazole against gastrointestinal nematodes of cattle 93
12.3	Percentage efficacy of parbendazole against gastrointestinal nematodes of cattle 94
12.4	Percentage efficacy of cambendazole against gastrointestinal nematodes of cattle95
12.5	Percentage efficacy of mebendazole against gastrointestinal nematodes of cattle 98
12.6	Percentage efficacy of oxibendazole against gastrointestinal nematodes of cattle 99
12.7	Percentage efficacy of thiophanate against gastrointestinal nematodes of cattle 100
12.8	Percentage efficacy of fenbendazole against gastrointestinal and pulmonary
	nematodes of cattle
12.9	Percentage efficacy of fenbendazole against Ostertagia ostertagi in cattle
12.10	Percentage efficacy of oxfendazole against gastrointestinal and pulmonary
	nematodes of cattle
12.11	Percentage efficacy of oxfendazole against Ostertagia ostertagi in cattle
12.12	Percentage efficacy of albendazole against gastrointestinal and pulmonary
	nematodes of cattle
12.13	Percentage efficacy of febantel against gastrointestinal and pulmonary
	nematodes of cattle
12.14	Percentage efficacy of netobimin against gastrointestinal and pulmonary
	nematodes of cattle
13.1	Percentage efficacy of pyrantel against gastrointestinal nematodes of cattle 120
13.2	Percentage efficacy of morantel and diethylcarbamazine against gastrointestinal
	and pulmonary nematodes of cattle
13.3	Percentage efficacy of morantel against gastrointestinal and pulmonary
	nematodes of cattle
13.4	Percentage efficacy of low dose morantel against gastrointestinal and
	pulmonary nematodes of cattle
13.5	Percentage efficacy of a morantel slow-release bolus against
	gastrointestinal and pulmonary nematodes of cattle
13.6	Percentage efficacy of morantel against gastrointestinal nematodes of cattle
	previously treated with a morantel slow-release bolus

xi

14.1	Percentage efficacy of oral tetramisole against gastrointestinal and
	pulmonary nematodes of cattle
14.2	Percentage efficacy of parenteral tetramisole against gastrointestinal and
	pulmonary nematodes of cattle
14.3	Percentage efficacy of oral levamisole against gastrointestinal nematodes
	of cattle
14.4	Percentage efficacy of parenteral levamisole against gastrointestinal
	nematodes
	of cattle
14.5	Percentage efficacy of levamisole pour-on against gastrointestinal and
	pulmonary nematodes of cattle
14.6	Percentage efficacy of topical levamisole pour-on against gastrointestinal and
	pulmonary nematodes of cattle when applied in different seasons
15.1	Percentage efficacy of oral ivermectin against gastrointestinal and pulmonary
	nematodes of cattle
15.2	Percentage efficacy of parenteral ivermectin against gastrointestinal and
	pulmonary nematodes of cattle
15.3	Persistent activity (percentage efficacy) of parenteral ivermectin against
	gastrointestinal and pulmonary nematodes of cattle
15.4	Percentage efficacy of oral ivermectin against gastrointestinal and pulmonary
	nematodes of cattle
15.5	Persistent activity (percentage efficacy) of topical ivermectin against
	gastrointestinal and pulmonary nematodes of cattle
15.6	Percentage efficacy of an ivermectin sustained-release bolus against
	gastrointestinal and pulmonary nematodes of cattle
15.7	Percentage efficacy of oral abamectin against gastrointestinal and pulmonary
	nematodes of cattle
15.8	Percentage efficacy of parenteral abamectin against gastrointestinal and
	pulmonary nematodes of cattle
15.9	Persistent activity (percentage efficacy) of parenteral abamectin against
	gastrointestinal and pulmonary nematodes of cattle
15.10	Percentage efficacy of oral moxidectin against gastrointestinal and
	pulmonary nematodes of cattle
15.11	Percentage efficacy of parenteral moxidectin against gastrointestinal
	nematodes of cattle
15.12	Persistent activity (percentage efficacy) of parenteral moxidectin against
	gastrointestinal and pulmonary nematodes of cattle

15.13	Percentage efficacy of topical moxidectin against gastrointestinal and
	pulmonary nematodes of cattle
15.14	Persistent activity (percentage efficacy) of topical moxidectin against
	gastrointestinal and pulmonary nematodes of cattle
15.15	Percentage efficacy of parenteral doramectin against gastrointestinal and
	pulmonary nematodes of cattle
15.16	Persistent activity (percentage efficacy) of parenteral doramectin against
	gastrointestinal and pulmonary nematodes of cattle
15.17	Percentage efficacy of topical eprinomectin against gastrointestinal and
	pulmonary nematodes of cattle
15.18	Percentage efficacy of topical eprinomectin against gastrointestinal and
	pulmonary nematodes of cattle under various management conditions

