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1. Introduction 
Artificial neural networks (NNs) are a parallel processing paradigm inspired by the way 

biological nervous systems learn and process information.  They have become useful tools for 

process identification because of their ability to represent nonlinear systems and their easy 

development (relative to conventional methods) using measured process data. 

With the advent of artificial NNs the cause of nonlinear process control has been significantly 

advanced.  Neural modelling techniques have been implemented within a range of control 

strategies including inferential control (Willis et al., 1991), model reference adaptive control 
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(Narendra & Parthasarathy, 1990), internal model control and model-based predictive control 

(Hunt et al., 1992; Morris et al., 1994). 

In recent chemical process control research model-based predictive control (MBPC) schemes 

have become one of the most common control methodologies to which NNs have been 

applied.  In general, model-based predictive control is a receding-horizon strategy which aims 

to optimise the control moves over a future horizon based on a desired control objective.  The 

controller makes use of an explicit dynamic process model to estimate the process outputs 

over the prediction horizon.  The model plays a vital role in the operation of the controller 

and, in effect, determining an appropriate model to use constitutes the majority of the 

controller design.   

A model used within MBPC is required to be a dynamic model with the ability to predict 

ahead in time, referred to as n-step-ahead prediction, where n is the length of the finite 

prediction horizon.  Some dynamic models perform well in estimating over a short horizon 

but when faced with a more realistic and useful horizon of say 20 or more time steps their 

performance can degrade rapidly.  This is particularly true for NN models.  The ability to 

predict ahead must therefore be built into the training methodology.  Often the exact length of 

prediction horizon is not known prior to the training of the NN model therefore it is sensible 

to train the network to predict over the entire range of the available data.  A data set which 

spans N time steps would then be used to train a network to predict up to N steps ahead.  For 

the purposes of this paper this is referred to as long-range prediction.  Using the network to 

produce long-range predictions is equivalent to implementing the network as a pure 

simulation model where only past information up to time t is used to predict up to time t + N. 

In general NNs are time-independent models.  To capture the dynamics of a system time-

delay networks are commonly used (Narendra & Parthasarathy, 1990).  

These networks can however dramatically increase the dimensions of the NN, which can 

decrease the speed and performance of the training method.  The use of modular modelling 

approaches can alleviate these problems.  Additionally, by combining prior knowledge of the 
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system to be modelled within a modular structure, one can increase the transparency and 

interpretability of the trained NN model. 

 

2. The evaporation process 
The evaporation process is a good example of a process that requires accurate control.  A 

large proportion of energy used in industry is given to drying processes and evaporators play 

a significant role in the industrial drying of a number of food products like milk powders.  

Good evaporator control is particularly important since evaporators are often located directly 

upstream from energy-intensive processes such as spray drying.  Tight control on the 

evaporator leads directly to better control in the dryer which results in better energy efficiency 

and a more consistent product. 

The subject of this study is a pilot-scale evaporator resident within the Institute of Technology 

& Engineering, Massey University.  The evaporator is a three-effect, falling-film evaporator 

with two preheater stages and a condenser.  A schematic of a single evaporation stage (effect) 

of the pilot-plant is shown in Figure 1Fig. 1. 

Industrial-scale evaporators have many evaporation tubes per effect, however the pilot-plant 

has just a single tube.  The product flow enters the top of the effect through a distribution 

nozzle and plate arrangement and flows down the evaporation tube as a film, boiling off as it 

descends.  The vapour is separated from the liquid and is drawn off to be used as the heating 

medium for the downstream effect.  The concentrated product forms a level in the reservoir at 

the base of the effect and is feed to the next effect for further concentration.  The pilot-plant 

evaporator has yet to be operated with liquids containing a solute, using instead pure water as 

the product stream.  The product concentration is not therefore considered in this paper.  

Incorporating equations for the concentration of a solute would increase the nonlinear 

characteristic of the model. 

The variables of interest are the product temperature in the effect, the concentrate level in the 

reservoir and the product flowrate out of the effect. 
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An analytical model of the pilot-plant evaporator was developed as a simulation tool (Russell, 

1997).  This model was used to compare with the empirical models described later in this 

paper.  The approach used for the analytical evaporator model development was taken from 

the work of Quaak and Gerritsen (1990).  They developed a dynamic model for a multi-effect 

evaporator and used a systems approach in which the process was divided into sub-systems 

for the purpose of analysis.  The sub-systems included the model distribution plate, 

evaporation tube, product transport, and energy flows for each effect.  The states of the model 

are the concentrated product temperatures, flowrates and levels.  The model of the Massey 

University evaporator extended Quaak and Gerritsen’s model to include additional sub-

systems relating to feed, preheater and condenser systems. 

