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Abstract 

Object-oriented programming is becoming a widely 

accepted paradigm to promote software reuse and data 

abstraction. Many languages are having object oriented 

capabilities added to them. 

PS-Algol is a language which supports procedures as 

first class data, and supports orthogonality of per­

sistence. OOPS-Algol extends the PS-Algol language to 

support object-oriented programming. 

OOPS-Algol is different from most other object­

oriented languages in that it explicitly separates the 

implementation of a class's protocol from the descrip­

tion of that protocol. The class hierarchy is used 

solely for defining the conceptual relationships between 

classes. The inheritance hierarchy is used to promote 

code sharing, without being constrained by the class 

hierarchy. This capability furthers progress towards 

the goal of separating the conceptual design of a system 

from its implementation. 
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1. Introduction 

In 1986 the Department of Computer Science at 

Massey acquired PS-Algol [Atkinson, Bailey, et al 83] as 

part of a cooperative research arrangement with the 

University of St. Andrews. We intended to use the 

language to implement a system for executing the data 

flow diagrams (DFD) of Structured Systems Analysis as 

exemplified by De Marco [DeMarco 78], and Gane and Sar­

son [Gane & Sarson 79]. 

At the time of this experiment with PS-Algol, 

object-oriented programming was gaining considerable 

momentum in the computing community. After investigation 

of this relatively immature paradigm we established that 

it appeared to offer advantages that traditional system 

development paradigms did not offer. The advantages we 

considered most important were the use of data abstrac­

tion (an object is only accessible through its opera­

tions) and the ability to define objects incrementally 

using the inheritance hierarchy. 

Given the advantages we saw in object-oriented pro­

gramming and the power of PS-Algol we began to implement 

the window system necessary for our DFD system using 
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object based techniques in PS-Algol. This work was begun 

on a Macintosh and was continued on Sun workstations. 

Although PS-Algol provides good facilities for data 

abstraction it provides none to support inheritance. It 

became obvious that without automated support of inheri­

tance the development effort required was too great and 

we re-evaluated our techniques. It was this re­

evaluation that led to the development of OOPS-Algol 

(Object-Oriented PS-Algol) which this thesis describes. 

This chapter provides an overview of PS-Algol, our 

initial attempt at implementing objects, and the top­

level description of OOPS-Algol. 

1.1 PS-Algol 

We were initially attracted to PS-Algol by its sup­

port of 'orthogonality of persistence'; procedures as 

first class data objects; and graphics objects as 

built-in data types. 

The persistence of a data object is the length of 

time the object exists. PS-Algol allows any data 

object, regardless of type, to have the same rights to 
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long and short term persistence, hence persistence is an 

orthogonal property of data. This property is important 

to object based systems as it is necessary to preserve 

the state of the system between invocations. PS-Algol 

makes this operation trivial compared to the 'hoop­

jumping' required with most other traditional languages. 

In PS-Algol procedures have the same rights as any 

other data object in the language. A procedure can be 

the result of an expression or another procedure, an 

element of a structure or an array, assigned to a vari­

able, et cetera. Hence a procedure is a first class 

citizen of the language. This property is important in 

implementing object-oriented systems as we have to be 

able to store the procedures to be executed when an 

object receives a message. The implementation task is 

clearly much simpler when all of this can be done within 

the language, without resort to external agents such as 

linkers or file systems. 

The power of graphical interfaces for certain types 

of application is well known. PS-Algol gives graphics 

objects (bitmaps and line drawings) the same rights as 

any other type in the language. This simplifies the 

implementation of systems requiring graphics 
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considerably, removing the necessity of using subroutine 

packages as is common in other systems to support graph­

ics. 

1.2 Objects in PS-Algol - a First Attempt 

Having decided to use PS-Algol and object-oriented 

programming we developed a simple technique for 

representing objects. We used the persistent store to 

hold procedures that created instances of objects on 

request. The objects returned were structures whose 

fields contained the procedures to be executed when the 

object received a message. The data local to the object 

were not explicitly represented in the structure as 

fields but were variables visible to the procedures in 

the structure by virtue of PS-Algol's scope rules. Our 

technique is explained in more detail in Appendix 3. 

The main advantages of our simple technique were 

the speed of execution and simplicity. The selection of 

the appropriate procedure for a message was performed by 

the compiler which removed the runtime message selection 

used in most object based systems. It was simple because 

we did not have to write any message switching software 

and we did not support inheritance. 
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The absence of inheritance was partly a result of 

our simplistic approach and of PS-Algol's type-checking 

system. As one of PS-Algol's objectives is data protec­

tion, it uses runtime checking of structure accesses. 

This prevents a structure from impersonating another 

structure. Inheritance requires that an object in the 

inheritance hierarchy can be used as an object of a type 

higher in the hierarchy (along the same path). This was 

not possible in our simple system as we would require 

different structures to be treated as the same type in 

some cases. We modelled inheritance by making the 

object we wanted to enhance a component of the new more 

complex object. However, this was cumbersome and time 

consuming. It was this problem that motivated the 

development of OOPS-Algol. 

1.3 OOPS-Algol - An Improved Object System 

The experience gained with our simple object system 

and examination of the capabilities of other object­

oriented systems led us to design a system with these 

objectives: 
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adversely impacting existing objects. 
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2. The implementation and conceptual hierarchies of 

objects should be separated. 

3. The system should be strongly typed. 

4. Subtyping should be supported in our type checking 

system. 

5. We should be able to have alternate representa­

tions for the same object class. 

There were two possible ways of implementing this 

system. Given that we had the source to PS-Algol, we 

could have enhanced the PS-Algol virtual machine and 

compiler to support OOPS-Algol. The alternative was to 

adopt the approach of other retrofitted object systems 

to existing languages (as in Objective-C [Cox 86], C++ 

[Stroustrup 86]) and use a preprocessor to add an extra 

layer of functionality. 
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We adopted the latter approach because we were not 

familiar with the internal operation of PS-Algol and we 

preferred to add our system as a layer above PS-Algol, 

keeping the systems separate. This approach reduces the 

perceived complexity of our implementation, which is 

important as it is an experimental system which needs to 

be able to be changed easily. 

We developed OOPS-Algol on a Sun workstation and a 

NCR Tower 32/600 system. The following diagram shows the 

overall structure of the system. 

User 
OOPS-Algol 

PS-Algol 
Persistent Object Management System (POMS) 

The user writes in OOPS-Algol which is PS-Algol 

with extra constructs for defining and communicating 

with objects. OOPS-Algol converts these statements into 

PS-Algol. PS-Algol acts as the interface with POMS which 

holds all objects in the system, regardless of their 

longevity. 
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1.4 Thesis Structure 

We begin in Chapter 2 by introducing the concepts 

of object oriented programming. This is done mainly to 

define object oriented programming as we see it and to 

explain the differences between delegation and inheri­

tance. 

In Chapter 3 we survey some current object-oriented 

languages. The chapter provides some examples of sys­

tems that have had objects retrofitted to existing 

languages in order to provide some comparison with the 

implementation of OOPS-Algol. 

Chapter 4 surveys how subtyping is currently used 

in other class based systems, and relates this to OOPS­

Algol. 

Chapter 5 describes the user view of OOPS-Algol 

without going into excessive detail. The chapter also 

describes the main syntactic features of the language. 

Chapter 6 describes OOPS-Algol's type system and 

how it relates to the class hierarchy. 
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Chapter 7 completes our discussion of OOPS-Algol 

with a description of how exemplars are defined, and how 

they relate to the class hierarchy. We present an 

extended example in this section to show how we can 

separate the type hierarchy from the implementation 

hierarchy. 

The final chapter provides a post-mortem of this 

experiment, and discusses possible future directions. 

The appendices include details that we did not con­

sider appropriate to place in the body of the thesis. 

Appendix 1 contains the syntax of OOPS-Algol. Appendix 

2 contains a description of how we represent objects in 

OOPS-Algol. We did not consider the latter to be suit­

able for the body of the dissertation as it is a techni­

cal implementation description, and is not relevant to 

our discussion of OOPS-Algol itself. Appendix 3 contains 

a description of how to compile and run OOPS-Algol pro­

grams, and describes the environment under which they 

run. Finally, Appendix 4 contains a brief description of 

our original attempt at implementing objects. 
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2. Basic Concepts of Object Oriented Programming. 

2.1 What is an Object 

Before the concepts of object-oriented programming 

are introduced, it is worth noting that a number of 

slightly different definitions exist. We generally fol­

low that of [Wegner 87]: 

"An object has a set of 'operations' and a 

'state' that remembers the effect of opera-

tions". 

This reflects the difference between functions and 

objects. The result of a function is solely determined 

by its arguments. In contrast, the result of an opera­

tion on an object depends on the results of previous 

operations on that object and the arguments included 

with the operation. That is, an object has a history. 

The definition highlights the similarity between 

objects and abstract data types. The code sharing 

offered by object-oriented systems distinguishes objects 
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from instances of abstract data types. Wegner calls 

systems that do not have some form of inheritance to 

implement code sharing 'object based' systems, rather 

than 'object oriented' systems. 

As an example of how we could represent an applica­

tion with objects we will consider a simple debtors sys­

tem. In this system we will have two major object types, 

debtor and transaction. If we want to know how much a 

debtor owes we ask the corresponding debtor object to 

give us that information. The object will respond with 

the value. 

The user of the debtor object does not need to know 

whether the debtor remembers the total in a variable 

that is updated each time a transaction arrives, or if 

it iterates over all of its transactions to get the 

current balance. This illustrates the data abstraction 

offered by objects. 

The transaction object will remember at least its 

value and will return that value if asked. When we want 

to add a transaction to a debtor we tell the debtor that 

it should add the new transaction and the debtor will 

update its own information with no interference from the 
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'outside'. The user controlling the update needs no 

knowledge of the internal representation of either the 

debtor or transaction. The user only needs to know that 

a debtor knows how to add a transaction. 

This shows that when we build a system using 

objects we are essentially creating building blocks of 

different shapes, and then fitting them together. The 

process of intergrating the blocks can be separated from 

the actual manufacture of the blocks, thus enhancing 

reusability. The success of this approach has been 

demonstrated many time in the 'real' world with products 

like Lego and Integrated Circuits. 

2.2 Messages 

An operation on an object is triggered by sending a 

message to that object. The expression send a message 

does not necessarily mean we send a physical message. 

When we send a message we are selecting an operation to 

perform on the object. The term message is used to 

underline the fact that an object needs to be considered 

a separate entity and that communication between objects 

is carried out according to some protocol. 
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Depending on the language, sending a message may 

simply be the selection of a field from a structure and 

executing the code pointed to by that field (as in C++ 

[Stroustrup 86]); or it may be a call to a subroutine 

that selects the appropriate code from tables (as in 

OOPS-Algol). Messages as such are generally only used in 

distributed environments, or in some concurrent object 

systems. 

To demonstrate the difference between terminologies 

here, a small example will be used. Assume we have the 

ubiquitous stack and we want to push some data on it. In 

an object oriented system we would have a stack object 

to which we would send messages. We would ask the stack 

object to push some data onto it (the data would be 

passed as an argument). This would cause the procedure 

corresponding to the push message to be executed, which 

would change the state of the object. In a functional 

system we would say: apply the push function to this 

stack with this item of data. In this case the function 

would return a new stack with some more data on it. 

This demonstrates two differences between func­

tional and object based systems: 
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1. A functional system deletes the old data and 

creates some new data, an object based system 

changes the existing 'data'. 

2. In a functional system the user selects the 

appropriate procedure to apply to some data, in an 

object based system the object (or the system sup­

porting the object) decides which procedure to 

use. 

The collection of messages to which an object can 

respond to is known as the protocol for that object. A 

possible subset of the protocol for the debtor object we 

referred to earlier might be: 

add Transaction 

whatisYourBalance 

whatAreYourTransactions 

yourCreditLimitis 

A protocol also specifies the required arguments 

that are to be sent with the message. For instance 

addTransaction would require a transaction object as an 

argument, and whatisYourBalance would require no argu­

ments. 
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2.3 Class 

A class is a template used to create new objects. 

The class contains at least the protocol for objects 

which are members of that class. The class generally 

also contains information about what variables are 

required to encode the state of the object. We call a 

particular object which is a member of a class an 

instance of that class. 

Here are some important points about classes in 

class based languages like Smalltalk-SO. 

1. The class of an object determines which messages 

the object can respond to. 

2. The class actually 'stores' the method. 

3. The definitions of the instance variables are 

included in the class. 

4. Instances of classes only contain the values of 

their instance variables and use the class for the 

rest of the information. 
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Classes also serve another purpose. They provide a 

mechanism for grouping objects. Classes impose structure 

on the 'sea' of objects. 

A classless system is useful when dealing with 

'small' systems. As an analogy, consider personal 

experience. If a person knows a cat, Monty, and then 

sees another cat they will probably think "that cat is 

like Monty except that it differs in these ways". This 

model is useful for a small number of animals. When we 

want to study the whole 'universe' of animals this is 

inadequate and we need some way of structuring the 

information. Classes provide this structure, together 

with inheritance which we discuss in the following sec­

tion. 

Classless systems are also useful when prototyping. 

In prototyping we normally have no clear perception of 

the system so we want to delay the imposition of struc­

ture on the solution until we fully understand the prob­

lem. 

The difference between classical (have classes) and 

classless systems is similar to the difference between 

typed and untyped systems. Typed systems are useful for 
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production environments, untyped systems are useful for 

experimental environments. 

2.4 Inheritance 

In this discussion we view inheritance as only 

applying to class based systems. We consider the more 

general 'delegation' later. 

Inheritance allows a class to inherit methods from 

its "superclass" and its methods may be inherited by its 

"subclasses". When an instance of a class c is created 

the new object can use the operations of class c and the 

operations of e's superclasses. 

When a class can have only one superclass directly 

above it this is termed single inheritance. The more 

general multiple inheritance allows a class to have more 

than one immediate superclass. 

The relationship between the classes in the system 

is called the class hierarchy. In a system supporting 

single inheritance this hierarchy is tree structured. 

The classes in a multiple inheritance system form a 

directed acyclic graph. 
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Multiple inheritance poses a problem: if a class 

inherits from two classes, and there is a method or 

instance variable of the same name in both, which one do 

we choose? The most common method used is to select the 

method from the class with the higher 'precedence'. Usu­

ally this is the first superclass mentioned when declar­

ing a new class. The language CommonLoops does it this 

way [Bobrow, Kahn et al 86]. The problem with any arbi­

trary means of deciding which one to use is that it may 

not be what the user intended. For a formal treatment 

of multiple inheritance see [Ducournau & Habib 1987] and 

[Cardelli 84]. 

