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Introduction
Hadoop [1] has become a very popular platform in the IT industry and academia 
for its ability to handle large amounts of data, along with extensive processing and 
analysis facilities. Different users produce these large datasets, and most of data are 
unstructured, increasing the requirements for memory and I/O. Besides, the advent 
of many new applications and technologies brought much larger volumes of com-
plex data, including social media, e.g., Facebook, Twitter, YouTube, online shopping, 
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data. Due to the application programming interface (API) availability and its perfor-
mance, Spark becomes very popular, even more popular than the MapReduce frame-
work. Both these frameworks have more than 150 parameters, and the combination 
of these parameters has a massive impact on cluster performance. The default system 
parameters help the system administrator deploy their system applications without 
much effort, and they can measure their specific cluster performance with factory-
set parameters. However, an open question remains: can new parameter selection 
improve cluster performance for large datasets? In this regard, this study investigates 
the most impacting parameters, under resource utilization, input splits, and shuffle, 
to compare the performance between Hadoop and Spark, using an implemented 
cluster in our laboratory. We used a trial-and-error approach for tuning these param-
eters based on a large number of experiments. In order to evaluate the frameworks of 
comparative analysis, we select two workloads: WordCount and TeraSort. The perfor-
mance metrics are carried out based on three criteria: execution time, throughput, and 
speedup. Our experimental results revealed that both system performances heavily 
depends on input data size and correct parameter selection. The analysis of the results 
shows that Spark has better performance as compared to Hadoop when data sets are 
small, achieving up to two times speedup in WordCount workloads and up to 14 times 
in TeraSort workloads when default parameter values are reconfigured.

Keywords: HiBench, BigData, Hadoop, MapReduce, Benchmark, Spark

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/.

RESEARCH

Ahmed et al. J Big Data           (2020) 7:110  
https://doi.org/10.1186/s40537-020-00388-5

*Correspondence:   
nasim751@yahoo.com 
1 School of Natural 
and Computational Sciences, 
Massey University, Albany, 
Auckland 0745, New Zealand
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-5663-0042
http://orcid.org/0000-0001-7648-285X
http://orcid.org/0000-0001-9416-1435
http://orcid.org/0000-0002-0844-5819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00388-5&domain=pdf


Page 2 of 18Ahmed et al. J Big Data           (2020) 7:110 

machine data, system data, and browsing history [2]. This massive amount of digital 
data becomes a challenging task for the management to store, process, and analyze.

The conventional database management tools are unable to handle this type of data 
[3]. Big data technologies, tools, and procedures allowed organizations to capture, 
process speedily, and analyze large quantities of data and extract appropriate infor-
mation at a reasonable cost.

Several solutions are available to handle this problems [4]. Distributed computing 
is one possible solution considered as the most efficient and fault-tolerant method for 
companies to store and process massive amounts of data. Among this new group of 
tools, MapReduce and Spark are the most commonly used cluster computing tools. 
They provide users with various functions using simple application programming 
interfaces (API). MapReduce is a framework used for distributed computing used for 
parallel processing and designed purposely to write, read, and process bulky amounts 
of data [1, 5, 6]. This data processing framework is comprised of three stages: Map 
phase, Shuffle phase and Reduce phase. In this technique, the large files are divided 
into several small blocks of equal sizes and distributed across the cluster for storage. 
MapReduce and Hadoop distributed file systems (HDFS) are core parts of the Hadoop 
system, so computing and storage work together across all nodes that compose a clus-
ter of computers [7].

Apache Spark is an open-source cluster-computing framework [8]. It is designed 
based on the Hadoop and its purpose is to build a programing model that “fits a wider 
class of applications than MapReduce while maintaining the automatic fault toler-
ance” [9]. It is not only an alternative to the Hadoop framework but it also provides 
various functions to process real streaming data. Apart from the map and reduce 
functions, Spark also supports MLib1, GraphX, and Spark streaming for big data 
analysis. Hadoop MapReduce processing speed is slow because it requires access-
ing disks for reads and writes. On the other hand, Spark uses memory to store data 
reducing the read/write cycle [1]. In this paper, we have addressed the above men-
tioned critical challenges. According to our knowledge, none of the previous works 
have addressed those challenges. Our proposed work will help the system administra-
tors and researchers to understand the system behavior when processing large scale 
data sets. The main contributions of this paper are as follows:

• We introduced a comprehensive empirical performance analysis between MapRe-
duce and Spark frameworks by correlating resource utilization, splits size, and 
shuffle behavior parameters. As per our knowledge, few previous studies have 
presented information regarding that. Considering this point, the authors have 
focused on a comprehensive study about various parameters impact with large 
data set instead of a large number of workloads.

