
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

OOPS-Algol.

An extension to PS-Algol to support

object-oriented programming.

A thesis presented in partial fulfilment of the requirements

for the degree of Master of Science at Massey University.

William Dennis Ryder.

Acknowledgements.

This thesis would not have been possible without the patience

and advice of Tom Docker and Chris Phillips. Thanks guys.

I am indebted to Commercial Software Limited for their

financial support and the use of their resources to complete

this thesis.

ii

Abstract

Object-oriented programming is becoming a widely

accepted paradigm to promote software reuse and data

abstraction. Many languages are having object oriented

capabilities added to them.

PS-Algol is a language which supports procedures as

first class data, and supports orthogonality of per

sistence. OOPS-Algol extends the PS-Algol language to

support object-oriented programming.

OOPS-Algol is different from most other object

oriented languages in that it explicitly separates the

implementation of a class's protocol from the descrip

tion of that protocol. The class hierarchy is used

solely for defining the conceptual relationships between

classes. The inheritance hierarchy is used to promote

code sharing, without being constrained by the class

hierarchy. This capability furthers progress towards

the goal of separating the conceptual design of a system

from its implementation.

iii

CONTENTS

1. Introduction. 1

1. 1 PS-Algol. 2

1.2 Objects in PS-Algol - a First

Attempt................................... 4

1.3 OOPS-Algol - An Improved Object Sys-

tern. 5

1.4 Thesis Structure.......................... 8

2. Basic Concepts of Object Oriented Program-

ming . 1 O

2 .1 What is an Object. 10

2.2 Messages.................................. 12

2.3 Class 15

2. 4 Inheritance. 17

2.5 Delegation................................ 23

2.5.1

2.5.2

Prototypes 24

Extended Self 25

3. Some Current Object-Oriented Languages......... 29

3.1 Smalltalk-BO.............................. 31

3.1.1 Message Passing 32

- iv -

3 .1. 2 Instance Creation 34

3 .1. 3 Resource Sharing 35

3 .1. 4 Stack 36

3.2 C++ •••••••••••••.••••••••••••...•.....•..• 39

3.2.1 Message Passing 41

3.2.2 Instance Creation 42

3.2.3 Resource Sharing 43

3.2.4 Stack 44

3.3 Objective-C 46

3. 3 .1 Message Passing 47

3.3.2 Instance Creation 48

3.3.3 Resource Sharing 49

3.3.4 Stack 49

3.4 Self 50

3.4.1 Message Passing 51

3.4.2 Instance Creation 51

3.4.3 Resource Sharing 52

3.4.4 Stack 52

3.5 OOPS-Algol 57

4. Subtyping in Class Based Systems............... 59

4 .1 What is subtyping......................... 60

4.2 The uses of subtyping.......... 60

4.2.1 Specialisation 61

- V -

4.2.2 Interface Specification 62

4.2.3 Combination 63

4.2.4 Generalisation 64

4.2.5 Variance 66

4.3 Subtyping in OOPS-Algol................... 67

5. The OOPS-Algol Language........................ 69

5 .1 Message Expressions. 6 9

5.1.1 Unary Message Expressions. 70

5.1.2 Keyword message Expressions. 72

5.2 Creating a Class.......................... 74

5.3 Creating an Exemplar for a Class.......... 76

5.4 Creating an Instance of a Class........... 78

5.5 The Stack Revisited....................... 79

6 . OOPS-Algol's Type System 82

6.1 Limitations On Subtyping in OOPS-

Algol 83

6 .1.1 Subtype Determination 84

6 .1. 2 Subtype Restrictions 86

6 .1. 3 Message Selector Types 86

6 .1.4 Message Definitions 92

6.2 An Example Class Hierarchy 92

- vi -

7. The Exemplar Hierarchy in OOPS-Algol........... 96

7.1 The AnnotatedList Revisited............... 97

7.1.1 The List Class Definition 97

7.1.2 The List Implementation 98

7.1.3 The AnnotatedList Class Defini-

tion 101

7.1.4 The AnnotatedList Exemplar 104

7.1.5 The New AnnotatedList Hierar

chies 105

7. 2 Summary. 106

8. Conclusion and Future directions 108

8 . 1 The Work Completed. 10 8

8.2 Further Work.............................. 109

8.2.1

8.2.2

8.2.3

Performance Improvement 110

OOPS-Algol language changes 111

Support Tools 112

Appendix 1 - OOPS-Algol Syntax 115

Appendix 2 - Object Representation in OOPS-

Algol... 128

Appendix 3 - The OOPS-Algol Environment 137