Object 
I\ 

I \ 
+--------------+ 

Debtor 
I\ 

I \ 
I \ 

I \ 
I \ 

OpenitemDr BalanceForwardDr 

+-----------+ 

Transaction 
I\ 

I \ 
I \ 

I \ 
I \ 

Receipt Invoice 

Figure 2.1: The Debtor System Inheritance Hierarchy. 
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We illustrate inheritance by returning to our deb­

tors system. Figure 2.1 illustrates a possible inheri­

tance hierarchy for this system. We have extended the 

example to include two types of debtors and two types of 

transactions. At the top of the hierarchy we have the 

root class called Object. The protocol for Object would 

include messages like: class - returns the class of the 

object; respondsTo: - informs the caller whether or not 

the object can respond to a given message. 

We have introduced two types of debtor. The com­

monalities between them are captured in the debtor 

class. To allow for the different operations required 

for open item debtors and balance forward debtors we 

create two separate classes. The OpenitemDr debtors 

class will have messages like: whatAreYourOpenitems. The 

BalanceForwardDr debtors will have message such as per­

formPeriodAge. The debtor class defines messages such as 

whatisYourAddress. 

The Transaction class includes common messages for 

both Receipts and Invoices. Some messages might be 

howMuch and whatDate. The invoice transaction type will 

have messages for getting the line item details. 
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We have used the inheritance hierarchy to classify 

the different classes (for example, OpenitemDr is a Deb­

tor), and to group them together. As the inheritance 

hierarchy allows instances of the Receipt class to use 

operations defined for the Transaction class we are 

saved from re-implementing the common messages. 

This illustrates the two uses of the inheritance 

hierarchy: 

1. Classification - we classify objects by position­

ing them in a logical place in the hierarchy. 

2. Implementation - the hierarchy is used to make 

implementation decisions based on the amount of 

code sharing desired between classes. 

These two uses of the hierarchy do not necessarily 

coincide. We illustrate this by using the example 

presented in [LaLonde, Thomas et al 86). 

Suppose we wish to implement a list by using two 

different representations, one for an empty list and 

another for a non-empty list. By doing this we can elim­

inate the need for empty list handling in the instances 
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of lists that are non-empty. We can do this by using the 

inheritance hierarchy thus: 

Object 

List 
I\ 

I \ 
I \ 

I \ 
EmptyList NonEmptyList 

Figure 2.2: The List Inheritance Hierarchy. 

Our EmptyList does not need any instance variables 

so we use less space. The NonEmptyList does not need to 

continually check to see if it is empty, giving us a 

speed increase. This representation shows how our class 

hierarchy is used to facilitate implementation. Prob­

lems arise, however when we wish to create a new class 

AnnotatedList, which is a list with notes attached to 

each element. 

There are a number of ways of setting up an inheri­

tance hierarchy: 
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AnnotatedList 
I \ 

I \ 
I \ 

I \ 
ErnptyList NonErnptyList 

ErnptyAnnotatedList NonErnptyAnnotatedList 
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b) List 

C) 

I \ 
+------------+ +-----------+ 

ErnptyList AnnotatedList NonErnptyList 

I 
I 

EmptyA.nnotatedList 

+------------+ 

List 
I \ 

I 
I 

NonEmptyA.nnotatedList 

+-----------+ 

ErnptyList AnnotatedList NonErnptyList 
I \ 

I \ 
ErnptyAnnotatedList NonErnptyAnnotatedList 

Figure 2.3: Possible Inheritance Hierarchies for Annotated Lists 

Each of these representations causes problems: 
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a) causes lists to be incorrectly viewed as annotated 

lists. 

b) implies EmptyAnnotatedLists and NonEmptyAnnota­

tedLists are not AnnotatedLists. 

c) is not useful because the standard methods for Emp­

tyLists and NonEmptyLists can not be inherited by 

the annotated versions without the use of multiple 

inheritance. 

Clearly we need to separate the implementation and 

conceptual hierarchy. We come back to this problem, and 

our solution to it in OOPS-Algol, in Chapter 7. 

2.5 Delegation 

The other technique used to represent shared 

behaviour amongst objects is delegation. 

[Wegner 87] defines delegation thus: 

"Delegation is a mechanism that allows 

objects to delegate responsibility for per­

forming an operation or finding a value to 
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one or more designated 'ancestors'". 

Delegation operates independently from a class 

hierarchy, allowing a free-form approach to resource 

sharing. There are two useful metaphors for describing 

delegation. The first is the concept of a prototype, the 

second is the concept of the extended self. 

2.5.1 Prototypes 

The idea of a prototype is used to describe how 

objects are characterised in classless delegation. In 

our discussion of classes we mentioned a specific 

instance of a cat, Monty. Classless delegation would use 

Monty as the prototypical cat, and further cats would 

use Monty as their example to follow (the exemplar). A 

new cat Rommel, would delegate responsibility for opera­

tions that are common to both cats to the Monty object. 

It can be argued that a prototype based system 

better represents the way humans learn than class based 

systems. When we see something new we generally compare 

it to something with which we already have experience. 

Only after we have seen many different examples of the 

new object type will we make the intuitive leap to being 

able to describe that object in general. 
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In the same manner in which prototypes are used in 

software engineering, we can use a prototype based 

object-oriented system to understand the problem we are 

trying to solve. 

After we feel the problem is understood we can 

reimplement the solution in a class based system. We 

consider a class based system to be more suitable for a 

long lived application because the class hierarchy pro­

vides a convenient road-map, so that people who have to 

maintain the system can gain an understanding of the 

system as a whole. 

2.5.2 Extended Self 

The other concept that is useful when describing 

delegation is the idea that the ancestors of an object 

form the extended self of that object. This means that 

when an object requests a service of an ancestor, the 

ancestor will always refer back to the original object 

whenever a reference to self is made. This is in direct 

contrast to inheritance, which rebinds self as opera­

tions are performed further up the inheritance hierar­

chy. 
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We illustrate this with an example. Let us assume 

we have a class for simple display of fonts called sim­

pleFont. We will select two messages for consideration: 

displayAGlyph Takes a character as an argument and 

displays the corresponding glyph 

from the font. 

displayLotsOfGlyphs Takes a string and displays it. 

To avoid duplication of the code 

used for displaying a glyph, it 

sends the displayAGlyph message to 

self for each character in the 

string. 

At this stage inheritance and delegation will give 

the same results. Self remains bound to an instance of 

simpleFont. 

Now we decide to enhance our class by adding a 

colour capability. This will use most of the code for 

simpleFont but will add the ability to display colour. 

Because displayLotsOfGlyphs uses the displayAGlyph mes­

sage we should be able to just redefine displayAGlyph 

for the new colourFonts which will override 
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displayAGlpyh in simpleFont to enable us to display 

coloured glyphs (ignoring the obvious change in instance 

variables). 

Under inheritance this will cause problems because 

displayLotsOfGlpyhs will make a call to self to display 

each one. This will not work, because self is rebound as 

a message works its way up the inheritance hierarchy. In 

this case it will be rebound to the simpleFont part of 

the hierarchy, not the colourFont part. The effect of 

this is that the message search for displayAGlyph will 

start from simpleFont when displayLotsOfGlyphs is 

evaluated. This will cause the loss of colour informa­

tion so we would be forced to reimplement displayLotsOf­

Glyphs in our new class. 

The concept of extended self provides a solution to 

this problem as we always view anything we inherit as 

extending the original object. This means that self 

stays bound to the original object, not rebound as the 

delegation hierarchy is traversed. In this case, the 

message search for displayAGlyph will start at the 

colourFont and so the object will behave as we would 

wish. 
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It is for this reason that we use this concept in 

OOPS-Algol. 
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3. Some Current Object-Oriented Languages· 

In order to see how OOPS-Algol fits in with other 

current object-oriented languages we will give a brief 

description of four of these languages. We begin with 

Smalltalk-80 as it was the language that popularised 

object-oriented programming. To demonstrate how object­

oriented features are retro-fitted to existing languages 

we look at Objective-C and C++, two extensions to 'C'. 

Finally we look at Self, a language that uses classless 

delegation to implement resource sharing. 

We follow a common format for the four languages 

where possible: demonstrating the syntax of message 

passing; how instances are created; and how resource 

sharing is supported. 

We conclude our discussion of each language with 

reference to the ever popular stack which can respond to 

the following messages: 

isMT This message will return true if the 

stack is empty. 
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pop 
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pushes an object (passed as an argument) 

onto the stack. 

returns the top object from the stack and 

removes it. 

After the stack has been defined, we will define an 

annotated stack to demonstrate the code sharing aspects 

of the various languages. The annotated stack behaves in 

the same way as the normal stack except that we have 

added two more messages: 

attachNote: This will attach the note passed as an 

argument to the top item on the stack. 

This note will follow the item around in 

the stack until that item is removed from 

the stack. 

getNote This will get a note that may have been 

attached to the top item on the stack. 

We do not provide any error checking for the stack, 

which removes details not necessary to our discussion. 
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This chapter is not intended to be an exhaustive 

survey of object-oriented programming languages and we 

will be ignoring features of the languages not relevant 

to our discussion. 

3.1 Smalltalk-80 

Smalltalk-80 (which we henceforth refer to as 

Smalltalk) was the first popular object oriented 

language. It was developed at Xerox PARC, with work on 

its design starting in the early 1970's. It was designed 

specifically as an object-oriented language with no con­

cessions to 'traditional' programming languages. 

Smalltalk is more than just a language; it is also 

a development environment encompassing a browser and 

other tools to assist the development process. The 

environment is persistent as it is saved between invoca­

tions. 

For a full description of Smalltalk see [Goldberg & 

Robson 83). 
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3.1.1 Message Passing 

A message expression in Smalltalk consists of a 

receiver, a selector and arguments if required. Follow­

ing the message analogy the receiver receives the mes­

sage, the selector is used to select the appropriate 

method for the message, and the arguments (if any) are 

the data required for that message. Each message in 

Smalltalk returns a value. 

The message expression syntax in Smalltalk is 

designed to be readable, and can resemble the syntax of 

traditional languages in some cases. There follow some 

sample expressions to give the feel of Smalltalk: 

(i) 3 + 4 

In this case the receiver of the message is the object 

3. The selector is '+' (selecting the addition opera­

tion) and the argument is 4. This illustrates the purity 

of Smalltalk, even integers are objects in the system 

(there are internal optimisations to speed the usage of 

integers however). 

(ii) quantity sqrt 
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In this case the receiver is quantity and the 

selector is sqrt. The object referenced by quantity is 

asked to return the square root of itself. 

(iii) values replaceFrom: 1 to: oldValues size with: oldValues 

Here we begin to see the readability of Smalltalk syn­

tax. The receiver here is values which is sent a message 

with the selector replaceFrom:to:with:. One of the argu­

ments is the result of another message expression: old­

Values size. This is evaluated first as it is a unary 

expression, that is, a message with no arguments. 

(iv) sizeOfThing <- thing size 

In this case we instantiate sizeOfThing with the value 

of the message expression thing size. 

Smalltalk allows the user to delay a sequence of 

actions by use of a block. A block is treated as any 

other object, and is sent the message value to evaluate 

it. For example: 

(number\\ 2) = 0 
ifTrue: [parity<- OJ 
ifFalse: [parity<- l] 

In this example number is examined to decide if it is 
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odd or even. If it is even the block parity <-0 is 

evaluated, otherwise the block parity <-1 is evaluated. 

Any boolean object can have the message ifTrue:ifFalse: 

sent to it, and the receiver in this case is the (number 

II 2)=0 expression. Note that the block shares the con­

text (instance variables and arguments) of the expres­

sion in which it is evaluated. 

3.1.2 Instance Creation 

Instances of a class are created by sending the 

message new to the instance's class. 

aNewDictionaryinstance <- Dictionary new 

anMTArray <- Array new: 10 

aNewint <- 1 

Note the use of literals to create instances of a 

class. It can be viewed as shorthand for "send the new 

method to the class, initialise the instance to be the 

value as indicated by the literal". The type of the 

destination is not explicitly declared as it is deter­

mined by the right hand side of the expression when it 

is evaluated. 

Chapter 3 



Page 35 

3.1.3 Resource Sharing 

Smalltalk has a class hierarchy supporting single 

inheritance. Smalltalk added the concept of an Abstract 

Class which is used to describe a protocol used by simi­

lar sub classes, but you can not create an instance of 

an abstract class. The abstract class is used to combine 

the common properties of its subclasses. 

Smalltalk also has the concept of a Metaclass which 

is a class of classes. This is used to handle messages 

which are sent to a class, not an instance of that 

class. This is used when we want to send different ini­

tialisation messages to different classes. When we 

create a new instance of the Date class we might want 

the instance returned to represent today so we send the 

message today to the class Date; however if we want to 

created a new point we will want to give it its initial 

x and y values. The metaclass allows us to describe the 

messages applicable to a class in the same way the class 

describes the messages for an instance of that class. 

The hierarchy of instances has a one to one 

correspondence to the hierarchy of classes. This can 

cause some logical inconsistencies as the determination 

of a superclass is based on implementation 
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considerations. We discuss this problem more fully in 

Chapter 6. 

3.1.4 Stack 

In the interests of accuracy we present our 

Smalltalk stack in Little Smalltalk [Budd 87) which is 

in the public domain. We simulate the use of message 

categories used in Smalltalk-80 by indicating the 

categories in comments, which in Little Smalltalk are 

surrounded by double quotes. 
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Declare Stack Object tos theStack "This declares Stack as a 
subclass of Object, with 
the instance variables: 
tos and theStack" 

Class Stack "Signifies definition 
of methods for class 
stack" 

"Message Category: initialisation" 

I 
I 

new 
A self initialise "Send the initialise message to 

set up the instance variables" 

initialise 
tos <- 1. 
theStack <- #(nil,nil,nil,nil,nil, 

nil,nil,nil,nil,nil) 

"Message Category: queries" 
isMT 

A (tos = 1) 

"Message Category: Alteration" 
push: aThing 

"Returns true or false" 

theStack at: tos put: aThing. 
tos <- tos + 1 

I 
I 

"Message Category: Accessing" 
pop 

tos <- tos - 1. 
A theStack at: tos 

] 
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Declare AnnotatedStack Stack notes 

Class AnnotatedStack 

"Message Category: Initialisation" 
new 

A super new initialise 

initialise 
super initialise. 
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notes<- #(nil,nil,nil,nil,nil,nil,nil,nil,nil,nil) 
I 
I 

"Message Category: Alteration" 
attachNote: newNote 

notes at: tos - 1 put: newNote 

"Message Category: Accessing" 
getNote 

Anotes at: tos-1 

The following is done from the interpreter 

globalNames at: #aNewAnnotatedStack put: AnnotatedStack new 

aNewAnnotatedStack push: 10 

aNewAnnotatedStack attachNote: 'A note' 

A few things appear to need explanation. The first 

is the use of the cascaded message expression 'super new 

initialise' in the initialise method for the Annota­

tedStack. This is equivalent to : 

new 
I newOne I 
newOne <- super new. 
newOne initialise 
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The second is how a new instance is declared when 

running the interpreter. In Little Smalltalk you can 

compile class definitions to produce an image that is 

loaded by the interpreter. This is what the first half 

of our stack example is. When you are in the interpreter 

however, you have to create an instance by creating a 

new place in the globalNames dictionary, and assigning a 

new instance to that position. This is what the: 'glo­

balNames at: #aNewAnnotatedStack put: AnnotatedStack 

new' expression does. 