• We accomplished comprehensive comparison work between Hadoop and Spark 
where large scale datasets (600 GB) are used for the first time. The experiments 
present the various aspects of cluster performance overhead. We applied two 
Hibenchmark workloads to test the efficiency of the system under MapReduce 
and Spark, where the data sets are repeatedly changing.
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• We selected several parameters covering different aspects of system behavior. Multi-
ple parameters are used to tune job performance. The results of the analysis will facil-
itate job performance tuning and enhance the freedom to modify the ideal param-
eters to enhance job efficiency.

• We measured the scalability of the experiment by repeating the experiment three 
times, getting the average execution time for each job. Besides, we investigate the 
system execution time, maximum sustainable throughput and speedup.

• We used a real cluster capable of handling large scale data set (600 GB) with bench-
marking tools for a comprehensive evaluation of MapReduce and Spark.

The remainder of the paper is organized as follows: “Related work” section presents a 
critical review of related research works, and then describes Hadoop and Spark systems. 
The difference between Hadoop and Spark is explained in “Difference between Hadoop 
and Spark” section. The experimental setup is presented in “Experimental setup” sec-
tion. In “The parameters of interest and tuning approach” section, we explain the chosen 
parameters and tuning approach. “Results and discussion” section presents the perfor-
mance analysis of the results and finally, we conclude in “Conclusion” section.

Related work
Shi et al. [10] proposed two profiling tools to quantify the performance of the MapRe-
duce and Spark framework based on a micro-benchmark experiment. The comparative 
study between these frameworks are conducted with batch and iterative jobs. In their 
work, the authors consider three components: shuffle, executive model, and caching. 
The workloads, Wordcount, k-means, Sort, Linear Regression, and PageRank, are cho-
sen to evaluate the system behavior based on CPU bound, disk-bound, and network 
bound [11]. They disabled map and reduce function for all workloads apart of a Sort. For 
the Sort, the reduce task is configured up to 60 map tasks, and the reduce task conFig-
ured to 120. The map output buffer is allocated to 550 MB to avoid additional spills for 
sorting the map output. Spark intermediate data are stored in 8 disks where each worker 
is configured with four threads. The authors claim that Spark is faster than MapReduce 
when WordCount runs with different data sets (1 GB, 40  GB, and 200 GB). The TeraSort 
is used by sort-by-key() function. They have found that Spark is faster than MapReduce 
when the data set is smaller (1 GB), but Mapreduce is nearly two times faster than Spark 
when the data set is of bigger sizes (40 GB or 100 GB). Besides, Spark is one and a half 
times faster than MapReduce with machine learning workloads such as K-means and 
Linear Regression. It is claimed that in a subsequent iteration, Spark is five times faster 
than MapReduce due to the RDD caching and Spark-GraphX is four times faster than 
MapReduce.

Li et al. [12] proposed a spark benchmarking suite [13], which significantly enhances 
the optimization of workload configuration. This work has identified the distinct fea-
tures of each benchmark application regarding resource consumption, the data flow, 
and the communication pattern that can impact the job execution time. The applica-
tions are characterized based on extensive experiments using synthetic data sets. There 
are ten different workloads such as Logistic Regression, Support Vector Machine, Matrix 
Factorization, Page Rank, Tringle Count, SVD++, Hive, RDD Relation, Twitter, and 
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PageView used with different input data sizes. An eleven nodes virtual cluster is used 
to analyze the performance of the workloads. The workload analysis is carried out con-
cerning CPU utilization, memory, disk, and network input/output consumption at the 
time of job execution. They have found that most of the workloads spend more than 50% 
execution time for MapShuffle-Tasks except logistic regression. They concluded that the 
job execution time could be reduced while increasing task parallelism to leverage the 
CPU utilization fully.