xiii

LIST OF FIGURES

Figure	Page
4.1	Structure of Phenothiazine
5.1	Structure of Diethylcarbamazine
6.1	Structure of Piperazine
7.1	Structure of Toluene
9.1	A comparison of the structural similarity between Bephenium and Acetylcholine 44
9.2	Structure of Thenium Closylate
10.1	Structure of Trolene
10.2	Structure of Neguvon
10.3	Structure of Ruelene
10.4	Structure of Asuntol
10.5	Structure of Haloxon
10.6	Structure of Naphthalphos
11.1	Structure of Methyridine
12.1	Structure of Benzimidazole and Pro-benzimidazole anthelmintics
12.2	Structural changes in the metabolic conversion of Thiophanate to Lobendazole \ldots .87
12.3	Structure and metabolic conversion pathway of Fenbendazole to Oxfendazole 88
12.4	Structure and metabolic conversion pathway of Albendazole to Albendazole
	Sulphoxide
12.5	Structure and metabolic conversion pathway to Febantel to the active
	metabolites Fenbendazole and Oxfendazole
12.6	Metabolic conversion pathway of Netobimin to Albendazole and Albendazole
	Sulphoxide
13.1	Structure of Pyrantel and Morantel 114
14.1	Structure of Levamisole
15.1	Structure of the Avermectin and Milbemycin anthelmintics
15.2	Structure of Eprinomectin

PAR	Г 2	Effica	acy of two formulations of moxidectin pour-on and the
		effec	ts of treatment on serum pepsinogen and gastrin levels
		and t	issue gastrin in cattle
			Page
1.0	INTRO	DUCTIO	ON AND REVIEW OF THE LITERATURE
2.0	MATE	RIALS A	ND METHODS
	2.1	Animal	Management and Selection
	2.2	Antheli	mintic treatment
	2.3	Blood	Collection and Analysis
	2.4	Experi	mental Schedule
	2.5	Parasit	ology Procedures
	2.6	Counti	ng and Identification of Nematodes
	2.7	Pepsin	ogen Assays
	2.8	Gastrir	Assays
	2.9	Tissue	Gastrin
	2.10	Statisti	cal Analyses
3.0	RESU	LTS	
	3.1	Antheli	nintic efficacy
		3.1.1	Faecal Egg Counts
		3.1.2	Worm Burdens
	3.2	Pepsin	ogen and Gastrin Results
		3.2.1	Serum Pepsinogen
		3.2.2	Serum Gastrin
		3.2.3	Tissue Gastrin
4.0	DISCU	ISSION	
	4.1	Antheli	mintic efficacy
	4.2	Pepsin	ogen and Gastrin
		4.2.1	Serum Pepsinogen
		4.2.2	Serum Gastrin
		4.2.3	Tissue Gastrin
5.0	REFER	RENCES	3
6.1	APPEN	NDICES	

LIST OF TABLES

Table	Page
1	Pre-treatment total worm count
2	Pre-treatment bulk faecal larval cultures
3	Mean faecal eg counts for the three groups (eggs per gram of faeces) 250
4	Geometric mean worm burdens a postmortem for calves treated
	with 0.5% moxidectin pour-on and percent efficacy for each formulation
5	Arithmetic mean worm burdens at postmortem for calves treated
	with 0.5% moxidectin pour-on and percent efficacy for each formulation
6	Speciation of male abomasal and small intestinal worms examined
7	Mean serum pepsinogen concentrations (IU tyrosine/litre) in
	control and moxidectin treated calves
8	Mean serum gastrin concentrations (picomoles/litre) in control
	and moxidectin treated calves
9	Mean (+/- standard deviation) abomasal and proximal duodenal tissue
	gastrin concentrations (picomoles/gramme of mucosa) in control and
	moxidectin treated calves

xvi

LIST OF FIGURES

F

Figure	Page
1	Changes in faecal egg counts pre- and post-treatment in untreated control
	calves and calves treated with 0.5% moxidectin
2	Changes in mean serum pepsinogen concentrations pre- and post-treatment
	in untreated control calves and calves treated with one of two formulations
	of 0.5% moxidectin pour-on
3	Changes in mean serum gastrin concentrations pre- and post-treatment in
	untreated control calves and calves treated with one of two formulations of
	0.5% moxidectin pour-on
4	Changes in mean serum pepsinogen and gastrin concentrations in untreated
	control calves kept on a feed-pad for 28 days
5	Changes in mean serum pepsinogen and gastrin concentrations in calves
	treated with 0.5% moxidectin pour-on (Formulation 1)
6	Changes in mean serum pepsinogen and gastrin concentrations in calves
	treated with 0.5% moxidectin pour-on (Formulation 2)
7	Antral and proximal duodenal tissue gastrin concentrations from calves
	treated with one of two formulations of 0.5% moxidectin pour-on and
	untreated control calves