3.2 c++ 

C++ was designed by AT&T to update and replace C. 

It was designed to be upwards compatible with existing C 

code as AT&T did not want to support two languages. 

Another major design constraint on C++ was that it 

should have runtime execution speed similar to C's. 

Although C++ supports object-oriented programming, 

it does not force it and the extensions to Care such 

that the language would be worth using even if one was 

not using the object-oriented extensions. 
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In keeping within the design constraints, C++ is 

generally implemented as a preprocessor which produces C 

code which is then compiled by the local C compiler. 

There are a number of C++ compilers that skip the C code 

generation step and produce object code directly (G++ 

[GNU 88] and Zortech C++ are such examples). 

C++ keeps it execution speed acceptable by not 

using method invocation as in Smalltalk, but selecting 

the appropriate function by either: 

a) finding the function at compile time if it is 

not a virtual function. 

b) finding the function based on the type of the 

receiver at runtime by using a compiler com­

puted offset into a table of functions for 

that object. 

The difference between this approach and that of 

Smalltalk is that Smalltalk looks up the table of 

methods for that object, as it can not know the offset 

at compile time. For a more detailed discussion of this 

see [Stroustrup 87b]. 
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No automatic memory reclamation is provided and 

obsolete objects have to be explicitly destroyed. There 

is no concept of an 'environment' built-in to the 

language so considerable housekeeping is required if 

objects are required to persist beyond one program invo­

cation. The compiler has no memory of previous compila­

tions so shared information has to be handled by 

included text files. 

3.2.1 Message Passing 

Message passing in C++ is modeled by using struc­

ture field selection. That is, you can select a func­

tion as part of a structure to execute. This enables 

compile time checking, and speeds the process of message 

'switching' considerably, because the location of the 

method is determined at compile time (virtual functions 

are accessed through a runtime set pointer, but the 

overhead is minimal). Naturally this approach loses 

some flexibility but since C++ is not really intended as 

a prototyping language this is not significant. Consider 

the following example messages: 

(i) complexNmr.printOn(ouputStream) 

The receiver of the message is complexNmr, the selector 

is printOn, and the argument is outputStream. This 
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follows the normal C syntax for structure field access 

where complexNmr is the structure name and printOn is 

the field required. The syntax is extended to make the 

calling of a function from that structure more palatable 

(normally C requires the field to be a pointer to a 

function which requires a rather ugly statement to 

call). 

(ii) currentPC = virtMachine.getPC() 

In this case the message getPC requires no arguments and 

the receiver is virtMachine. The value returned will be 

the program counter of the virtMachine. 

Although the message passing looks like structure 

field selection it should be remembered that the field 

need not exist in the class of which instance is a 

member, but it may exist in one of its superclasses. 

3.2.2 Instance Creation 

Instances are created by the constructor of a class 

in C++. When an instance is no longer to be used the 

programmer explicitly requests for it to be destroyed 

using the destructor for that class (unless it was 

created on the stack, in which case it will be destroyed 

by the system automatically). C++ uses overloading to 
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provide similar functionality to Smalltalk's new mes­

sages. In C++ there is no explicit new message, instead 

the declaration of a variable for a new instance is used 

to call the constructor. Some examples follow: 

(i) vector newVector(l00); 

The class of newVector is vector. When this is executed 

the constructor for vector is called and passed the 

argument 100 (that is the vector is 100 elements long). 

(ii) point newPoint(2,4); 
point copyOfNewPoint = newPoint; 

In this ca.se newPo.int will be an instance of point with 

its x value set to 2 and its y value to 4. copyOf­

NewPoint will be a copy of newPoint. 

This scheme fits in well with the syntax of C but 

is perhaps a little obtuse if you are used to 

Smalltalk-like new messages. 

3.2.3 Resource Sharing 

C++ supports single inheritance by including the 

name of a superclass in the class definition. It does 

not support multiple inheritance (although some experi­

ments have been done on this [Stroustrup 87aJ). To 
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provide the functionality of Smalltalk's Abstract Class, 

C++ allows a class to be defined with virtual functions 

which are instantiated with the appropriate function 

when an instance of that class is created. 

3.2.4 Stack 

Here is our stack in C++. This was compiled with 

the GNU C++ compiler, known as G++. We place reserved 

words in bold to assist readability. 
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#include <std.h> 
#include <stdio.h> 
#include <stddef.h> 

// Stack object for C++ (Actually G++ - the GNU C++ Compiler) 
class Stack { 

int theStack[l0]; // Private information 

protected.: // Anything following here is accessible by classes 
// derived from this one 

int tos=0; 

public: // Anything following here is publically accessible 

int isMT() {return(tos==0);} 
void push(int item) {theStack[tos++] = item;} 
int pop() {return(theStack[--tos]);} 

} ; 

// Now we define the annotated stack which derives some of its 
// behaviour from Stack 
class AnnotatedStack: public Stack { 

char *notes[l0]; // Array of strings 
public: 

void attachNote(char *note) {notes[tos-1] = note; }; 
char *getNote() {return(notes[tos-1]); }; 

} ; 

// Create a stack and use it 
main(> 
{ 

} 

AnnotatedStack newStack; // Create a new instance of 
// Stack using the default 
// constructor. 

newStack.push(l0); // Pushes 10 onto the stack 
newStack.attachNote("was 10");// Attaches a note. 
newStack.push(20); // Pushes 10 onto the stack 
newStack.attachNote("A note");// Attaches a note. 
fprintf(stderr,"Top Note: %s,",newStack.getNote()); 
fprintf(stderr,"pop = %d\n",newStack.pop()); 
exit(0); 

As can be seen from the example C++ allows three 

levels of protection on the members of the class struc­

ture. The first part is the private part whose members 
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can only be accessed by friend functions defined within 

the structure. Then there are the protected members 

which can be accessed by any other class deriving some 

of its behaviour from the structure. Finally there are 

the public members that are accessible from everywhere. 

It should be noted that it is not possible to 

declare the stack as being able to contain any type of 

object in C++. Instead it must be built for a specific 

data type. 

3.3 Objective-C 

Objective-C [Cox 86] is another C hybrid. It sup­

ports runtime message switching so is a little slower 

than C++, but faster than Smalltalk would be on the same 

processor. It comes with a rich set of classes which C++ 

does not have. Its syntax is modelled after Smalltalk. 

As in C++ a precompiler produces C code to be compiled 

by the normal C compiler on the system. However it does 

require run time support to execute (which is linked 

with the object code produced). 
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Objective-C adds a type, id, to the C type system. 

A variable of this type is used to hold the identifica­

tion (actually the address) of an object. In comparison, 

C++ defines the type of each instance to be the 

instance's class. This difference is necessary as 

Objective-C performs its type checking at runtime, 

whereas C++ does it at compile time. 

3.3.1 Message Passing 

Objective-C's message passing syntax is modelled on 

the Smalltalk language, whilst allowing the compiler to 

compile existing C programs correctly. Message expres­

sions are surrounded by square brackets. Consider the 

following examples: 

(i) sizeOfaSet = [aSet size]; 

The receiver is aSet and the selector is size. The 

result of the expression is used to set the value of 

sizeOfaSet. 

(ii) if ([virtMachine getWordAt: address] -- 0) 
printf("The address is zero0); 

In this case the receiver is virtMachine and the selec­

tor is getWordAt:. The argument is address. The result 

of the expression is used in the standard C expression 
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and tested against 0. 

As can be seen the syntactic 'sugar' is sweeter 

than C++, especially if you are used to Smalltalk type 

languages. 

3.3.2 Instance Creation 

All objects are of type id, which is a pointer to 

the structure representing the object. The message new 

is sent to the Factory object (which corresponds to 

Smalltalk's Class) which returns a new instance of the 

object. By convention in Objective-C, factory objects 

begin with a capital letter, while instances begin with 

small letters. For example: 

id aNewSet = [Set new]; I* Set is the factory object*/ 

id anArray = [IdArray new:100); 
I* Create an instance of idArray 100 long*/ 

These examples show how we use id as the type name of 

all objects in the system, regardless of what class they 

belong to. 
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3.3.3 Resource Sharing 

Objective-C supports single inheritance in a manner 

similar to Smalltalk, but has neither metaclasses nor 

abstract classes. However Objective-C does have what it 

calls factory methods which are basically equivalent to 

Smalltalk's Class methods. Class variables can be simu­

lated in Objective-C by using normal C global variables. 

3.3.4 Stack 

/* Stack object for objective-c *I 

/* We can create stack of objects here, unlike in C++ *I 
=Stack: Object { int tos=0; int theStack[l0J; } 
- (int)isMT { 

return (tos == 0); 
} 

- (void)push: (int)newint { 
theStack[tos++J = newint; 

} 

- (int)pop { 
return(theStack[--tos]); 

} 

I* Now we define the annotated class*/ 
= AnnotatedStack: Stack { char *notes[l0J; } 
- (void)attachNote: (char *)note { 

notes[tos-1] = note; 
} 

- (char *)getNote { 
return(notes[tos-1]); 

} 

I* Now we create an instance of the stack and use it*/ 
id newStack = [AnnotatedStack new]; 
[newStack push: 10 J; 
[newStack attachNote: "A Note"]; 
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Objective-C denotes the beginning of a class defin­

ition by the equals sign and the definition of each 

instance method by the minus sign. It also allows the 

definition of factory methods by the plus sign but this 

is not shown here. 

It would have been possible to declare the stack as 

being able to contain any type of object by merely mak­

ing the array type id which is a pointer to any type of 

object. 

3.4 Self 

Self [Ungar & Smith 87) is a recent object-oriented 

language that is based on three simple ideas: proto­

types, slots, and behaviour. Unlike Smalltalk there is 

no concept of a class, or instance variables. In Self 

everything is an object but instead of having a class 

pointer as in Smalltalk a Self object has a pointer to 

its parent object. 

There is no direct way to access a state variable 

in Self. It is best to explain this with an example. If 

we have a point object with an x and y part we would 

create a self object with a slot with the name of x and 
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a slot with the name y. When the message xis sent to 

this point object the object contained in the x slot is 

evaluated, returning the current value of x. If we want 

to change the value of x and y we also create slots with 

the names x: and y: which are methods used to change the 

variable. This technique allows an ancestor object to 

replace the state accessing methods of its parent with 

other methods. One use could be to replace the x message 

with a random x generator. 

3.4.1 Message Passing 

The syntax of Smalltalk has been retained in Self 

where possible, and extended to allow for creating slot 

lists. The other difference is that what would be 

instance variable accesses in Smalltalk are messages 

sent to self. This is illustrated in the stack imple­

mentation below. 

3.4.2 Instance Creation 

To create a new instance in Self we merely copy a 

previously existing object. This is know as cloning. 

The idea of cloning existing objects from the prototype 

has the advantage that if we want to create a one-of-a­

kind object we do not have to create a class just to 

support that object. An example follows: 
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aNewDictionary: Dictionary clone. 

In this case the slot aNewDictionary will contain a 

clone of the Dictionary object. Note the use of the 

colon to assign the value to the slot. Actually we are 

sending a message with the selector aNewDictionary: to 

self. 

3.4.3 Resource Sharing 

Self only allows a single parent so it only imple­

ments single 'inheritance'. Self differs from the other 

languages considered in that it is possible to have 

objects dependent on any other object, replacing what 

would be instance variables at will. For instance it is 

possible to create a point object constrained by the x 

value of its parent point by overriding its parent's y 

and y: messages and leaving the x messages alone. This 

means that the parent could be moved in the x direction, 

taking its ancestor along with it. 

3.4.4 Stack 

Before we look at the example we need to explain 

the way Self denotes inheritance and slots. In Self, 

passive objects and blocks are enclosed in square brack­

ets, and methods are enclosed in braces. The slot list 
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is enclosed in vertical bars and each item in the list 

must be separated from the next by a period. In Self the 

word self can be left out so that saying: 

theArray: theArray clone 

is equivalent to 

self theArray: self theArray clone 

presuming that theArray is a slot accessible from the 

current object. 

There are several forms for slots which we only 

briefly detail here. For more information see [Ungar & 

Smith 87]: 

• A selector by itself denotes two slots: One ini­

tialised to nil and one named with a trailing colon 

initialised to the assignment primitive(<-). In 

our example the aNewAnnotatedStack slot in the doS­

tackTest method is like this. 

• A selector followed by an equals sign and an 

expression denotes one slot, initialised to the 

expression. No assignment slot is created, so the 

slot is read-only. This is generally used for 
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method definitions but is also useful for the pro­

totypes. 

• An identifier with a trailing colon followed by a 

left arrow(<-) defines an assignment slot that can 

be use to change the value of a read-only slot with 

the same name elsewhere. An example of this can be 

found after the definition of the emptyStack. 

Inheritance in Self is denoted by lexical scope. So 

in the example emptyStack's parent is Stack, and 

AnnotatedStack's parent is also Stack. Stack's parent is 

the root object of the system. We find this notation a 

little unclear but it does simplify the syntax of the 

language. 

As in our Smalltalk example we indicate comments by 

preceding them with an exclamation mark. 
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clone= {<primitive>}. 

nil= [J. 

This is the root object. 
Initialises a slot containing the 
clone primitive. 
Most basic object with no slots. 

! Now we begin the definition of our stack object 
Stack = [ I 

! Here is the prototypical stack which is assigned to the 
! emptyStack slot. 
emptyStack = [ I 

tos = 1. 
theArray = #(nil,nil,nil,nil,nil, 

nil,nil,nil,nil,nil> IJ. 

!Define some slots so that they can be assigned to 

tos:<-. 
theArray:<-. 

We clone by cloning our parent object, then each of the 
elements of the prototype stack is cloned and placed in 
the appropriate slots of the new object. 

clone= { 
super clone tos: tos clone theArray: theArray clone 

! Now define the methods 
push: obj= { theArray at: tos put: obj. 

tos: tos + 1. } 
pop= { I valueWas. 

tos : tos - 1. 