Thiruvathukal et al. [14] have considered the importance and implication of the lan-
guage such as Python and Scala built on the Java Virtual Machine (JVM) to investigate 
how the individual language affects the systems’ overall performance. This work pro-
posed a comprehensive benchmarking test for Massage Passing Interface (MPI) and 
cloud-based application considering typical parallel analysis. The proposed benchmark 
techniques are designed to emulate a typical image analysis. Therefore, they presented 
one mid-size (Argonne Leadership Computing Facility) cluster with 126 nodes, which 
run on COOLEY [14] and a large scale supercomputer (Cray XC40 supercomputer) 
cluster with a single node which runs on THETA [14]. Significantly, they have increased 
some important Spark parameters (Spark driver memory, and executor memory) val-
ues as per the machine resource. They have recommended that COOLEY and THETA 
frameworks are be beneficial for immediate research work and high-performance com-
puting (HPC) environments.

Marcue et al. [15] present the comparative analysis between Spark and Flink frame-
works for large scale data analysis. This work proposed a new methodology for itera-
tive workloads (K-Means, and Page Rank) and batch processing workloads (WordCount, 
Grep, and TeraSort) benchmarking. They considered four most important parameters 
that impact scalability, resource consumption, and execution time. Grid 5000 [16] has 
used upto 100 nodes cluster deploying Spark and Flink. They have recommended that 
Spark parameter (i.e., parallelism and partitions) configuration is sensitive and depends 
on data sets, while the Flink is highly extensive memory oriented.

Samadi et al. [7] has investigated the criteria of the performance comparison between 
Hadoop and Spark framework. In his work, for an impartial comparison, the input data 
size and configuration remained the same. Their experiment used eight benchmarks of 
the HiBench suite [13]. The input data was generated automatically for every case and 
size, and the computation was performed several times to find out the execution time 
and throughput. When they deployed microbenchmark (Short and TeraSort) on both 
systems, Spark showed higher involvement of processor in I/Os while Hadoop mostly 
processed user tasks. On the other hand, Spark’s performance was excellent when deal-
ing with small input sizes, such as micro and web search (Page Rank). Finally, they con-
cluded that Spark is faster and very strong for processing data in-memory while Hadoop 
MapReduce performs maps and reduces function in the disk.

In another paper, Samadi et al. [9] proposed a virtual machine based on Hadoop and 
Spark to get the benefit of virtualization. This virtual machine’s main advantage is that 
it can perform all operations even if the hardware fails. In this deployment, they have 
used Centos operating system built a Hadoop cluster based on a pseudo-distribution 
mode with various workloads. In their experiments, they have deployed the Hadoop 
machine on a single workstation and all other demos on its JVM. To justify the big data 
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framework, they have presented the results of Hadoop deployment on Amazon Elastic 
Computing (EC2). They have concluded that Hadoop is a better choice because Spark 
requires more memory resources than Hadoop. Finally, they have suggested that the 
cluster configuration is essential to reduce job execution time, and the cluster parameter 
configuration must align with Mappers and Reducers.

The computational frameworks, namely Apache Hadoop and Apache Spark, were 
investigated by [17]. In this investigation, the Apache webserver log file was taken into 
consideration to evaluate the two frameworks’ comparative performance. In these 
experiments, they have used Okeanos’s virtualized computing resources based on infra-
structures as a Service (IaaS) developed by the Greek Research and Technology Network 
[17]. They proposed a number of applications and conducted several experiments to 
determine each application’s execution time. They have used various input files and the 
slave nodes to find out the execution time. They have found that the execution time is 
proportional to the input data size. They have concluded that the performance of Spark 
is much better in most cases as compared to Hadoop.

Satish and Rohan [18] have shown a comparative performance study between Hadoop 
MapReduce and Spark-based on the K-means algorithm. In this study, they have used 
a specific data set that supports this algorithm and considered both single and double 
nodes when gathering each experiment’s execution time. They have concluded that the 
Spark speed reaches up to three times higher than the MapReduce, though Spark perfor-
mance heavily depends on sufficient memory size [19].

Lin et al. [20] have proposed a unified cloud platform, including batch processing abil-
ity over standalone log analysis tools. This investigation has considered four different 
frameworks: Hadoop, Spark, and warehouse data analysis tools Hive and Shark. They 
implemented two machine learning algorithms (K-means and PageRank) based on this 
framework with six nodes to validate the cloud platform. They have used different data 
sizes as inputs. In the case of K-means, as the data size increased and exceed memory 
size, the latency schedule and overall Spark performance degraded. However, the over-
all performance was still six times higher than Hadoop on average. On the other hand, 
Shark shows significant performance improvement while using queries directly from 
disk.

