
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

OOPS-Algol.

An extension to PS-Algol to support

object-oriented programming.

A thesis presented in partial fulfilment of the requirements

for the degree of Master of Science at Massey University.

William Dennis Ryder.

Acknowledgements.

This thesis would not have been possible without the patience

and advice of Tom Docker and Chris Phillips. Thanks guys.

I am indebted to Commercial Software Limited for their

financial support and the use of their resources to complete

this thesis.

ii

Abstract

Object-oriented programming is becoming a widely

accepted paradigm to promote software reuse and data

abstraction. Many languages are having object oriented

capabilities added to them.

PS-Algol is a language which supports procedures as

first class data, and supports orthogonality of per­

sistence. OOPS-Algol extends the PS-Algol language to

support object-oriented programming.

OOPS-Algol is different from most other object­

oriented languages in that it explicitly separates the

implementation of a class's protocol from the descrip­

tion of that protocol. The class hierarchy is used

solely for defining the conceptual relationships between

classes. The inheritance hierarchy is used to promote

code sharing, without being constrained by the class

hierarchy. This capability furthers progress towards

the goal of separating the conceptual design of a system

from its implementation.

iii

CONTENTS

1. Introduction. 1

1. 1 PS-Algol. 2

1.2 Objects in PS-Algol - a First

Attempt................................... 4

1.3 OOPS-Algol - An Improved Object Sys-

tern. 5

1.4 Thesis Structure.......................... 8

2. Basic Concepts of Object Oriented Program-

ming . 1 O

2 .1 What is an Object. 10

2.2 Messages.................................. 12

2.3 Class 15

2. 4 Inheritance. 17

2.5 Delegation................................ 23

2.5.1

2.5.2

Prototypes 24

Extended Self 25

3. Some Current Object-Oriented Languages......... 29

3.1 Smalltalk-BO.............................. 31

3.1.1 Message Passing 32

- iv -

3 .1. 2 Instance Creation 34

3 .1. 3 Resource Sharing 35

3 .1. 4 Stack 36

3.2 C++ •••••••••••••.••••••••••••...•.....•..• 39

3.2.1 Message Passing 41

3.2.2 Instance Creation 42

3.2.3 Resource Sharing 43

3.2.4 Stack 44

3.3 Objective-C 46

3. 3 .1 Message Passing 47

3.3.2 Instance Creation 48

3.3.3 Resource Sharing 49

3.3.4 Stack 49

3.4 Self 50

3.4.1 Message Passing 51

3.4.2 Instance Creation 51

3.4.3 Resource Sharing 52

3.4.4 Stack 52

3.5 OOPS-Algol 57

4. Subtyping in Class Based Systems............... 59

4 .1 What is subtyping......................... 60

4.2 The uses of subtyping.......... 60

4.2.1 Specialisation 61

- V -

4.2.2 Interface Specification 62

4.2.3 Combination 63

4.2.4 Generalisation 64

4.2.5 Variance 66

4.3 Subtyping in OOPS-Algol................... 67

5. The OOPS-Algol Language........................ 69

5 .1 Message Expressions. 6 9

5.1.1 Unary Message Expressions. 70

5.1.2 Keyword message Expressions. 72

5.2 Creating a Class.......................... 74

5.3 Creating an Exemplar for a Class.......... 76

5.4 Creating an Instance of a Class........... 78

5.5 The Stack Revisited....................... 79

6 . OOPS-Algol's Type System 82

6.1 Limitations On Subtyping in OOPS-

Algol 83

6 .1.1 Subtype Determination 84

6 .1. 2 Subtype Restrictions 86

6 .1. 3 Message Selector Types 86

6 .1.4 Message Definitions 92

6.2 An Example Class Hierarchy 92

- vi -

7. The Exemplar Hierarchy in OOPS-Algol........... 96

7.1 The AnnotatedList Revisited............... 97

7.1.1 The List Class Definition 97

7.1.2 The List Implementation 98

7.1.3 The AnnotatedList Class Defini-

tion 101

7.1.4 The AnnotatedList Exemplar 104

7.1.5 The New AnnotatedList Hierar­

chies 105

7. 2 Summary. 106

8. Conclusion and Future directions 108

8 . 1 The Work Completed. 10 8

8.2 Further Work.............................. 109

8.2.1

8.2.2

8.2.3

Performance Improvement 110

OOPS-Algol language changes 111

Support Tools 112

Appendix 1 - OOPS-Algol Syntax 115

Appendix 2 - Object Representation in OOPS-

Algol... 128

Appendix 3 - The OOPS-Algol Environment 137

- vii -

Appendix 4 - Objects in PS-Algol 140

References. 14 7

- viii -

Page 1

1. Introduction

In 1986 the Department of Computer Science at

Massey acquired PS-Algol [Atkinson, Bailey, et al 83] as

part of a cooperative research arrangement with the

University of St. Andrews. We intended to use the

language to implement a system for executing the data

flow diagrams (DFD) of Structured Systems Analysis as

exemplified by De Marco [DeMarco 78], and Gane and Sar­

son [Gane & Sarson 79].

At the time of this experiment with PS-Algol,

object-oriented programming was gaining considerable

momentum in the computing community. After investigation

of this relatively immature paradigm we established that

it appeared to offer advantages that traditional system

development paradigms did not offer. The advantages we

considered most important were the use of data abstrac­

tion (an object is only accessible through its opera­

tions) and the ability to define objects incrementally

using the inheritance hierarchy.

Given the advantages we saw in object-oriented pro­

gramming and the power of PS-Algol we began to implement

the window system necessary for our DFD system using

Chapter 1

Page 2

object based techniques in PS-Algol. This work was begun

on a Macintosh and was continued on Sun workstations.

Although PS-Algol provides good facilities for data

abstraction it provides none to support inheritance. It

became obvious that without automated support of inheri­

tance the development effort required was too great and

we re-evaluated our techniques. It was this re­

evaluation that led to the development of OOPS-Algol

(Object-Oriented PS-Algol) which this thesis describes.

This chapter provides an overview of PS-Algol, our

initial attempt at implementing objects, and the top­

level description of OOPS-Algol.

1.1 PS-Algol

We were initially attracted to PS-Algol by its sup­

port of 'orthogonality of persistence'; procedures as

first class data objects; and graphics objects as

built-in data types.

The persistence of a data object is the length of

time the object exists. PS-Algol allows any data

object, regardless of type, to have the same rights to

Chapter 1

Page 3

long and short term persistence, hence persistence is an

orthogonal property of data. This property is important

to object based systems as it is necessary to preserve

the state of the system between invocations. PS-Algol

makes this operation trivial compared to the 'hoop­

jumping' required with most other traditional languages.

In PS-Algol procedures have the same rights as any

other data object in the language. A procedure can be

the result of an expression or another procedure, an

element of a structure or an array, assigned to a vari­

able, et cetera. Hence a procedure is a first class

citizen of the language. This property is important in

implementing object-oriented systems as we have to be

able to store the procedures to be executed when an

object receives a message. The implementation task is

clearly much simpler when all of this can be done within

the language, without resort to external agents such as

linkers or file systems.

The power of graphical interfaces for certain types

of application is well known. PS-Algol gives graphics

objects (bitmaps and line drawings) the same rights as

any other type in the language. This simplifies the

implementation of systems requiring graphics

Chapter 1

Page 4

considerably, removing the necessity of using subroutine

packages as is common in other systems to support graph­

ics.

1.2 Objects in PS-Algol - a First Attempt

Having decided to use PS-Algol and object-oriented

programming we developed a simple technique for

representing objects. We used the persistent store to

hold procedures that created instances of objects on

request. The objects returned were structures whose

fields contained the procedures to be executed when the

object received a message. The data local to the object

were not explicitly represented in the structure as

fields but were variables visible to the procedures in

the structure by virtue of PS-Algol's scope rules. Our

technique is explained in more detail in Appendix 3.

The main advantages of our simple technique were

the speed of execution and simplicity. The selection of

the appropriate procedure for a message was performed by

the compiler which removed the runtime message selection

used in most object based systems. It was simple because

we did not have to write any message switching software

and we did not support inheritance.

Chapter 1

Page 5

The absence of inheritance was partly a result of

our simplistic approach and of PS-Algol's type-checking

system. As one of PS-Algol's objectives is data protec­

tion, it uses runtime checking of structure accesses.

This prevents a structure from impersonating another

structure. Inheritance requires that an object in the

inheritance hierarchy can be used as an object of a type

higher in the hierarchy (along the same path). This was

not possible in our simple system as we would require

different structures to be treated as the same type in

some cases. We modelled inheritance by making the

object we wanted to enhance a component of the new more

complex object. However, this was cumbersome and time

consuming. It was this problem that motivated the

development of OOPS-Algol.

1.3 OOPS-Algol - An Improved Object System

The experience gained with our simple object system

and examination of the capabilities of other object­

oriented systems led us to design a system with these

objectives:

Chapter 1

1. We should be able to upgrade methods without

adversely impacting existing objects.

Page 6

2. The implementation and conceptual hierarchies of

objects should be separated.

3. The system should be strongly typed.

4. Subtyping should be supported in our type checking

system.

5. We should be able to have alternate representa­

tions for the same object class.

There were two possible ways of implementing this

system. Given that we had the source to PS-Algol, we

could have enhanced the PS-Algol virtual machine and

compiler to support OOPS-Algol. The alternative was to

adopt the approach of other retrofitted object systems

to existing languages (as in Objective-C [Cox 86], C++

[Stroustrup 86]) and use a preprocessor to add an extra

layer of functionality.

Chapter 1

Page 7

We adopted the latter approach because we were not

familiar with the internal operation of PS-Algol and we

preferred to add our system as a layer above PS-Algol,

keeping the systems separate. This approach reduces the

perceived complexity of our implementation, which is

important as it is an experimental system which needs to

be able to be changed easily.

We developed OOPS-Algol on a Sun workstation and a

NCR Tower 32/600 system. The following diagram shows the

overall structure of the system.

User
OOPS-Algol

PS-Algol
Persistent Object Management System (POMS)

The user writes in OOPS-Algol which is PS-Algol

with extra constructs for defining and communicating

with objects. OOPS-Algol converts these statements into

PS-Algol. PS-Algol acts as the interface with POMS which

holds all objects in the system, regardless of their

longevity.

Chapter 1

Page 8

1.4 Thesis Structure

We begin in Chapter 2 by introducing the concepts

of object oriented programming. This is done mainly to

define object oriented programming as we see it and to

explain the differences between delegation and inheri­

tance.

In Chapter 3 we survey some current object-oriented

languages. The chapter provides some examples of sys­

tems that have had objects retrofitted to existing

languages in order to provide some comparison with the

implementation of OOPS-Algol.

Chapter 4 surveys how subtyping is currently used

in other class based systems, and relates this to OOPS­

Algol.

Chapter 5 describes the user view of OOPS-Algol

without going into excessive detail. The chapter also

describes the main syntactic features of the language.

Chapter 6 describes OOPS-Algol's type system and

how it relates to the class hierarchy.

Chapter 1

Page 9

Chapter 7 completes our discussion of OOPS-Algol

with a description of how exemplars are defined, and how

they relate to the class hierarchy. We present an

extended example in this section to show how we can

separate the type hierarchy from the implementation

hierarchy.

The final chapter provides a post-mortem of this

experiment, and discusses possible future directions.

The appendices include details that we did not con­

sider appropriate to place in the body of the thesis.

Appendix 1 contains the syntax of OOPS-Algol. Appendix

2 contains a description of how we represent objects in

OOPS-Algol. We did not consider the latter to be suit­

able for the body of the dissertation as it is a techni­

cal implementation description, and is not relevant to

our discussion of OOPS-Algol itself. Appendix 3 contains

a description of how to compile and run OOPS-Algol pro­

grams, and describes the environment under which they

run. Finally, Appendix 4 contains a brief description of

our original attempt at implementing objects.

Chapter 1

Page 10

2. Basic Concepts of Object Oriented Programming.

2.1 What is an Object

Before the concepts of object-oriented programming

are introduced, it is worth noting that a number of

slightly different definitions exist. We generally fol­

low that of [Wegner 87]:

"An object has a set of 'operations' and a

'state' that remembers the effect of opera-

tions".

This reflects the difference between functions and

objects. The result of a function is solely determined

by its arguments. In contrast, the result of an opera­

tion on an object depends on the results of previous

operations on that object and the arguments included

with the operation. That is, an object has a history.

The definition highlights the similarity between

objects and abstract data types. The code sharing

offered by object-oriented systems distinguishes objects

Chapter 2

Page 11

from instances of abstract data types. Wegner calls

systems that do not have some form of inheritance to

implement code sharing 'object based' systems, rather

than 'object oriented' systems.

As an example of how we could represent an applica­

tion with objects we will consider a simple debtors sys­

tem. In this system we will have two major object types,

debtor and transaction. If we want to know how much a

debtor owes we ask the corresponding debtor object to

give us that information. The object will respond with

the value.

The user of the debtor object does not need to know

whether the debtor remembers the total in a variable

that is updated each time a transaction arrives, or if

it iterates over all of its transactions to get the

current balance. This illustrates the data abstraction

offered by objects.

The transaction object will remember at least its

value and will return that value if asked. When we want

to add a transaction to a debtor we tell the debtor that

it should add the new transaction and the debtor will

update its own information with no interference from the

Chapter 2

Page 12

'outside'. The user controlling the update needs no

knowledge of the internal representation of either the

debtor or transaction. The user only needs to know that

a debtor knows how to add a transaction.

This shows that when we build a system using

objects we are essentially creating building blocks of

different shapes, and then fitting them together. The

process of intergrating the blocks can be separated from

the actual manufacture of the blocks, thus enhancing

reusability. The success of this approach has been

demonstrated many time in the 'real' world with products

like Lego and Integrated Circuits.

2.2 Messages

An operation on an object is triggered by sending a

message to that object. The expression send a message

does not necessarily mean we send a physical message.

When we send a message we are selecting an operation to

perform on the object. The term message is used to

underline the fact that an object needs to be considered

a separate entity and that communication between objects

is carried out according to some protocol.

Chapter 2

Page 13

Depending on the language, sending a message may

simply be the selection of a field from a structure and

executing the code pointed to by that field (as in C++

[Stroustrup 86]); or it may be a call to a subroutine

that selects the appropriate code from tables (as in

OOPS-Algol). Messages as such are generally only used in

distributed environments, or in some concurrent object

systems.

To demonstrate the difference between terminologies

here, a small example will be used. Assume we have the

ubiquitous stack and we want to push some data on it. In

an object oriented system we would have a stack object

to which we would send messages. We would ask the stack

object to push some data onto it (the data would be

passed as an argument). This would cause the procedure

corresponding to the push message to be executed, which

would change the state of the object. In a functional

system we would say: apply the push function to this

stack with this item of data. In this case the function

would return a new stack with some more data on it.

This demonstrates two differences between func­

tional and object based systems:

Chapter 2

Page 14

1. A functional system deletes the old data and

creates some new data, an object based system

changes the existing 'data'.

2. In a functional system the user selects the

appropriate procedure to apply to some data, in an

object based system the object (or the system sup­

porting the object) decides which procedure to

use.

The collection of messages to which an object can

respond to is known as the protocol for that object. A

possible subset of the protocol for the debtor object we

referred to earlier might be:

add Transaction

whatisYourBalance

whatAreYourTransactions

yourCreditLimitis

A protocol also specifies the required arguments

that are to be sent with the message. For instance

addTransaction would require a transaction object as an

argument, and whatisYourBalance would require no argu­

ments.