} 

valueWas: theArray at: tos. 
"valueWas 

isMT = { "tos = 1} 
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Here is the child which will be inheriting the 
properties of stack, as it is in the same scope. 

AnnotatedStack = [ i 

! Our prototypical stack, note that we only define 
! what is different 
emptyAnnotatedStack = [i 

notes = # < ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' ) 
: ] . 
! Make notes changeable. 
notes:<-. 

We clone our super which is now a Stack and then 
place a copy of notes from the prototype object 
into our notes 

clone= { 
super clone notes: notes clone 

} . 

! Here are the methods 
attachNote: newNote = { notes at: tos-1 

put: newNote. }. 
getNote = { Anotes at: tos=l. } 

iJ. ! End of the AnnotatedStack slot list 

:J. End of the Stack slot list 

! Now we create a slot which will perform some stack 
! operations when evaluated 
doStackTest = { 

} 

i ] • 

aNewAnnotatedStack. 

First we create a new stack, note that we have to 
get the AnnotatedStack from the Stack object by 
sending it the AnnotatedStack message as it is not 
visible in this scope. Then we get the prototype from 
the AnnotatedStack slot and clone it. 
This value is shoved into the aNewAnnotatedStack. 

aNewAnnotatedStack: 
Stack AnnotatedStack emptyAnnotatedStack clone. 

! Now shove a value on it, and then attach a note. 
aNewAnnotatedStack push: 10. 
aNewAnnotatedStack attachNote: 'A note' 
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3.5 OOPS-Algol 

We finish off this chapter with a very brief 

description of the ideas that OOPS-Algol has borrowed 

from these languages. 

OOPS-Algol includes the same message expression 

syntax as Smalltalk. We use message categories to group 

our messages as in Smalltalk. OOPS-Algol does not con­

tain the one-to-one instance/class relationship used by 

Smalltalk but uses an approach similar to that described 

in [LaLonde, Thomas et al 86]. 

OOPS-Algol uses structures to hold instance vari­

ables as in C++. C++ uses a preprocessor (in some 

implementations) to extend C, and we do the same with 

OOPS-Algol. The type of variables is declared in OOPS­

Algol, as in C++, but we use subtyping to provide the 

versatility lacking in C++. 

We have used Objective-C's technique of surrounding 

message expressions with brackets to simplify the pars­

ing of message expressions. We do not use the generic 

type, id, used in Objective-C to specify an object type 

but use the name of the class of which the object is a 
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member. This is to add type security. 

We had originally considered using messages to 

access instance variables in OOPS-Algol as in Self but 

this would have compromised our use of subtyping, as the 

messages for accessing these variables would have been 

included in the class definitions. We consider instance 

variables for a class to be private to all but those 

classes inheriting from that class, so this was not 

desirable. 

We do have the idea of a prototypical object, as in 

Self, which is cloned to make new instances of a class. 

OOPS-Algol calls this prototypical object the exemplar 

for a class. 
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4. Subtyping in Class Based Systems. 

In order to provide some perspective on the separa­

tion of conceptual and implementation hierarchies in 

OOPS-Algol we will review the ways subtype hierarchies 

are used in other common object-oriented systems. It 

should be noted that we are considering systems like 

Smalltalk, Objective-C and C++ where the implementation 

and conceptual hierarchies are not separated. In these 

languages the two hierarchies have a one-to-one 

correspondence with the hierarchies being defined by the 

subclass/superclass relationships. In this context sub­

class and subtype are synonymous, as are superclass and 

supertype. 

This chapter is based in part on [Halbert & O'Brien 

87] which provides a good description of the use of sub­

types in class based object-oriented languages. 
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4.1 What is subtyping 

We use a simple definition of a subtype: 

If Bis a subtype of A, B can be used where 

ever A can be used. 
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Also, in the systems we are considering here, a 

subtype may share or inherit characteristics of its 

supertype. The characteristics that are usually shared 

include the storage representation of the supertype and 

the operations provided by the supertype. 

The inherited characteristics can be overridden by 

a subtype. A subtype may reimplement the code to exe­

cute upon receipt of a message, or may augment its 

storage representation with additional information. 

4.2 The uses of subtyping 

There are two major categories of usage of subtyp­

ing in object-oriented languages. The first category, 

which we call standard usage, captures the conceptual 

relationships between components of a system. The other 

category, nonstandard, uses the type hierarchy to 
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increase the amount of code sharing. 

The standard uses of subtyping are specialisation; 

interface specification; and combination. The nonstan­

dard uses are generalisation and variance. We consider 

the uses in that order. 

4.2.1 Specialisation 

In this case the type hierarchy is used to model a 

conceptual hierarchy, with the most general type on top, 

and more specialised types below. This hierarchy can be 

used to represent a model of the real world as in: 

Vehicle 
I\ 

I \ 
+--------+ 

MotorPowered 

+---------------+ 

People Powered 
I \ I \ 

I \ I \ 
DieselCar Petrol Car MountainBike RoadBike 

Specialisation can be used to capture common 

behaviour of objects in the system. For example, the 

supertype Process may be used to capture behaviour com­

mon to RealtimeProcess and BatchProcess, which are 
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specialised versions of Process. 

Another use for specialisation is to model intangi­

ble concepts that are external to the program. For 

instance, a hierarchy might model the relationship 

between fiction and non-fiction books. 

In all of these cases the subtype specialises the 

behaviour of the supertype. If we treat types as sets of 

values the subtype restricts the definition of the 

supertype in order to create a subset of that set. 

4.2.2 Interface Specification 

Subtyping can be used to guarantee that instances 

will present a certain interface to other objects. Here 

the supertype is an abstract type which is used to 

define a common interface among its subtypes. We can 

not actually have an instance of this abstract type. 

The subtypes thus provide various implementations of 

their supertype. 

An example from Smalltalk demonstrates this usage: 
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PositionableStream 
I \ 

I \ 
ReadStream WriteStream ReadWriteStream 

This describes an abstract class, PositionableStream, 

which defines the interface to various types of streams: 

ReadStream, WriteStream, and ReadWriteStream. 

4.2.3 Combination 

Given the use of multiple inheritance, that is, a 

type system when a subtype can have more than one super~ 

type, we can use subtyping to combine the properties of 

types. For example: 

Particle 
\ 

\ 
\ I 
Light 

Wave 
I 

I 

In this way we can treat Light as a wave, or as parti­

cles. 

It is tempting to use multiple supertypes to model 

the components of an object. Consider this example: 
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Wheels 
\ 

\ 
\ 

\ 
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Frame Engine 
I 

I 
I 

I 
\ I 
Motor Bike 

This is incorrect as a MotorBike is composed of the 

supertypes in the diagram. The error becomes obvious 

when you consider the fact that modern motor bikes can 

have two different sized wheels. That would require 

changing the type hierarchy so that there were two 

wheels as supertypes of Motorbike which is clearly wrong 

as both wheels have the same type. They are in fact dif­

ferent instances. [Blake & Cook 87] describe an exten­

sion to Smalltalk to support part hierarchies that does 

not resort to this use of subtyping. 

4.2.4 Generalisation 

Subtyping for generalisation is used to create a 

more general type of object than its supertype. This 

usage is based purely on implementation issues as we 

normally want to generalise an existing type so that we 

can share some of the implementation of the supertype. 
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A demonstration of this is our coloured font exam­

ple presented in Chapter 2. We began with a one colour 

font and extended it to handle different colours by 

adding a colour attribute and some messages to change 

the colour. The hierarchy looked like this: 

UncolouredFont 

ColouredFont 

However, we could actually consider the one colour font 

to be a special case of the coloured fonts, and as such 

it would be preferable to have the one colour font as a 

subtype of coloured fonts: 

ColouredFont 

UncolouredFont 

The problem with this solution is that we are allowed to 

send colour specification messages to a member of 

UncolouredFont because it is a subtype of ColouredFont. 

Sending a colour message to UncolouredFont is really an 

error, and should, if possible, be detected at compile 

time. In order to detect such an error using the simple 

hierarchies presented above, UncolouredFont must be the 

supertype of ColouredFont. 
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The way around this problem is to create an 

abstract type that captures the functionality of both. 

We then create two subtypes, one for each type of font: 

Font 
I \ 

I \ 
ColouredFont ColourlessFont 

Now protection against inappropriate messages is possi­

ble, and the hierarchy follows a more reasonable model. 

4.2.5 Variance 

The final use of subtyping is for variance. Here we 

make one type a subtype of another solely because the 

supertype has common code we would like to reuse. Con­

ceptually the two types should be siblings but implemen­

tation issues dominate our organisation. 

As an example of this usage we may have an input 

device that can be either a mouse or a trakball (which 

is basically an upside down mouse). The implementations 

would be almost exactly the same, as both devices have a 

ball that rotates in two dimensions. We could decide to 

make one of the types a supertype of the other so that 

we can share the common code. 
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4.3 Subtyping in OOPS-Algol 

The various uses of the subtyping mechanism we have 

described demonstrate that we have to weigh implementa­

tion issues against conceptual design issues when defin­

ing a type hierarchy. We are forced to shape the type 

hierarchy either to give us maximum inheritance, or to 

provide the best logical model of a system. 

OOPS-Algol has separated the inheritance hierarchy 

(which we call the exemplar hierarchy) from the type 

hierarchy (called the class hierarchy) in an attempt to 

alleviate the problem caused by such tight coupling. Its 

type hierarchy specifies the interface to instances of 

that type, and the implementation hierarchy defines 

various implementations which inherit from each other. 

This changes the uses of subtyping discussed above as 

follows: 

1. We do not need to use subtyping for interface 

specification as that is the function of type 

hierarchy. 
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2. We do not allow multiple inheritance yet so we can 

not use subtyping for combination. 

3. An implementation of a type can inherit from any 

other implementation, so we do not need to use the 

type hierarchy for variance because an exemplar 

can inherit from a sibling in the type hierarchy. 

This only leaves two uses of subtyping - speciali­

sation and generalisation. We have seen that we can 

design around the use of subtyping for generalisation, 

and specialisation is what we want to use the subtype 

mechanism for anyway. 
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5. The OOPS-Algol Language. 

In this chapter we illustrate our message expres­

sion syntax and provide a brief introduction to defining 

classes and exemplars in OOPS-Algol. We round the 

chapter off with the OOPS-Algol implementation of the 

stack used in Chapter 3. 

5.1 Message Expressions 

OOPS-Algol's message expressions follow those of 

Objective-C. We surround a message expression with 

square brackets and use the message syntax of Smalltalk. 

We will illustrate this with examples which will also 

demonstrate important features of PS-Algol. A full 

definition of PS-ALgol is provided by [PS-Algol 84]. 

We support two types of message expressions in 

OOPS-Algol. These are unary and keyword message expres­

sions which we consider separately. 
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5.1.1 Unary Message Expressions. 

A unary message expression is the simplest kind of 

message expression. It has a receiver and a selector. 

No arguments are passed. Consider the following exam­

ples: 

(i) let aStack = [stackExemplar clone] 

This example defines a new variable called aStack, ini­

tialising the value of aStack with the result of the 

unary message expression stackExemplar clone. The 

expression sends the clone message to stackExemplar 

which is our prototypical stack. As in Self we have a 

prototypical object (called the exemplar) which we clone 

to make new instances. The message will return a new 

object with all of the attributes of stackExemplar. 

In PS-Algol a variable declaration is preceded by 

let. An equals sign(=) following the variable name 

indicates that the name is a constant and a semi-colon 

equals (:=) indicates that it is a variable. Thus 

aStack is a constant and can only refer to the object 

created. It is possible to change the state of the 

object that is referred to by aStack however. 
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PS-Algol determines the type of a variable by the 

type of the expression on the right hand side of the 

declaration. We have implemented OOPS-Algol to support 

this and in this case it will mark aStack as type Stack 

which is the class of stackExemplar. This enables us to 

type check our OOPS-Algol programs in a strict manner, 

unlike Smalltalk or Objective-C. We discuss this more 

fully in Chapter 6. 

We can use a message expression wherever we can use 

an ordinary expression in PS-Algol. We can also use a 

function returning an object as the receiver in a mes­

sage expression: 

(ii) let wasitEmpty := [functionReturningStack() isMTJ 

This example defines wasitEmpty to be a boolean variable 

containing the result of sending the message isMT to the 

object returned by the function. We know that the vari­

able will be boolean because the isMT message is defined 

as returning a boolean value in the class definition of 

Stack. When OOPS-Algol compiles the message expression 

it will make sure that functionReturningStack will 

return a Stack or a subtype of Stack so that the isMT 

message will not fail. 
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5.1.2 Keyword message Expressions. 

Message expressions that take arguments are known 

as keyword expressions in Smalltalk. OOPS-Algol retains 

the same terminology. We present here an example with 

keyword expressions that illustrates other features of 

PS-Algol. 

Consider a code fragment that prints all of the 

elements of aList onto the file called aFile, or until 

100 elements have been printed: 

let outFile := create("aFile'',493) ! Open the file for writing 

let executeMe = proc(Object objectToWorkOn) 
{ 

[objectToWorkOn printOn: outFile] 
} 

let count:= 0 

let checkForEnd = proc(->bool) 
{ 

} 

count:= count+ 1 
(count> 100) 

[aList forEach: executeMe until: checkForEnd] 

The fragment begins by opening a file for output by 

calling create which is a predefined PS-Algol procedure 

that returns a file opened for writing. Assigning the 

file returned by this to outFile defines its type to be 
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file. PS-Algol treats all of its data types as first 

class, so we define a procedure by declaring a variable 

or constant that refers to the closure of the procedure 

necessary to execute the procedure correctly. The clo­

sure contains two parts: the code to execute the pro­

cedure; and the procedure's environment, which contains 

the local and free variables of the procedure. In execu­

teMe the global variable outFile is accessed so this is 

included in the closure along with objectToWorkOn. exe­

cuteMe contains one keyword message expression. It sends 

a message with the selector printOn: to the object 

passed to executeMe as an argument. The message requires 

one argument, the file to print on. For a more detailed 

discussion of procedures as first class data see [Atkin­

son & Morrison 84]. 

The next procedure defined, checkForEnd, returns a 

boolean value which is the result of evaluating count> 

100. To return a value from a PS-Algol procedure we 

place an expression of the appropriate type at the end 

of the procedure. 

The example finishes with a message which uses both 

of these procedures. The final message expression sends 

a message with the selector forEach:until: to aList. 

Chapter 5 



Page 74 

Using OOPS-Algol this message is defined as: 

forEach: procedureToExecute until: endTestProcedure 
typeis proc(proc(Object),proc(->bool)) 

which shows the message selector, together with dummy 

names to indicate the purpose of each argument. This is 

followed by the PS-Algol style type definition of the 

message. This is considered in more detail later. 