The settling times for the pilot-plant were approximately 1 minute for the concentrate levels 

and of the order of 2 to 4 minutes for the effect temperatures.  It was assumed that the time 

constants for the flowrates were negligible.  Data from the plant was sampled at 5 second 

intervals. 

 

3. Neural network model development 

3.1 Modular modelling approach 
The objectives in the structuring of the NN model were to 

• simplify the training task as much as possible, and 

• develop a model with a more meaningful structure. 

To this end it was decided to create a modular model which made use of prior knowledge of 

the system.  More specifically the NN model uses prior knowledge to create a modular model 

in two ways: 

i) The modelling task was decomposed into smaller elements or modules representing sub-

units within the total system, similar to that used in the analytical model.  The sub-

networks were combined to form the full model according to the structure of the actual 

process.  Each network was used to predict only one output variable.  The inputs were 
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chosen to be those variables that were known to strongly influence the output and could 

include outputs of other sub-networks. 

ii) Following the approach of Mavrovouniotis & Chang (1992) each sub-network was further 

simplified through localised computation by grouping related inputs together.  The 

structure of the sub-networks were determined using the following guidelines: 

• The delayed inputs for each variable were connected to two hidden neurons. 

• All the inputs relating to a particular time instant were also connected to a single 

hidden neuron. 

• All the hidden neurons were connected to a single output neuron. 

These guidelines represent a simple and compact approach to sub-network structuring.  The 

two hidden neurons coupled to each input attempt to capture the dynamics inherent within 

each input variable.  Using only one neuron for this task would not be sufficient to describe 

complex behaviour whereas using more than two neurons is unlikely to significantly improve 

the characterisation. 

The additional hidden neurons attempt to capture the inter-relationship between the inputs at 

each time instance.  These time-related hidden neurons also prevent the network structure 

becoming simply a parallel combination of the inputs and can be considered to provide a 

‘snap-shot’ of the system inputs at a particular time. 

An example of the structure of a sub-network with localised connections and output feedback 

is illustrated in Figure 2.  The output feedback is necessary to produce n-step-ahead 

predictions since past outputs need to be available for the model at future times steps.  This 

structure of network is known as an externally-recurrent network (Su et al, 1992). 

The benefits of a modular modelling approach using prior knowledge are three-fold: 

i) to provide an efficient method for tackling large modelling problems, resulting in 

improved training and generalisation; 
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ii) to provide flexibility so that the model can be easily updated and modified as the need 

arises and allows differing model characteristics and methodologies to be included within 

the single overall model; 

iii) to give structure and an element of transparency to a NN so that the model can be more 

easily analysed and understood with respect to the actual system. 

Point iii) is especially appealing since NNs generally have an amorphous structure whose 

relevance to the physical system they represent is not apparent.  It is also difficult to analyse 

the dependencies occurring within in a network and how the outputs are calculated. 

 

3.2 Sub-network training methodology 
The network training method developed for this study combined a backpropagation through 

time procedure (BPTT) with the Levenberg-Marquardt optimisation technique (Marquardt, 

1963; Levenberg, 1944).  The name Levenberg-Marquardt through time (LMTT) was chosen 

to describe this combined methodology. 

The backpropagation through time (BPTT) approach (Rumelhart et al, 1986; Werbos, 1990) 

uses data consisting of N time steps to train an externally-recurrent network by unfolding the 

network N times to create a feedforward network where the weights in each layer are 

identical.  A modified version of the standard backpropagation (BP) algorithm is used to 

update the weights of the network.  Previous work of a similar nature to this current study has 

employed conjugate gradient and random search techniques with BPTT to overcome poor 

convergence (Su et al, 1992).  The Levenberg-Marquardt optimisation method (LM) offers a 

more efficient solution for network training.  LM can easily be incorporated into the 

backpropagation method replacing steepest descent minimisation and its superior 

performance over steepest descent and conjugate gradient learning in NNs has been 

demonstrated (Hagan & Menhaj, 1994).  However, its main disadvantage is that significantly 

more processing memory is required compared with other methods. 

