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Plasma levels of soluble VEGF receptor
isoforms, circulating pterins and VEGF
system SNPs as prognostic biomarkers in
patients with acute coronary syndromes
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Abstract

Background: Development of collateral circulation in coronary artery disease is cardio-protective. A key process in
forming new blood vessels is attraction to occluded arteries of monocytes with their subsequent activation as
macrophages. In patients from a prospectively recruited post-acute coronary syndromes cohort we investigated the
prognostic performance of three products of activated macrophages, soluble vascular endothelial growth factor (VEGF)
receptors (sFlt-1 and sKDR) and pterins, alongside genetic variants in VEGF receptor genes, VEGFR-1 and VEGFR-2.

Methods: Baseline levels of sFlt-1 (VEGFR1), sKDR (VEGFR2) and pterins were measured in plasma samples from
subgroups (n = 513; 211; 144, respectively) of the Coronary Disease Cohort Study (CDCS, n = 2067). DNA samples from
the cohort were genotyped for polymorphisms from the VEGFR-1 gene SNPs (rs748252 n = 2027, rs9513070 n = 2048)
and VEGFR-2 gene SNPs (rs2071559 n = 2050, rs2305948 n = 2066, rs1870377 n = 2042).

Results: At baseline, levels of sFlt-1 were significantly correlated with age, alcohol consumption, NTproBNP, BNP and
other covariates relevant to cardiovascular pathophysiology. Total neopterin levels were associated with alcohol
consumption at baseline. 7,8 dihydroneopterin was associated with BMI. The A allele of VEGFR-2 variant rs1870377 was
associated with higher plasma sFlt-1 and lower levels of sKDR at baseline. Baseline plasma sFlt-1 was univariately
associated with all cause mortality with (p < 0.001) and in a Cox’s proportional hazards regression model sFlt-1 and
pterins were both associated with mortality independent of established predictors (p < 0.027).

Conclusions: sFlt-1 and pterins may have potential as prognostic biomarkers in acute coronary syndromes patients.
Genetic markers from VEGF system genes warrant further investigation as markers of levels of VEGF system
components in these patients.

Trial registration: Australian New Zealand Clinical Trials Registry. ACTRN12605000431628. 16 September 2005,
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Background
Vascular endothelial growth factor (VEGF) signalling is a
critical step in angiogenesis [1]. VEGF-A is one of five re-
lated growth factors, which bind primarily to three tyrosine
kinase receptors with different affinity. The structurally re-
lated VEGF receptors, denoted VEGFR1/FMS-like tyrosine
kinase-1 (Flt-1), VEGFR2/Kinase insert domain receptor
(KDR) and VEGFR3 (Flt-4) have overlapping, but distinct
expression patterns, with Flt-1 present in monocytes,
macrophages and vascular endothelial cells [2, 3], KDR in
vascular endothelial cells and Flt-4 in lymphatic endothe-
lial cells. The complexity of the expression profile of these
receptors is increased further by alternative splicing [2].
Cardiac ischaemia modulates the regulation and expres-

sion of several VEGF family ligands and receptors via
Hypoxia Inducible Factor-1 (HIF-1) [4]. Flt-1 is also up-
regulated by hypoxia through a HIF-1-dependent mechan-
ism [5] and appears to play an important role in monocyte
activation [6], likely targeting phospholipase C and phos-
phoinositide 3-kinase, but its kinase-inducing activity is
poor [2, 7, 8]. Although the exact mechanism of Flt-1
function is still under debate, there is strong evidence for
VEGF-A binding to KDR to promote the growth of vascu-
lar endothelial cells inducing a potent angiogenic response
to hypoxic conditions. This results in the remodelling of
arteries and production of new blood vessels and vasodila-
tion [9] to relieve ischaemic stress in CVD [10].
Soluble Flt-1 (sFlt-1) is an alternatively spliced, circu-