Petridis et al. [21] have investigated the most important Spark parameters shown in 
Table 4 and given a guideline to the developers and system administrators to select the 
correct parameter values by replacing the default parameter values based on trial-and-
error methodology. Three types of case studies with different categories such as Shuffle 
Behavior, Compression and Serialization, and Memory Management parameters were 
performed in this study. They have highlighted the impact of memory allocation and 
serialization when the number of cores and default parallelism values change. There-
fore, there are 12 parameters chosen with three benchmarking applications: sort-by-key, 
shuffling, and k-means. The sort-by-key experiments used both 1 million and 1 billion 
key-values of lengths 10 and 90 bytes and the optimal degree of partition is set to 640. 
The Hash performance is increased to 127 s, which is 30 s faster than the default param-
eter, and shuffle.file.buffer is increased by 140 s. The rest of the parameters do not play 
any important role in improving the performance. For another Shuffling experiment, 
they used a 400  GB dataset. The Hash shuffle performance is degraded by 200 s, and 
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Tungsten-Sort speed is increased by 90 s. By decreasing the buffer size from 32 to 15 KB, 
the system performance was degraded by about 135s, which is more than 10% from 
the primary selection. For K-means, they used two sizes of data input (100 MB and 200 
MB). They have not found significant k-means performance improvement by changing 
the parameters. Therefore, they have concluded that based on their methodology, the 
speedup achievement is tenfold. However, the main challenges of tuning Hadoop and 
Spark configuration parameters are due to the complicated behavior of distributed large 
scale systems while the parameter selection is not always trivial for the system admin-
istrators. Inappropriate combination of parameter values can affect the overall system 
performance. Inappropriate combination of parameter values can affect the overall sys-
tem performance.

The published literature in Table  1 presents some empirical studies. None of these 
studies have considered larger data sizes (600 GB), more parameters, and real clusters. 
In our study, we chose a conventional trial-and-error approach [21], larger data set, and 
18 important parameters (listed in Tables 3 and 4) from resource utilization, input splits, 
and shuffle category.

Difference between Hadoop and Spark
Hadoop [22] is a very popular and useful open-source software framework that ena-
bles distributed storage, including the capability of storing a large amount of big data-
sets across clusters. It is designed in such a way that it can scale up from a single server 
to thousands of nodes. Hadoop processes large data concurrently and produces fast 

Table 1 Published related work

Author’s Date Workloads Data size Parameters Hardware

Lin et al. [20] 2013 K-means PageRank 10,000 to 20 mil 
points

1 mil to 10 mil 
points

Log analysis Nodes—6, 2 CPU 
cores 4 GB memory 
per node

Nodes—4, 16 CPU 
cores 48 GB memory 
per node

Satish and Rohan 
[18]

2015 K-means 62–1240 MB Default Virtual machine 
Nodes—2, 4 GB RAM 
and 500 GB (HD)

Yasir Samadi et al. [7] 2016 Micro Benchmarks 
Web Search SQL 
Machine Learning

18–328 MB
5000 to 12 * 10e4 

pages

3 Virtual machine Disk 
(SDD)—40 GB

Petridis et al. [21] 2017 K-means shuffling 
and sort-by-Key

400 GB 12 Barcelona supercom-
puting center

Mavridis et al. [17] 2017 Spark SQL and Spark 
Hive

1.1 GB, 1.5  GB and 
11  GB

Log analysis Virtual machine—6
 Memory—8 GB
Master node—8 cores
Salve node—4 cores

Yasir Samadi et al. [9] 2018 Micro Benchmarks 
Web Search SQL 
Machine Learning

1  GB, 5 GB and 8 GB 3 Virtual machine
Disk(SDD)—40  GB

Proposed experi-
ments

2020 WordCount and 
TeraSort

50–600 GB 18 SNCC, Production 
Cluster

CPU cores—80
Total Storage—60 TB 

Master node—1
Slaves nodes—9
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results. With Hadoop, the core parts are Hadoop Distributed File System (HDFS) and 
MapReduce.

HDFS [23] splits the files into small pieces into blocks and saves them into different 
nodes. There are two kinds of nodes on HDFS: data-nodes (worker) and name-nodes 
(master nodes) [24, 25]. All the operations, including delete, read, and write, are based 
on these two types of nodes. The workflow of HDFS is like the following flow: firstly, the 
name-node asks for access permission. If accepted, it will turn the file name into a list 
of HDFS block IDs, including the files and the data-nodes that saved the blocks related 
to that file. The ID list will then be sent back to the client, and the users can do further 
operations based on that.