- vii -

Appendix 4 - Objects in PS-Algol 140

References. 14 7

- viii -

Page 1

1. Introduction

In 1986 the Department of Computer Science at

Massey acquired PS-Algol [Atkinson, Bailey, et al 83] as

part of a cooperative research arrangement with the

University of St. Andrews. We intended to use the

language to implement a system for executing the data

flow diagrams (DFD) of Structured Systems Analysis as

exemplified by De Marco [DeMarco 78], and Gane and Sar

son [Gane & Sarson 79].

At the time of this experiment with PS-Algol,

object-oriented programming was gaining considerable

momentum in the computing community. After investigation

of this relatively immature paradigm we established that

it appeared to offer advantages that traditional system

development paradigms did not offer. The advantages we

considered most important were the use of data abstrac

tion (an object is only accessible through its opera

tions) and the ability to define objects incrementally

using the inheritance hierarchy.

Given the advantages we saw in object-oriented pro

gramming and the power of PS-Algol we began to implement

the window system necessary for our DFD system using

Chapter 1

Page 2

object based techniques in PS-Algol. This work was begun

on a Macintosh and was continued on Sun workstations.

Although PS-Algol provides good facilities for data

abstraction it provides none to support inheritance. It

became obvious that without automated support of inheri

tance the development effort required was too great and

we re-evaluated our techniques. It was this re

evaluation that led to the development of OOPS-Algol

(Object-Oriented PS-Algol) which this thesis describes.

This chapter provides an overview of PS-Algol, our

initial attempt at implementing objects, and the top

level description of OOPS-Algol.

1.1 PS-Algol

We were initially attracted to PS-Algol by its sup

port of 'orthogonality of persistence'; procedures as

first class data objects; and graphics objects as

built-in data types.

The persistence of a data object is the length of

time the object exists. PS-Algol allows any data

object, regardless of type, to have the same rights to

Chapter 1

Page 3

long and short term persistence, hence persistence is an

orthogonal property of data. This property is important

to object based systems as it is necessary to preserve

the state of the system between invocations. PS-Algol

makes this operation trivial compared to the 'hoop

jumping' required with most other traditional languages.

In PS-Algol procedures have the same rights as any

other data object in the language. A procedure can be

the result of an expression or another procedure, an

element of a structure or an array, assigned to a vari

able, et cetera. Hence a procedure is a first class

citizen of the language. This property is important in

implementing object-oriented systems as we have to be

able to store the procedures to be executed when an

object receives a message. The implementation task is

clearly much simpler when all of this can be done within

the language, without resort to external agents such as

linkers or file systems.

The power of graphical interfaces for certain types

of application is well known. PS-Algol gives graphics

objects (bitmaps and line drawings) the same rights as

any other type in the language. This simplifies the

implementation of systems requiring graphics

Chapter 1

Page 4

considerably, removing the necessity of using subroutine

packages as is common in other systems to support graph

ics.

1.2 Objects in PS-Algol - a First Attempt

Having decided to use PS-Algol and object-oriented

programming we developed a simple technique for

representing objects. We used the persistent store to

hold procedures that created instances of objects on

request. The objects returned were structures whose

fields contained the procedures to be executed when the

object received a message. The data local to the object

were not explicitly represented in the structure as

fields but were variables visible to the procedures in

the structure by virtue of PS-Algol's scope rules. Our

technique is explained in more detail in Appendix 3.