lating form of Flt-1 with affinity for VEGF equal to that
of the membrane bound isoform. However, in contrast
to Flt-1, sFlt-1 is produced mainly by endothelial cells
and deposited in their extracellular matrix [11]. Acting as
a decoy, sFlt-1 (also up-regulated by hypoxia) binds circu-
lating VEGF, inhibiting the angiogenic action of VEGF
binding to membrane bound KDR on arterial endothelium
[12]. Consequently sFlt-1 has been implicated as a nega-
tive regulator of angiogenesis. Elevated levels of sFlt-1,
following acute myocardial ischemia in coronary artery
disease patients, have been associated with increased mor-
tality in post-MI patients [13].
Well-developed coronary collateral arteries are associ-

ated with improved survival in patients with coronary
artery disease [14]. Complementary to the VEGF system
driving angiogenesis, a key factor in forming new blood
vessels is the attraction of monocytes and their activa-
tion as macrophages [15]. 7,8 Dihydroneopterin (7,8NP)
and neopterin, produced by activated macrophages, are
known markers of immune activation [16]. Recent
studies have shown that neopterin levels are higher in
patients with acute MI, as opposed to healthy subjects
[17, 18]. Atherosclerotic plaques collected during carotid
endarterectomy show varying levels of both 7,8 NP and
neopterin [19]. In addition, a significant correlation be-
tween serum neopterin and complex coronary artery

stenosis has been found [20], indicating the potential of
neopterin as a prognostic tool in CVD.
Since sFlt-1, sKDR and pterins may all be products of

activated macrophages following cardiac ischemia, we
investigated the prognostic performance of these markers
shortly after an acute coronary syndrome (ACS) event in a
well-characterised cohort, the Coronary Disease Cohort
Study [21–27]. As SNPs from VEGFR-2 have previously
been shown to be associated with the development of
CVD [28], VEGF receptor gene variants were also evalu-
ated as prognostic markers.

Methods
Coronary disease cohort study
The Coronary Disease Cohort Study (CDCS) recruited
2067 patients after admission to Christchurch or Auckland
City Hospitals with a diagnosis of ACS, from July 2002 to
January 2009. Inclusion criteria included ischemic discom-
fort plus one or more of ECG changes (ST-segment de-
pression or elevation of ≥0.5 mm, T-wave inversion of
≥3 mm in ≥3 leads, or left bundle branch block), elevated
levels of cardiac markers, a history of coronary disease, age
of ≥65 years, and a history of diabetes or vascular disease
[24]. Patients with serious co-morbidity that reduced their
life expectancy to < 3 years (e.g. end-stage renal failure,
cancer) were excluded from the study. Recruitment in-
cluded a wide spectrum of age, both sexes and patients
with established risk factors for CHD such as hypertension
and diabetes. Plasma was collected at a baseline clinic, a
median of 32 days following index admission for ACS.
Demographic and clinical data was collected at baseline
including blood pressure, ECG, echocardiography, family
and personal medical history, height, weight, and medica-
tion prescribed. Plasma samples were assayed for natri-
uretic peptides and other analytes. Patients were followed
for a median of 5.04 years. Patients attended follow-up
clinics 3–5 months and 12–14 months post-onset of ACS,
and participants completed questionnaires at two and three
years post-discharge. Ethnicity was self-declared and cate-
gorized as Maori/Pacific Islander, European, Other or
Unknown. Standardized transthoracic echocardiography
was performed at baseline and at each follow-up clinic
using a GE Vivid 3 (GE Medical Systems) ultrasound sys-
tem at Christchurch Hospital and Philips ATL HDI 5000
and ie33 (Philips Healthcare, Bothell, WA) ultrasound sys-
tems at the University of Auckland as described previously
[21, 23]. The study was approved by the New Zealand
(NZ) Multi-Region Ethics Committee and all participating
patients provided written, informed consent.

Clinical events
Clinical events were determined from recruitment ques-
tionnaires, planned follow-up clinic visits, consultation
of patient notes, the NZ Ministry of Health and hospital
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Patient Management System databases, linked through
the National Health Index (NHI) number for each pa-
tient. Survival times were calculated from the date of
index admission. The investigation conforms to the prin-
ciples outlined in the Declaration of Helsinki and Title
45, U.S. Code of Federal Regulations, Part 46.