MapReduce [26] is a computing framework that includes two operations: Mappers and 
Reducers. The mappers will process files based on the map function and transfer them 
into the new key-value pairs [27]. Next, the new key-value pairs are assigned to differ-
ent partitions and sorted based on their keys. The combiner is optional and can be rec-
ognized as a local reduces operation which allows counting the values with the same 
key in advance to reduce the I/O pressure. Finally, partitions will divide the intermediate 
key-value pairs into different pieces and transfer them to a reducer. MapReduce needs 
to implement one operation: shuffle. Shuffle means transferring the mapper output data 
to the proper reducer. After the shuffle process is finished, the reducer starts some copy 
threads (Fetcher) and obtains the output files of the map task through HTTP [28]. The 
next step is merging the output into different final files, which are then recognized as 
reducer input data. After that, the reducer processes the data based on the reduced 
function and writes the output back to the HDFS. Figure 1 depicts a Hadoop MapRe-
duce architecture.

Spark became an open-source project from 2010. Zahari has developed this project at 
UC Berkely’s AMPLab in 2009 [4, 29]. Spark offers numerous advantages for developers 
to build big data applications. Spark proposed two important terms: Resilient Distrib-
uted Datasets (RDD) and Directed Acyclic Graph (DAG). These two techniques work 
together perfectly and accelerate Spark up to tens of times faster than Hadoop under 
certain circumstances, even though it usually only achieves a performance two to three 
times more quickly than MapReduce. It supports multiple sources that have a fault tol-
erance mechanism that can be cached and supports parallel operations. Besides, it can 
represent a single dataset with multiple partitions. When Spark runs on the Hadoop 
cluster, RDDs will be created on the HDFS in many formats supported by Hadoop, like-
wise text and sequence files. The DAG scheduler [30] system expresses the dependencies 
of RDDs. Each spark job will create a DAG and the scheduler will drive the graph into 
the different stages of tasks then the tasks will be launched to the cluster. The DAG will 
be created in both maps and reduce stages to express the dependencies fully. Figure 2 
illustrates the iterative operation on RDD. Theoretically, limited Spark memory causes 
the performance to slow down.

Experimental setup
Cluster architecture

In the last couple of years, many proposals came from different research groups 
about the suitability of Hadoop and Spark frameworks when various types of data 
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of different sizes are used as input in different clusters. Therefore, it becomes nec-
essary to study the performance of the frameworks and understand the influence of 
various parameters. For the experiments, we will present our cluster performance 
based on MapReduce and Spark using the HiBench suite [23, 23]. In particular, we 
have selected two Hibench workloads out of thirteen standard workloads to repre-
sent the two types of jobs, namely WordCount (aggregation job) [32], and TeraSort 
(shuffle job) [33] with large datasets. We selected both the workloads because of their 
complex characteristics to study how efficiently both the workloads analyze the clus-
ter performance by correlating MapReduce and Spark function with a combination of 
groups of parameters.

Fig. 1 Hadoop MapReduce architecture [1]

Fig. 2 Spark workflow [31]
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Hardware and software specification

The experiments were deployed in our own cluster. The cluster is configured with 1 
master and 9 slaves nodes which is presented in Fig. 3. The cluster has 80 CPU cores 
and 60 TB local storage. The implemented hardware is suitable for handling various 
difficult situations in Spark and MapReduce.

The detailed Hadoop cluster and software specifications are presented in Table  2. 
All our jobs run in Spark and MapReduce. We have selected Yarn as a resource man-
ager, which can help us monitor each working node’s situation and track the details 
of each job with its history. We have used Apache Ambari to monitor and profile 
the selective workloads running on Spark and MapReduce. It supports most of the 
Hadoop components, including HDFS, MapReduce, Hive, Pig, Hbase, Zookeeper, 
Sqoop, and Hcatalog” [34]. Besides, Ambari supports the user to control the Hadoop 
cluster on three aspects, namely provision, management, and monitoring.