Chapter 2

Page 15

2.3 Class

A class is a template used to create new objects.

The class contains at least the protocol for objects

which are members of that class. The class generally

also contains information about what variables are

required to encode the state of the object. We call a

particular object which is a member of a class an

instance of that class.

Here are some important points about classes in

class based languages like Smalltalk-SO.

1. The class of an object determines which messages

the object can respond to.

2. The class actually 'stores' the method.

3. The definitions of the instance variables are

included in the class.

4. Instances of classes only contain the values of

their instance variables and use the class for the

rest of the information.

Chapter 2

Page 16

Classes also serve another purpose. They provide a

mechanism for grouping objects. Classes impose structure

on the 'sea' of objects.

A classless system is useful when dealing with

'small' systems. As an analogy, consider personal

experience. If a person knows a cat, Monty, and then

sees another cat they will probably think "that cat is

like Monty except that it differs in these ways". This

model is useful for a small number of animals. When we

want to study the whole 'universe' of animals this is

inadequate and we need some way of structuring the

information. Classes provide this structure, together

with inheritance which we discuss in the following sec­

tion.

Classless systems are also useful when prototyping.

In prototyping we normally have no clear perception of

the system so we want to delay the imposition of struc­

ture on the solution until we fully understand the prob­

lem.

The difference between classical (have classes) and

classless systems is similar to the difference between

typed and untyped systems. Typed systems are useful for

Chapter 2

Page 17

production environments, untyped systems are useful for

experimental environments.

2.4 Inheritance

In this discussion we view inheritance as only

applying to class based systems. We consider the more

general 'delegation' later.

Inheritance allows a class to inherit methods from

its "superclass" and its methods may be inherited by its

"subclasses". When an instance of a class c is created

the new object can use the operations of class c and the

operations of e's superclasses.

When a class can have only one superclass directly

above it this is termed single inheritance. The more

general multiple inheritance allows a class to have more

than one immediate superclass.

The relationship between the classes in the system

is called the class hierarchy. In a system supporting

single inheritance this hierarchy is tree structured.

The classes in a multiple inheritance system form a

directed acyclic graph.

Chapter 2

Page 18

Multiple inheritance poses a problem: if a class

inherits from two classes, and there is a method or

instance variable of the same name in both, which one do

we choose? The most common method used is to select the

method from the class with the higher 'precedence'. Usu­

ally this is the first superclass mentioned when declar­

ing a new class. The language CommonLoops does it this

way [Bobrow, Kahn et al 86]. The problem with any arbi­

trary means of deciding which one to use is that it may

not be what the user intended. For a formal treatment

of multiple inheritance see [Ducournau & Habib 1987] and

[Cardelli 84].

Object
I\

I \
+--------------+

Debtor
I\

I \
I \

I \
I \

OpenitemDr BalanceForwardDr

+-----------+

Transaction
I\

I \
I \

I \
I \

Receipt Invoice

Figure 2.1: The Debtor System Inheritance Hierarchy.

Chapter 2

Page 19

We illustrate inheritance by returning to our deb­

tors system. Figure 2.1 illustrates a possible inheri­

tance hierarchy for this system. We have extended the

example to include two types of debtors and two types of

transactions. At the top of the hierarchy we have the

root class called Object. The protocol for Object would

include messages like: class - returns the class of the

object; respondsTo: - informs the caller whether or not

the object can respond to a given message.

We have introduced two types of debtor. The com­

monalities between them are captured in the debtor

class. To allow for the different operations required

for open item debtors and balance forward debtors we

create two separate classes. The OpenitemDr debtors

class will have messages like: whatAreYourOpenitems. The

BalanceForwardDr debtors will have message such as per­

formPeriodAge. The debtor class defines messages such as

whatisYourAddress.

The Transaction class includes common messages for

both Receipts and Invoices. Some messages might be

howMuch and whatDate. The invoice transaction type will

have messages for getting the line item details.

Chapter 2

Page 20

We have used the inheritance hierarchy to classify

the different classes (for example, OpenitemDr is a Deb­

tor), and to group them together. As the inheritance

hierarchy allows instances of the Receipt class to use

operations defined for the Transaction class we are

saved from re-implementing the common messages.

This illustrates the two uses of the inheritance

hierarchy:

1. Classification - we classify objects by position­

ing them in a logical place in the hierarchy.

2. Implementation - the hierarchy is used to make

implementation decisions based on the amount of

code sharing desired between classes.

These two uses of the hierarchy do not necessarily

coincide. We illustrate this by using the example

presented in [LaLonde, Thomas et al 86).

Suppose we wish to implement a list by using two

different representations, one for an empty list and

another for a non-empty list. By doing this we can elim­

inate the need for empty list handling in the instances

Chapter 2

Page 21

of lists that are non-empty. We can do this by using the

inheritance hierarchy thus:

Object

List
I\

I \
I \

I \
EmptyList NonEmptyList

Figure 2.2: The List Inheritance Hierarchy.

Our EmptyList does not need any instance variables

so we use less space. The NonEmptyList does not need to

continually check to see if it is empty, giving us a

speed increase. This representation shows how our class

hierarchy is used to facilitate implementation. Prob­

lems arise, however when we wish to create a new class

AnnotatedList, which is a list with notes attached to

each element.

There are a number of ways of setting up an inheri­

tance hierarchy:

Chapter 2

a) List

AnnotatedList
I \

I \
I \

I \
ErnptyList NonErnptyList

ErnptyAnnotatedList NonErnptyAnnotatedList

Page 22

b) List

C)

I \
+------------+ +-----------+

ErnptyList AnnotatedList NonErnptyList

I
I

EmptyA.nnotatedList

+------------+

List
I \

I
I

NonEmptyA.nnotatedList

+-----------+

ErnptyList AnnotatedList NonErnptyList
I \

I \
ErnptyAnnotatedList NonErnptyAnnotatedList

Figure 2.3: Possible Inheritance Hierarchies for Annotated Lists

Each of these representations causes problems:

Chapter 2

Page 23

a) causes lists to be incorrectly viewed as annotated

lists.

b) implies EmptyAnnotatedLists and NonEmptyAnnota­

tedLists are not AnnotatedLists.

c) is not useful because the standard methods for Emp­

tyLists and NonEmptyLists can not be inherited by

the annotated versions without the use of multiple

inheritance.

Clearly we need to separate the implementation and

conceptual hierarchy. We come back to this problem, and

our solution to it in OOPS-Algol, in Chapter 7.

2.5 Delegation

The other technique used to represent shared

behaviour amongst objects is delegation.

[Wegner 87] defines delegation thus:

"Delegation is a mechanism that allows

objects to delegate responsibility for per­

forming an operation or finding a value to

Chapter 2

Page 24

one or more designated 'ancestors'".

Delegation operates independently from a class

hierarchy, allowing a free-form approach to resource

sharing. There are two useful metaphors for describing

delegation. The first is the concept of a prototype, the

second is the concept of the extended self.

2.5.1 Prototypes

The idea of a prototype is used to describe how

objects are characterised in classless delegation. In

our discussion of classes we mentioned a specific

instance of a cat, Monty. Classless delegation would use

Monty as the prototypical cat, and further cats would

use Monty as their example to follow (the exemplar). A

new cat Rommel, would delegate responsibility for opera­

tions that are common to both cats to the Monty object.

It can be argued that a prototype based system

better represents the way humans learn than class based

systems. When we see something new we generally compare

it to something with which we already have experience.

Only after we have seen many different examples of the

new object type will we make the intuitive leap to being

able to describe that object in general.

Chapter 2

Page 25

In the same manner in which prototypes are used in

software engineering, we can use a prototype based

object-oriented system to understand the problem we are

trying to solve.

After we feel the problem is understood we can

reimplement the solution in a class based system. We

consider a class based system to be more suitable for a

long lived application because the class hierarchy pro­

vides a convenient road-map, so that people who have to

maintain the system can gain an understanding of the

system as a whole.

2.5.2 Extended Self

The other concept that is useful when describing

delegation is the idea that the ancestors of an object

form the extended self of that object. This means that

when an object requests a service of an ancestor, the

ancestor will always refer back to the original object

whenever a reference to self is made. This is in direct

contrast to inheritance, which rebinds self as opera­

tions are performed further up the inheritance hierar­

chy.

Chapter 2

Page 26

We illustrate this with an example. Let us assume

we have a class for simple display of fonts called sim­

pleFont. We will select two messages for consideration:

displayAGlyph Takes a character as an argument and

displays the corresponding glyph

from the font.

displayLotsOfGlyphs Takes a string and displays it.

To avoid duplication of the code

used for displaying a glyph, it

sends the displayAGlyph message to

self for each character in the

string.

At this stage inheritance and delegation will give

the same results. Self remains bound to an instance of

simpleFont.

Now we decide to enhance our class by adding a

colour capability. This will use most of the code for

simpleFont but will add the ability to display colour.

Because displayLotsOfGlyphs uses the displayAGlyph mes­

sage we should be able to just redefine displayAGlyph

for the new colourFonts which will override

Chapter 2

Page 27

displayAGlpyh in simpleFont to enable us to display

coloured glyphs (ignoring the obvious change in instance

variables).

Under inheritance this will cause problems because

displayLotsOfGlpyhs will make a call to self to display

each one. This will not work, because self is rebound as

a message works its way up the inheritance hierarchy. In

this case it will be rebound to the simpleFont part of

the hierarchy, not the colourFont part. The effect of

this is that the message search for displayAGlyph will

start from simpleFont when displayLotsOfGlyphs is

evaluated. This will cause the loss of colour informa­

tion so we would be forced to reimplement displayLotsOf­

Glyphs in our new class.

The concept of extended self provides a solution to

this problem as we always view anything we inherit as

extending the original object. This means that self

stays bound to the original object, not rebound as the

delegation hierarchy is traversed. In this case, the

message search for displayAGlyph will start at the

colourFont and so the object will behave as we would

wish.

Chapter 2

Page 28

It is for this reason that we use this concept in

OOPS-Algol.

Chapter 2

Page 29

3. Some Current Object-Oriented Languages·

In order to see how OOPS-Algol fits in with other

current object-oriented languages we will give a brief

description of four of these languages. We begin with

Smalltalk-80 as it was the language that popularised

object-oriented programming. To demonstrate how object­

oriented features are retro-fitted to existing languages

we look at Objective-C and C++, two extensions to 'C'.

Finally we look at Self, a language that uses classless

delegation to implement resource sharing.

We follow a common format for the four languages

where possible: demonstrating the syntax of message

passing; how instances are created; and how resource

sharing is supported.

We conclude our discussion of each language with

reference to the ever popular stack which can respond to

the following messages:

isMT This message will return true if the

stack is empty.

Chapter 3

push:

pop

Page 30

pushes an object (passed as an argument)

onto the stack.

returns the top object from the stack and

removes it.

After the stack has been defined, we will define an

annotated stack to demonstrate the code sharing aspects

of the various languages. The annotated stack behaves in

the same way as the normal stack except that we have

added two more messages:

attachNote: This will attach the note passed as an

argument to the top item on the stack.

This note will follow the item around in

the stack until that item is removed from

the stack.

getNote This will get a note that may have been

attached to the top item on the stack.

We do not provide any error checking for the stack,

which removes details not necessary to our discussion.

Chapter 3

Page 31

This chapter is not intended to be an exhaustive

survey of object-oriented programming languages and we

will be ignoring features of the languages not relevant

to our discussion.

3.1 Smalltalk-80

Smalltalk-80 (which we henceforth refer to as

Smalltalk) was the first popular object oriented

language. It was developed at Xerox PARC, with work on

its design starting in the early 1970's. It was designed

specifically as an object-oriented language with no con­

cessions to 'traditional' programming languages.

Smalltalk is more than just a language; it is also

a development environment encompassing a browser and

other tools to assist the development process. The

environment is persistent as it is saved between invoca­

tions.

For a full description of Smalltalk see [Goldberg &

Robson 83).

Chapter 3

Page 32

3.1.1 Message Passing

A message expression in Smalltalk consists of a

receiver, a selector and arguments if required. Follow­

ing the message analogy the receiver receives the mes­

sage, the selector is used to select the appropriate

method for the message, and the arguments (if any) are

the data required for that message. Each message in

Smalltalk returns a value.

The message expression syntax in Smalltalk is

designed to be readable, and can resemble the syntax of

traditional languages in some cases. There follow some

sample expressions to give the feel of Smalltalk:

(i) 3 + 4

In this case the receiver of the message is the object

3. The selector is '+' (selecting the addition opera­

tion) and the argument is 4. This illustrates the purity

of Smalltalk, even integers are objects in the system

(there are internal optimisations to speed the usage of

integers however).

(ii) quantity sqrt

Chapter 3

Page 33

In this case the receiver is quantity and the

selector is sqrt. The object referenced by quantity is

asked to return the square root of itself.

(iii) values replaceFrom: 1 to: oldValues size with: oldValues

Here we begin to see the readability of Smalltalk syn­

tax. The receiver here is values which is sent a message

with the selector replaceFrom:to:with:. One of the argu­

ments is the result of another message expression: old­

Values size. This is evaluated first as it is a unary

expression, that is, a message with no arguments.

(iv) sizeOfThing <- thing size

In this case we instantiate sizeOfThing with the value

of the message expression thing size.

Smalltalk allows the user to delay a sequence of

actions by use of a block. A block is treated as any

other object, and is sent the message value to evaluate

it. For example:

(number\\ 2) = 0
ifTrue: [parity<- OJ
ifFalse: [parity<- l]

In this example number is examined to decide if it is

Chapter 3

Page 34

odd or even. If it is even the block parity <-0 is

evaluated, otherwise the block parity <-1 is evaluated.

Any boolean object can have the message ifTrue:ifFalse:

sent to it, and the receiver in this case is the (number

II 2)=0 expression. Note that the block shares the con­

text (instance variables and arguments) of the expres­

sion in which it is evaluated.

3.1.2 Instance Creation

Instances of a class are created by sending the

message new to the instance's class.

aNewDictionaryinstance <- Dictionary new

anMTArray <- Array new: 10

aNewint <- 1

Note the use of literals to create instances of a

class. It can be viewed as shorthand for "send the new

method to the class, initialise the instance to be the

value as indicated by the literal". The type of the

destination is not explicitly declared as it is deter­

mined by the right hand side of the expression when it

is evaluated.

Chapter 3

Page 35

3.1.3 Resource Sharing

Smalltalk has a class hierarchy supporting single

inheritance. Smalltalk added the concept of an Abstract

Class which is used to describe a protocol used by simi­

lar sub classes, but you can not create an instance of

an abstract class. The abstract class is used to combine

the common properties of its subclasses.

Smalltalk also has the concept of a Metaclass which

is a class of classes. This is used to handle messages

which are sent to a class, not an instance of that

class. This is used when we want to send different ini­

tialisation messages to different classes. When we

create a new instance of the Date class we might want

the instance returned to represent today so we send the

message today to the class Date; however if we want to

created a new point we will want to give it its initial

x and y values. The metaclass allows us to describe the

messages applicable to a class in the same way the class

describes the messages for an instance of that class.

The hierarchy of instances has a one to one

correspondence to the hierarchy of classes. This can

cause some logical inconsistencies as the determination

of a superclass is based on implementation

Chapter 3

Page 36

considerations. We discuss this problem more fully in

Chapter 6.