When using such a recurrent training approach it is necessary during the presentation phase 

that the input matrix is updated with the network predictions.  The training data is presented in 
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batch mode and the network predictions are used to update the input vectors.  This ensures 

that the network is trained using a parallel method (Narendra & Parthasarathy, 1990) and the 

resulting errors are calculated based on a recurrent implementation. 

There are alternative approaches to BPTT for training recurrent networks (Pearlmutter, 1990) 

which have been developed for fully recurrent networks.  These alternative methods are often 

more efficient than BPTT since they are able to train networks without the need for unfolding 

the network.  These approaches have a higher computational cost than BPTT but are more 

memory efficient.  A BPTT approach was chosen because of its simplicity and easy 

adaptation from the standard BP algorithm. 

 

4. The evaporator neural network model 

4.1 Process data 
Pseudo-random sequences were applied to the inputs of the evaporator simulation in order to 

excite the model states and demonstrate the dynamics of the evaporator.  For nonlinear 

identification the response data needs to represent the full range of the system dynamics and 

therefore a larger number of operating levels were applied to each input variable.  Three 

separate trials (carried out on different days) were run in order to obtain three independent 

data sets.  These three data sets were then assigned to be the training, testing and validation 

sets for the evaporator modelling task. 

The random inputs were simultaneously applied to the feed pump, each of the effect pumps 

and the steam valve to produce dynamically rich response data.  A sampling rate of 10 

seconds for the training data was considered appropriate for the short time constants present 

in the evaporator process.  The training data set was selected as the set with the widest 

variation in process outputs.  This data set covered an interval of over two hours.  The testing 

set was 90 minutes long and was also used during the training phase.  The validation data 

covered an interval of 53 minutes and was used to give an unbiased estimate of the model 

performance. 
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4.2 Structure selection 
The network structures were chosen on the basis of known relationships through experience 

with the process and the analytical model development.  Cross-correlation tests were also 

performed both to assist in selecting the correct cause-to-effect relationships and to determine 

the delay spread of the time-delayed inputs into the networks. 

Similar network structures have been used in previous work related to the pilot-plant 

evaporator which made use of test data from the analytical simulation (Russell & Bakker, 

1997).  The model structures used were found to be successful and the study proved a useful 

preliminary study. 

The choice of the number of hidden neurons was not necessary for the most of the sub-

networks since their structures were determined by the guidelines described in Section 3.1.  

Therefore the number of hidden neurons is dependent on the number of input neurons.  The 

only exceptions to this were the flowrate sub-networks which were only first order systems, 

had no time delayed input streams and therefore did not follow the structure rules outlined in 

Section 3.1. 

Some examples of the second effect sub-networks will help to demonstrate the structures 

used. Each network was used to predict only one output variable and its inputs are variables 

that are known to strongly influence that particular output.  The resulting sub-nets have multi-

input, single-output structures. 

The following equations define the functionality of the three sub-networks that make up the 

effect model. 

• The effect two temperature was selected to be a function of the upstream and downstream 

effect temperatures (T1 and T3), the flowrate into the effect (Q1) and previous values of the 

effect two temperature. 

 T2 = f(T1, T3, Q1, T2) (1) 

These variables were selected since the upstream and downstream temperatures directly 

influence the effect temperature and the mass of product in the evaporation tube strongly 
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influences the rate at which the temperature changes.  After investigating cross-correlation 

results and testing a number of model structures it was decided that each input to the 

network would have the same delay spread of four samples. The number of hidden 

neurons used was determined by the guidelines in Section 3.1. 

 

• The effect two concentrate level was chosen to be a function of the flow in (Q1) and out 

(Q2) of the effect, the temperature of the effect (T2) and previous values of the level. 

 L2 = f(Q1, Q2, T2, L2) (2) 

These variables were selected since, according to the analytical model, the change in the 

level is a function of the product flow into the effect and the product and vapour flows out 

of the effect.  The temperature has also been included as a variable to represent the vapour 

flow since the higher the temperature the greater the evaporation. After investigating 

cross-correlation results and testing a number of model structures it was decided that each 

input to the network would have the same delay spread of three samples.  The number of 

hidden neurons used was determined by the guidelines in Section 3.1. 

 

• The flow out of effect two was determined as a function of the differential pressure 

between effect two and three which is estimated using the temperature difference T2 – T3, 

the pump speed (N2), the concentrate level (L2) and the previous value of the flowrate. 