Fig. 3 Hadoop cluster nodes

Table 2 Experimental Hadoop cluster

Server configuration Processor 2.9 GHz

Main Memory 64 GB

Local Storage 10 TB

Node configuration CPU Intel(R) Xeon(R) CPU 
E3-1231 v3 @ 3.40GHz

Main Memory 32 GB

Number of Nodes 10

Local Storage 6 TB each, 60 TB total

CPU cores 8 each, 80 total

Software Operating System Ubuntu 16.04.2 
(GNU/Linux 
4.13.0-37-generic×86 
64)

JDK 1.7.0

Hadoop 2.4.0

Spark 2.1.0

Workload Micro Benchmarks WordCount, and TeraSort
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Workloads

As stated above, in this study we chose two workloads for the experiments [32, 33]:
WordCount: The wordCount workload is map-dependent, and it counts the number 

of occurrences of separate words from text or sequence file. The input data is pro-
duced by RandomTextWriter. It splits into each word by using the map function and 
generates intermediate data for the reduce function as a key-value [35]. The interme-
diate results are added up, generating the final word count by the reduce function.

TeraSort: The TeraSort package was released by Hadoop in 2008 [36] to measure the 
capabilities of cluster performance. The input data is generated by the TeraGen func-
tion which is implemented in Java. The TeraSort function does the sorting using the 
MapReduce, and the TeraValidate function is used to validate the output of the sorted 
data. For both workloads, we used up to 600 GB of synthetic input data generated 
using a string concatenation technique.

The parameters of interest and tuning approach
Tuning parameters in Apache Hadoop and Apache Spark is a challenging task. We 
want to find out which parameters have important impacts on system performance. 
The configuration of the parameters needs to be investigated according to work-load, 

Table 3 Hadoop configuration parameters

Configuration parameters 
category

Hadoop Tuned values

Resource utilization mapreduce.reduce.memory 8 GB

mapred.reduce.task 16,384 MB, 25,600  MB

mapreduce.reduce.cpu.vcores 4

Input split mapred.min.split.size, mapred.max.split.size 128 MB (default), 
256 MB, 512  MB, 
1024 MB

Shuffle i/o.sort.mb 25, 50, 75, 100

i/o.sort.factor 512, 1024, 1536, 2047

mapreduce.reduce.shuffle.parallelcopies 50, 100, 150, 200

mapreduce.task.io.sort.factor 15, 30, 45, 60

Table 4 Spark configuration parameters

Configuration parameters 
category

Spark Tuned values

Resource utilization num-executors 50

executor-cores 4

executor-memory 8 GB

Input split spark.hadoop.MapReduce.input .filein-
putformat.split.minsize

128 MB (default), 256MB, 512MB, 1024MB

Shuffle spark.shuffle.file.buffer 16 k, 32 k (default), 48 k, 64 k

spark.reducer.maxSizeInFlight 32 M, 48 M (default), 64 M, 96 M

spark.hadoop.dfs.replication 1

spark.default.parallelism 80, 100, 200, 300
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data size, and cluster architecture. We have conducted a number of experiments 
using Apache Hadoop and Apache Spark with different parameter settings. For this 
experiment, we have chosen the core MapReduce and Spark parameter setting from 
resource utilization, input splits and shuffle groups. The selected tuned parameters 
with their respective tuned values on the map-reduce and Spark category are shown 
in Tables 3 and 4. 

Results and discussion
In this section, the results obtained after running the jobs are evaluated. We have used 
synthetic input data and used the same parameter configuration for a realistic compari-
son. Each test was repeated three times, and the average runtime was plotted in each 
graph. For both frameworks, we show the execution time, throughput, and speedup 
to compare the two frameworks and visualize the effects of changing the default 
parameters.

Execution time

The execution time is affected by the input data sizes, the number of active nodes, and 
the application types. We have fixed the same parameters for the fair comparative analy-
sis, such as the number of executors to 50, executor memory to 8 GB, executor cores to 
4.

ba

dc
Fig. 4 The performance of the WordCount application with a varied number of input splits and shuffle tasks
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Figure 4a, b show how MapReduce and Spark execution time depend on the data-
sets’ size and the different input splits and shuffle parameters. The execution time of 
MapReduce WordCount workload with the default input split size (128 MB) and shuf-
fle parameter (sort.mb 100, sort.factor 2047) obtained better execution time for entire 
data sizes compared to other parameters. Hadoop Map and Reduce function behave 
better because of their faster execution time and overlooked container initialization 
overhead for specific workload types. This result suggests that the default parameter 
is more suitable for our cluster when using data sizes from 50 to 600 GB.