3.1.4 Stack

In the interests of accuracy we present our

Smalltalk stack in Little Smalltalk [Budd 87) which is

in the public domain. We simulate the use of message

categories used in Smalltalk-80 by indicating the

categories in comments, which in Little Smalltalk are

surrounded by double quotes.

Chapter 3

Page 37

Declare Stack Object tos theStack "This declares Stack as a
subclass of Object, with
the instance variables:
tos and theStack"

Class Stack "Signifies definition
of methods for class
stack"

"Message Category: initialisation"

I
I

new
A self initialise "Send the initialise message to

set up the instance variables"

initialise
tos <- 1.
theStack <- #(nil,nil,nil,nil,nil,

nil,nil,nil,nil,nil)

"Message Category: queries"
isMT

A (tos = 1)

"Message Category: Alteration"
push: aThing

"Returns true or false"

theStack at: tos put: aThing.
tos <- tos + 1

I
I

"Message Category: Accessing"
pop

tos <- tos - 1.
A theStack at: tos

]

Chapter 3

Declare AnnotatedStack Stack notes

Class AnnotatedStack

"Message Category: Initialisation"
new

A super new initialise

initialise
super initialise.

Page 38

notes<- #(nil,nil,nil,nil,nil,nil,nil,nil,nil,nil)
I
I

"Message Category: Alteration"
attachNote: newNote

notes at: tos - 1 put: newNote

"Message Category: Accessing"
getNote

Anotes at: tos-1

The following is done from the interpreter

globalNames at: #aNewAnnotatedStack put: AnnotatedStack new

aNewAnnotatedStack push: 10

aNewAnnotatedStack attachNote: 'A note'

A few things appear to need explanation. The first

is the use of the cascaded message expression 'super new

initialise' in the initialise method for the Annota­

tedStack. This is equivalent to :

new
I newOne I
newOne <- super new.
newOne initialise

Chapter 3

Page 39

The second is how a new instance is declared when

running the interpreter. In Little Smalltalk you can

compile class definitions to produce an image that is

loaded by the interpreter. This is what the first half

of our stack example is. When you are in the interpreter

however, you have to create an instance by creating a

new place in the globalNames dictionary, and assigning a

new instance to that position. This is what the: 'glo­

balNames at: #aNewAnnotatedStack put: AnnotatedStack

new' expression does.

3.2 c++

C++ was designed by AT&T to update and replace C.

It was designed to be upwards compatible with existing C

code as AT&T did not want to support two languages.

Another major design constraint on C++ was that it

should have runtime execution speed similar to C's.

Although C++ supports object-oriented programming,

it does not force it and the extensions to Care such

that the language would be worth using even if one was

not using the object-oriented extensions.

Chapter 3

Page 40

In keeping within the design constraints, C++ is

generally implemented as a preprocessor which produces C

code which is then compiled by the local C compiler.

There are a number of C++ compilers that skip the C code

generation step and produce object code directly (G++

[GNU 88] and Zortech C++ are such examples).

C++ keeps it execution speed acceptable by not

using method invocation as in Smalltalk, but selecting

the appropriate function by either:

a) finding the function at compile time if it is

not a virtual function.

b) finding the function based on the type of the

receiver at runtime by using a compiler com­

puted offset into a table of functions for

that object.

The difference between this approach and that of

Smalltalk is that Smalltalk looks up the table of

methods for that object, as it can not know the offset

at compile time. For a more detailed discussion of this

see [Stroustrup 87b].

Chapter 3

Page 41

No automatic memory reclamation is provided and

obsolete objects have to be explicitly destroyed. There

is no concept of an 'environment' built-in to the

language so considerable housekeeping is required if

objects are required to persist beyond one program invo­

cation. The compiler has no memory of previous compila­

tions so shared information has to be handled by

included text files.

3.2.1 Message Passing

Message passing in C++ is modeled by using struc­

ture field selection. That is, you can select a func­

tion as part of a structure to execute. This enables

compile time checking, and speeds the process of message

'switching' considerably, because the location of the

method is determined at compile time (virtual functions

are accessed through a runtime set pointer, but the

overhead is minimal). Naturally this approach loses

some flexibility but since C++ is not really intended as

a prototyping language this is not significant. Consider

the following example messages:

(i) complexNmr.printOn(ouputStream)

The receiver of the message is complexNmr, the selector

is printOn, and the argument is outputStream. This

Chapter 3

Page 42

follows the normal C syntax for structure field access

where complexNmr is the structure name and printOn is

the field required. The syntax is extended to make the

calling of a function from that structure more palatable

(normally C requires the field to be a pointer to a

function which requires a rather ugly statement to

call).

(ii) currentPC = virtMachine.getPC()

In this case the message getPC requires no arguments and

the receiver is virtMachine. The value returned will be

the program counter of the virtMachine.

Although the message passing looks like structure

field selection it should be remembered that the field

need not exist in the class of which instance is a

member, but it may exist in one of its superclasses.

3.2.2 Instance Creation

Instances are created by the constructor of a class

in C++. When an instance is no longer to be used the

programmer explicitly requests for it to be destroyed

using the destructor for that class (unless it was

created on the stack, in which case it will be destroyed

by the system automatically). C++ uses overloading to

Chapter 3

Page 43

provide similar functionality to Smalltalk's new mes­

sages. In C++ there is no explicit new message, instead

the declaration of a variable for a new instance is used

to call the constructor. Some examples follow:

(i) vector newVector(l00);

The class of newVector is vector. When this is executed

the constructor for vector is called and passed the

argument 100 (that is the vector is 100 elements long).

(ii) point newPoint(2,4);
point copyOfNewPoint = newPoint;

In this ca.se newPo.int will be an instance of point with

its x value set to 2 and its y value to 4. copyOf­

NewPoint will be a copy of newPoint.

This scheme fits in well with the syntax of C but

is perhaps a little obtuse if you are used to

Smalltalk-like new messages.

3.2.3 Resource Sharing

C++ supports single inheritance by including the

name of a superclass in the class definition. It does

not support multiple inheritance (although some experi­

ments have been done on this [Stroustrup 87aJ). To

Chapter 3

Page 44

provide the functionality of Smalltalk's Abstract Class,

C++ allows a class to be defined with virtual functions

which are instantiated with the appropriate function

when an instance of that class is created.

3.2.4 Stack

Here is our stack in C++. This was compiled with

the GNU C++ compiler, known as G++. We place reserved

words in bold to assist readability.

Chapter 3

Page 45

#include <std.h>
#include <stdio.h>
#include <stddef.h>

// Stack object for C++ (Actually G++ - the GNU C++ Compiler)
class Stack {

int theStack[l0]; // Private information

protected.: // Anything following here is accessible by classes
// derived from this one

int tos=0;

public: // Anything following here is publically accessible

int isMT() {return(tos==0);}
void push(int item) {theStack[tos++] = item;}
int pop() {return(theStack[--tos]);}

} ;

// Now we define the annotated stack which derives some of its
// behaviour from Stack
class AnnotatedStack: public Stack {

char *notes[l0]; // Array of strings
public:

void attachNote(char *note) {notes[tos-1] = note; };
char *getNote() {return(notes[tos-1]); };

} ;

// Create a stack and use it
main(>
{

}

AnnotatedStack newStack; // Create a new instance of
// Stack using the default
// constructor.

newStack.push(l0); // Pushes 10 onto the stack
newStack.attachNote("was 10");// Attaches a note.
newStack.push(20); // Pushes 10 onto the stack
newStack.attachNote("A note");// Attaches a note.
fprintf(stderr,"Top Note: %s,",newStack.getNote());
fprintf(stderr,"pop = %d\n",newStack.pop());
exit(0);

As can be seen from the example C++ allows three

levels of protection on the members of the class struc­

ture. The first part is the private part whose members

Chapter 3

Page 46

can only be accessed by friend functions defined within

the structure. Then there are the protected members

which can be accessed by any other class deriving some

of its behaviour from the structure. Finally there are

the public members that are accessible from everywhere.

It should be noted that it is not possible to

declare the stack as being able to contain any type of

object in C++. Instead it must be built for a specific

data type.

3.3 Objective-C

Objective-C [Cox 86] is another C hybrid. It sup­

ports runtime message switching so is a little slower

than C++, but faster than Smalltalk would be on the same

processor. It comes with a rich set of classes which C++

does not have. Its syntax is modelled after Smalltalk.

As in C++ a precompiler produces C code to be compiled

by the normal C compiler on the system. However it does

require run time support to execute (which is linked

with the object code produced).

Chapter 3

Page 47

Objective-C adds a type, id, to the C type system.

A variable of this type is used to hold the identifica­

tion (actually the address) of an object. In comparison,

C++ defines the type of each instance to be the

instance's class. This difference is necessary as

Objective-C performs its type checking at runtime,

whereas C++ does it at compile time.

3.3.1 Message Passing

Objective-C's message passing syntax is modelled on

the Smalltalk language, whilst allowing the compiler to

compile existing C programs correctly. Message expres­

sions are surrounded by square brackets. Consider the

following examples:

(i) sizeOfaSet = [aSet size];

The receiver is aSet and the selector is size. The

result of the expression is used to set the value of

sizeOfaSet.

(ii) if ([virtMachine getWordAt: address] -- 0)
printf("The address is zero0);

In this case the receiver is virtMachine and the selec­

tor is getWordAt:. The argument is address. The result

of the expression is used in the standard C expression

Chapter 3

Page 48

and tested against 0.

As can be seen the syntactic 'sugar' is sweeter

than C++, especially if you are used to Smalltalk type

languages.

3.3.2 Instance Creation

All objects are of type id, which is a pointer to

the structure representing the object. The message new

is sent to the Factory object (which corresponds to

Smalltalk's Class) which returns a new instance of the

object. By convention in Objective-C, factory objects

begin with a capital letter, while instances begin with

small letters. For example:

id aNewSet = [Set new]; I* Set is the factory object*/

id anArray = [IdArray new:100);
I* Create an instance of idArray 100 long*/

These examples show how we use id as the type name of

all objects in the system, regardless of what class they

belong to.

Chapter 3

Page 49

3.3.3 Resource Sharing

Objective-C supports single inheritance in a manner

similar to Smalltalk, but has neither metaclasses nor

abstract classes. However Objective-C does have what it

calls factory methods which are basically equivalent to

Smalltalk's Class methods. Class variables can be simu­

lated in Objective-C by using normal C global variables.

3.3.4 Stack

/* Stack object for objective-c *I

/* We can create stack of objects here, unlike in C++ *I
=Stack: Object { int tos=0; int theStack[l0J; }
- (int)isMT {

return (tos == 0);
}

- (void)push: (int)newint {
theStack[tos++J = newint;

}

- (int)pop {
return(theStack[--tos]);

}

I* Now we define the annotated class*/
= AnnotatedStack: Stack { char *notes[l0J; }
- (void)attachNote: (char *)note {

notes[tos-1] = note;
}

- (char *)getNote {
return(notes[tos-1]);

}

I* Now we create an instance of the stack and use it*/
id newStack = [AnnotatedStack new];
[newStack push: 10 J;
[newStack attachNote: "A Note"];

Chapter 3

Page 50

Objective-C denotes the beginning of a class defin­

ition by the equals sign and the definition of each

instance method by the minus sign. It also allows the

definition of factory methods by the plus sign but this

is not shown here.

It would have been possible to declare the stack as

being able to contain any type of object by merely mak­

ing the array type id which is a pointer to any type of

object.

3.4 Self

Self [Ungar & Smith 87) is a recent object-oriented

language that is based on three simple ideas: proto­

types, slots, and behaviour. Unlike Smalltalk there is

no concept of a class, or instance variables. In Self

everything is an object but instead of having a class

pointer as in Smalltalk a Self object has a pointer to

its parent object.

There is no direct way to access a state variable

in Self. It is best to explain this with an example. If

we have a point object with an x and y part we would

create a self object with a slot with the name of x and

Chapter 3

Page 51

a slot with the name y. When the message xis sent to

this point object the object contained in the x slot is

evaluated, returning the current value of x. If we want

to change the value of x and y we also create slots with

the names x: and y: which are methods used to change the

variable. This technique allows an ancestor object to

replace the state accessing methods of its parent with

other methods. One use could be to replace the x message

with a random x generator.

3.4.1 Message Passing

The syntax of Smalltalk has been retained in Self

where possible, and extended to allow for creating slot

lists. The other difference is that what would be

instance variable accesses in Smalltalk are messages

sent to self. This is illustrated in the stack imple­

mentation below.

3.4.2 Instance Creation

To create a new instance in Self we merely copy a

previously existing object. This is know as cloning.

The idea of cloning existing objects from the prototype

has the advantage that if we want to create a one-of-a­

kind object we do not have to create a class just to

support that object. An example follows:

Chapter 3

Page 52

aNewDictionary: Dictionary clone.

In this case the slot aNewDictionary will contain a

clone of the Dictionary object. Note the use of the

colon to assign the value to the slot. Actually we are

sending a message with the selector aNewDictionary: to

self.

3.4.3 Resource Sharing

Self only allows a single parent so it only imple­

ments single 'inheritance'. Self differs from the other

languages considered in that it is possible to have

objects dependent on any other object, replacing what

would be instance variables at will. For instance it is

possible to create a point object constrained by the x

value of its parent point by overriding its parent's y

and y: messages and leaving the x messages alone. This

means that the parent could be moved in the x direction,

taking its ancestor along with it.

3.4.4 Stack

Before we look at the example we need to explain

the way Self denotes inheritance and slots. In Self,

passive objects and blocks are enclosed in square brack­

ets, and methods are enclosed in braces. The slot list

Chapter 3

Page 53

is enclosed in vertical bars and each item in the list

must be separated from the next by a period. In Self the

word self can be left out so that saying:

theArray: theArray clone

is equivalent to

self theArray: self theArray clone

presuming that theArray is a slot accessible from the

current object.

There are several forms for slots which we only

briefly detail here. For more information see [Ungar &

Smith 87]:

• A selector by itself denotes two slots: One ini­

tialised to nil and one named with a trailing colon

initialised to the assignment primitive(<-). In

our example the aNewAnnotatedStack slot in the doS­

tackTest method is like this.

• A selector followed by an equals sign and an

expression denotes one slot, initialised to the

expression. No assignment slot is created, so the

slot is read-only. This is generally used for

Chapter 3

Page 54

method definitions but is also useful for the pro­

totypes.

• An identifier with a trailing colon followed by a

left arrow(<-) defines an assignment slot that can

be use to change the value of a read-only slot with

the same name elsewhere. An example of this can be

found after the definition of the emptyStack.

Inheritance in Self is denoted by lexical scope. So

in the example emptyStack's parent is Stack, and

AnnotatedStack's parent is also Stack. Stack's parent is

the root object of the system. We find this notation a

little unclear but it does simplify the syntax of the

language.

As in our Smalltalk example we indicate comments by

preceding them with an exclamation mark.

Chapter 3

Page 55

clone= {<primitive>}.

nil= [J.

This is the root object.
Initialises a slot containing the
clone primitive.
Most basic object with no slots.

! Now we begin the definition of our stack object
Stack = [I

! Here is the prototypical stack which is assigned to the
! emptyStack slot.
emptyStack = [I

tos = 1.
theArray = #(nil,nil,nil,nil,nil,

nil,nil,nil,nil,nil> IJ.

!Define some slots so that they can be assigned to

tos:<-.
theArray:<-.

We clone by cloning our parent object, then each of the
elements of the prototype stack is cloned and placed in
the appropriate slots of the new object.

clone= {
super clone tos: tos clone theArray: theArray clone

! Now define the methods
push: obj= { theArray at: tos put: obj.

tos: tos + 1. }
pop= { I valueWas.

tos : tos - 1.