Evaluation of angiographic data
In the Christchurch subgroup of the cohort collateral
vessels were graded according to the Rentrop classifica-
tion: 0: no filling of any collateral vessels, 1: filling of side
branches of the artery to be perfused by collateral vessels
without visualization of the epicardial segment; 2: partial
filling of the epicardial artery by collateral vessels; and 3:
complete filling of the epicardial artery by collateral vessels
[29], while blinded to other clinical data. Coronary artery
anatomy, severity of coronary stenoses and the myocar-
dium at risk were assessed according to the Brandt score
[30] in the same subgroup.

Analyte measurements
Plasma samples were collected and stored at − 80°C.
sFlt-1 and sKDR were analysed using chemiluminescent
quantitative sandwich enzyme immunoassays (R&D Sys-
tems, Minneapolis) detection limits, sFlt-1 3.5 pg/mL
and sKDR 4.6 pg/mL. Samples from patients recruited
earliest at Christchurch Hospital, for which sufficient
plasma was available, were chosen for assay of sFlt-1,
sKDR and pterins to maximise length of follow-up and
therefore accumulated numbers of clinical events and
the strength of survival analyses. Circulating levels of BNP
and N-terminal proBNP (NT-proBNP) were assayed as
previously described [31]. HPLC measurement of pterins
was performed using a Shimadzu, Kyoto, Japan, Sil-20A
HPLC with auto-sampler, RF-20Axls fluorescence de-
tector. A 10 μL plasma sample was injected onto a Luna
5 μm SCX 100 Å, 250 × 4.6mm column with a mobile
phase of 100% 20mM ammonium phosphate (pH 2.5)
pumped at 1mL/min as previously described [32]. Neop-
terin was detected by fluorescence at wavelength emission
of 438 nm and excitation of 353 nm, whereas 7,8 NP was
detected following oxidation to neopterin by iodide. All
analysis of plasma analytes was conducted in duplicate.

DNA extraction and SNP genotyping
Extraction of genomic DNA for genotyping was per-
formed as described previously [23]. DNA samples
were genotyped for the rs2071559 (T-604C), rs2305948
(G1192A), rs1870377 (T1719A) polymorphisms in the
VEGFR-2 receptor gene (encoding KDR) and rs748252
(C8764T) and rs9513070 (A189427G) in the VEGFR-1
receptor gene (encoding Flt-1). The SNPs from VEGFR-1
were chosen with reference to dbSNP and International
HapMap Project data, as at the time of initiating this study

there were no prior reports of genetic association studies
of polymorphisms in VEGFR-1 and CVD. Genotyping was
performed by real-time PCR, using allele-specific TaqMan
genotyping probes (Applied Biosystems) in 5 μL reaction
volumes in 384-well plates, including 1× Roche LightCy-
cler 480 Probes Master mix and 100 ng of genomic DNA
in a Roche LC480 (Roche Diagnostics, Auckland).

Statistical analysis
Univariate analyses to test for associations between SNP
genotype and demographic, analyte levels and echocar-
diographic measurements were performed using χ2 and
ANOVA tests. Skewed data were log-transformed be-
fore analysis and geometric means with 95% confi-
dence intervals reported and adjusted for age, and the
time between index admission and baseline sampling.
The survival of stratified groups was compared using
Kaplan-Meier analysis and the log-rank test. Independent
associations between genotype and survival were tested
using Cox proportional hazards multivariate analysis in-
cluding the following established predictors; age, gender,
previous MI, Type 2 diabetes, baseline creatinine, physical
activity and NTproBNP levels as previously justified
[23, 31]. Multivariate linear regression models were based
on covariates showing univariate association with sFlt-1.
The study had power to detect a hazard ratio (HR) of > 1.7
as statistically significant (two tailed α < 0.05, 90% power)
in the CDCS cohort for analysis of those patients assayed
for sFlt-1. Levels of sFlt-1 at baseline were assayed in base-
line plasma samples from 513 patients selected from the
CDCS cohort. Samples from patients with a baseline
plasma sample available at the earliest recruitment dates
were chosen to maximise number of events on follow up
for inclusion in survival analyses (recruited between July
2002 and August 2007). Levels of KDR were assayed in
baseline plasma samples from 211 patients, in whom sFlt-1
levels were available (recruited between July 2002 and
February 2004). Levels of pterins were assayed in 144
baseline plasma samples from patients in whom sFlt-1
levels were available (recruited between September 2006
and May 2007). In the genetic association part of the study
there was 80% power to detect HRs > 1.4 with rare homo-
zygote groups having a frequency of 20% of total cohort.
An additive genetic model was used unless stated other-
wise. All analyses were performed using SPSS version 22
(IBM, Armonk, USA). Statistical significance was set at
the 5% level (p < 0.05).