It is worth noting that when we pass the procedures 

executeMe and checkForEnd as arguments to the message 

they are not evaluated. PS-Algol denotes evaluation of a 

procedure by following the name with parentheses (which 

may contain arguments). In this case we are merely pass­

ing the closure of the procedure to the method. 

5.2 Creating a Class 

Now we have examined message expressions we will 

introduce our method of defining a class. In OOPS-Algol 

we have a class definition which defines the type of a 

member of that class. This type specification is based 

solely on the interface to an instance. It contains no 

information about the implementation of that instance. 

We define the implementation of a member of a class in 
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the exemplar for that class (discussed in the following 

section). 

In OOPS-Algol our Stack class definition would look 

like this: 

Class Stack superClassis Object 
{ 

"Implements a simple stack containing any object" 

messagesFor "queries" 

isMT typeis proc(->bool) "True if MT" 

messagesFor "alteration" 

push: newObject typeis proc(Object) 
"Pushes an Object" 

pop typeis proc(->Object) 
"Pops and returns the top object" 

} end of Class Stack definition 

A class definition begins by specifying the name of the 

class and its superclass. The class description is sur­

rounded by braces (or begin end pairs). The first string 

is the description of the class which is accessible by 

oopsdump (and any future browser). We group the message 

definitions by category as in Smalltalk but use mes­

sagesFor to mark the category name. In the class above, 

isMT is in the queries category and pop is in the 

alteration category. We decided to make the category 
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name a user defined string for added versatility. 

In defining the messages for a class we wanted to 

denote the message selector; the arguments to the mes­

sage; the type of the arguments; and the type of the 

value returned by the message (if any). We decided on a 

combination of the Smalltalk approach (for readability) 

and the type specifications of PS-Algol (to save learn­

ing a new way to specify the types). The two parts are 

separated by the typeis reserved word. We come back to 

the type specification in Chapter 6. 

5.3 Creating an Exemplar for a Class 

After having defined the class we need to specify 

how an instance of that class is to be implemented. We 

do this in OOPS-Algol by associating one or more exem­

plars with a class. Here is the appropriate exemplar for 

the Stack class defined above: 
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Exemplar aStack forClass Stack superExemplaris anObject 
{ 

stateis { 

} 

let stackis := vector 1 :: 10 of anObject 
let tos := 1 

method isMT typeis proc(->bool); (tos = 1) 

method push: newObject typeis proc(Object) 
{ 

} 

stackis(tos) := newObject 
tos := tos + 1 

method pop typeis proc(->Object) 
{ 

} 

tos := tos - 1 
stackis(tos) 

} !aStack 

Returns the top object. 

The exemplar definition begins with the name of the 

exemplar, in this case aStack. We then specify the class 

to which this exemplar belongs and the exemplar from 

which it is to inherit methods and instance variables. 

OOPS-Algol checks the exemplar methods to ensure that 

all definitions match those of the class, and that there 

is a method defined for every message that is specified 

for an instance of that class. 

The body of the definition begins with the declara­

tion of the instance variables which we call the state. 

We follow PS-Algol syntax for the variable declarations 
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to avoid confusion. Then the method for each message is 

declared. To increase the readability of the exemplar we 

decided to duplicate the method definition as used in 

the class definition in the exemplar body. We consider 

the redundancy presented not to be a problem because if 

the message definition changes (the type of an argument 

for instance) the method would almost certainly have to 

be changed. The body of the method follows all normal 

PS-Algol rules for a procedure, enhanced by the OOPS­

Algol additions. 

It is not possible to define a variable local to 

the exemplar body without including it in the stateis 

part of the definition. If this was allowed unwanted 

interaction between clones of an exemplar would occur as 

we only keep one copy of the closure for each exemplar. 

5.4 Creating an Instance of a Class 

Having defined the class and the exemplar of the 

stack we can now use it. We create the instance of a 

class by cloning one of the exemplars for that class. 

For example: 
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let aNewStack := [aStack clone] 

It is worth mentioning that the above code fragment 

can be used in any OOPS-Algol program compiled after the 

class and exemplars have been defined. This is because 

the OOPS-Algol system stores all of the classes that 

have been defined, and all exemplars defined for each 

class in the persistent store. This is not possible in 

C++ or Objective-C without including numerous header 

files. OOPS-Algol ensures that names are kept unique to 

prevent confusion and can tell from the aStack clone 

expression that the type of aNewStack will be Stack. 

5.5 The Stack Revisited 

We now finish off our stack by extending it to 

include the AnnotatedStack used in Chapter 3. 

Chapter 5 



Class AnnotatedStack superClassis Stack 
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"Implements a Stack that allows notes to be attached to 
its elements" 

messagesFor "alteration" 

attachNote: newNote typeis proc(string) 
"Attachs the string newNote to the top item of 
the stack" 

messagesFor "accessing" 
getNote typeis proc(->string) 

"Gets the note (if any) for the top item of the 
stack" 

} !AnnotatedStack 

As with the other programming languages we only define 

the new messages, together with the class's superclass. 

Here is the exemplar: 
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Exemplar anAnnotatedStack forClass AnnotatedStack 
superExemplaris aStack 

{ 

} 

stateis { 
let notes := vector 1 :: 10 of 1111 

} 

method attachNote: newNote typeis proc(string) 
{ 

notes(tos-1) := newNote Note that we use aStack's 
! state variable tos 

} 

method getNote typeis proc(->string) 
{ 

notes(tos-1) 
} 

As can be seen this is very similar to all of the 

other languages we have examined. The difference is that 

we have separated the class definition from the imple­

mentation explicitly. 
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6. OOPS-Algol's Type System. 

It is useful to present our view of the purpose of 

a type so that the motivations for the decisions we made 

concerning OOPS-Algol's type system become clear. A type 

can be viewed as serving two purposes: 

1. Defining valid forms of interaction with an 

instance of a type. 

2. Protecting the underlying representation of an 

instance of a type. 

A class in OOPS-Algol defines the valid forms of 

interaction with an instance by defining the messages 

that can be sent to that instance. In OOPS-Algol a 

class contains no information about how an instance 

should be implemented. As OOPS-Algol's class definition 

meets the purposes we identified above, we can treat an 

object's class as its type. We use the terms type and 

class interchangeably. 

Our definition of subtyping in OOPS-Algol is the 

simple one presented in Chapter 4: Class B can be a sub­

type of class A if class B can be used in place of class 
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A. To put this in another way, class B should be able 

to respond to all of the messages to which class A can 

respond. 

6.1 Limitations On Subtyping in OOPS-Algol 

We have the following limitations on subtyping in 

OOPS-Algol: 

1. No automatic subtype determination. 

2. Subtypes are restricted to objects. 

3. Message selectors must have uniquely determinable 

types 

4. Subclasses can not exclude message definitions. 

We will examine these separately in the following 

sections. 
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6.1.1 Subtype Determination 

[Cardelli 84) describes a type system where the 

subtype relationships can be determined without the pro­

grammer explicitly declaring the supertype of a new 

type. The semantics he describes determine type 

equivalence by using the names and types of fields in a 

record. If a type B has at least the field names of 

another type A, and the types of the fields match (or 

are subtypes of the field types in type A) then type B 

can be considered a subtype of A. This can be easily 

translated into object-oriented programming terms by 

equating the fields in a record with message selectors, 

and the types of the fields with the types of the mes­

sage selectors. 

OOPS-Algol forces the programmer to name the super­

class of a new class for the following reasons. 

(i) Naming the superclass in the subclass is a useful 

form of documentation. It allows the compiler to mark 

the new subclass as being dependent on the superclass, 

thus allowing the user to be warned if a change to a 

superclass will invalidate that superclass's subtypes. 

(ii) Explicit superclass naming helps other programmers 
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to understand the system. 

(iii) Implicit subtyping can cause a class to be errone­

ously regarded as a subclass of another. We present an 

example to demonstrate this. 

Suppose we have a system where we define a class, 

Runner, which responds to messages to set a runner's 

name, age, and speed. We could also have a class Vehicle 

which also has a name, age, and speed. With the seman­

tics presented in [Cardelli 84] these two conceptually 

different entities are treated as being equivalent 

because they respond to the same messages. Given this 

we could define a new class, Car, which adds information 

about its engine. The car would now be a valid Runner 

because it responds to all of the messages of a Runner, 

with additional messages to handle engine information. 

As with all such examples this is perhaps a little 

contrived, but it is not difficult to imagine a big sys­

tem where this could become a real problem. This is the 

main reason why we force explicit superclass naming. 
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6.1.2 Subtype Restrictions 

Subtyping does not work for the standard PS-Algol 

types (int, real et cetera). It only operates on 

objects. This is because we are not redefining PS-Algol, 

we are adding to it. If we wanted a full subtyping sys­

tem we would have to design a new language, which is 

beyond the scope of the research leading to this thesis. 

An advantage of a hybrid language is that we can 

escape to the underlying language, allowing us to per­

form time critical operations efficiently. By using an 

already existing language to build upon we do not force 

people to learn YAPL (Yet Another Programming Language), 

they merely need to build on their already existing 

knowledge of PS-Algol. We do however lose such useful 

features as making Integer a subtype of Real. 

6.1.3 Message Selector Types 

As PS-Algol determines the type of a variable by 

looking at the right hand side of the initialising 

expression, we have to be able to determine an 

expression's type at compile time. It is sometimes 

impossible to determine the class of an object at com­

pile time so we have to be able to determine the return 

type of a message expression from the selector alone. 
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This forces the following restrictions on the type 

of a selector: 

1. Where a PS-Algol primitive type is used it must 

match exactly with all other definitions for the 

message selector being defined. 

2. Where an OOPS-Algol Class is being used, the mes­

sage selector must follow these rules: 

1. The class of each argument must be the same 

class, or a superclass of, the superclass's 

corresponding argument for the same selec­

tor. 

2. The class of the return value must be the 

same, or a subclass of, the superclass's 

message's return value. 

Two points need further explanation here. 

1. The OOPS-Algol system remembers details about 

every class that has been defined since the system 

was first used. This means that the compiler has 

information about every possible message selector, 
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and the types required for a message using that 

selector. When we say 'with all other definitions 

for the message selector' we mean all selectors 

that have ever been defined, not just the selec­

tors that are superclasses of the new class. 

2. The class of the subclass's message arguments are 

not allowed to be a subclass of the superclass's 

arguments. These rules also apply to procedure 

arguments of messages with respect to arguments 

and return values. This is so that the following 

situation can not occur: 

Class Number superClassis Object 
{ 

"Number Class" 
messagesFor "adding" 

add: addend typeis proc(Number->Number) "Adds things" 
} 

Class Integer superClassis Number 
{ 

"Integer Class" 
messagesFor "adding" 

add: addend typeis proc(Integer->Integer)"Adds things too 
} 

Class Real superClassis Number 
{ 

... defined as above except for reals 
} 
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The definition for Integer is invalid because the 

Number class specifies that a Number should be able 

respond to the message add: with a Number as an argu­

ment. This means that we should be able to send an 

instance of Integer an add: message with a Real argument 

because a Real is a Number. This is not possible as we 

have defined the type of the argument for add: in the 

Integer class as being an Integer (or a subclass 

thereof). As Real is not a subclass of Integer, sending 

this message will fail. 

We could eliminate this problem in many cases if we 

had included the idea of a coercer function to convert 

between types as in [Bruce & Wegner 86]. This changes 

the meaning of subtypes so that instead of saying 'can 

be used instead of', we say 'can be coerced into the 

appropriate type'. This is much more powerful than our 

simple technique but would require a correspondingly 

more complex, and slower, system. We decided this was 

not justified because the main use of this capability is 

for number representation. PS-Algol already has effi­

cient methods for handling numbers so this capability is 

not necessary to make OOPS-Algol useful. 
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To attempt to clarify some of these rules we will 

present a few arbitrary examples to show how the subtyp­

ing works. We will skip some syntactic details required 

by OOPS-Algol for brevity. 

Class One superClassis Object 
{ 

sell: anotherOne typeis proc(One->One) 
} 

Class Two superClassis One 
{ 

sell: anotherOne typeis proc(One->Two) 
} 

The above example is valid because Two's sell: message 

takes the same argument as One's, and returns a subtype 

of One. Lets add another class: 

Class Three superClassis Two 
{ 

sell: yetAnotherOne typeis proc(One->One) 
} 

This is not valid because the return value will be a One 

which is not a subclass of Two. Note that the place 

holder for the argument, in this case yetAnotherOne, 

does not have to be the same as the superclass's place 

holder. 

Now we will look at some examples that have pro­

cedure arguments. 
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{ 
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sel: aProc typeis proc(proc(One->Object)) 
} 

This definition means that aProc is a procedure which 

takes an object of type One and returns an Object. Note 

that the message has no return value. Now we define a 

subclass of this: 

Class TwoP superClassis Object 
{ 

sel: anintProc typeis proc(int->int) 
} 

This is invalid because even though TwoP is a subclass 

of Object, not OneP, the message selector is the same, 

so we have to follow the rules we outlined above. They 

are violated because the anintProc uses PS-Algol base 

types, and they do not match the types defined for aProc 

in the definition for OneP. It would be valid if we did 

this: 

Class TwoP superClassis Object 
{ 

sel: aProc typeis proc(proc(Object->TwoP)) 
} 

This is valid because Object is a supertype of One as 

defined in OneP's message, and TwoP is a subtype of 

Object defined in OneP's message. 
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6.1.4 Message Definitions 

It is not possible for a subclass to undefine mes­

sages valid for its superclass, so we have eliminated 

the problem of a subclass being unable to respond to a 

message defined for its superclass. 

6.2 An Example Class Hierarchy 

We will present an example to illustrate the above 

ideas. The classes we will use will provide a small 

subset of the Smalltalk's Collection subclasses. We will 

be presenting only a few of the methods that are pro­

vided in Smalltalk for clarity reasons. 
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Class Collection superClassis Object 
{ 

} 

"Common methods for all collections" 

messagesFor "adding" 

add: newObject typeis proc(Object) 
"Add newObject to the collection" 

messagesFor "removing" 

remove: oldObject ifAbsent: exceptionProc 
typeis proc(Object,proc()) 

"Remove oldObject from the collection, if 
it does not exist run exceptionProc" 

messagesFor "testing" 

includes: anObject typeis proc(Object->bool) 
"Return true if anObject exists in the 
collection" 

isEmpty typeis proc(->bool) 
"Return true if the collection is empty" 

occurrencesOf: anObject typeis proc(Object->int) 
"Return the number of occurrences of 
anObject in the collection" 

Class Bag superClassis Collection 
{ 

} 

"This is a collection class that allows duplicate 
occurrences" 

messagesFor "adding" 
add: newObject withOccurences: nmr 

typeis proc(Object,int) 
"Add nmr newObjects to this collection" 
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{ 
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"This is a collection that does not allow duplicates" 
} 

The above example shows how we define a class, in this 

case Collection, to contain the most general operations 

for its subclasses. Notice that when we define the type 

of an object that can be added into a collection we give 

it the most general type, Object. This means that we can 

have any mixture of object types in a collection as 

every class is a subclass of Object. However, as previ­

ously mentioned, we can not add a PS-Algol base type to 

a collection, as the base types are not objects. 