}

valueWas: theArray at: tos.
"valueWas

isMT = { "tos = 1}

Chapter 3

Page 56

Here is the child which will be inheriting the
properties of stack, as it is in the same scope.

AnnotatedStack = [i

! Our prototypical stack, note that we only define
! what is different
emptyAnnotatedStack = [i

notes = # < ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ' , ' ')
:] .
! Make notes changeable.
notes:<-.

We clone our super which is now a Stack and then
place a copy of notes from the prototype object
into our notes

clone= {
super clone notes: notes clone

} .

! Here are the methods
attachNote: newNote = { notes at: tos-1

put: newNote. }.
getNote = { Anotes at: tos=l. }

iJ. ! End of the AnnotatedStack slot list

:J. End of the Stack slot list

! Now we create a slot which will perform some stack
! operations when evaluated
doStackTest = {

}

i] •

aNewAnnotatedStack.

First we create a new stack, note that we have to
get the AnnotatedStack from the Stack object by
sending it the AnnotatedStack message as it is not
visible in this scope. Then we get the prototype from
the AnnotatedStack slot and clone it.
This value is shoved into the aNewAnnotatedStack.

aNewAnnotatedStack:
Stack AnnotatedStack emptyAnnotatedStack clone.

! Now shove a value on it, and then attach a note.
aNewAnnotatedStack push: 10.
aNewAnnotatedStack attachNote: 'A note'

Chapter 3

Page 57

3.5 OOPS-Algol

We finish off this chapter with a very brief

description of the ideas that OOPS-Algol has borrowed

from these languages.

OOPS-Algol includes the same message expression

syntax as Smalltalk. We use message categories to group

our messages as in Smalltalk. OOPS-Algol does not con­

tain the one-to-one instance/class relationship used by

Smalltalk but uses an approach similar to that described

in [LaLonde, Thomas et al 86].

OOPS-Algol uses structures to hold instance vari­

ables as in C++. C++ uses a preprocessor (in some

implementations) to extend C, and we do the same with

OOPS-Algol. The type of variables is declared in OOPS­

Algol, as in C++, but we use subtyping to provide the

versatility lacking in C++.

We have used Objective-C's technique of surrounding

message expressions with brackets to simplify the pars­

ing of message expressions. We do not use the generic

type, id, used in Objective-C to specify an object type

but use the name of the class of which the object is a

Chapter 3

Page 58

member. This is to add type security.

We had originally considered using messages to

access instance variables in OOPS-Algol as in Self but

this would have compromised our use of subtyping, as the

messages for accessing these variables would have been

included in the class definitions. We consider instance

variables for a class to be private to all but those

classes inheriting from that class, so this was not

desirable.

We do have the idea of a prototypical object, as in

Self, which is cloned to make new instances of a class.

OOPS-Algol calls this prototypical object the exemplar

for a class.

Chapter 3

Page 59

4. Subtyping in Class Based Systems.

In order to provide some perspective on the separa­

tion of conceptual and implementation hierarchies in

OOPS-Algol we will review the ways subtype hierarchies

are used in other common object-oriented systems. It

should be noted that we are considering systems like

Smalltalk, Objective-C and C++ where the implementation

and conceptual hierarchies are not separated. In these

languages the two hierarchies have a one-to-one

correspondence with the hierarchies being defined by the

subclass/superclass relationships. In this context sub­

class and subtype are synonymous, as are superclass and

supertype.

This chapter is based in part on [Halbert & O'Brien

87] which provides a good description of the use of sub­

types in class based object-oriented languages.

Chapter 4

4.1 What is subtyping

We use a simple definition of a subtype:

If Bis a subtype of A, B can be used where

ever A can be used.

Page 60

Also, in the systems we are considering here, a

subtype may share or inherit characteristics of its

supertype. The characteristics that are usually shared

include the storage representation of the supertype and

the operations provided by the supertype.

The inherited characteristics can be overridden by

a subtype. A subtype may reimplement the code to exe­

cute upon receipt of a message, or may augment its

storage representation with additional information.

4.2 The uses of subtyping

There are two major categories of usage of subtyp­

ing in object-oriented languages. The first category,

which we call standard usage, captures the conceptual

relationships between components of a system. The other

category, nonstandard, uses the type hierarchy to

Chapter 4

Page 61

increase the amount of code sharing.

The standard uses of subtyping are specialisation;

interface specification; and combination. The nonstan­

dard uses are generalisation and variance. We consider

the uses in that order.

4.2.1 Specialisation

In this case the type hierarchy is used to model a

conceptual hierarchy, with the most general type on top,

and more specialised types below. This hierarchy can be

used to represent a model of the real world as in:

Vehicle
I\

I \
+--------+

MotorPowered

+---------------+

People Powered
I \ I \

I \ I \
DieselCar Petrol Car MountainBike RoadBike

Specialisation can be used to capture common

behaviour of objects in the system. For example, the

supertype Process may be used to capture behaviour com­

mon to RealtimeProcess and BatchProcess, which are

Chapter 4

Page 62

specialised versions of Process.

Another use for specialisation is to model intangi­

ble concepts that are external to the program. For

instance, a hierarchy might model the relationship

between fiction and non-fiction books.

In all of these cases the subtype specialises the

behaviour of the supertype. If we treat types as sets of

values the subtype restricts the definition of the

supertype in order to create a subset of that set.

4.2.2 Interface Specification

Subtyping can be used to guarantee that instances

will present a certain interface to other objects. Here

the supertype is an abstract type which is used to

define a common interface among its subtypes. We can

not actually have an instance of this abstract type.

The subtypes thus provide various implementations of

their supertype.

An example from Smalltalk demonstrates this usage:

Chapter 4

Page 63

PositionableStream
I \

I \
ReadStream WriteStream ReadWriteStream

This describes an abstract class, PositionableStream,

which defines the interface to various types of streams:

ReadStream, WriteStream, and ReadWriteStream.

4.2.3 Combination

Given the use of multiple inheritance, that is, a

type system when a subtype can have more than one super~

type, we can use subtyping to combine the properties of

types. For example:

Particle
\

\
\ I
Light

Wave
I

I

In this way we can treat Light as a wave, or as parti­

cles.

It is tempting to use multiple supertypes to model

the components of an object. Consider this example:

Chapter 4

Wheels
\

\
\

\

Page 64

Frame Engine
I

I
I

I
\ I
Motor Bike

This is incorrect as a MotorBike is composed of the

supertypes in the diagram. The error becomes obvious

when you consider the fact that modern motor bikes can

have two different sized wheels. That would require

changing the type hierarchy so that there were two

wheels as supertypes of Motorbike which is clearly wrong

as both wheels have the same type. They are in fact dif­

ferent instances. [Blake & Cook 87] describe an exten­

sion to Smalltalk to support part hierarchies that does

not resort to this use of subtyping.

4.2.4 Generalisation

Subtyping for generalisation is used to create a

more general type of object than its supertype. This

usage is based purely on implementation issues as we

normally want to generalise an existing type so that we

can share some of the implementation of the supertype.

Chapter 4

Page 65

A demonstration of this is our coloured font exam­

ple presented in Chapter 2. We began with a one colour

font and extended it to handle different colours by

adding a colour attribute and some messages to change

the colour. The hierarchy looked like this:

UncolouredFont

ColouredFont

However, we could actually consider the one colour font

to be a special case of the coloured fonts, and as such

it would be preferable to have the one colour font as a

subtype of coloured fonts:

ColouredFont

UncolouredFont

The problem with this solution is that we are allowed to

send colour specification messages to a member of

UncolouredFont because it is a subtype of ColouredFont.

Sending a colour message to UncolouredFont is really an

error, and should, if possible, be detected at compile

time. In order to detect such an error using the simple

hierarchies presented above, UncolouredFont must be the

supertype of ColouredFont.

Chapter 4

Page 66

The way around this problem is to create an

abstract type that captures the functionality of both.

We then create two subtypes, one for each type of font:

Font
I \

I \
ColouredFont ColourlessFont

Now protection against inappropriate messages is possi­

ble, and the hierarchy follows a more reasonable model.

4.2.5 Variance

The final use of subtyping is for variance. Here we

make one type a subtype of another solely because the

supertype has common code we would like to reuse. Con­

ceptually the two types should be siblings but implemen­

tation issues dominate our organisation.

As an example of this usage we may have an input

device that can be either a mouse or a trakball (which

is basically an upside down mouse). The implementations

would be almost exactly the same, as both devices have a

ball that rotates in two dimensions. We could decide to

make one of the types a supertype of the other so that

we can share the common code.

Chapter 4

Page 67

4.3 Subtyping in OOPS-Algol

The various uses of the subtyping mechanism we have

described demonstrate that we have to weigh implementa­

tion issues against conceptual design issues when defin­

ing a type hierarchy. We are forced to shape the type

hierarchy either to give us maximum inheritance, or to

provide the best logical model of a system.

OOPS-Algol has separated the inheritance hierarchy

(which we call the exemplar hierarchy) from the type

hierarchy (called the class hierarchy) in an attempt to

alleviate the problem caused by such tight coupling. Its

type hierarchy specifies the interface to instances of

that type, and the implementation hierarchy defines

various implementations which inherit from each other.

This changes the uses of subtyping discussed above as

follows:

1. We do not need to use subtyping for interface

specification as that is the function of type

hierarchy.

Chapter 4

Page 68

2. We do not allow multiple inheritance yet so we can

not use subtyping for combination.

3. An implementation of a type can inherit from any

other implementation, so we do not need to use the

type hierarchy for variance because an exemplar

can inherit from a sibling in the type hierarchy.

This only leaves two uses of subtyping - speciali­

sation and generalisation. We have seen that we can

design around the use of subtyping for generalisation,

and specialisation is what we want to use the subtype

mechanism for anyway.

Chapter 4

Page 69

5. The OOPS-Algol Language.

In this chapter we illustrate our message expres­

sion syntax and provide a brief introduction to defining

classes and exemplars in OOPS-Algol. We round the

chapter off with the OOPS-Algol implementation of the

stack used in Chapter 3.

5.1 Message Expressions

OOPS-Algol's message expressions follow those of

Objective-C. We surround a message expression with

square brackets and use the message syntax of Smalltalk.

We will illustrate this with examples which will also

demonstrate important features of PS-Algol. A full

definition of PS-ALgol is provided by [PS-Algol 84].

We support two types of message expressions in

OOPS-Algol. These are unary and keyword message expres­

sions which we consider separately.

Chapter 5

Page 70

5.1.1 Unary Message Expressions.

A unary message expression is the simplest kind of

message expression. It has a receiver and a selector.

No arguments are passed. Consider the following exam­

ples:

(i) let aStack = [stackExemplar clone]

This example defines a new variable called aStack, ini­

tialising the value of aStack with the result of the

unary message expression stackExemplar clone. The

expression sends the clone message to stackExemplar

which is our prototypical stack. As in Self we have a

prototypical object (called the exemplar) which we clone

to make new instances. The message will return a new

object with all of the attributes of stackExemplar.

In PS-Algol a variable declaration is preceded by

let. An equals sign(=) following the variable name

indicates that the name is a constant and a semi-colon

equals (:=) indicates that it is a variable. Thus

aStack is a constant and can only refer to the object

created. It is possible to change the state of the

object that is referred to by aStack however.

Chapter 5

Page 71

PS-Algol determines the type of a variable by the

type of the expression on the right hand side of the

declaration. We have implemented OOPS-Algol to support

this and in this case it will mark aStack as type Stack

which is the class of stackExemplar. This enables us to

type check our OOPS-Algol programs in a strict manner,

unlike Smalltalk or Objective-C. We discuss this more

fully in Chapter 6.

We can use a message expression wherever we can use

an ordinary expression in PS-Algol. We can also use a

function returning an object as the receiver in a mes­

sage expression:

(ii) let wasitEmpty := [functionReturningStack() isMTJ

This example defines wasitEmpty to be a boolean variable

containing the result of sending the message isMT to the

object returned by the function. We know that the vari­

able will be boolean because the isMT message is defined

as returning a boolean value in the class definition of

Stack. When OOPS-Algol compiles the message expression

it will make sure that functionReturningStack will

return a Stack or a subtype of Stack so that the isMT

message will not fail.

Chapter 5

Page 72

5.1.2 Keyword message Expressions.

Message expressions that take arguments are known

as keyword expressions in Smalltalk. OOPS-Algol retains

the same terminology. We present here an example with

keyword expressions that illustrates other features of

PS-Algol.

Consider a code fragment that prints all of the

elements of aList onto the file called aFile, or until

100 elements have been printed:

let outFile := create("aFile'',493) ! Open the file for writing

let executeMe = proc(Object objectToWorkOn)
{

[objectToWorkOn printOn: outFile]
}

let count:= 0

let checkForEnd = proc(->bool)
{

}

count:= count+ 1
(count> 100)

[aList forEach: executeMe until: checkForEnd]

The fragment begins by opening a file for output by

calling create which is a predefined PS-Algol procedure

that returns a file opened for writing. Assigning the

file returned by this to outFile defines its type to be

Chapter 5

Page 73

file. PS-Algol treats all of its data types as first

class, so we define a procedure by declaring a variable

or constant that refers to the closure of the procedure

necessary to execute the procedure correctly. The clo­

sure contains two parts: the code to execute the pro­

cedure; and the procedure's environment, which contains

the local and free variables of the procedure. In execu­

teMe the global variable outFile is accessed so this is

included in the closure along with objectToWorkOn. exe­

cuteMe contains one keyword message expression. It sends

a message with the selector printOn: to the object

passed to executeMe as an argument. The message requires

one argument, the file to print on. For a more detailed

discussion of procedures as first class data see [Atkin­

son & Morrison 84].

The next procedure defined, checkForEnd, returns a

boolean value which is the result of evaluating count>

100. To return a value from a PS-Algol procedure we

place an expression of the appropriate type at the end

of the procedure.

The example finishes with a message which uses both

of these procedures. The final message expression sends

a message with the selector forEach:until: to aList.

Chapter 5

Page 74

Using OOPS-Algol this message is defined as:

forEach: procedureToExecute until: endTestProcedure
typeis proc(proc(Object),proc(->bool))

which shows the message selector, together with dummy

names to indicate the purpose of each argument. This is

followed by the PS-Algol style type definition of the

message. This is considered in more detail later.

It is worth noting that when we pass the procedures

executeMe and checkForEnd as arguments to the message

they are not evaluated. PS-Algol denotes evaluation of a

procedure by following the name with parentheses (which

may contain arguments). In this case we are merely pass­

ing the closure of the procedure to the method.

5.2 Creating a Class

Now we have examined message expressions we will

introduce our method of defining a class. In OOPS-Algol

we have a class definition which defines the type of a

member of that class. This type specification is based

solely on the interface to an instance. It contains no

information about the implementation of that instance.

We define the implementation of a member of a class in

Chapter 5

Page 75

the exemplar for that class (discussed in the following

section).

In OOPS-Algol our Stack class definition would look

like this:

Class Stack superClassis Object
{

"Implements a simple stack containing any object"

messagesFor "queries"

isMT typeis proc(->bool) "True if MT"

messagesFor "alteration"

push: newObject typeis proc(Object)
"Pushes an Object"

pop typeis proc(->Object)
"Pops and returns the top object"

} end of Class Stack definition

A class definition begins by specifying the name of the

class and its superclass. The class description is sur­

rounded by braces (or begin end pairs). The first string

is the description of the class which is accessible by

oopsdump (and any future browser). We group the message

definitions by category as in Smalltalk but use mes­

sagesFor to mark the category name. In the class above,

isMT is in the queries category and pop is in the

alteration category. We decided to make the category

Chapter 5

Page 76

name a user defined string for added versatility.