Results
VEGFR SNP genotypes and CDCS cohort data
Baseline features of the CDCS cohort are summarized in
Table 1. Genotypes were obtained from DNA samples
from patients from the cohort for the VEGFR-1 gene
SNPs (C8764T rs748252 [n = 2027], A189427G rs9513070
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[n = 2048]) and for the VEGFR-2 gene SNPs (T-604C
rs2071559 [n = 2050], G1192A rs2305948 [n = 2066],
T1719A rs1870377 [n = 2042]) as shown in Table 2. The
genotype distributions conformed to the Hardy-Weinberg
equilibrium (p ≥ 0.998).

Analyte measurements
Levels of sFlt-1 at baseline were assayed in baseline
plasma samples from 513 patients selected from the
CDCS cohort. Baseline characteristics of this group are
summarised and compared to the remainder of the cohort
in Additional file 1: Table S1. Patients with a baseline

plasma sample available from the earliest recruitment
dates (between July 2002 and August 2007) were chosen
to maximise the number of events during follow up for
inclusion in survival analyses. Baseline levels of sFlt-1 had
a geometric mean of 105 pg/mL (95% CI 102–110 pg/mL,
CV = 52.8%) and were weakly correlated with age
(n = 513, r = 0.167, p < 0.001), troponin I (n = 509,
r = 0.267, p < 0.001), NTproBNP (n = 513, r = 0.216,
p < 0.001) and BNP levels (n = 513, r = 0.181, p = 0.003) at
baseline. A weak inverse correlation of sFlt-1 with LVEF
(n = 498, r = − 0.144, p < 0.001) was observed. Levels of
sFlt-1 differed significantly (p = 0.035) between patients
who were current drinkers of alcohol (n = 306, mean =
106 pg/mL) and non-drinkers (n = 143, mean = 101 pg/mL).
Using a multivariate linear regression model, age, troponin I,
and time to plasma sampling (all p < 0.001) were independ-
ently associated with sFlt-1 levels.
Levels of KDR, assayed in baseline plasma samples from

211 patients, in whom sFlt-1 levels were available, had a
geometric mean of 10,500 pg/mL (95% CI 10200–
10,900 pg/mL, CV = 24.1%) at baseline, with an inverse
correlation with sFlt-1 (n = 185, r = − 0.184, p = 0.027) and
age (n = 211, r = − 0.153, p < 0.037). KDR was significantly
higher (p = 0.025) in drinkers (Current Drinkers: n = 135,
mean = 11,200 ± 221 pg/mL; Ex-/Non-drinkers: n = 76,
mean 10,300 ± 295 pg/mL). As preliminary analysis pro-
vided no indication that KDR was associated with any
parameter of clinical interest, the decision was made to
assay no further samples for KDR.
Investigation of the association of VEGFR receptor

gene SNPs with baseline characteristics revealed that the
genotype of theVEGFR-2 SNP rs1870377 A allele was
significantly associated with higher levels of sFlt-1 and
lower levels of sKDR at baseline (Table 3, Fig. 1).
These associations did not appear to be influenced by
any differences in allele frequencies between European and
non-European ethnic groups (Additional file 1: Table S2).
There were no significant associations between the other
SNPs assayed and either sFlt-1 or KDR levels.
Levels of pterins (neopterin, n = 144; 7,8 NP, n = 135;

total pterins, n = 138) were assayed in baseline plasma
samples from among patients in whom sFlt-1 levels were
available. Baseline characteristics of this group are sum-
marised and compared to the remainder of the cohort in
Additional file 1: Table S3. Levels of total pterins ranged
between 16.58 nM and 624.6 nM, mean of 94.4 ± 9.1 nM
and a standard deviation of 107.08 nM. Total pterins
trended higher in females (78.5 [62.7–98.4] nM) than
males (60.1 [50.9–70.8] nM)(p = 0.058); and lower in
current drinkers of alcohol (n = 138, drinkers 56.8
[49.1–65.7], ex−/non-drinkers 78.0 [62.0–98.1] nM,
p = 0.020), but the latter association was lost after adjust-
ment for patient age and gender. 7,8 NP levels had a geo-
metric mean of 37.7 (31.4–45.3) nM, and neopterin 17.8