The main advantages of our simple technique were

the speed of execution and simplicity. The selection of

the appropriate procedure for a message was performed by

the compiler which removed the runtime message selection

used in most object based systems. It was simple because

we did not have to write any message switching software

and we did not support inheritance.

Chapter 1

Page 5

The absence of inheritance was partly a result of

our simplistic approach and of PS-Algol's type-checking

system. As one of PS-Algol's objectives is data protec

tion, it uses runtime checking of structure accesses.

This prevents a structure from impersonating another

structure. Inheritance requires that an object in the

inheritance hierarchy can be used as an object of a type

higher in the hierarchy (along the same path). This was

not possible in our simple system as we would require

different structures to be treated as the same type in

some cases. We modelled inheritance by making the

object we wanted to enhance a component of the new more

complex object. However, this was cumbersome and time

consuming. It was this problem that motivated the

development of OOPS-Algol.

1.3 OOPS-Algol - An Improved Object System

The experience gained with our simple object system

and examination of the capabilities of other object

oriented systems led us to design a system with these

objectives:

Chapter 1

1. We should be able to upgrade methods without

adversely impacting existing objects.

Page 6

2. The implementation and conceptual hierarchies of

objects should be separated.

3. The system should be strongly typed.

4. Subtyping should be supported in our type checking

system.

5. We should be able to have alternate representa

tions for the same object class.

There were two possible ways of implementing this

system. Given that we had the source to PS-Algol, we

could have enhanced the PS-Algol virtual machine and

compiler to support OOPS-Algol. The alternative was to

adopt the approach of other retrofitted object systems

to existing languages (as in Objective-C [Cox 86], C++

[Stroustrup 86]) and use a preprocessor to add an extra

layer of functionality.

Chapter 1

Page 7

We adopted the latter approach because we were not

familiar with the internal operation of PS-Algol and we

preferred to add our system as a layer above PS-Algol,

keeping the systems separate. This approach reduces the

perceived complexity of our implementation, which is

important as it is an experimental system which needs to

be able to be changed easily.

We developed OOPS-Algol on a Sun workstation and a

NCR Tower 32/600 system. The following diagram shows the

overall structure of the system.

User
OOPS-Algol

PS-Algol
Persistent Object Management System (POMS)

The user writes in OOPS-Algol which is PS-Algol

with extra constructs for defining and communicating

with objects. OOPS-Algol converts these statements into

PS-Algol. PS-Algol acts as the interface with POMS which

holds all objects in the system, regardless of their

longevity.

Chapter 1

Page 8

1.4 Thesis Structure

We begin in Chapter 2 by introducing the concepts

of object oriented programming. This is done mainly to

define object oriented programming as we see it and to

explain the differences between delegation and inheri

tance.

In Chapter 3 we survey some current object-oriented

languages. The chapter provides some examples of sys

tems that have had objects retrofitted to existing

languages in order to provide some comparison with the

implementation of OOPS-Algol.

Chapter 4 surveys how subtyping is currently used

in other class based systems, and relates this to OOPS

Algol.

Chapter 5 describes the user view of OOPS-Algol

without going into excessive detail. The chapter also

describes the main syntactic features of the language.

Chapter 6 describes OOPS-Algol's type system and

how it relates to the class hierarchy.

Chapter 1

Page 9

Chapter 7 completes our discussion of OOPS-Algol

with a description of how exemplars are defined, and how

they relate to the class hierarchy. We present an

extended example in this section to show how we can

separate the type hierarchy from the implementation

hierarchy.

The final chapter provides a post-mortem of this

experiment, and discusses possible future directions.

The appendices include details that we did not con

sider appropriate to place in the body of the thesis.

Appendix 1 contains the syntax of OOPS-Algol. Appendix

2 contains a description of how we represent objects in

OOPS-Algol. We did not consider the latter to be suit

able for the body of the dissertation as it is a techni

cal implementation description, and is not relevant to

our discussion of OOPS-Algol itself. Appendix 3 contains

a description of how to compile and run OOPS-Algol pro

grams, and describes the environment under which they

run. Finally, Appendix 4 contains a brief description of

our original attempt at implementing objects.

Chapter 1