In Fig.  4c the default input splits of Spark is 128  MB. Previously, we have men-
tioned that the number of executors, executor memory, and executor cores are fixed. 
From the above Fig.  4c, we see that the execution time of input split size 256  MB 
outperforms the default set up until 450 GB data sizes. In fact, the default splits size 
(128 MB) is more efficient when the data size is larger than the 450 GB. Notably, we 
can see that the default parameter shows better execution performance when the data 
set reaches 500  GB or above. The new parameter values can improve the process-
ing efficiency by 2.2% higher than the default value (128  MB). Table  5 presents the 
experimental data of WordCount workload between MapReduce and Spark while the 
default parameters are changing.

For the Spark shuffle parameter, we have chosen the default serializer, the (JavaSeri-
alizer) because of the simplicity and easy control of the performance of the serializa-
tion [37]. In this category, the serializer is PL100 object [37]. We can see from Fig. 4d 
that the improvement rate is significantly increased when we set the PL value to 300. 
It is evident that the best performance is achieved for sizes larger than 400 GB. Also, 
it shows that when tuning the PL value to 300, the system can achieve a 3% higher 
improvement for the rest of the data sizes. Consequently, we can conclude that input 
splits can be considered an important factor in enhancing Spark WordCount jobs’ 
efficiency when executing small datasets.

Figure  5a is comparing MapReduce TeraSort workloads based on input splits that 
include default parameters. In this analysis, we have set (Red_Task and InSp) value 
fixed with default split size 128 MB. We have changed the parameter values and tested 
whether the splits’ size can keep the impact on the runtime. So, for this reason, we have 
selected three different sizes: 256 MB, 512 MB, and 1024 MB. We have observed that 
with a split size of 256MB, the execution performance is increased by around 2% in data-
sets with up to 300 GB. On the contrary, when the data sizes are larger than 300 GB, the 
default size outperforms split size equals 512 MB. Moreover, we have noticed that the 
improvement rates are similar when the data sizes are smaller than 200 GB.

Table 5 The best execution time of MapReduce and Spark with WordCount workload

Split sizes (MB) Execution 
time (s)

MapReduce input splits (WordCount) 128 2376

Spark input splits (WordCount) 256 1392

MapReduce shuffle (WordCount) 100 2371

Spark shuffle (WordCount) 300 1334



Page 13 of 18Ahmed et al. J Big Data           (2020) 7:110  

Figure 5b illustrates the execution performance with the MapReduce shuffle param-
eter for the TeraSort workload. We have seen that the average execution time behaves 
linearly for sizes up to 450  GB when the parameter change to (Reduce_150 and task.
io_45) as compared to the default configuration (Reduce_100 and task.io_30). Besides, 
We have also noticed that the default configuration is outperforming all other settings 
when the data sizes are larger than 450 GB. So, we can conclude that by changing the 
shuffled value, the system execution performance improves by 1%. In general, this is very 
unlikely that the default size has optimum performance for larger data sizes.

Figure  5c illustrates the Spark input split parameter execution performance analysis 
for the TeraSort workload. The Spark executor memory, number of executors, and exec-
utor memory are fixed while changing the block size to measure the execution perfor-
mance. Apart from the default block size (128 MB), there are 3 pairs (256 MB, 512 MB, 
and 1024 MB) of block size is taken into this consideration. Our results revealed that the 
block size 512 MB and 1024 MB present better runtime for sizes up to 500 GB data size. 
We have also observed a significant performance improvement achieved by the 1024 
block size, which is 4% when the data size is larger than 500 GB. Thus, we can conclude 
that by adding the input splits block size for large scale data size, Spark performance can 
be increased.

Figure  5d shows Spark shuffle behaviour performance for TeraSort workloads. We 
have taken two important default parameters (buffer  =  32, spark.reducer.maxSizeIn 
Flight = 48 MB) into our analysis. We have found that when the buffer and maxSizeIn-
Flight are increased by 128 and 192, the execution performance increased proportionally 

ba

dc
Fig. 5 The performance of the TeraSort application with a varied number of input splits and shuffle tasks
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up to 600  GB data sizes. Our results show that the default execution is equal, with a 
tested value of up to 200    GB data sizes. The possible reason for this performance 
improvement is the larger number of splits size for different executors. Table 6 presents 
the experimental data of the TeraSort workload between MapReduce and Spark, while 
the default parameters are changing.