 Q2 = f(T2 – T3, N2, L2, Q2) (3) 

These variables were selected after considering the energy balance across the product 

transport system.  Using an input for the pressure difference in this network, rather than 

the temperature difference, did not produce an improved performance.  Since the flowrate 

dynamics are fast it was decided that each input to the network would have a delay spread 

of 1 sample – essentially producing a static model.  This meant that the flowrate network 

topology would not be determined according to the rules of Section 3.1.  Instead the 

number of hidden neurons used was determined by performing selection trials where the 
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number of neurons was varied between two and twelve with at least ten networks tested at 

each number of hidden neurons. The structure that minimised the testing error was 

selected.  For the four flowrate sub-nets in the evaporator model either five or six hidden 

neurons were used. 

 
Each sub-network had sigmoidal hidden-layer neurons and linear output neurons.  Sigmoidal 

type networks were used since similar recurrent network training had been carried out using 

this type of network (Su et al., 1992). 

 

4.3 Network training 
All training and testing data was scaled to lie within the range –1 to +1. 

The network training was applied individually to each sub-network.  As the network weights 

were updated the testing data was passed through the network to provide a measure of the 

network’s generalisation capabilities during the training process.  The network with the 

lowest testing prediction error was selected as the ‘best’ model.  The test for each network 

was to perform a long-range prediction over the whole testing data set.  This equates to 90 

minutes of data. 

 

4.4 Complete evaporator network model 
The complete evaporator neural model consists of thirteen sub-networks each describing a 

separate state of the three-effect system.  The model states include the product temperatures, 

concentrate levels and product flowrates throughout the evaporator.  The inputs are the steam 

valve position and the speeds for the feed pump and each of the effect pumps. 

Once trained the sub-networks were combined to form the complete evaporator model.  The 

general structure of the complete evaporator model is illustrated in Figure 3.  The complete 

model consists of the thirteen sub-networks connected in parallel and is equivalent to a 

sparsely-connected two-layered network with an additional input layer.  Any secondary 

relationships between the system variables that are not modelled within the sub-networks are 
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still accounted for in the manner in which they are joined together since the outputs of some 

sub-networks are used as inputs for others. 

 

5. Alternative models 
Additional models of the evaporator were developed which employed alternative structures or 

modelling methods in order to provide a comparison for the modular NN model. 

5.1 Other neural network models 
NNs with alternative topologies were developed to compare with the locally-connected, 

modular sub-networks to determine whether the proposed modular structures produced 

improved results.  The alternative networks included: 

• Fully connected sub-networks to compare with the locally-connected sub-networks for a 

sub-section of the evaporator. 

• Locally-connected, three-output NN to compare with the modular-structured NN model 

for a sub-section of the evaporator. 

The second effect of the evaporator was selected as the sub-section to be modelled for the 

above comparisons.  The alternative models were fed the identical inputs used by the 

corresponding modular sub-networks. 

The number of hidden nodes used in the fully-connected sub-networks were chosen so as to 

give a similar number of weights as the locally-connected sub-networks (Table 1). 

The number of weights used in the three-output network with a locally connected structure 

was less than that of the modular structured network as shown in Table 2. 

 

5.2 Linear regression model 
A second modular model was developed for the full evaporator system with an equivalent 

overall structure to that of the modular NN model of Figure 3 but with the nonlinear sub-

networks being replaced with linear ARX (AutoRegressive with eXogenous inputs) 

regression sub-models.  These sub-models were identified using the least squares approach of 

Ljung (1987). 
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6. Results and discussion 
All the models were cross-validated using an independent data set from the actual process to 

perform an unbiased test.  All the following results are based on comparing the model 

performances to this validation data set. 

 

6.1 Comparison of locally-connected sub-networks and alternative networks 
The locally-connected sub-networks exhibited improved training and superior long-range 

prediction performance over the sub-networks with a fully-connected topology.  The training 

of the locally connected sub-networks generally converged to more reliable solutions and 

more rapidly than the training of the alternative models (Russell, 1997).  The scaled mean-

square errors (MSEs) for the second effect product temperature and concentrate level 

predictions are shown in Figure 4.  As well as the improved performance the locally-

connected networks have fewer network parameters and allow the network behaviour to be 

more readily analysed and understood.  Results for the flowrate sub-network are not shown 

since it is a first order model and therefore does not have a locally-connected structure. 