In defining the messages for a class we wanted to

denote the message selector; the arguments to the mes­

sage; the type of the arguments; and the type of the

value returned by the message (if any). We decided on a

combination of the Smalltalk approach (for readability)

and the type specifications of PS-Algol (to save learn­

ing a new way to specify the types). The two parts are

separated by the typeis reserved word. We come back to

the type specification in Chapter 6.

5.3 Creating an Exemplar for a Class

After having defined the class we need to specify

how an instance of that class is to be implemented. We

do this in OOPS-Algol by associating one or more exem­

plars with a class. Here is the appropriate exemplar for

the Stack class defined above:

Chapter 5

Page 77

Exemplar aStack forClass Stack superExemplaris anObject
{

stateis {

}

let stackis := vector 1 :: 10 of anObject
let tos := 1

method isMT typeis proc(->bool); (tos = 1)

method push: newObject typeis proc(Object)
{

}

stackis(tos) := newObject
tos := tos + 1

method pop typeis proc(->Object)
{

}

tos := tos - 1
stackis(tos)

} !aStack

Returns the top object.

The exemplar definition begins with the name of the

exemplar, in this case aStack. We then specify the class

to which this exemplar belongs and the exemplar from

which it is to inherit methods and instance variables.

OOPS-Algol checks the exemplar methods to ensure that

all definitions match those of the class, and that there

is a method defined for every message that is specified

for an instance of that class.

The body of the definition begins with the declara­

tion of the instance variables which we call the state.

We follow PS-Algol syntax for the variable declarations

Chapter 5

Page 78

to avoid confusion. Then the method for each message is

declared. To increase the readability of the exemplar we

decided to duplicate the method definition as used in

the class definition in the exemplar body. We consider

the redundancy presented not to be a problem because if

the message definition changes (the type of an argument

for instance) the method would almost certainly have to

be changed. The body of the method follows all normal

PS-Algol rules for a procedure, enhanced by the OOPS­

Algol additions.

It is not possible to define a variable local to

the exemplar body without including it in the stateis

part of the definition. If this was allowed unwanted

interaction between clones of an exemplar would occur as

we only keep one copy of the closure for each exemplar.

5.4 Creating an Instance of a Class

Having defined the class and the exemplar of the

stack we can now use it. We create the instance of a

class by cloning one of the exemplars for that class.

For example:

Chapter 5

Page 79

let aNewStack := [aStack clone]

It is worth mentioning that the above code fragment

can be used in any OOPS-Algol program compiled after the

class and exemplars have been defined. This is because

the OOPS-Algol system stores all of the classes that

have been defined, and all exemplars defined for each

class in the persistent store. This is not possible in

C++ or Objective-C without including numerous header

files. OOPS-Algol ensures that names are kept unique to

prevent confusion and can tell from the aStack clone

expression that the type of aNewStack will be Stack.

5.5 The Stack Revisited

We now finish off our stack by extending it to

include the AnnotatedStack used in Chapter 3.

Chapter 5

Class AnnotatedStack superClassis Stack
{

Page 80

"Implements a Stack that allows notes to be attached to
its elements"

messagesFor "alteration"

attachNote: newNote typeis proc(string)
"Attachs the string newNote to the top item of
the stack"

messagesFor "accessing"
getNote typeis proc(->string)

"Gets the note (if any) for the top item of the
stack"

} !AnnotatedStack

As with the other programming languages we only define

the new messages, together with the class's superclass.

Here is the exemplar:

Chapter 5

Page 81

Exemplar anAnnotatedStack forClass AnnotatedStack
superExemplaris aStack

{

}

stateis {
let notes := vector 1 :: 10 of 1111

}

method attachNote: newNote typeis proc(string)
{

notes(tos-1) := newNote Note that we use aStack's
! state variable tos

}

method getNote typeis proc(->string)
{

notes(tos-1)
}

As can be seen this is very similar to all of the

other languages we have examined. The difference is that

we have separated the class definition from the imple­

mentation explicitly.

Chapter 5

Page 82

6. OOPS-Algol's Type System.

It is useful to present our view of the purpose of

a type so that the motivations for the decisions we made

concerning OOPS-Algol's type system become clear. A type

can be viewed as serving two purposes:

1. Defining valid forms of interaction with an

instance of a type.

2. Protecting the underlying representation of an

instance of a type.

A class in OOPS-Algol defines the valid forms of

interaction with an instance by defining the messages

that can be sent to that instance. In OOPS-Algol a

class contains no information about how an instance

should be implemented. As OOPS-Algol's class definition

meets the purposes we identified above, we can treat an

object's class as its type. We use the terms type and

class interchangeably.

Our definition of subtyping in OOPS-Algol is the

simple one presented in Chapter 4: Class B can be a sub­

type of class A if class B can be used in place of class

Chapter 6

Page 83

A. To put this in another way, class B should be able

to respond to all of the messages to which class A can

respond.

6.1 Limitations On Subtyping in OOPS-Algol

We have the following limitations on subtyping in

OOPS-Algol:

1. No automatic subtype determination.

2. Subtypes are restricted to objects.

3. Message selectors must have uniquely determinable

types

4. Subclasses can not exclude message definitions.

We will examine these separately in the following

sections.

Chapter 6

Page 84

6.1.1 Subtype Determination

[Cardelli 84) describes a type system where the

subtype relationships can be determined without the pro­

grammer explicitly declaring the supertype of a new

type. The semantics he describes determine type

equivalence by using the names and types of fields in a

record. If a type B has at least the field names of

another type A, and the types of the fields match (or

are subtypes of the field types in type A) then type B

can be considered a subtype of A. This can be easily

translated into object-oriented programming terms by

equating the fields in a record with message selectors,

and the types of the fields with the types of the mes­

sage selectors.

OOPS-Algol forces the programmer to name the super­

class of a new class for the following reasons.

(i) Naming the superclass in the subclass is a useful

form of documentation. It allows the compiler to mark

the new subclass as being dependent on the superclass,

thus allowing the user to be warned if a change to a

superclass will invalidate that superclass's subtypes.

(ii) Explicit superclass naming helps other programmers

Chapter 6

Page 85

to understand the system.

(iii) Implicit subtyping can cause a class to be errone­

ously regarded as a subclass of another. We present an

example to demonstrate this.

Suppose we have a system where we define a class,

Runner, which responds to messages to set a runner's

name, age, and speed. We could also have a class Vehicle

which also has a name, age, and speed. With the seman­

tics presented in [Cardelli 84] these two conceptually

different entities are treated as being equivalent

because they respond to the same messages. Given this

we could define a new class, Car, which adds information

about its engine. The car would now be a valid Runner

because it responds to all of the messages of a Runner,

with additional messages to handle engine information.

As with all such examples this is perhaps a little

contrived, but it is not difficult to imagine a big sys­

tem where this could become a real problem. This is the

main reason why we force explicit superclass naming.

Chapter 6

Page 86

6.1.2 Subtype Restrictions

Subtyping does not work for the standard PS-Algol

types (int, real et cetera). It only operates on

objects. This is because we are not redefining PS-Algol,

we are adding to it. If we wanted a full subtyping sys­

tem we would have to design a new language, which is

beyond the scope of the research leading to this thesis.

An advantage of a hybrid language is that we can

escape to the underlying language, allowing us to per­

form time critical operations efficiently. By using an

already existing language to build upon we do not force

people to learn YAPL (Yet Another Programming Language),

they merely need to build on their already existing

knowledge of PS-Algol. We do however lose such useful

features as making Integer a subtype of Real.

6.1.3 Message Selector Types

As PS-Algol determines the type of a variable by

looking at the right hand side of the initialising

expression, we have to be able to determine an

expression's type at compile time. It is sometimes

impossible to determine the class of an object at com­

pile time so we have to be able to determine the return

type of a message expression from the selector alone.

Chapter 6

Page 87

This forces the following restrictions on the type

of a selector:

1. Where a PS-Algol primitive type is used it must

match exactly with all other definitions for the

message selector being defined.

2. Where an OOPS-Algol Class is being used, the mes­

sage selector must follow these rules:

1. The class of each argument must be the same

class, or a superclass of, the superclass's

corresponding argument for the same selec­

tor.

2. The class of the return value must be the

same, or a subclass of, the superclass's

message's return value.

Two points need further explanation here.

1. The OOPS-Algol system remembers details about

every class that has been defined since the system

was first used. This means that the compiler has

information about every possible message selector,

Chapter 6

Page 88

and the types required for a message using that

selector. When we say 'with all other definitions

for the message selector' we mean all selectors

that have ever been defined, not just the selec­

tors that are superclasses of the new class.

2. The class of the subclass's message arguments are

not allowed to be a subclass of the superclass's

arguments. These rules also apply to procedure

arguments of messages with respect to arguments

and return values. This is so that the following

situation can not occur:

Class Number superClassis Object
{

"Number Class"
messagesFor "adding"

add: addend typeis proc(Number->Number) "Adds things"
}

Class Integer superClassis Number
{

"Integer Class"
messagesFor "adding"

add: addend typeis proc(Integer->Integer)"Adds things too
}

Class Real superClassis Number
{

... defined as above except for reals
}

Chapter 6

Page 89

The definition for Integer is invalid because the

Number class specifies that a Number should be able

respond to the message add: with a Number as an argu­

ment. This means that we should be able to send an

instance of Integer an add: message with a Real argument

because a Real is a Number. This is not possible as we

have defined the type of the argument for add: in the

Integer class as being an Integer (or a subclass

thereof). As Real is not a subclass of Integer, sending

this message will fail.

We could eliminate this problem in many cases if we

had included the idea of a coercer function to convert

between types as in [Bruce & Wegner 86]. This changes

the meaning of subtypes so that instead of saying 'can

be used instead of', we say 'can be coerced into the

appropriate type'. This is much more powerful than our

simple technique but would require a correspondingly

more complex, and slower, system. We decided this was

not justified because the main use of this capability is

for number representation. PS-Algol already has effi­

cient methods for handling numbers so this capability is

not necessary to make OOPS-Algol useful.

Chapter 6

Page 90

To attempt to clarify some of these rules we will

present a few arbitrary examples to show how the subtyp­

ing works. We will skip some syntactic details required

by OOPS-Algol for brevity.

Class One superClassis Object
{

sell: anotherOne typeis proc(One->One)
}

Class Two superClassis One
{

sell: anotherOne typeis proc(One->Two)
}

The above example is valid because Two's sell: message

takes the same argument as One's, and returns a subtype

of One. Lets add another class:

Class Three superClassis Two
{

sell: yetAnotherOne typeis proc(One->One)
}

This is not valid because the return value will be a One

which is not a subclass of Two. Note that the place

holder for the argument, in this case yetAnotherOne,

does not have to be the same as the superclass's place

holder.

Now we will look at some examples that have pro­

cedure arguments.

Chapter 6

Class OneP superClassis Object
{

Page 91

sel: aProc typeis proc(proc(One->Object))
}

This definition means that aProc is a procedure which

takes an object of type One and returns an Object. Note

that the message has no return value. Now we define a

subclass of this:

Class TwoP superClassis Object
{

sel: anintProc typeis proc(int->int)
}

This is invalid because even though TwoP is a subclass

of Object, not OneP, the message selector is the same,

so we have to follow the rules we outlined above. They

are violated because the anintProc uses PS-Algol base

types, and they do not match the types defined for aProc

in the definition for OneP. It would be valid if we did

this:

Class TwoP superClassis Object
{

sel: aProc typeis proc(proc(Object->TwoP))
}

This is valid because Object is a supertype of One as

defined in OneP's message, and TwoP is a subtype of

Object defined in OneP's message.

Chapter 6

Page 92

6.1.4 Message Definitions

It is not possible for a subclass to undefine mes­

sages valid for its superclass, so we have eliminated

the problem of a subclass being unable to respond to a

message defined for its superclass.

6.2 An Example Class Hierarchy

We will present an example to illustrate the above

ideas. The classes we will use will provide a small

subset of the Smalltalk's Collection subclasses. We will

be presenting only a few of the methods that are pro­

vided in Smalltalk for clarity reasons.

Chapter 6

Page 93

Class Collection superClassis Object
{

}

"Common methods for all collections"

messagesFor "adding"

add: newObject typeis proc(Object)
"Add newObject to the collection"

messagesFor "removing"

remove: oldObject ifAbsent: exceptionProc
typeis proc(Object,proc())

"Remove oldObject from the collection, if
it does not exist run exceptionProc"

messagesFor "testing"

includes: anObject typeis proc(Object->bool)
"Return true if anObject exists in the
collection"

isEmpty typeis proc(->bool)
"Return true if the collection is empty"

occurrencesOf: anObject typeis proc(Object->int)
"Return the number of occurrences of
anObject in the collection"

Class Bag superClassis Collection
{

}

"This is a collection class that allows duplicate
occurrences"

messagesFor "adding"
add: newObject withOccurences: nmr

typeis proc(Object,int)
"Add nmr newObjects to this collection"

Chapter 6

Class Set superClassis Collection
{

Page 94

"This is a collection that does not allow duplicates"
}

The above example shows how we define a class, in this

case Collection, to contain the most general operations

for its subclasses. Notice that when we define the type

of an object that can be added into a collection we give

it the most general type, Object. This means that we can

have any mixture of object types in a collection as

every class is a subclass of Object. However, as previ­

ously mentioned, we can not add a PS-Algol base type to

a collection, as the base types are not objects.

We then define the classes that can respond to

Collection's messages, as well as their own. The first

one, Bag, allows duplicate entries to be made. To make

this easier to use we have defined a message

add:withOccurences: which allows us to add many copies

of an object.

The definition of Set is interesting because it

shows that it is possible to define a subclass that has

no messages other than those provided in the superclass.

If we were going to define a Collection that did not

Chapter 6

Page 95

allow duplicates we could make the exemplar a member of

the Collection class. However it is much clearer to

create a new class that states that it will not allow

duplicates. This removes some of the temptation to dig

into the implementation details of class exemplars.

The class Collection could be considered an

abstract class as it is unlikely that an exemplar would

be defined that names Collection as its class.

Chapter 6

Page 96

7. The Exemplar Hierarchy in OOPS-Algol.

In the previous chapter we saw how the behaviour of

members of a class is defined in OOPS-Algol. In this

chapter we show how the behaviour for a class is imple­

mented in OOPS-Algol.

OOPS-Algol allows more than one implementation to

be specified for a class, in the same way as the scheme

described in [LaLonde, Thomas et al 86]. We associate

one or more exemplars with a class and allow the exem­

plars to inherit methods and instance variables from any

other single exemplar.

OOPS-Algol allows the exemplar hierarchy to be

independent from the class hierarchy. This means that an

exemplar does not need to inherit from another exemplar

which belongs to the superclass of the class being

implemented by the new exemplar.

When an exemplar is defined it can only respond to

those messages that are defined for its class. As an

exemplar can inherit from any other exemplar, it is pos­

sible that the exemplar being inherited has methods

defined for messages that are not permissible for an

Chapter 7

Page 97

instance of the new exemplar's class. The compiler han­

dles this by discarding message implementations (with a

warning to the user) that are not defined for an

instance of that type. In this way we can guarantee that

an instance of class will only respond to messages for

which we have all the type information.