We then define the classes that can respond to 

Collection's messages, as well as their own. The first 

one, Bag, allows duplicate entries to be made. To make 

this easier to use we have defined a message 

add:withOccurences: which allows us to add many copies 

of an object. 

The definition of Set is interesting because it 

shows that it is possible to define a subclass that has 

no messages other than those provided in the superclass. 

If we were going to define a Collection that did not 
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allow duplicates we could make the exemplar a member of 

the Collection class. However it is much clearer to 

create a new class that states that it will not allow 

duplicates. This removes some of the temptation to dig 

into the implementation details of class exemplars. 

The class Collection could be considered an 

abstract class as it is unlikely that an exemplar would 

be defined that names Collection as its class. 
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7. The Exemplar Hierarchy in OOPS-Algol. 

In the previous chapter we saw how the behaviour of 

members of a class is defined in OOPS-Algol. In this 

chapter we show how the behaviour for a class is imple­

mented in OOPS-Algol. 

OOPS-Algol allows more than one implementation to 

be specified for a class, in the same way as the scheme 

described in [LaLonde, Thomas et al 86]. We associate 

one or more exemplars with a class and allow the exem­

plars to inherit methods and instance variables from any 

other single exemplar. 

OOPS-Algol allows the exemplar hierarchy to be 

independent from the class hierarchy. This means that an 

exemplar does not need to inherit from another exemplar 

which belongs to the superclass of the class being 

implemented by the new exemplar. 

When an exemplar is defined it can only respond to 

those messages that are defined for its class. As an 

exemplar can inherit from any other exemplar, it is pos­

sible that the exemplar being inherited has methods 

defined for messages that are not permissible for an 
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instance of the new exemplar's class. The compiler han­

dles this by discarding message implementations (with a 

warning to the user) that are not defined for an 

instance of that type. In this way we can guarantee that 

an instance of class will only respond to messages for 

which we have all the type information. 

7.1 The AnnotatedList Revisited 

We are now ready to return to the problem posed in 

Section 2.4. We defined a List class, and decided, for 

efficiency reasons, to use a different implementation 

for empty and non-empty lists. We then created an Anno­

tatedList and tried to produce a suitable class hierar­

chy to match the problem. Our attempts failed because we 

were trying to match the conceptual hierarchy to the 

implementation hierarchy. We now look at how we would 

implement this in OOPS-Algol. 

7.1.1 The List Class Definition 

The first thing we do is to define the class defin­

itions. 
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Class List superClassls Object 
{ 

"A List Object" 

messagesFor "Miscellaneous!" 

add: newObject typels proc(Object->List) 

"Adds newObject to the list, it returns the list 
object which may be new" 

forEach: procToUse typels proc(proc(Object->bool)->int) 

} List 

"Runs procToUse on each object in the list, passing 
the object as an argument, until procToUse returns 
false. 
A count of the objects processed is returned" 

The above definition is just enough to give the 

flavour of our List object, We define rhe Rdrl: me~s~ge 

to return a List. This is to allow us to return a non­

empty list from an empty list if we should try to add 

something to an empty list. 

7.1.2 The List Implementation 

Now we define two exemplars to implement this. One 

exemplar is intended as an empty list only, and the 

other is used for a list with data. 
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Exemplar nonMTList forClass List superExemplaris anObject 
{ 

} 

statels { 
! Define a structure to link list elements together 
structure listitem(pntr data,next); 
! Create the head and tails of the list 
let listTail = listitem(nil,nil) 
let listHead = listitem(nil,listTail) 

} 

method add: newObject typels proc(Object->List) 
{ 

} 

! Create a structure for the new item 
let newitem = listitem(newObject,nil) 

! Link the new item onto the start of the list 
newitem(next) := listHead(next) 
listHead(next) := newitem 
self ! Return this object 

method forEach: procToRun typels 
proc(proc(Object->bool)->int) 

{ 

let thisitem := listHead(next) 
let count:= 0 
while thisitem ~= listTail do { 

count:= count+ 1 
if procToRun(thisitem(data)) then 

thisitem := thisitem(next) 
else 

thisitem := listTail ! Force an exit 
} 

count Return count 
} !forEach: 

The above implementation represents a list by link­

ing instances of the listitem structure together. We use 

a fixed head and tail to remove special case insertion 

and deletion. Notice that we do not use any objects in 

our implementation of a list. To improve the efficiency 
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of our implementation we use native PS-Algol constructs 

to build a list, not other objects. 

Now we have the non-empty list exemplar, we can 

create the empty list exemplar. 

Exemplar MTList forClass List superExemplaris Object 
{ 

} 

statels {} ! Empty state. 

method add: newObject typels proc(Object->List) 
{ 

} 

! Here we return a new list that is non-empty 
let newList := [nonMTList clone] 
newList := [newList add: newObject] 
newList 

method forEach: procToRun typels 
proc(proc(Object->bool)->int) 

{ 

0 
} 

We do not need to run anything as the list is empty, 
so we just return a count of zero 

The above example has demonstrated how two exem­

plars can exist for the same class. When we want to add 

something to an empty list we create a new nonMTList. We 

do this by sending the clone message to the nonMTList 

exemplar. This exemplar does not have to be visible in 

the scope of the method being defined. OOPS-Algol 

remembers all previously defined exemplars and returns a 

copy of the appropriate exemplar when the clone message 

Chapter 7 



Page 101 

is sent. This is convenient, but does force the imple­

mentor to choose unique names. 

Our implementation of forEach: is very simple for 

the MTList as we know the list must be empty. 

7.1.3 The AnnotatedList Class Definition 

Now we can define our AnnotatedList class, and the 

appropriate exemplars for that. 

Class AnnotatedList superClassis List 
{ 

} 

"This is the same as List except we can add some notes" 

messagesFor "Miscellaneous" 

add: newObject note: aNote typeis proc(Object,string->List) 

"Add newObject to the list, with the note aNote. It 
will return a possibly new list" 

forEachNote: procToRun typeis 
proc(proc(Object,string->bool)->int) 

"Run procToRun on each member of the list. The object 
will be passed as the first argument, with the note 
as the second argument. 

procToRun should return false when it is finished. 
The message will return the number of items processed" 

In our new class we have added two new messages, 

add:note: and forEachNote:. We still have the original 
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messages, add: and forEach: which remain unchanged, 

allowing us to treat an AnnotatedList as a List. Here 

are the exemplar definitions for the AnnotatedList: 

Exemplar nonMTAnnotatedList forClass AnnotatedList 
superExemplaris Object 

{ 

stateis { 

! Define a structure to shove in the list 
structure listitem(pntr data,next; string note); 

! Create the head and tail of the list 
let listTail = listitem(nil,nil,"") 
let listHead = listitem(nil,listTail,"") 

} 

method add: newObject typeis proc(Object->List) 
{ 

[ self add: newObject note: "" ] 
} 

method add: newObject note: aNote typeis 
proc(Object,string->List) 

{ 

} 

! Create a structure for the new item 
let newitem = listitem(newObject,nil,aNote) 

! Link the new item onto the start of the list 
newitem(next) := listHead(next) 
listHead(next) := newitem 
self ! Return this object 
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method forEach: procToRun typeis 
proc(proc(Object->bool)->int) 

{ 

} 

!We have to reimplement this as we use a new structure 

let newProc = proc(Object theObject; 
string aString->bool) 

{ 

procToRun(theObject) 
} 

[self forEachNote: newProc J 

method forEachNote: procToRun typeis 
proc(proc(Object,string->bool)->int) 

{ 

let thisitem := listHead(next) 
let count:= 0 
while thisitem ~= listTail do { 

count:= count+ 1 

if procToRun(thisitem(data),thisitem(note)) then 
thisitem := thisitem(next) 

else 
thisitem := listTail ! Force an exit 

} 

count ! Return count 
} 

There are a number of points worth mentioning about 

the above implementation. Firstly, we have made Object 

the super exemplar. This was done because we can not 

reuse any code from nonMTList as we are using a dif­

ferent structure as our list item. PS-Algol would raise 

a runtime error if we tried to access a field from this 

structure with the code that was used in nonMTList 
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because the structure definition is different. 

To increase the amount of code sharing we reimple­

mented add: and forEach: by sending self a message with 

the appropriate extra arguments set. For add: we just 

set the note to the empty string. In the implementation 

of forEach: we wrapped up procToRun in another procedure 

which took the arguments required for forEachNote: and 

sent the forEachNote: message to self. 

7.1.4 The AnnotatedList Exemplar 

Exemplar MTAnnotatedList forClass AnnotatedList 
superExemplaris MTList 

{ 

stateis {} t Empty state. 

method add: newObject typeis proc(Object->List) 
{ 

[self add: newObject note: ""] 
} 

method add: newObject note: aNote typeis 
proc(Object,string->List) 

{ 

} 

let newList := [nonMTAnnotatedList clone] 

newList := [newList add: newObject note: aNoteJ 
newList 
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method forEachNote: procToRun typeis 
proc(proc(Object,string->bool)->int) 

{ 

0 Just return the count 
} 

In our above implementation we do not need to reim­

plement the forEach: method from the superexemplar as 

the MTList returns predetermined answers, with no struc­

ture references. We do need to reimplement the add: 

message to ensure that the correct exemplar gets 

returned. 

7.1.5 The New Annotated.List Hierarchies 

Now that we have defined the classes and the exem­

plars we present diagrams to illustrate the hierarchies 

in order to provide a comparison with the alternatives 

in Chapter 2. Here is the class hierarchy: 

Object 

List 

AnnotatedList 

This is much more acceptable than the original 

alternatives from Chapter 2. There are no implementation 

details to hide the simplicity of the relationships 
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between the classes. 

Now we draw the exemplar hierarchy. 

Object 
I \ 

I \ 
I \ 

I \ 
I \ 

MTList nonMTList nonMTAnnotatedList 

nonMTAnnotatedList 

The diagram shows how the complexity has been 

shifted to the implementation hierarchy. This is 

acceptable because our implementation design was based 

on performance considerations, which should only really 

impact the implementation details of a system, not the 

conceptual design. 

7.2 Summary 

This example demonstrates how we can hide the com­

plexity of the implementation hierarchy from a user. The 

user of a class only needs to know the relationship 

between classes, and the names of the exemplars used to 

create instances of that class. If we had not separated 

our two hierarchies in OOPS-Algol the user would have 
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been burdened with an unnecessarily complex class 

hierarchy, as in the ones presented in Section 2.4. 

OOPS-Algol allows the implementor of a class to 

make arbitrary decisions about the exemplar hierarchy 

based solely on implementation considerations. The 

implementor does not need to consider the impact on the 

conceptual structure of the classes. We consider this to 

be an important advantage of OOPS-Algol. 
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8. Conclusion and Future directions. 

8.1 The Work Completed 

OOPS-Algol provides the support necessary to pro­

gram in an object-oriented fashion. We can share code 

easily in OOPS-Algol which is difficult to do in PS­

Algol. 

Our type system allows us to separate the logical 

design of a system from the physical design in a simple 

and versatile manner. We do not have to compromise the 

conceptual design of a system in OOPS-Algol in order to 

maximise the code sharing between classes. 

OOPS-Algol's syntactic structure separates the 

implementation of a class from its description. This 

property is particularly useful when windowing editors 

or development environments are used, as we can open a 

window with only the behaviour of the class visible. 

We have removed some of the administrative problems 

present with other languages that have had objects 

retrofitted. OOPS-Algol remembers all of the classes and 

exemplars it compiles. This obviates the need for the 

Chapter 8 



Page 109 

many include files required for such languages as 

Objective-C or C++ when separate compilation is used. 

We have retained the flavour of PS-Algol by clearly 

delimiting our new constructs, and by using as much of 

PS-Algol's existing syntax as possible. We have the use 

of the persistent store in which to keep our objects. 

This gives us a considerable advantage over C++ which 

has no concept of persistence at all (except that pro­

vided by traditional, file based methods), and we do not 

have to resort to Objective-C's passivation mechanism. 

All of these factors combine to make OOPS-Algol a 

major improvement over PS-Algol when object-oriented 

programming is performed. 

8.2 Further Work 

Possible future work falls into three broad 

categories. 

1. Performance Improvement. 
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2. Language Improvements. 

3. Support Tools. 

We detail these below. 

8.2.1 Performance Improvement 

Most object based systems today cache the results 

of previous method searches. This gives a performance 

improvement by preventing the laborious inheritance 

hierarchy traversal that is necessary when trying to 

locate a method. The performance of OOPS-Algol could be 

significantly improved by using this technique. 

To give the maximum performance we would need to 

extend the PS-Algol abstract machine to be able to han­

dle message switching. This would require changing the 

PS-Algol interpreter and compiler to support this. We 

would remove the OOPS-Algol preprocessor and replace it 

with a compiler that produced PS-Algol abstract machine 

code which would reduce the development times. 
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8.2.2 OOPS-Algol language changes 

Multiple inheritance could be added to both the 

exemplar and class hierarchies. This would not be diffi­

cult for the class hierarchy, but due to the type con­

straints imposed by PS-Algol this would be difficult for 

the exemplar hierarchy. However, although multiple 

inheritance is frequently written about, its usefulness 

seems to be restricted, and as such may not actually be 

necessary. 

An interesting idea was presented in [Kristensen, 

Madsen et al 87] where parts of a method could be inher­

ited, not just a while method. This would be an 

interesting avenue of exploration as it seems that we 

spend a lot of time writing similar pieces of code, and 

this would be a nice way to exploit the commonality 

between them. 

It would be possible to improve our subtyping 

mechanism by adding coercer functions as described in 

[Bruce & Wegner 86]. These functions would allow the 

implementor to define conversions between types so that 

subtyping could be extended considerably. 
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In Chapter 7 we showed how OOPS-Algol can have more 

that one exemplar for a class, and how we select the 

appropriate exemplar depending on the situation. An 

interesting avenue of research would be to determine how 

the appropriate exemplar might be selected automati­

cally. 