Figure 6a illustrates the comparison between Spark and MapReduce for WordCount 
and TeraSort workloads after applying the different input splits. We have observed that 
Spark with WordCount workloads shows higher execution performance by more than 2 
times when data sizes are larger than 300 GB for WordCount workloads. For the smaller 
data sizes, the performance improvement gap is around ten times. Figure  6 shows a 
TeraSort workload for MapReduce and Spark. We can see that Spark execution perfor-
mance is linear and proportionally larger as the data size increase. Also, we noticed that 
the runtime for MapReduce jobs are not as linear in relation to the data size as Spark 
jobs. The possible reason could be unavoidable job action on the clusters and as a result 
that the dataset is larger than the available RAM. So, we conclude that MapReduce has 
slower data sharing capabilities and a longer time to the read-write operation than Spark 
[4].

Throughput

The throughput metrics are all in MB per second. For this analysis, we only con-
sidered the best results from each category. We have observed that MapReduce 
throughput performance for the TeraSort workload is decreasing slightly as the data 
size crosses beyond 200 GB. Besides, for the WordCount workload, the MapReduce 
throughput is almost linear. For the Spark TeraSort workload, it can be observed that 

Table 6 The best execution time of MapReduce and Spark with Terasort workload

Split sizes (MB) Execution time (s)

MapReduce input splits (TeraSort) 256 21,014

Spark input splits (TeraSort) 512 & 1024 3780 & 3439

MapReduce shuffle (TeraSort) 150 & 45 24,250

Spark shuffle (TeraSort) 128 & 192 6540

ba
Fig. 6 The comparison of Hadoop and Spark with WordCount and TeraSort workload with varied input splits 
and shuffle tasks
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the throughput is not constant, but for the WordCount workload, the throughput is 
almost constant. In this analysis, the main focus was to present the throughput dif-
ference between WordCount and TeraSort workload for MapReduce and Spark. We 
found that WordCount workload remains almost stable for most of the data sizes, 
and concerning the TeraSort workload, MapReduce remain stable than Spark (see 
Fig. 7).

ba
Fig. 7 Throughput of WordCount and TeraSort workload

ba

c
Fig. 8 Spark over MapReduce speedup on input splits and shuffle
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Speedup

Figure 8a–c show the Spark’s speed up compared to MapReduce. Figure  8a, b depicts 
individual workload speedup. The best results are taken into this consideration from 
each category in order to get a speedup. From the above figures, we can see that as the 
data size increases, WordCount workload speedup decreases with some non-linearity. 
Besides, we can see that the TeraSort speedup decreases when data reaches sizes larger 
than 300 GB. Notably, as the data size increases to more than 500GB for both workloads, 
the speedup starts to increase. Figure 8c illustrates the speedup comparison between the 
workloads. It can be seen that the TeraSort workload outperforms WordCount workload 
and achieves an all-time maximum speedup of around 14 times. The literature presents 
that Spark is up to ten times faster than Hadoop under certain circumstances and in 
normal conditions, and it only achieves a performance two to three times faster than 
MapReduce [38]. However, this study found that Spark performance is degraded when 
the input data size is big.

Conclusion
This article presented the empirical performance analysis between Hadoop and Spark 
based on a large scale dataset. We have executed WordCount and Terasort workloads 
and 18 different parameter values by replacing them with default set-up. To investigate 
the execution performance, we have used trial-and-error approach for tuning these 
parameters performing number of experiments on nine node cluster with a capacity of 
600 GB dataset. Our experimental results confirm that both Hadoop and Spark systems 
performance heavily depends on input data size and right parameter selection and tun-
ing. We have found that Spark has better performance as compared to Hadoop by two 
times with WordCount work load and 14 times with Tera-Sort workloads respectively 
when default parameters are tuned with new values. Further more, the throughput and 
speedup results show that Spark is more stable and faster than Hadoop because of Spark 
data processing ability in memory instead of store in disk for the map and reduced func-
tion. We have also found that Spark performance degraded when input data was larger.

As future work, we plan to add and investigate 15 HiBench workloads, consider more 
parameters under resource utilization, parallelization, and other aspects, including prac-
tical data sets. The main focus would be to analyze the job performance based on auto-
tuning techniques for MapReduce and Spark when several parameter configurations 
replace the default values.
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