7.1 The AnnotatedList Revisited

We are now ready to return to the problem posed in

Section 2.4. We defined a List class, and decided, for

efficiency reasons, to use a different implementation

for empty and non-empty lists. We then created an Anno­

tatedList and tried to produce a suitable class hierar­

chy to match the problem. Our attempts failed because we

were trying to match the conceptual hierarchy to the

implementation hierarchy. We now look at how we would

implement this in OOPS-Algol.

7.1.1 The List Class Definition

The first thing we do is to define the class defin­

itions.

Chapter 7

Page 98

Class List superClassls Object
{

"A List Object"

messagesFor "Miscellaneous!"

add: newObject typels proc(Object->List)

"Adds newObject to the list, it returns the list
object which may be new"

forEach: procToUse typels proc(proc(Object->bool)->int)

} List

"Runs procToUse on each object in the list, passing
the object as an argument, until procToUse returns
false.
A count of the objects processed is returned"

The above definition is just enough to give the

flavour of our List object, We define rhe Rdrl: me~s~ge

to return a List. This is to allow us to return a non­

empty list from an empty list if we should try to add

something to an empty list.

7.1.2 The List Implementation

Now we define two exemplars to implement this. One

exemplar is intended as an empty list only, and the

other is used for a list with data.

Chapter 7

Page 99

Exemplar nonMTList forClass List superExemplaris anObject
{

}

statels {
! Define a structure to link list elements together
structure listitem(pntr data,next);
! Create the head and tails of the list
let listTail = listitem(nil,nil)
let listHead = listitem(nil,listTail)

}

method add: newObject typels proc(Object->List)
{

}

! Create a structure for the new item
let newitem = listitem(newObject,nil)

! Link the new item onto the start of the list
newitem(next) := listHead(next)
listHead(next) := newitem
self ! Return this object

method forEach: procToRun typels
proc(proc(Object->bool)->int)

{

let thisitem := listHead(next)
let count:= 0
while thisitem ~= listTail do {

count:= count+ 1
if procToRun(thisitem(data)) then

thisitem := thisitem(next)
else

thisitem := listTail ! Force an exit
}

count Return count
} !forEach:

The above implementation represents a list by link­

ing instances of the listitem structure together. We use

a fixed head and tail to remove special case insertion

and deletion. Notice that we do not use any objects in

our implementation of a list. To improve the efficiency

Chapter 7

"GfASSEY UNlVtRSITY
LIBRARY

Page 100

of our implementation we use native PS-Algol constructs

to build a list, not other objects.

Now we have the non-empty list exemplar, we can

create the empty list exemplar.

Exemplar MTList forClass List superExemplaris Object
{

}

statels {} ! Empty state.

method add: newObject typels proc(Object->List)
{

}

! Here we return a new list that is non-empty
let newList := [nonMTList clone]
newList := [newList add: newObject]
newList

method forEach: procToRun typels
proc(proc(Object->bool)->int)

{

0
}

We do not need to run anything as the list is empty,
so we just return a count of zero

The above example has demonstrated how two exem­

plars can exist for the same class. When we want to add

something to an empty list we create a new nonMTList. We

do this by sending the clone message to the nonMTList

exemplar. This exemplar does not have to be visible in

the scope of the method being defined. OOPS-Algol

remembers all previously defined exemplars and returns a

copy of the appropriate exemplar when the clone message

Chapter 7

Page 101

is sent. This is convenient, but does force the imple­

mentor to choose unique names.

Our implementation of forEach: is very simple for

the MTList as we know the list must be empty.

7.1.3 The AnnotatedList Class Definition

Now we can define our AnnotatedList class, and the

appropriate exemplars for that.

Class AnnotatedList superClassis List
{

}

"This is the same as List except we can add some notes"

messagesFor "Miscellaneous"

add: newObject note: aNote typeis proc(Object,string->List)

"Add newObject to the list, with the note aNote. It
will return a possibly new list"

forEachNote: procToRun typeis
proc(proc(Object,string->bool)->int)

"Run procToRun on each member of the list. The object
will be passed as the first argument, with the note
as the second argument.

procToRun should return false when it is finished.
The message will return the number of items processed"

In our new class we have added two new messages,

add:note: and forEachNote:. We still have the original

Chapter 7

Page 102

messages, add: and forEach: which remain unchanged,

allowing us to treat an AnnotatedList as a List. Here

are the exemplar definitions for the AnnotatedList:

Exemplar nonMTAnnotatedList forClass AnnotatedList
superExemplaris Object

{

stateis {

! Define a structure to shove in the list
structure listitem(pntr data,next; string note);

! Create the head and tail of the list
let listTail = listitem(nil,nil,"")
let listHead = listitem(nil,listTail,"")

}

method add: newObject typeis proc(Object->List)
{

[self add: newObject note: ""]
}

method add: newObject note: aNote typeis
proc(Object,string->List)

{

}

! Create a structure for the new item
let newitem = listitem(newObject,nil,aNote)

! Link the new item onto the start of the list
newitem(next) := listHead(next)
listHead(next) := newitem
self ! Return this object

Chapter 7

}

Page 103

method forEach: procToRun typeis
proc(proc(Object->bool)->int)

{

}

!We have to reimplement this as we use a new structure

let newProc = proc(Object theObject;
string aString->bool)

{

procToRun(theObject)
}

[self forEachNote: newProc J

method forEachNote: procToRun typeis
proc(proc(Object,string->bool)->int)

{

let thisitem := listHead(next)
let count:= 0
while thisitem ~= listTail do {

count:= count+ 1

if procToRun(thisitem(data),thisitem(note)) then
thisitem := thisitem(next)

else
thisitem := listTail ! Force an exit

}

count ! Return count
}

There are a number of points worth mentioning about

the above implementation. Firstly, we have made Object

the super exemplar. This was done because we can not

reuse any code from nonMTList as we are using a dif­

ferent structure as our list item. PS-Algol would raise

a runtime error if we tried to access a field from this

structure with the code that was used in nonMTList

Chapter 7

Page 104

because the structure definition is different.

To increase the amount of code sharing we reimple­

mented add: and forEach: by sending self a message with

the appropriate extra arguments set. For add: we just

set the note to the empty string. In the implementation

of forEach: we wrapped up procToRun in another procedure

which took the arguments required for forEachNote: and

sent the forEachNote: message to self.

7.1.4 The AnnotatedList Exemplar

Exemplar MTAnnotatedList forClass AnnotatedList
superExemplaris MTList

{

stateis {} t Empty state.

method add: newObject typeis proc(Object->List)
{

[self add: newObject note: ""]
}

method add: newObject note: aNote typeis
proc(Object,string->List)

{

}

let newList := [nonMTAnnotatedList clone]

newList := [newList add: newObject note: aNoteJ
newList

Chapter 7

}

Page 105

method forEachNote: procToRun typeis
proc(proc(Object,string->bool)->int)

{

0 Just return the count
}

In our above implementation we do not need to reim­

plement the forEach: method from the superexemplar as

the MTList returns predetermined answers, with no struc­

ture references. We do need to reimplement the add:

message to ensure that the correct exemplar gets

returned.

7.1.5 The New Annotated.List Hierarchies

Now that we have defined the classes and the exem­

plars we present diagrams to illustrate the hierarchies

in order to provide a comparison with the alternatives

in Chapter 2. Here is the class hierarchy:

Object

List

AnnotatedList

This is much more acceptable than the original

alternatives from Chapter 2. There are no implementation

details to hide the simplicity of the relationships

Chapter 7

Page 106

between the classes.

Now we draw the exemplar hierarchy.

Object
I \

I \
I \

I \
I \

MTList nonMTList nonMTAnnotatedList

nonMTAnnotatedList

The diagram shows how the complexity has been

shifted to the implementation hierarchy. This is

acceptable because our implementation design was based

on performance considerations, which should only really

impact the implementation details of a system, not the

conceptual design.

7.2 Summary

This example demonstrates how we can hide the com­

plexity of the implementation hierarchy from a user. The

user of a class only needs to know the relationship

between classes, and the names of the exemplars used to

create instances of that class. If we had not separated

our two hierarchies in OOPS-Algol the user would have

Chapter 7

Page 107

been burdened with an unnecessarily complex class

hierarchy, as in the ones presented in Section 2.4.

OOPS-Algol allows the implementor of a class to

make arbitrary decisions about the exemplar hierarchy

based solely on implementation considerations. The

implementor does not need to consider the impact on the

conceptual structure of the classes. We consider this to

be an important advantage of OOPS-Algol.

Chapter 7

Page 108

8. Conclusion and Future directions.

8.1 The Work Completed

OOPS-Algol provides the support necessary to pro­

gram in an object-oriented fashion. We can share code

easily in OOPS-Algol which is difficult to do in PS­

Algol.

Our type system allows us to separate the logical

design of a system from the physical design in a simple

and versatile manner. We do not have to compromise the

conceptual design of a system in OOPS-Algol in order to

maximise the code sharing between classes.

OOPS-Algol's syntactic structure separates the

implementation of a class from its description. This

property is particularly useful when windowing editors

or development environments are used, as we can open a

window with only the behaviour of the class visible.

We have removed some of the administrative problems

present with other languages that have had objects

retrofitted. OOPS-Algol remembers all of the classes and

exemplars it compiles. This obviates the need for the

Chapter 8

Page 109

many include files required for such languages as

Objective-C or C++ when separate compilation is used.

We have retained the flavour of PS-Algol by clearly

delimiting our new constructs, and by using as much of

PS-Algol's existing syntax as possible. We have the use

of the persistent store in which to keep our objects.

This gives us a considerable advantage over C++ which

has no concept of persistence at all (except that pro­

vided by traditional, file based methods), and we do not

have to resort to Objective-C's passivation mechanism.

All of these factors combine to make OOPS-Algol a

major improvement over PS-Algol when object-oriented

programming is performed.

8.2 Further Work

Possible future work falls into three broad

categories.

1. Performance Improvement.

Chapter 8

Page 110

2. Language Improvements.

3. Support Tools.

We detail these below.

8.2.1 Performance Improvement

Most object based systems today cache the results

of previous method searches. This gives a performance

improvement by preventing the laborious inheritance

hierarchy traversal that is necessary when trying to

locate a method. The performance of OOPS-Algol could be

significantly improved by using this technique.

To give the maximum performance we would need to

extend the PS-Algol abstract machine to be able to han­

dle message switching. This would require changing the

PS-Algol interpreter and compiler to support this. We

would remove the OOPS-Algol preprocessor and replace it

with a compiler that produced PS-Algol abstract machine

code which would reduce the development times.

Chapter 8

Page 111

8.2.2 OOPS-Algol language changes

Multiple inheritance could be added to both the

exemplar and class hierarchies. This would not be diffi­

cult for the class hierarchy, but due to the type con­

straints imposed by PS-Algol this would be difficult for

the exemplar hierarchy. However, although multiple

inheritance is frequently written about, its usefulness

seems to be restricted, and as such may not actually be

necessary.

An interesting idea was presented in [Kristensen,

Madsen et al 87] where parts of a method could be inher­

ited, not just a while method. This would be an

interesting avenue of exploration as it seems that we

spend a lot of time writing similar pieces of code, and

this would be a nice way to exploit the commonality

between them.

It would be possible to improve our subtyping

mechanism by adding coercer functions as described in

[Bruce & Wegner 86]. These functions would allow the

implementor to define conversions between types so that

subtyping could be extended considerably.

Chapter 8

Page 112

In Chapter 7 we showed how OOPS-Algol can have more

that one exemplar for a class, and how we select the

appropriate exemplar depending on the situation. An

interesting avenue of research would be to determine how

the appropriate exemplar might be selected automati­

cally.

Currently we can only implement objects with an

exemplar that must be associated with a particular

class. It would be interesting to extend OOPS-Algol so

that we could automatically delegate the responsibility

for certain messages from any object, to any other

object. As an example, consider a point that does not

keep its own y coordinate, but relies on some other

object to keep that information. Our point would follow

the other point around in they direction whilst retain­

ing independent movement in the x direction. This sort

of technique has particular applicability when windowing

systems are implemented.

8.2.3 Support Tools

It would be desirable to have a number of support

tools implemented to make OOPS-Algol more usable.

Chapter 8

Page 113

Unfortunately PS-Algol has no debugger. This makes

error tracing difficult, forcing the programmer to

insert debugging code whenever errors occur. The imple­

mentation of a debugger would make OOPS-Algol a more

productive environment. This would require the implemen­

tation of a new, interactive interpreter, together with

an extension to the PS-Algol abstract machine to include

information about line numbers and file names so that

source level debugging could be performed.

There is no interactive browser for OOPS-Algol. We

have provided non-interactive reports to detail the

available classes and their exemplars. Given a browser

it would be useful to keep the source code of the exem­

plars under the control of OOPS-Algol so that the user

could peruse the source whilst browsing. Currently we

use the standard Unix tools (SCCS) to control versions

of exemplars.

OOPS-Algol also needs a class library similar to

that of Smalltalk. This would be a significant under­

taking because PS-Algol has no built in window support

(although it does have built in graphics primitives).

The building of a window system in PS-Algol was com­

menced, but it was the laboriousness of that process

Chapter 8

Page 114

that motivated the creation of OOPS-Algol.

Implementing the full class hierarchy would also be

interesting as it would provide a good testing ground

for the separate hierarchies we use in OOPS-Algol.

Chapter 8

Page 115

Appendix 1 - OOPS-Algol Syntax

This appendix defines the syntax of OOPS-Algol. We

have used the same two level grammar used in [PS-Algol

84], extended for OOPS-Algol. We have indicated the

changes to the PS-Algol grammar in italics. The meta

rule changes are limited to the productions for TYPE­

expression and declaration. We have added a new type

object to the hyper rule for NONVOID which we use to

represent an object which is a member of any class. We

do not express the subtyping rules in the grammar, but

assume that when type matching is performed it follows

rules presented in Chapter 6 of this dissertation. We

have extended the PARAM hyper rule to include class and

exemplar to allow for the specification of the class and

exemplar names. The additional rules necessary to sup­

port these changes are placed at the end of the modified

syntax.

We briefly describe the meta-language used. The

description borrows heavily from that used in [PS-Algol

84]. We assume the reader is familiar with BNF syntactic

specification and only explain the extensions to this.

Appendix 1

Page 116

The braces '{'and'}' are used in pairs to enclose

anything that is optional. If the syntactic object can

appear zero or many times the braces are followed by a

'*'. The square brackets '['and']' are also used in

pairs to denote an object that must occur once. When

used with a'*' we have one or many times repetition.

An important extension is to allow the specifica­

tion of type for a production. This is done by separat­

ing the type name from the syntactic category with a '

' . Consider:

<pixel-literal>

<int-literal>

.. -.. -

.. -.. -
onloff

[<digit>]*

This example indicates that the terminal symbols, on and

off are a literals. The type of these literals is pixel.

An integer literal is specified to consist of one or

more digits.

By using the hyper rules we have a means of match­

ing the types of productions. For example:

<NONVOID-assignment>::= <NONVOID-assign>:=<NONVOID-clause>

Appendix 1

Page 117

This example shows how we can match types with our

meta language. The name NONVOID refers to a hyper rule

which can represent any type in the language that is not

void. Because every instance of NONVOID in the produc­

tion given above must match, we are indicating that an

assignment must involve a variable of the same type as

the value of the clause being assigned to that variable.

The example also shows how the use of hyper rules

shorten the grammar somewhat, as we do not need a pro­

duction for every type in the language. NONVOID stands

for all possible non-void types.