Table 1 Baseline characteristics of the CDCS cohort

Baseline characteristics n Mean ± SE or n (%)

Male Gender 2067 1483 (71.7%)

Index event diagnosis:

Unstable Angina 2067 553 (26.8%)

ST-elevation MI 2067 460 (22.2%)

Non-ST-elevation MI 2067 1054 (51.0%)

Age at baseline (years) 2067 66.6 ± 0.27

Ethnicity (European, Maori & Pasifika,
Other, Unknown)

2067 85.9,4.8,3.0,6.3%

Previous MI 2053 619 (30.2%)

Antecedent Hypertension 2050 1069 (52.1%)

Type II diabetes 2061 336 (16.3%)

Renal disease 2052 205 (10.0%)

BMI (kg/m2) 2039 27.6 ± 0.11

Tobacco Use (never smoked) 2067 750 (36.3%)

Alcohol Use (non-drinker) 2064 516 (25.0%)

LVEF 1967 57.3% ± 0.27

Discharge Medications

ACE inhibitor 2067 1178(57.0%)

β-blocker 2067 1778 (86.0%)

Diuretic 2067 566 (27.4%)

Statin 2067 1826 (88.3%)

Table 2 Genotype frequencies of polymorphisms investigated
in this study in the CDCS cohort

n AAa, n (%) Aaa, n (%) aaa, n (%)

rs748252 (VEGFR1) 2027 811 (40.0%) 931 (45.9%) 285 (14.1%)

rs9513070 (VEGFR1) 2048 811 (39.6%) 918 (44.8%) 319 (15.6%)

rs1870377 (VEGFR2) 2042 1146 (56.1%) 760 (37.2%) 136 (6.7%)

rs2071559 (VEGFR2) 2050 516 (25.2%) 1050 (51.2%) 484 (23.6%)

rs2305948 (VEGFR2) 2066 1665 (80.6%) 381 (18.4%) 20 (1.0%)
aA =major allele, a = minor allele (rs748252 A = C, a = T; rs9513070 A = A, a = G;
rs1870377 A = T, a = A; rs2071559 A = C, a = T; rs2305948 A = G, a = A)
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(15.9–20.0) nM. Neopterin was weakly positively corre-
lated with NTproBNP (n = 143, r = − 0.167, p = 0.034).

Clinical outcome in the CDCS cohort
Baseline levels of plasma sFlt-1 were associated with
all-cause mortality (p < 0.001) (Fig. 2). In multivariate
survival analysis, sFlt-1 predicted mortality independent
of age, gender, NT-proBNP, creatinine, troponin I,

physical activity score, alcohol consumption, history of
previous MI, diabetes, ethnicity, ACS diagnosis and
time to sampling (p = 0.023) (Table 4). This was also true
for the endpoint of deaths attributable to cardiovascular
(CV) causes (CV deaths n = 87, above median sFlt-1
mortality = 21.6%, below median sFlt-1 mortality =
12.6% p = 0.029). ROC analysis is also presented in
Additional file 2: Figure S1 comparing sFlt-1 and NTproBNP
as predictors of mortality at 5 years of follow-up. The