xvii

LIST OF APPENDICES

P

Appendix Page	
1.1	Data used for allocating cattle to groups
1.2.1	Individual faecal egg counts for the control group
1.2.2	Individual faecal egg counts for the Formulation 1 group
1.2.3	Individual faecal egg counts for the Formulation 2 group
1.3.1	Total abomasal worm counts in the control group
1.3.2	Total abomasal worm counts after treatment with Formulation 1
1.3.3	Total abomasal worm counts after treatment with Formulation 2
1.3.4	Total small intestinal worm counts in the control group
1.3.5	Total small intestinal worm counts in calves after treatment with Formulation 1 272
1.3.6	Total small intestinal worm counts in calves after treatment with Formulation 2 273
1.3.7	Total large intestine worm counts in the control group
1.3.8	Total large intestine worm counts in calves after treatment with Formulation 1 275
1.3.9	Total large intestine worm counts in calves after treatment with Formulation 2 276
1.3.10	Speciation of abomasal worms from calves in the control group
1.3.11	Speciation of abomasal worms from calves treated with Formulation 1
1.3.12	Speciation of abomasal worms from calves treated with Formulation 2
1.3.13	Speciation of small intestinal worms from calves in the control group
1.3.14	Speciation of small intestinal worms from calves treated with Formulation 1
1.3.15	Speciation of small intestinal worms from calves treated with Formulation 2
2.1	Pepsinogen Assay
2.2.1	Mean serum pepsinogen concentrations (IU tyrosine/litre) for the control
	group of calves
2.2.2	Mean serum pepsinogen concentrations (IU tyrosine/litre) for the calves
	treated with Formulation 1
2.2.3	Mean serum pepsinogen concentrations (IU tyrosine/litre) for the calves
	treated with Formulation 2
3.1	Gastrin radioimmunoassay
3.2.1	Mean serum gastrin concentrations (picomoles/litre) for the control group
	of calves
3.2.2	Mean serum gastrin concentrations (picomoles/litre) for the calves treated
	with Formulation 1
3.2.3	Mean serum gastrin concentrations (picomoles/litre) for the calves treated
	with Formulation 2
3.3	Abomasal and proximal duodenal tissue gastrin concentrations
	(picomoles/gramme) in control and moxidectin treated calves

PART 1.

A Review of the Veterinary Anthelmintic Literature

1.0 INTRODUCTION

The influence of helminth parasites on intensive agriculture production systems is considerable in terms of animal health and welfare. There is now a heavy reliance on the use of anthelmintics to maintain these farming practices, which more recently is starting to take a heavy toll on the continued efficacy of these compounds. Up until the 1960's, anthelmintics of various levels of efficacy were used to aid in the management of nematodes. With the discovery of the benzimidazoles (Brown *et al.*1961), a new era in parasite control occurred. The success of this compound stimulated considerable research and as the knowledge of anthelmintic pharmacology has developed, so has the development of more potent drug analogues, and better and more effective methods of administration (Prichard, 1986a).

In order for parasites to exist in an animal, they must maintain an appropriate feeding site and ingest and move food through their digestive tracts. Anthelmintics can be divided into two general classes as to how they affect parasites. There are those which inhibit metabolic processes, and those which inhibit neuromuscular co-ordination. The benzimidazoles inhibit metabolic processes by binding to microtubules which results in disruption of normal cell processes, such as formation of the mitotic spindle in cell division, maintenance of cell shape, cellular motility, nutrient absorption and intracellular transport. Anthelmintics which have their effects on neuromuscular co-ordination can be divided into two groups. Those which inhibit the breakdown of excitatory neurotransmitters (cholinesterase inhibitors - organophosphates) or mimic the action of excitatory neurotransmitters (imidazothiazoles - levamisole, and pyrimidines - pyrantel and morantel) and result in spastic paralysis. The second group either mimic the inhibitory action of the inhibitor neurotransmitter or cause hyperpolarisation (piperazine, avermectins/milbemycins) resulting in flaccid paralysis. Any effect on parasite neuromuscular co-ordination, results in the parasite losing its ability to maintain its position within the gastrointestinal tract or pulmonary system, and is subsequently expelled.

The "ideal" anthelmintic should have a broad spectrum of activity against mature and immature (including inhibited larvae); be easy to administer to a large number of animals; have a wide margin of safety and be compatible with other compounds; result in minimal residues; and be economical to use.

The following review identifies anthelmintics which affect nematode parasites in cattle, sheep, horses, dogs and cats. It describes the history of each of the anthelmintics, their pharmacology and their efficacy against nematodes of the gastrointestinal tract and pulmonary system, and side effects and toxicity to the treated animals. For the four main action families, the benzimidazoles, imidazothiazoles, tetrahydropyrmidines and the avermectins/milbemycins, the review has been limited to cattle.