For a more complete explanation of the meta

language used to describe the grammar see [PS-Algol 84].

The grammar for OOPS-Algol follows:

Appendix 1

Hyper Rules

ARITH

COMPARABLE

SIMPLE

LITERAL

IMAGE

NONVOID

TYPE

PARAM

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

Meta Rules

<void-program>

<TYPE-sequence>

<void-sequence>

<void-clause>

Page 118

int:real

ARITHistring

COMPARABLElboolipixel

SIMPLEipntrlpic

#pixell#cpixel

LITERALIIMAGEl*NONVOIDITYPE.proc:object

NONVOIDlvoid

NONVOIDlstructure:NONVOID.fieldiclass:exemplar

.. -.. -

.. -.. -
<void-sequence>?

[<declaration>i<void-clause>];
<TYPE-sequence>:

<TYPE-clause>

::= <declaration>

::= if<bool-clause>do<void-clause>i
repeat<void-clause>while<bool-clause>

{do<void-clause>}I
while<bool-clause>do<void-clause>:
for<int-identifier>=<int-clause>

to<int-clause>
{by<int-clause>}do<void-clause>

<write> :
<NONVOID-assignment>
<raster.clause> :
<void-expression>

<NONVOID-assignment>::= <NONVOID-assign>:=<NONVOID-clause>

Appendix 1

<raster.clause>

<raster.op>

<TYPE-clause>

<NONVOID-clause>

<write>

<write.list>

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

Page 119

<raster.op><IMAGE-clause>onto
<#pixel-clause>

ror:rand:xor:copy:nandlnor:not:xnor

if<bool-clause>then
<TYPE-clause>else<TYPE-clause>:

case<NONVOID-clause>of
[<NONVOID-clause>{,<NONVOID-clause>}'

:<TYPE-clause>;]*
default:<TYPE-clause>

<NONVOID-expression>

write<write.list>l
out.byte<int-clause>,<int-clause>

<SIMPLE-clause>{:<int-clause>}
{,<write.list>}

Appendix 1

<TYPE-expression>

<bool-expression>

<bool-exp0>

<bool-expl>

<bool-exp2>

<TYPE-exp2>

<TYPE-exp3>

<ARITH-exp3>

<TYPE-exp4>

<real-exp4>

<int-exp4>

<pic-exp4>

<pixel-exp4>

<TYPE-exp5>

<ARITH-exp5>

<TYPE-exp6>

<string-exp6>

.. -.. -

.. -.. -

.. -.. -

.. -.. -

··­.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -
.. -.. -

Page 120

<TYPE-exp3> : <TYPE-mesg.expression>

<bool-exp0>{or<bool-exp0>}*

<bool-expl>{and<bool-expl>}*

<COMPARABLE-exp3>[<lt>l<le>l<gt>l<ge>J
<COMPARABLE-exp3>l

<NONVOID-exp2>{[=l<neq>]<NONVOID-exp2>}i
<pntr-exp3>[islisnt]

<structure-identifier>

<TYPE-exp3>

<TYPE-exp4>

<ARITH-exp4>[[+i-]<ARITH-exp4>]*

<TYPE-exp5>

<real-exp5>[[<star>l/J<real-exp5>]*

<int-exp5>[[<star>idiv:rem]<int-exp5>]*

<pic-exp7>[[A:&]<pic-exp7>]*

<pixel-exp7>&[<pixel-exp7>]*

<TYPE-exp6>

[+l-]<ARITH-exp6>

<TYPE-exp7>

<string-exp7>[++<string-exp7>]*

Appendix 1

<TYPE-exp7>

<NONVOID-exp7>

<LITERAL-exp7>

<pic-exp7>

<string-exp7>

<*NONVOID-exp7>

<bounds>

<IMAGE-exp6>

<#pixel-exp7>

<pixel-exp7>

<IMAGE-exp7>

.. -.. -

: : =

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -
: : =

.. -.. -

.. -.. -

.. -.. -

Page 121

<TYPE-name> I
<lcb><TYPE-sequence><rcb>I
begin<TYPE-sequence>end

(<NONVOID-clause>)

<LITERAL-literal>

shift<pic-clause>
by<real-clause>,<real-clause>:

scale<pic-clause>
by<real-clause>,<real-clause>I

rotate<pic-clause>
by<real-clause>I

colour<pic-clause>in<string-clause>I
text<pic-clause>

from<real-clause>,<real-clause>
to<real-clause>,<real-clause>:

<lsb><real-clause>,<real-clause><rsb>

<string-clause>
(<int-clause><bar><int-clause>)]*

vector<bounds>Of<NONVOID-clause>:
@<int-clause>of<NONVOID-typel>

<lsb><NONVOID-clause.list><rsb>

<int-clause>::<int-clause>{,<bounds>}

limit<IMAGE-clause>
{to<int-clause>by<int-clause>}
{at<int-clause>,<int-clause>}I

<IMAGE-exp7>

image<int-clause>by<int-clause>
of<pixel-clause>

<pixel-clause>[(<int-clause>)]*

<IMAGE-clause>
[(<int-clause><bar><int-clause>)]*

Appendix 1

<NONVOID-assign>

<NONVOID-vec.exp>

.. -.. -

.. -.. -

Page 122

<NONVOID-identifier>l
<NONVOID-vec.exp>l<NONVOID-struct.exp>

<*NONVOID-expression>
[(<int-clause.list>)]*

<NONVOID-struct.exp>::= <pntr-clause>
[(<NONVOID.field-identifier.list>)]*

<NONVOID-clause.list>::=<NONVOID-clause>
{,<NONVOID-clause.list>}

<pntr-name>

<NONVOID-name>

<TYPE-name>

<TYPE-proc.call>

<args.list>

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

<pntr-structure.creation>

<NONVOID-identifier>
<NONVOID-vec.exp> l
<NONVOID-struct.exp>

<TYPE-proc.call> i<TYPE-standard.name>

<TYPE.proc-clause>({<args.list>})

[<NONVOID-clause>l
<Structure-identifier>]

{,<args.list>}

<structure.creation>::= <structure-identifier>
{(<NONVOID-clause.list>)}

Appendix 1

<int-standard.name> .. -.. -

Page 123

[lwblupb](<*NONVOID-clause>) I
[readilread.byte]()

<bool-standard.name>::= [eoi:readb]()

<string-standard.name>::=[readlpeeklreads:read.name:
read . a . line J ()

<real-standard.name>::= readr()

<void-standard.name>::= abort

<pixel-literal>

<bool-literal>

<pntr-literal>

<real-literal>

<int-literal>

<string-literal>
<digit>

<Char>

<PARAM-identifier>

<letter>

<declaration>

<let.decl>

<structure.decl>

<field.list>

: : =

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

: : =

.. -.. -

on:off

true:false

nil

<int-literal>.{<int-literal>}
{e{+l-}<int-literal>}I

<int-literal>e{+l-}<int-literal>

[<digit>]*

"{<char>}*"
0:1:2:3:4:s:6:7:8:9

any ascii character

<letter>{<letter>l<digit>I .}*

AIBICIDIEIFIGIHIIIJIKILIMINIOIPI
QIRISIT:u:v:w:x:Y:z:
alblcldlelflglhliljlklllmlnlolpl
q:r:s:t:u:v:w:x:y:z

<let.decl>l<structure.decl>I
<class.decl>l<exemplar.decl>

let<NONVOID-identifier>[=I :=]
<NONVOID-clause>

structure<structure-identifier>
{(field.list)}

<NONVOID-typel>
<NONVOID.field-identifier.list>

{;<field.list>}

Appendix 1

<TYPE.proc-clause>

<void-type.spec>

<NONVOID-type.spec>

<param.list>

<param.spec>

<TYPE-proc.type>

<arg.type.list>

<S.type>

··­.. -

.. -.. -
··­.. -
··­.. -
.. -.. -

.. -.. -

.. -.. -

.. -.. -

Page 124

proc[{<TYPE-type.spec>};<TYPE-clause>:
{<TYPE-type.spec>};nullprocJ

({param.list>})

({<param.list>}<arrow><NONVOID-type>)

<param.spec>{;<param.list>}

<NONVOID-typel>
<NONVOID-identifier.list>i

<structure.decl>i
<TYPE-proc.type>

<TYPE.procedure-identifier.list>

proc({<arg.type.list>}
{<arrOW><NONVOID-type>})

[<NONVOID-typel>i
<TYPE-proc.type>:
<s.type>J {,<arg.type.list>}

structure{(<NONVOID-typel>
{,NONVOID-typel>}*)}

<PARAM-identifier.list>::=<PARAM-identifier>
{,<PARAM-identifier>}*

Appendix 1

Page 125

<NONVOID-typel> .. - {c}<NONVOID-type> .. -
<int-type> .. - int .. -
<real-type> .. - real .. -
<bool-type> .. - bool .. -
<string-type> .. - string .. -
<pntr-type> ··- pntr .. -
<pixel-type> .. - pixel .. -
<#pixel-type> .. - #pixel .. -
<#cpixel-type> .. - :f:cpixel .. -
<pie-type> .. - pie .. -
<proc-type> .. - <TYPE-proc.type> .. -
<*NONVOID-type> .. - <Star><NONVOID-typel> .. -
<arrow> .. - -> .. -
<lcb> .. - { .. -
<rcb> .. - } .. -
<lsb> .. - [.. -
<rsb> .. -] .. -
<star> .. - * .. -
<lt> .. - < .. -
<gt> .. - > .. -
<le> .. - <= .. -
<ge> .. - >= .. -
<neg> .. - = .. -

Appendix 1

Page 126

All of the following productions have been added
to support OOPS-Algol.

! A message expression that returns any type
<TYPE-mesg.expression> ::= <lsb><TYPE-mesg.expr><rsb>

<TYPE-mesg.expr>

<receiver.expr>

<object-mesg.expr>

<TYPE-selector.args>

.. -.. -

.. -.. -

.. -.. -

.. -.. -

<receiver.expr><TYPE-selector.args>

<Object-expression>

<exemplar-identifier> clone I
<receiver.expr><object-selector.args>

<TYPE-unary.selector> I
<TYPE-keyword.selector>

<TYPE-unary.selector>::= <TYPE-identifier>

<TYPE-keyword.selector>::= {<TYPE-identifier>:
<NONVOID-expression>}+

<class.decl>

<class.body>

<class.desc>

<mesg.category.body>

<mesg.category>

<mesg.type.body>

<TYPE-mesg.type>

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

.. -.. -

Class <class-identifier>
superClassis <class-identifier>
[<rcb><Class.body><lcb>I
begin<class.body>endJ

<Class.desc>{<mesg.category.body>}*

string-literal

messagesFor<mesg.category>
{<mesg.type.body>}+

string-literal

<mesg.type><mesg.desc>

[<TYPE-unary.selector>
l<TYPE-keyword.selector.decl>J
typeis<TYPE-proc.type>

<TYPE-keyword.selector.decl> ::= {<TYPE-identifier>:
<NONVOID-identifier>}+

<mesg.desc>

<exemplar.decl>

.. -.. -

.. -.. -
string-literal

Exemplar <exemplar-identifier>
forClass <class-indentifier>

Appendix 1

<exemplar.body>

<state.body>

<method.definition>

<TYPE-method.body>

.. -··-

.. -.. -

.. -.. -

.. -.. -

Page 127

superExemplaris <exemplar-identifier>
[<lcb><exemplar.body><rcb>:
begin<exemplar.body>end]

stateis[<lcb><state.body><rcb>:
begin<state.body>end]

{method.definition}+

{<let.decl>}*

<TYPE-mesg.type>
[<lcb><TYPE-method.body><rcb>i
begin<TYPE-method.body>end]

<TYPE-clause>

Appendix 1

Page 128

Appendix 2 - Object Representation in OOPS-Algol

This section provides a brief description of how we

represent objects in OOPS-Algol, and how we have come to

terms with PS-Algol's type restrictions to allow us to

use inheritance.

The technique employed in OOPS-Algol to implement

objects are very different from those used previously,

as described in Appendix 4. In OOPS-Algol we store the

instance variables in an instance's structure, and pass

references to fields within this structure to the

methods for an exemplar.

As a precursor to describing the structures used in

OOPS-Algol we need to explain what an id is. Previous

experimentation with PS-Algol had shown that string com­

parisons were slow. To overcome this in OOPS-Algol we

convert all strings used for message selectors and

instance variable names into unique integers, called

ids. This conversion is done at compile time so that no

overhead is present when a program is run. We use a

table to map strings to ids and vice versa. This table

is held in the persistent store so that the numbers

remain unique across invocations of OOPS-Algol.

Appendix 2

Page 129

We now describe the most important structures used

to represent instances and exemplars in OOPS-Algol.

The Instance Structure

An instance in OOPS-Algol is partly represented by

this structure:

structure
int
pntr
pntr
)

instance.struct(
i.exemplarid;
i.superinstance;
i.IVS

We prefix each field with i to ensure that the

structure fields are unique. This approach is also used

in the structures described later. The purpose of each

field is as follows:

i.exemplarid This is the id of the exemplar for this

instance. We use the id instead of a pointer

to the exemplar because when we create a new

exemplar, its address will be different. This

means that the instance that referred to the

old exemplar will be referring to an out of

date exemplar (PS-Algol will not delete this

exemplar in garbage collection as it is still

Appendix 2

Page 130

referenced). This would be repeating one of

the problems with our original attempt, so we

use the id as an index into a table of exem­

plars which is kept in the persistent store.

When we update an exemplar, we simply replace

the old one in the table.

i.superinstance This points to the superinstance for

this instance. This is necessary because the

superexemplar's methods must still reference a

structure containing the instance variables

with the same signature (that is, the same

fields and types of fields) as when it was

originally compiled. We pass the instance

variable structure from this instance to any

methods defined in the superexemplar.

i.IVS This is a pointer to a structure containing

the instance variables for this structure.

This contains pointers to structures contain­

ing the instance variables. This is a tech­

nique used to allow the use of maivs which are

described a little later.

Appendix 2

Page 131

The Exemplar Structure

This is the structure used to hold information for

an exemplar. Instances of this structure are stored in

the exemplar table for reference by other OOPS-Algol

programs, and instances.

Here is the definition of that structure:

structure exemplar.struct(
string e.exemplarName;
int e.exemplarid;
int e.superExemplarid;
proc(int->pntr)e.grabEMProc;
proc(int,pntr->pntr)e.grabIVProc;
proc(->pntr)e.newProc
)

We examine each field in more detail.

e.exemplarName This is the name of the exemplar. We

keep this in case the id table should become

corrupted and we need to rebuild it.

e.exemplarid This is the id of the exemplar. This used

as the key in the exemplar table.

e.superExemplarid This refers to the superexemplar for

this exemplar. It is used when searching for

methods that are not implemented in this

Appendix 2

Page 132

exemplar.

e.grabEMProc This is a procedure that returns an

instance of exemplarMethod.struct for the mes­

sage with the selector id passed. We describe

this structure later.

e.grabIVProc This is a procedure that accepts the

instance variable structure (i.IVS) of an

instance, the id of a particular variable, and

returns a pointer to the location of the vari­

able. This procedure is necessary because we

have to bind the accessing of instance vari­

ables with the object implementation so that

we do not have to keep the names of every

field of every structure in the system unique.

e.newProc This is the procedure that returns a new

instance of the class implemented by this

exemplar.

Appendix 2

Page 133

The Exemplar Method Structure

This structure is used to hold the procedures

required to be used when we execute the method for a

message. This is complicated by the fact that we have to

have one message procedure for every possible method.