Similar results were obtained when comparing the training and performance of a single three-

output NN and the modular model consisting of three sub-networks for the second effect 

(Russell, 1997).  The MSE for the long-range predictions are plotted in Figure 5.  Despite 

having fewer network parameters the three-output NN model does not generalise as well as 

the modular network model. 

 

6.2 Performance of complete evaporator models 
Implementing the modular NN and ARX models to produce long-range predictions allows a 

direct comparison to be made with a nonlinear analytical simulation of the evaporator 

(Russell, 1997). 

The MSE results for the long-range prediction of the validation data for each variable of 

interest are plotted in Figure 6.  Generally the performance of all the models were similar in 

character in that the temperature (Ti) and flowrate (Qi) estimates were closer to the plant data 
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while the concentrate levels (Li) were the hardest to model accurately.  It is clear from the 

results that both the NN and ARX models out-perform the analytical model in estimating the 

plant data over the majority of the variables.  It is also interesting to note that the linear ARX 

model error results are generally similar or better than that of the nonlinear NN.  This leads 

one to conclude that the data may not, in fact, be highly nonlinear (since the process was not 

operated with a product containing solids) and that some of the sub-networks did not capture 

all the nonlinear behaviour.  However one must investigate plots of the model responses 

before making such conclusions since the MSE results only give a partial indication of the 

model fit. 

By way of example two plots of the model predictions are illustrated below. 

Figure 7 shows a plot of the actual second effect temperature (T2) compared with the 

predicted outputs of the NN and analytical models.  Both models perform well in matching 

the actual data.  The ARX model has a similar response to the two that are plotted. 

All the models had difficulty in predicting the second effect concentrate level (L2) accurately 

over the entire time range.  The empirical models however out-perform the analytical model.  

While the NN model has a worse MSE result than the ARX model it is mainly due to its poor 

response at the low values of the level during the period of 30 to 40 minutes (Figure 8).  The 

remainder of the NN model estimate is superior to that of the ARX model having a closer fit.  

Subsequent analysis of the training data for the L2 sub-network showed that it did not span an 

adequate region of the variable range.  This highlights one problem when training NN models 

to predict a number of variables; it can be difficult to obtain process data containing adequate 

excitation of all the variables of interest. 

Figure 7 is an example of a typical prediction result whereas L2 (Figure 8) is the poorest 

predictor from the complete model.  

 

6.3 Network performance versus prediction horizon 
To test whether the modular neural model could predict over an arbitrary length horizon the 

model was simulated with varying lengths of prediction horizons in order to predict the 
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validation data.  Figure 9 shows a plot of MSE prediction error versus the horizon length, n, 

for the temperature variables.  The trends show in general that as the prediction horizon is 

increased the errors initially increase but then reach a plateau where the error remains 

approximately constant for increased horizons.  The exception to this appears to be the second 

effect temperature.  However the plots appear to indicate that the network does allow an 

arbitrary length prediction horizon to be used without significant degradation of the model 

predictions. Plots exhibiting similar trends were also obtained for the flowrate and level 

predictions. 

 

6.4 Model flexibility 
The flexible nature of the model structure allows the development of a mixed-model 

representation of a system where various alternative modelling techniques can be applied to 

represent different portions of the system.  Some sub-systems may be modelled with 

nonlinear NNs while others may only require a linear model.   The sub-networks could also 

be incorporated with analytically derived models to enhance the model where theoretical 

process knowledge is lacking. 

A modular structure also allows modifications and extensions to the model to be easily 

carried out if changes in the process need to be taken into account, thus reducing future model 

development effort.  If a particular sub-network is performing poorly than this element can be 

singled-out for re-development. 

 

6.5 Model transparency 
As an example the T2 locally-connected sub-network can be used to illustrate how a measure 

of interpretation can be given to the relationships between the inputs and the T2 output.  The 

outputs of the three time-based hidden-layer neurons are plotted in Figure 10.  The inputs of 

one neuron are all the input variables at time t – 1, another connects with the variables at time 

t – 2 and the other at time t – 4.  From this plot it appears that different neurons are 
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characterising different variations in T2.  The inputs at t – 2 produce a fairly constant output 

while the inputs t –4 model the major variations in the output, T2. 