Currently we can only implement objects with an 

exemplar that must be associated with a particular 

class. It would be interesting to extend OOPS-Algol so 

that we could automatically delegate the responsibility 

for certain messages from any object, to any other 

object. As an example, consider a point that does not 

keep its own y coordinate, but relies on some other 

object to keep that information. Our point would follow 

the other point around in they direction whilst retain­

ing independent movement in the x direction. This sort 

of technique has particular applicability when windowing 

systems are implemented. 

8.2.3 Support Tools 

It would be desirable to have a number of support 

tools implemented to make OOPS-Algol more usable. 
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Unfortunately PS-Algol has no debugger. This makes 

error tracing difficult, forcing the programmer to 

insert debugging code whenever errors occur. The imple­

mentation of a debugger would make OOPS-Algol a more 

productive environment. This would require the implemen­

tation of a new, interactive interpreter, together with 

an extension to the PS-Algol abstract machine to include 

information about line numbers and file names so that 

source level debugging could be performed. 

There is no interactive browser for OOPS-Algol. We 

have provided non-interactive reports to detail the 

available classes and their exemplars. Given a browser 

it would be useful to keep the source code of the exem­

plars under the control of OOPS-Algol so that the user 

could peruse the source whilst browsing. Currently we 

use the standard Unix tools (SCCS) to control versions 

of exemplars. 

OOPS-Algol also needs a class library similar to 

that of Smalltalk. This would be a significant under­

taking because PS-Algol has no built in window support 

(although it does have built in graphics primitives). 

The building of a window system in PS-Algol was com­

menced, but it was the laboriousness of that process 
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that motivated the creation of OOPS-Algol. 

Implementing the full class hierarchy would also be 

interesting as it would provide a good testing ground 

for the separate hierarchies we use in OOPS-Algol. 
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Appendix 1 - OOPS-Algol Syntax 

This appendix defines the syntax of OOPS-Algol. We 

have used the same two level grammar used in [PS-Algol 

84], extended for OOPS-Algol. We have indicated the 

changes to the PS-Algol grammar in italics. The meta 

rule changes are limited to the productions for TYPE­

expression and declaration. We have added a new type 

object to the hyper rule for NONVOID which we use to 

represent an object which is a member of any class. We 

do not express the subtyping rules in the grammar, but 

assume that when type matching is performed it follows 

rules presented in Chapter 6 of this dissertation. We 

have extended the PARAM hyper rule to include class and 

exemplar to allow for the specification of the class and 

exemplar names. The additional rules necessary to sup­

port these changes are placed at the end of the modified 

syntax. 

We briefly describe the meta-language used. The 

description borrows heavily from that used in [PS-Algol 

84]. We assume the reader is familiar with BNF syntactic 

specification and only explain the extensions to this. 
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The braces '{'and'}' are used in pairs to enclose 

anything that is optional. If the syntactic object can 

appear zero or many times the braces are followed by a 

'*'. The square brackets '['and']' are also used in 

pairs to denote an object that must occur once. When 

used with a'*' we have one or many times repetition. 

An important extension is to allow the specifica­

tion of type for a production. This is done by separat­

ing the type name from the syntactic category with a ' 

' . Consider: 

<pixel-literal> 

<int-literal> 

.. -.. -

.. -.. -
onloff 

[<digit>]* 

This example indicates that the terminal symbols, on and 

off are a literals. The type of these literals is pixel. 

An integer literal is specified to consist of one or 

more digits. 

By using the hyper rules we have a means of match­

ing the types of productions. For example: 

<NONVOID-assignment>::= <NONVOID-assign>:=<NONVOID-clause> 
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This example shows how we can match types with our 

meta language. The name NONVOID refers to a hyper rule 

which can represent any type in the language that is not 

void. Because every instance of NONVOID in the produc­

tion given above must match, we are indicating that an 

assignment must involve a variable of the same type as 

the value of the clause being assigned to that variable. 

The example also shows how the use of hyper rules 

shorten the grammar somewhat, as we do not need a pro­

duction for every type in the language. NONVOID stands 

for all possible non-void types. 

For a more complete explanation of the meta 

language used to describe the grammar see [PS-Algol 84]. 

The grammar for OOPS-Algol follows: 
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Hyper Rules 

ARITH 

COMPARABLE 

SIMPLE 

LITERAL 

IMAGE 

NONVOID 

TYPE 

PARAM 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

Meta Rules 

<void-program> 

<TYPE-sequence> 

<void-sequence> 

<void-clause> 
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int:real 

ARITHistring 

COMPARABLElboolipixel 

SIMPLEipntrlpic 

#pixell#cpixel 

LITERALIIMAGEl*NONVOIDITYPE.proc:object 

NONVOIDlvoid 

NONVOIDlstructure:NONVOID.fieldiclass:exemplar 

.. -.. -

.. -.. -
<void-sequence>? 

[<declaration>i<void-clause>]; 
<TYPE-sequence>: 

<TYPE-clause> 

::= <declaration> 

::= if<bool-clause>do<void-clause>i 
repeat<void-clause>while<bool-clause> 

{do<void-clause>}I 
while<bool-clause>do<void-clause>: 
for<int-identifier>=<int-clause> 

to<int-clause> 
{by<int-clause>}do<void-clause> 

<write> : 
<NONVOID-assignment> 
<raster.clause> : 
<void-expression> 

<NONVOID-assignment>::= <NONVOID-assign>:=<NONVOID-clause> 
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<raster.clause> 

<raster.op> 

<TYPE-clause> 

<NONVOID-clause> 

<write> 

<write.list> 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -
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<raster.op><IMAGE-clause>onto 
<#pixel-clause> 

ror:rand:xor:copy:nandlnor:not:xnor 

if<bool-clause>then 
<TYPE-clause>else<TYPE-clause>: 

case<NONVOID-clause>of 
[<NONVOID-clause>{,<NONVOID-clause>}' 

:<TYPE-clause>;]* 
default:<TYPE-clause> 

<NONVOID-expression> 

write<write.list>l 
out.byte<int-clause>,<int-clause> 

<SIMPLE-clause>{:<int-clause>} 
{,<write.list>} 
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<TYPE-expression> 

<bool-expression> 

<bool-exp0> 

<bool-expl> 

<bool-exp2> 

<TYPE-exp2> 

<TYPE-exp3> 

<ARITH-exp3> 

<TYPE-exp4> 

<real-exp4> 

<int-exp4> 

<pic-exp4> 

<pixel-exp4> 

<TYPE-exp5> 

<ARITH-exp5> 

<TYPE-exp6> 

<string-exp6> 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

··­.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
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<TYPE-exp3> : <TYPE-mesg.expression> 

<bool-exp0>{or<bool-exp0>}* 

<bool-expl>{and<bool-expl>}* 

<COMPARABLE-exp3>[<lt>l<le>l<gt>l<ge>J 
<COMPARABLE-exp3>l 

<NONVOID-exp2>{[=l<neq>]<NONVOID-exp2>}i 
<pntr-exp3>[islisnt] 

<structure-identifier> 

<TYPE-exp3> 

<TYPE-exp4> 

<ARITH-exp4>[[+i-]<ARITH-exp4>]* 

<TYPE-exp5> 

<real-exp5>[[<star>l/J<real-exp5>]* 

<int-exp5>[[<star>idiv:rem]<int-exp5>]* 

<pic-exp7>[[A:&]<pic-exp7>]* 

<pixel-exp7>&[<pixel-exp7>]* 

<TYPE-exp6> 

[+l-]<ARITH-exp6> 

<TYPE-exp7> 

<string-exp7>[++<string-exp7>]* 
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<TYPE-exp7> 

<NONVOID-exp7> 

<LITERAL-exp7> 

<pic-exp7> 

<string-exp7> 

<*NONVOID-exp7> 

<bounds> 

<IMAGE-exp6> 

<#pixel-exp7> 

<pixel-exp7> 

<IMAGE-exp7> 

.. -.. -

: : = 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -
: : = 

.. -.. -

.. -.. -

.. -.. -
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<TYPE-name> I 
<lcb><TYPE-sequence><rcb>I 
begin<TYPE-sequence>end 

(<NONVOID-clause>) 

<LITERAL-literal> 

shift<pic-clause> 
by<real-clause>,<real-clause>: 

scale<pic-clause> 
by<real-clause>,<real-clause>I 

rotate<pic-clause> 
by<real-clause>I 

colour<pic-clause>in<string-clause>I 
text<pic-clause> 

from<real-clause>,<real-clause> 
to<real-clause>,<real-clause>: 

<lsb><real-clause>,<real-clause><rsb> 

<string-clause> 
(<int-clause><bar><int-clause>)]* 

vector<bounds>Of<NONVOID-clause>: 
@<int-clause>of<NONVOID-typel> 

<lsb><NONVOID-clause.list><rsb> 

<int-clause>::<int-clause>{,<bounds>} 

limit<IMAGE-clause> 
{to<int-clause>by<int-clause>} 
{at<int-clause>,<int-clause>}I 

<IMAGE-exp7> 

image<int-clause>by<int-clause> 
of<pixel-clause> 

<pixel-clause>[(<int-clause>)]* 

<IMAGE-clause> 
[(<int-clause><bar><int-clause>)]* 
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<NONVOID-assign> 

<NONVOID-vec.exp> 

.. -.. -

.. -.. -
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<NONVOID-identifier>l 
<NONVOID-vec.exp>l<NONVOID-struct.exp> 

<*NONVOID-expression> 
[(<int-clause.list>)]* 

<NONVOID-struct.exp>::= <pntr-clause> 
[(<NONVOID.field-identifier.list>)]* 

<NONVOID-clause.list>::=<NONVOID-clause> 
{,<NONVOID-clause.list>} 

<pntr-name> 

<NONVOID-name> 

<TYPE-name> 

<TYPE-proc.call> 

<args.list> 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

<pntr-structure.creation> 

<NONVOID-identifier> 
<NONVOID-vec.exp> l 
<NONVOID-struct.exp> 

<TYPE-proc.call> i<TYPE-standard.name> 

<TYPE.proc-clause>({<args.list>}) 

[<NONVOID-clause>l 
<Structure-identifier>] 

{,<args.list>} 

<structure.creation>::= <structure-identifier> 
{(<NONVOID-clause.list>)} 
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<int-standard.name> .. -.. -
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[lwblupb](<*NONVOID-clause>) I 
[readilread.byte]() 

<bool-standard.name>::= [eoi:readb]() 

<string-standard.name>::=[readlpeeklreads:read.name: 
read . a . line J ( ) 

<real-standard.name>::= readr() 

<void-standard.name>::= abort 

<pixel-literal> 

<bool-literal> 

<pntr-literal> 

<real-literal> 

<int-literal> 

<string-literal> 
<digit> 

<Char> 

<PARAM-identifier> 

<letter> 

<declaration> 

<let.decl> 

<structure.decl> 

<field.list> 

: : = 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

: : = 

.. -.. -

on:off 

true:false 

nil 

<int-literal>.{<int-literal>} 
{e{+l-}<int-literal>}I 

<int-literal>e{+l-}<int-literal> 

[<digit>]* 

"{<char>}*" 
0:1:2:3:4:s:6:7:8:9 

any ascii character 

<letter>{<letter>l<digit>I .}* 

AIBICIDIEIFIGIHIIIJIKILIMINIOIPI 
QIRISIT:u:v:w:x:Y:z: 
alblcldlelflglhliljlklllmlnlolpl 
q:r:s:t:u:v:w:x:y:z 

<let.decl>l<structure.decl>I 
<class.decl>l<exemplar.decl> 

let<NONVOID-identifier>[=I :=] 
<NONVOID-clause> 

structure<structure-identifier> 
{(field.list)} 

<NONVOID-typel> 
<NONVOID.field-identifier.list> 

{;<field.list>} 
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<TYPE.proc-clause> 

<void-type.spec> 

<NONVOID-type.spec> 

<param.list> 

<param.spec> 

<TYPE-proc.type> 

<arg.type.list> 

<S.type> 

··­.. -

.. -.. -
··­.. -
··­.. -
.. -.. -

.. -.. -

.. -.. -

.. -.. -

Page 124 

proc[{<TYPE-type.spec>};<TYPE-clause>: 
{<TYPE-type.spec>};nullprocJ 

({param.list>}) 

({<param.list>}<arrow><NONVOID-type>) 

<param.spec>{;<param.list>} 

<NONVOID-typel> 
<NONVOID-identifier.list>i 

<structure.decl>i 
<TYPE-proc.type> 

<TYPE.procedure-identifier.list> 

proc({<arg.type.list>} 
{<arrOW><NONVOID-type>}) 

[<NONVOID-typel>i 
<TYPE-proc.type>: 
<s.type>J {,<arg.type.list>} 

structure{(<NONVOID-typel> 
{,NONVOID-typel>}*)} 

<PARAM-identifier.list>::=<PARAM-identifier> 
{,<PARAM-identifier>}* 
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<NONVOID-typel> .. - {c}<NONVOID-type> .. -
<int-type> .. - int .. -
<real-type> .. - real .. -
<bool-type> .. - bool .. -
<string-type> .. - string .. -
<pntr-type> ··- pntr .. -
<pixel-type> .. - pixel .. -
<#pixel-type> .. - #pixel .. -
<#cpixel-type> .. - :f:cpixel .. -
<pie-type> .. - pie .. -
<proc-type> .. - <TYPE-proc.type> .. -
<*NONVOID-type> .. - <Star><NONVOID-typel> .. -
<arrow> .. - -> .. -
<lcb> .. - { .. -
<rcb> .. - } .. -
<lsb> .. - [ .. -
<rsb> .. - ] .. -
<star> .. - * .. -
<lt> .. - < .. -
<gt> .. - > .. -
<le> .. - <= .. -
<ge> .. - >= .. -
<neg> .. - = .. -
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All of the following productions have been added 
to support OOPS-Algol. 