This means that we have to send the arguments for a mes­

sage in a structure (so that we can use a pointer). It

is worth looking at the declaration of the procedure

used to send messages at this point.

let sendMsg = proc(int selectorid;!
pntr clientI, !

thisI,
args;

string srcFile;
int srcLine;

->pntr)

Message Selector Id
Original Instance
This Instance
Arguments to the method
Name of source file
Line in source file from
whence this message is sent
Value is returned in a
structure.

As you can see, we have had to use pointers where

ever values of different types might be returned. The

value is actually held in a structure created by the

OOPS-Algol preprocessor to hold a value of the appropri­

ate type. The arguments clientI and thisI are used to

resolve references to self when we are inheriting

methods. clientI is the original instance receiving the

message, and thisI is the current instance being looked

Appendix 2

Page 134

at. These are used to implement the semantics for refer­

ence to self discussed in the main body of this thesis.

Now we look at the exemplarMethod.struct

structure exemplarMethod.struct(
proc(pntr->pntr)em.method;
pntr em.maivsList;
proc(pntr,int,pntr->pntr)em.setMaiv;
proc(pntr,int->pntr)em.getArg
)

em.method This is the procedure that implements the

message. It accepts one argument, the maiv

structure, which is an abbreviation for Method

Arguments and Instance Variables. This is a

structure created by the OOPS-Algol preproces­

sor to hold all the data necessary for the

method to execute. It returns a pointer to a

structure containing the value returned by the

method.

em.maivsList This points to a list describing the

fields used in the maiv structure. This is

accessed at runtime by sendMsg to determine

what values need to be injected into the maiv

structure.

Appendix 2

Page 135

em.setMaiv This procedure takes the id of a field in

the maiv and injects a pointer to the value

into it for use by the method. If a null maiv

was passed as an argument, it will create one,

returning the address of this new maiv.

em.getArg This procedure extracts a member from the

arguments structure passed to sendMsg so that

it can be inserted into the maiv.

An outline of the message switch

To give some idea of how the system fits together,

the following sequence of actions occurs when a message

is sent.

1. The exemplar chain is followed until we find one

with the required method implementation.

2. The maiv for that method is built by iterating

over the maiv list, instantiating each field

required by the method by either getting the

appropriate instance variable, or the appropriate

message argument.

Appendix 2

Page 136

3. The method is executed, returning the value

returned (if any) to the caller.

The message logic is simple, but has been compli­

cated because of the techniques we have used (in partic­

ular the maiv) to circumvent PS-Algol's structure type

checking.

Summary

We have only lightly sketched the implementation of

exemplars in OOPS-Algol. We have not detailed the

implementation of type checking within the class hierar­

chies as it is straight forward, involving simple list

comparison and storage of class descriptions.

Appendix 2

Page 137

Appendix 3 - The OOPS-Algol Environment

This appendix describes the environment under which

OOPS-Algol runs, and how the user uses it. OOPS-Algol

was built in a Unix environment on Sun 68020 worksta­

tions and an NCR Tower 32/600.

We use the persistent store as the OOPS-Algol

compiler's repository of information about the classes

and exemplars it has compiled. This has obviated the

need for large numbers of include files that are used in

Objective-C and C++ to transfer information between

separate compiles in a system.

How to compile and run an OOPS-Algol program.

An OOPS-Algol program is compiled in the following

manner:

oopsc aProgram.oop

Note that oopsc runs the C preprocessor on the program

to be compiled so the user has the full functionality of

the preprocessor available. This produces a standard

PS-Algol executable (called aProgram.out) from the

source file aProgram.oop which we then interpret using

Appendix 3

Page 138

the PS-Algol interpreter thus:

psr aProgram.out

Time limitations have prevented the implementation

of an interactive browser for PS-Algol so we have imple­

mented a utility to produce a listing of all of the

defined classes in the system and their exemplars. This

is run as follows:

oopsdump

which produces a listing on the standard output which

might look like this:

Classes

Object
"The Root Object"
exemplars anObject
messagesFor "inquiry"

respondsTo: aMessage

Stack
"Implements a simple stack containing any sort of object"
superClassis Object
exemplars aStack mtStack

messagesFor "queries"
isMT typeis proc(->bool) "True if MT"

messagesFor "updating"
push: anObject typeis proc(Object) "push the object"
pop typeis proc(->Object) "pop an object"

Appendix 3

Page 139

The dump names the class, a description of the

class, the superclass for the class, and the exemplars

defined for that class. It then lists out all the mes­

sages defined for that class.

Appendix 3

Page 140

Appendix 4 - Objects in PS-Algol

This appendix describes our initial attempt at

implementing objects in PS-Algol.

The Technique

We originally modelled objects in PS-Algol by using

a structure to contain the methods for a member of the

class. We used the scope rules of PS-Algol to hide the

instance variables, which where visible to the method

procedures.

We did this by creating a procedure which returned

a structure containing a field for each method for a

class. Within this procedure the instance variables were

defined, and any required initialisation was performed.

Message passing was simulated by selecting the appropri­

ate field from an instance's structure and executing the

procedure referred to there.

We present a simple example to illustrate this.

Suppose we want to create a point. First we define the

messages to which a point would respond. Then we create

a structure with the names of the methods as fields:

Appendix 4

Page 141

structure point.struct(proc(->int)get.x.pos;
proc(->int)get.y.pos;
proc(int)set.x.pos;
proc(int)set.y.pos

)

Having done this we define a procedure that will

create a point by returning an instance of point.struct.

Here is one possibility:

let make.point= proc(int x,y->pntr)
{

}

Define a variable which represents self. This is now
visible in any of the procedures within make.point

let self := nil

Here are the procedures which implement the messages.
Notice that they can access x and y as they
are within their scope.

let get.x.pos.proc = proc (->int); X

let get.y.pos.proc = proc(->int); y
let set.x.pos.proc = proc(int newX); X . - newX . -
let set.y.pos.proc = proc(int newY); y . - newY

We create an instance by creating a new instance of
point.struct, filling it with the procedures
we have just defined, and assigning it to self.

self := point.struct(get.x.pos.proc,
get.y.pos.proc,
set.x.pos.proc,
set.y.pos.proc)

! This returns the pointer to our new structure.
self

Appendix 4

Page 142

Note that PS-Algol allows us to leave out the

braces surrounding the statements making up a procedure

when the procedure body consists of only one statement.

The most interesting thing about this technique is

that we have used PS-Algol's first class procedures and

name scoping rules to make the instance variables visi­

ble only to the procedures that should have access to

them. This makes our objects totally safe from unwanted

interference, intentional or unintentional.

This works because when we make a procedure a

member of a structure, as in the self assignment above,

we are also storing the closure of that procedure. In

this case it is the x, y and self locations for this

invocation of make.point. The next invocation will save

new locations for x, y and self.

This is how we would create an instance of point,

and how we would send a message to it:

Appendix 4

! Create a new point with x=lO and y=5
let new.point= make.point(l0,5)

! Change they position
new.point(set.y.pos)(lO)

! Get they position and print it out

Page 143

write "Y pos is ",new.point(get.y.pos)(),"'n"

In PS-Algol we access a field from a structure by

naming the structure and following this with the field

name in parentheses. As our structure members are pro­

cedures we execute the procedure by following the field

reference with the parenthesis enclosed arguments for

that method. In the above example our structure is

called new.point and we accessed the set.y.pos and

get.y.pos fields.

We stored our creation procedures (like make.point

above) in the persistent store, which we then retrieved

when necessary to create new instances.

Appendix 4

Page 144

Analysis

This technique was not suitable for the following

reasons:

1. Unique names are required.

2. Instance variable inheritance was impossible.

3. Class changes did not propagate to already exist­

ing members of the changed class.

We discuss these in more detail in the following

sections.

Unique Names

PS-Algol determines the type of an structure field

reference by looking at the field name. This means that

every field of every structure that is defined within

the current scope must have a unique name, otherwise the

correct field can not be identified, and the type of

that field would be undeterminable. Other languages

overcome this by specifying that a variable will only

refer to a particular structure type. PS-Algol has no

Appendix 4

Page 145

such concept, and allows a variable of type pntr to

refer to any structure.

This is a problem because it is not possible to

define a message with the same selector (the field name

in our technique) to instances of different classes. We

had to name each message uniquely, by appending the

class name to the end of the field name.

Instance Variable Inheritance

We could not inherit any instance variables as they

were not visible outside the creation procedure. This

precluded the possibility of using some of the methods

from a super class. To model inheritance we have to

make the new enhanced object contain an instance of the

old object, and then route messages to the base object

manually.

Appendix 4

Page 146

Class Change Propagation

If we change a method within our creation procedure

this does not change any existing instances of that

class. Even worse, when we add a message to a class,

this change does not propagate to the already existing

members of the class. This means that every PS-Algol

program that creates new instances of the changed class

has to be recompiled, otherwise the program would fail

at runtime because the structure definitions are dif­

ferent.

Conclusion

This approach was employed in building the basis of

a windowing system involving thirteen object classes

consisting of approximately four thousand lines of code.

It produced systems that were difficult to maintain, as

every program using a changed class had to be recom­

piled. It is against this background that OOPS-Algol

was developed, and it demonstrated that the technique

was impractical. Any form of automatic inheritance was

impossible, which negated one of the prime advantages of

object-oriented programming - that of code reuse.

Appendix 4

Page 147

References

We use these abbreviations in the following refer-

ences:

OOPSLA '86 Object-Oriented Programming Systems,

Languages and Applications, September 29-

0ctober 2, 1986, Portland Oregon, SIGPLAN

Notices, Vol. 21, No. 11, (November 1986).

OOPSLA '87 Object-Oriented Programming Systems,

Languages and Applications, October 4-8, 1987,

Orlando, Florida. SIGPLAN Notices, Vol 22, No.

12, (December 1987).

ECOOP '87 European Conference on Object-Oriented Pro­

gramming Paris France, June 1987. Springer­

Verlag. Lecture Notes in Computer Science 276.

PPR Persistent Programming Research Report. These

can be obtained by writing to The Secretary,

The Persistent Programming Research Group,

Department of Computing science, University of

Glasgow, Glasgow Gl2 SQQ.

References

Page 148

[Atkinson, Bailey, et al 83] Atkinson, M.P,

Bailey,P.J., Chisholm, K.J., Cockshott, P.W.,

Morrison, R.: An Approach to Persistent Program­

ming, in The Computer Journal, Vol 26, No 4., 1983

[Atkinson & Morrison 84] Atkinson, M.P. & Morrison R.:

Procedures as persistent data objects, PPR-9-84,

1984.

[Blake & Cook 87] Blank, E. & Cook, S.: On Including

Part Hierarchies in Object-Oriented Languages, with

an Implementation in Smalltalk. in ECOOP '87.

[Bobrow, Kahn et al 86] Bobrow, D.G., Kahn, K., Kic­

zales, G., Masinter, L., Stefik, M., Zdybel, F.:

CommonLoops Merging Lisp and Object-Oriented Pro­

gramming in OOPSLA '86.

[Booch 86] Booch, G.: Object-oriented Development, IEEE

Transactions on Software Engineering, Vol. SE-12,

No. 2, February 1986.

[Barning 86] Borning, A.H.: Classes Versus Prototypes

in Object-Oriented Languages, ACM/IEEE Fall Joint

Computer Conference, November 1986.

[Bruce & Wegner 86] Bruce, K.B. & Wegner, P.: An Alge­

braic Model of Subtypes in Object-Oriented

Languages in SIGPLAN Notices V21 October 1986,

ppl63-172.

[Budd 87] Budd, T.A.: A Little Smalltalk. Addison-

References

Page 149

Wesley, 1987.

[Cardelli 84] Cardelli, L.: A semantics of multiple

inheritance, in Semantics of Data Types. Springer­

Verlag, Lecture Notes in Computer Science, Vol.

173, 1984, pp.51-67

[Cardelli & Wegner 85] Cardelli, L. & Wegner, P.: On

Understanding Types, Data Abstraction, and Polymor­

phism, Computing Surveys, Vol. 17, No. 4, December

1985 (actual publication August 1986).

[Cox 86] Cox, B.: Object-oriented Programming, An Evo­

lutionary Approach. Addison Wesley, 1986.

[DeMarco 78] DeMarco, T.: Structured Analysis and Sys­

tem Specification, Prentice-Hall, 1978.

[Ducournau & Habib 871 Ducournau, R. & Habib, M.: On

Some Algorithms for Multiple Inheritance in Object

Oriented Programming, in ECOOP '87.

[Gane & Sarson 791 Gane, C., & Sarson, T.: Structured

Systems Analysis: tools and techniques. Prentice­

Hall, 1979.

[GNU 1988] GNU: Project GNU, Free Software Foundation,

675 Mass. Ave., Cambridge, MA 02139, USA.

[Goldberg & Robson 83] Goldberg, A. & Robson, D.:

Smalltalk-BO: The language and its Implementation.

Addison-Wesley, 1983.

[Halbert & O'Brien 871 Halbert, D.C. & O'Brien, P.D.:

References

Page 150

Using Types and Inheritance in Object-Oriented

Languages, in ECOOP '87.

[Kristensen, Madsen et al 87] Kristensen, Bent Bruun,

Madsen, Ole Lehrmann, Nygaard, Kristen: Classifica­

tion of actions, or Inheritance also for methods,

in ECOOP '87.

[LaLonde, Thomas et al 86] LaLonde, W.R., Thomas D.

A., Pugh, J.R.: An Exemplar Based Smalltalk, in

OOPSLA '86.

[Lieberman 86] Lieberman, H.: Using Prototypical

Objects to Implement Shared Behaviour in Object

Oriented Systems, in OOPSLA '86.

[Moon 86] Moon, D.A.: Object programming with FLAVORS,

in OOPSLA '86.

[Morrison, Brown, et al 86] Morrison, R., Brown, A.L.,

Bailey, P.J., Davie, A.J.T & Dearle, A.: A per­

sistent graphics facility for the ICL PERQ,

Software Practice and Experience, Vol.14, NO.3,

(1986)

[Morrison, Brown et al 87] Morrison,R., Brown, A., Con­

nor, R., Dearle, A.: Polymorphism, Persistence and

Software Reuse in a Strongly Typed Object Oriented

Environment. PPR-32-87.

[PS-Algol 84] PS-Algol 84: Persistent programming

research group PS-Algol reference manual, 2nd ed.

References

University of Glasgow and University of St.

Andrews, Rep. PPR-12, 1984.

Page 151

[Ritchie & Thompson 741 Ritchie, D.M & Thompson, K.:

The UNIX Time Sharing System, Communications of the

ACM, pp365-375, 1974.

[Stein 87] Stein, L.A.: Delegation is Inheritance, in

OOPSLA '87.

[Stroustrup 86] Stroustrup, Bjarne: An Overview of C++,

in SIGPLAN Notices, Volume 21, October 1986.

[Stroustrup 87a] Stroustrup, Bjane: Multiple Inheri­

tance for C++, in Proceedings of the Spring '87

EUUG Conference. Helsinki, May 1987.

[Stroustrup 87b] Stroustrup, Bjarne: What is Object­

Oriented Programming?, in ECOOP '87.

[Ungar & Smith 871 Ungar, David & Smith, Randall B.:

Self: The Power of Simplicity, in OOPSLA '87.

[Wegner 871 Wegner, P.: Dimensions of Object-Based

Language Design, in OOPSLA '87.

References