While it is not obvious from Figure 10 what the precise relationships are, the structure allows 

one to more easily break down the relationships within the overall network and discriminate 

between the effects of the different inputs. 

 

6.6 Training effort 
The locally-connected sub-networks trained better than fully-connected networks, which were 

prone to becoming trapped in local minima causing the LMTT method to terminate 

prematurely. 

Training times for the locally-connected sub-networks were generally less than 100 epochs 

and converged to a reasonable solution whereas the fully-connected sub-networks typically 

took greater than 400 epochs and still failed to converge. 

Similar problems were experienced with the three-output network despite having a localised 

structure.  However the training and generalisation capabilities of this network were superior 

to a fully-connected, three-output network which was also developed. 
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7. Conclusions 
A framework for developing a dynamic NN model, made up of several sub-networks, has 

been presented which enables prior process knowledge to be built into the model topology.  

This approach of breaking the model into sub-systems removes the need to optimise a 

problem of high dimension.  The modular structure of the model also provides benefits in 

terms of model flexibility and transparency. 

It was found that generally the more complex the structure the more difficult it was to train 

effectively and hence networks with poorer predictions were produced.  The suggestion that 

‘the more network weights–the harder to train’ holds true when comparing the training and 

performance of the fully-connected and locally-connected sub-networks.  However the 

modular model out-performed the three-output network despite it having more weights. This 

is due to the fact that the individual sub-networks were easier to train individually and when 

linked together performed better than the single network structure.  

Based on observations and results from this research it be can stated that using: 

• localised connections reduces the number of network parameters which benefits training 

and provides an element of improved model interpretability, while 

• modularisation improves network prediction performance and offers flexibility. 

 

The complete evaporator NN model performed long-range predictions satisfactorily when 

presented with a validation data set and had a superior performance to that of a nonlinear 

analytical simulation of the pilot-plant.  Compared with an equivalent linear ARX model the 

NN model had comparable or slightly worse error prediction results.  For a nonlinear 

chemical process one would expect that the nonlinear NN would perform better.  These 

results lead to the conclusion that either: 

• the process is not highly nonlinear and linear models are sufficient for this application, or 

• some of the sub-networks failed to converge to a satisfactory solution 
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The absence of highly nonlinear data could be due to the fact that the evaporator was operated 

with pure water rather than a product like milk, which has complex physical properties.  

The second point raises the question of how to improve the convergence for recurrent 

training.  Some improvement has been experienced when a teacher forcing technique is 

applied to the training (Williams & Zipser, 1989; Pearlmutter, 1990).  With this scheme the 

target output is used to drive the network dynamics in place of the output feedback.  This can 

help to improve network convergence but can also cause instability in the responses. 

Another solution which may improve the accuracy of the modular NN is to apply a global 

optimisation to the model after individually training the sub-networks (Gallinari, 1995).  This 

could help reduce the accumulation of errors through the model but would require a more 

efficient training algorithm than used here. 

Either way, more work is required to investigate these possibilities further.  Both in terms of 

using data from trials using a more realistic product stream and investigating alternative 

modular network-training strategies.  These will be the focus of further research. 

Despite this, the prediction results shown here do demonstrate that the modular NN model can 

model a chemical process and generate satisfactory predictions over an arbitrary prediction 

horizon.  This type of model therefore has the potential to be implemented within a model-

based predictive control strategy. 
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Fig. 1. A single effect of the three-effect evaporator 
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Fig. 2. An externally-recurrent sub-network with localised computation 
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Fig. 3. General structure of the NN evaporator model 
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Fig. 4. Long-range prediction errors for the second effect sub-networks 
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Fig. 5. Long-range prediction errors for the second effect NN models 
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Fig. 6. Comparison of prediction errors for the ARX, NN and analytical models 
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Fig. 7. Comparison of actual data with NN and analytical model predictions for the second 

effect temperature (T2) 
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Fig. 8. Comparison of actual data with NN and ARX model predictions for the second effect 

concentrate level (L2) 
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Fig. 9. MSE vs prediction horizon for the evaporator temperatures 
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Fig. 10. Outputs from the three time-input hidden neurons 

 
 

Table 1. Number of parameter for second effect sub-networks 

Output Locally-connected Fully-connected 
T2 59 57 
L2 59 57 

 
 

Table 2: Number of parameters in the Effect 2 models 

Modular network Locally-connected 3-
output network 

137 88 
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