! A message expression that returns any type 
<TYPE-mesg.expression> ::= <lsb><TYPE-mesg.expr><rsb> 

<TYPE-mesg.expr> 

<receiver.expr> 

<object-mesg.expr> 

<TYPE-selector.args> 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

<receiver.expr><TYPE-selector.args> 

<Object-expression> 

<exemplar-identifier> clone I 
<receiver.expr><object-selector.args> 

<TYPE-unary.selector> I 
<TYPE-keyword.selector> 

<TYPE-unary.selector>::= <TYPE-identifier> 

<TYPE-keyword.selector>::= {<TYPE-identifier>: 
<NONVOID-expression>}+ 

<class.decl> 

<class.body> 

<class.desc> 

<mesg.category.body> 

<mesg.category> 

<mesg.type.body> 

<TYPE-mesg.type> 

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

Class <class-identifier> 
superClassis <class-identifier> 
[<rcb><Class.body><lcb>I 
begin<class.body>endJ 

<Class.desc>{<mesg.category.body>}* 

string-literal 

messagesFor<mesg.category> 
{<mesg.type.body>}+ 

string-literal 

<mesg.type><mesg.desc> 

[<TYPE-unary.selector> 
l<TYPE-keyword.selector.decl>J 
typeis<TYPE-proc.type> 

<TYPE-keyword.selector.decl> ::= {<TYPE-identifier>: 
<NONVOID-identifier>}+ 

<mesg.desc> 

<exemplar.decl> 

.. -.. -

.. -.. -
string-literal 

Exemplar <exemplar-identifier> 
forClass <class-indentifier> 
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<exemplar.body> 

<state.body> 

<method.definition> 

<TYPE-method.body> 

.. -··-

.. -.. -

.. -.. -

.. -.. -
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superExemplaris <exemplar-identifier> 
[<lcb><exemplar.body><rcb>: 
begin<exemplar.body>end] 

stateis[<lcb><state.body><rcb>: 
begin<state.body>end] 

{method.definition}+ 

{<let.decl>}* 

<TYPE-mesg.type> 
[<lcb><TYPE-method.body><rcb>i 
begin<TYPE-method.body>end] 

<TYPE-clause> 
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Appendix 2 - Object Representation in OOPS-Algol 

This section provides a brief description of how we 

represent objects in OOPS-Algol, and how we have come to 

terms with PS-Algol's type restrictions to allow us to 

use inheritance. 

The technique employed in OOPS-Algol to implement 

objects are very different from those used previously, 

as described in Appendix 4. In OOPS-Algol we store the 

instance variables in an instance's structure, and pass 

references to fields within this structure to the 

methods for an exemplar. 

As a precursor to describing the structures used in 

OOPS-Algol we need to explain what an id is. Previous 

experimentation with PS-Algol had shown that string com­

parisons were slow. To overcome this in OOPS-Algol we 

convert all strings used for message selectors and 

instance variable names into unique integers, called 

ids. This conversion is done at compile time so that no 

overhead is present when a program is run. We use a 

table to map strings to ids and vice versa. This table 

is held in the persistent store so that the numbers 

remain unique across invocations of OOPS-Algol. 
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We now describe the most important structures used 

to represent instances and exemplars in OOPS-Algol. 

The Instance Structure 

An instance in OOPS-Algol is partly represented by 

this structure: 

structure 
int 
pntr 
pntr 
) 

instance.struct( 
i.exemplarid; 
i.superinstance; 
i.IVS 

We prefix each field with i to ensure that the 

structure fields are unique. This approach is also used 

in the structures described later. The purpose of each 

field is as follows: 

i.exemplarid This is the id of the exemplar for this 

instance. We use the id instead of a pointer 

to the exemplar because when we create a new 

exemplar, its address will be different. This 

means that the instance that referred to the 

old exemplar will be referring to an out of 

date exemplar (PS-Algol will not delete this 

exemplar in garbage collection as it is still 
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referenced). This would be repeating one of 

the problems with our original attempt, so we 

use the id as an index into a table of exem­

plars which is kept in the persistent store. 

When we update an exemplar, we simply replace 

the old one in the table. 

i.superinstance This points to the superinstance for 

this instance. This is necessary because the 

superexemplar's methods must still reference a 

structure containing the instance variables 

with the same signature (that is, the same 

fields and types of fields) as when it was 

originally compiled. We pass the instance 

variable structure from this instance to any 

methods defined in the superexemplar. 

i.IVS This is a pointer to a structure containing 

the instance variables for this structure. 

This contains pointers to structures contain­

ing the instance variables. This is a tech­

nique used to allow the use of maivs which are 

described a little later. 
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The Exemplar Structure 

This is the structure used to hold information for 

an exemplar. Instances of this structure are stored in 

the exemplar table for reference by other OOPS-Algol 

programs, and instances. 

Here is the definition of that structure: 

structure exemplar.struct( 
string e.exemplarName; 
int e.exemplarid; 
int e.superExemplarid; 
proc(int->pntr)e.grabEMProc; 
proc(int,pntr->pntr)e.grabIVProc; 
proc(->pntr)e.newProc 
) 

We examine each field in more detail. 

e.exemplarName This is the name of the exemplar. We 

keep this in case the id table should become 

corrupted and we need to rebuild it. 

e.exemplarid This is the id of the exemplar. This used 

as the key in the exemplar table. 

e.superExemplarid This refers to the superexemplar for 

this exemplar. It is used when searching for 

methods that are not implemented in this 
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exemplar. 

e.grabEMProc This is a procedure that returns an 

instance of exemplarMethod.struct for the mes­

sage with the selector id passed. We describe 

this structure later. 

e.grabIVProc This is a procedure that accepts the 

instance variable structure (i.IVS) of an 

instance, the id of a particular variable, and 

returns a pointer to the location of the vari­

able. This procedure is necessary because we 

have to bind the accessing of instance vari­

ables with the object implementation so that 

we do not have to keep the names of every 

field of every structure in the system unique. 

e.newProc This is the procedure that returns a new 

instance of the class implemented by this 

exemplar. 
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The Exemplar Method Structure 

This structure is used to hold the procedures 

required to be used when we execute the method for a 

message. This is complicated by the fact that we have to 

have one message procedure for every possible method. 

This means that we have to send the arguments for a mes­

sage in a structure (so that we can use a pointer). It 

is worth looking at the declaration of the procedure 

used to send messages at this point. 

let sendMsg = proc(int selectorid;! 
pntr clientI, ! 

thisI, 
args; 

string srcFile; 
int srcLine; 

->pntr) 

Message Selector Id 
Original Instance 
This Instance 
Arguments to the method 
Name of source file 
Line in source file from 
whence this message is sent 
Value is returned in a 
structure. 

As you can see, we have had to use pointers where 

ever values of different types might be returned. The 

value is actually held in a structure created by the 

OOPS-Algol preprocessor to hold a value of the appropri­

ate type. The arguments clientI and thisI are used to 

resolve references to self when we are inheriting 

methods. clientI is the original instance receiving the 

message, and thisI is the current instance being looked 
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at. These are used to implement the semantics for refer­

ence to self discussed in the main body of this thesis. 

Now we look at the exemplarMethod.struct 

structure exemplarMethod.struct( 
proc(pntr->pntr)em.method; 
pntr em.maivsList; 
proc(pntr,int,pntr->pntr)em.setMaiv; 
proc(pntr,int->pntr)em.getArg 
) 

em.method This is the procedure that implements the 

message. It accepts one argument, the maiv 

structure, which is an abbreviation for Method 

Arguments and Instance Variables. This is a 

structure created by the OOPS-Algol preproces­

sor to hold all the data necessary for the 

method to execute. It returns a pointer to a 

structure containing the value returned by the 

method. 

em.maivsList This points to a list describing the 

fields used in the maiv structure. This is 

accessed at runtime by sendMsg to determine 

what values need to be injected into the maiv 

structure. 
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em.setMaiv This procedure takes the id of a field in 

the maiv and injects a pointer to the value 

into it for use by the method. If a null maiv 

was passed as an argument, it will create one, 

returning the address of this new maiv. 

em.getArg This procedure extracts a member from the 

arguments structure passed to sendMsg so that 

it can be inserted into the maiv. 

An outline of the message switch 

To give some idea of how the system fits together, 

the following sequence of actions occurs when a message 

is sent. 

1. The exemplar chain is followed until we find one 

with the required method implementation. 

2. The maiv for that method is built by iterating 

over the maiv list, instantiating each field 

required by the method by either getting the 

appropriate instance variable, or the appropriate 

message argument. 
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3. The method is executed, returning the value 

returned (if any) to the caller. 

The message logic is simple, but has been compli­

cated because of the techniques we have used (in partic­

ular the maiv) to circumvent PS-Algol's structure type 

checking. 

Summary 

We have only lightly sketched the implementation of 

exemplars in OOPS-Algol. We have not detailed the 

implementation of type checking within the class hierar­

chies as it is straight forward, involving simple list 

comparison and storage of class descriptions. 
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Appendix 3 - The OOPS-Algol Environment 

This appendix describes the environment under which 

OOPS-Algol runs, and how the user uses it. OOPS-Algol 

was built in a Unix environment on Sun 68020 worksta­

tions and an NCR Tower 32/600. 

We use the persistent store as the OOPS-Algol 

compiler's repository of information about the classes 

and exemplars it has compiled. This has obviated the 

need for large numbers of include files that are used in 

Objective-C and C++ to transfer information between 

separate compiles in a system. 

How to compile and run an OOPS-Algol program. 

An OOPS-Algol program is compiled in the following 

manner: 

oopsc aProgram.oop 

Note that oopsc runs the C preprocessor on the program 

to be compiled so the user has the full functionality of 

the preprocessor available. This produces a standard 

PS-Algol executable (called aProgram.out) from the 

source file aProgram.oop which we then interpret using 
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the PS-Algol interpreter thus: 

psr aProgram.out 

Time limitations have prevented the implementation 

of an interactive browser for PS-Algol so we have imple­

mented a utility to produce a listing of all of the 

defined classes in the system and their exemplars. This 

is run as follows: 

oopsdump 

which produces a listing on the standard output which 

might look like this: 

Classes 

Object 
"The Root Object" 
exemplars anObject 
messagesFor "inquiry" 

respondsTo: aMessage 

Stack 
"Implements a simple stack containing any sort of object" 
superClassis Object 
exemplars aStack mtStack 

messagesFor "queries" 
isMT typeis proc(->bool) "True if MT" 

messagesFor "updating" 
push: anObject typeis proc(Object) "push the object" 
pop typeis proc(->Object) "pop an object" 
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The dump names the class, a description of the 

class, the superclass for the class, and the exemplars 

defined for that class. It then lists out all the mes­

sages defined for that class. 
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Appendix 4 - Objects in PS-Algol 

This appendix describes our initial attempt at 

implementing objects in PS-Algol. 

The Technique 

We originally modelled objects in PS-Algol by using 

a structure to contain the methods for a member of the 

class. We used the scope rules of PS-Algol to hide the 

instance variables, which where visible to the method 

procedures. 

We did this by creating a procedure which returned 

a structure containing a field for each method for a 

class. Within this procedure the instance variables were 

defined, and any required initialisation was performed. 

Message passing was simulated by selecting the appropri­

ate field from an instance's structure and executing the 

procedure referred to there. 

We present a simple example to illustrate this. 

Suppose we want to create a point. First we define the 

messages to which a point would respond. Then we create 

a structure with the names of the methods as fields: 
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structure point.struct(proc(->int)get.x.pos; 
proc(->int)get.y.pos; 
proc(int)set.x.pos; 
proc(int)set.y.pos 

) 

Having done this we define a procedure that will 

create a point by returning an instance of point.struct. 

Here is one possibility: 

let make.point= proc(int x,y->pntr) 
{ 

} 

Define a variable which represents self. This is now 
visible in any of the procedures within make.point 

let self := nil 

Here are the procedures which implement the messages. 
Notice that they can access x and y as they 
are within their scope. 

let get.x.pos.proc = proc (->int); X 

let get.y.pos.proc = proc(->int); y 
let set.x.pos.proc = proc(int newX); X . - newX . -
let set.y.pos.proc = proc(int newY); y . - newY 

We create an instance by creating a new instance of 
point.struct, filling it with the procedures 
we have just defined, and assigning it to self. 

self := point.struct(get.x.pos.proc, 
get.y.pos.proc, 
set.x.pos.proc, 
set.y.pos.proc) 

! This returns the pointer to our new structure. 
self 
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Note that PS-Algol allows us to leave out the 

braces surrounding the statements making up a procedure 

when the procedure body consists of only one statement. 

The most interesting thing about this technique is 

that we have used PS-Algol's first class procedures and 

name scoping rules to make the instance variables visi­

ble only to the procedures that should have access to 

them. This makes our objects totally safe from unwanted 

interference, intentional or unintentional. 

This works because when we make a procedure a 

member of a structure, as in the self assignment above, 

we are also storing the closure of that procedure. In 

this case it is the x, y and self locations for this 

invocation of make.point. The next invocation will save 

new locations for x, y and self. 

This is how we would create an instance of point, 

and how we would send a message to it: 
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! Create a new point with x=lO and y=5 
let new.point= make.point(l0,5) 

! Change they position 
new.point(set.y.pos)(lO) 

! Get they position and print it out 
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write "Y pos is ",new.point(get.y.pos)(),"'n" 

In PS-Algol we access a field from a structure by 

naming the structure and following this with the field 

name in parentheses. As our structure members are pro­

cedures we execute the procedure by following the field 

reference with the parenthesis enclosed arguments for 

that method. In the above example our structure is 

called new.point and we accessed the set.y.pos and 

get.y.pos fields. 

We stored our creation procedures (like make.point 

above) in the persistent store, which we then retrieved 

when necessary to create new instances. 
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Analysis 

This technique was not suitable for the following 

reasons: 

1. Unique names are required. 

2. Instance variable inheritance was impossible. 

3. Class changes did not propagate to already exist­

ing members of the changed class. 

We discuss these in more detail in the following 

sections. 

Unique Names 

PS-Algol determines the type of an structure field 

reference by looking at the field name. This means that 

every field of every structure that is defined within 

the current scope must have a unique name, otherwise the 

correct field can not be identified, and the type of 

that field would be undeterminable. Other languages 

overcome this by specifying that a variable will only 

refer to a particular structure type. PS-Algol has no 
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such concept, and allows a variable of type pntr to 

refer to any structure. 

This is a problem because it is not possible to 

define a message with the same selector (the field name 

in our technique) to instances of different classes. We 

had to name each message uniquely, by appending the 

class name to the end of the field name. 

Instance Variable Inheritance 

We could not inherit any instance variables as they 

were not visible outside the creation procedure. This 

precluded the possibility of using some of the methods 

from a super class. To model inheritance we have to 

make the new enhanced object contain an instance of the 

old object, and then route messages to the base object 

manually. 
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Class Change Propagation 

If we change a method within our creation procedure 

this does not change any existing instances of that 

class. Even worse, when we add a message to a class, 

this change does not propagate to the already existing 

members of the class. This means that every PS-Algol 

program that creates new instances of the changed class 

has to be recompiled, otherwise the program would fail 

at runtime because the structure definitions are dif­

ferent. 

Conclusion 

This approach was employed in building the basis of 

a windowing system involving thirteen object classes 

consisting of approximately four thousand lines of code. 

It produced systems that were difficult to maintain, as 

every program using a changed class had to be recom­

piled. It is against this background that OOPS-Algol 

was developed, and it demonstrated that the technique 

was impractical. Any form of automatic inheritance was 

impossible, which negated one of the prime advantages of 

object-oriented programming - that of code reuse. 
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