Table 3 Genetic associations with VEGFR levels in baseline plasma and angiogram measurements

a) VEGFR2 - rs1870377

n TT n TA n AA p

Age (years) 1141 66.5 ± 0.37 758 70.0 ± 0.43 136 66.3 ± 1.02 0.646

Male Gender (F/M) 1141 823 (72.1%) 758 530 (69.9%) 136 106 (77.9%) 0.143

sFlt-1 (pg/ml) 284 106(100–112) 188 104(96.8–111) 27 132(110–157) 0.044

sKDR (pg/ml) 121 11,049 ± 235 75 10,799 ± 299 15 9255 ± 668 0.038

Brandt Score 580 3.26 ± 0.13 384 3.39 ± 0.16 69 3.70 ± 0.45 0.519

b) VEGFR1 - rs748252

n CC n CT n TT p

Age (years) 807 66.9 ± 43 929 66.6 ± 0.40 284 66.3 ± 0.75 0.771

Male Gender Gender 807 595 (73.7%) 929 656 (70.6%) 284 195 (68.7%) 0.178

sFlt-1 (pg/ml) 222 124 ± 4.50 224 112 ± 3.80 50 119 ± 9.06 0.277

sKDR (pg/ml) 90 11,100 ± 307 77 10,500 ± 277 18 10,300 ± 643 0.290

Brandt Score 427 3.19 ± 0.15 457 3.35 ± 0.15 135 3.86 ± 0.30 0.054

n=499 n=211
p=0.020 (adjusted for age) p=0.042 (adjusted for age)
p=0.025 (adjusted for time to sampling) p=0.055 (adjusted for time to sampling)

AA n=27 TA n=188 TT n=284 AA n=15 TA n=75 TT n=121

a b

Fig. 1 Plots of the relationship between rs1870377 genotype and (a) baseline sFlt-1, (b) baseline sKDR
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VEGFR2 SNP rs1870377 was associated with reduced risk of
HF readmission (AA v TA/TT, n = 2033, events = 379, haz-
ard ratio = 0.74, 95% CI 0.58–0.95, p = 0.019, adjusted for
age, time to sampling, gender, and ethnicity).
All-cause mortality (n = 138) was greater for those

with above-median compared with below-median total
pterin levels (Fig. 3.; 33.3% versus 10.1%, respectively;
p = 0.005) and greater for patients with above-median
7,8 NP (28.2% versus 15.3%, p = 0.026). In a Cox’s pro-
portional hazards model total pterin levels were predict-
ive of death independent of age, time to sampling, sFlt-1
and NT-proBNP levels (Table 5).

Angiogram measurements
Levels of sFlt-1 at baseline were not significantly
correlated with Brandt score (sFlt-1 n=337, r = 0.078
p = 0.156; sKDR n = 124, r = -0.201, p = 0.026). BNP
and NT-proBNP levels at baseline were associated
with Brandt Score (BNP n = 1068, r = 0.206, p < 0.001;
NTproBNP n = 1068, r = 0.222, p < 0.001). The
VEGFR-1 SNP rs748252 TT genotype group trended
towards higher age-adjusted Brandt score than other
genotype groups (Table 3) and this appeared to be
consistent across ethnic groups (Additional file 1:
Table S2). Rentrop classification for extent of angio-
graphically apparent coronary collateral vessels was
not significantly associated with levels of soluble
VEGF receptor, pterins or any of the five SNPs ge-
notyped for this study.

Discussion
Higher levels of sFlt-1, total pterins, and 7,8 NP were
all univariately associated with mortality in the CDCS
cohort, whereas, higher levels of neopterin and sKDR were
not. In multivariate analysis total pterin, and sFlt-1 were
independent markers of mortality post-acute coronary event.
sFlt-1 was not more accurate as a predictor of mortality than
the established biomarker of CHD NTproBNP, as indicated
by the ROC analysis in Additional file 2: Figure S1, but may
be complementary to existing predictors of outcome.
In a similar study of patients with coronary artery dis-

ease undergoing angiography, sFlt-1 was not found to be
a significant independent predictor (p = 0.125) of adverse
outcomes (hazard ratio = 0.57) [33]. Contrary to this, we
found sFlt-1 was an independent predictor of all-cause
mortality (p < 0.023) and CVD death over a median of
5.04 years follow-up after an index acute coronary event.
A possible explanation for the difference between our
findings and those of Matsumoto et al. [33] is the more
severe coronary disease in the CDCS cohort, as levels of
upregulated sFlt-1 may correlate with ischaemic burden.
Since the risk of adverse events is higher in patients with
elevated sFlt-1 (above 117.3 pg/ml), this level may have
clinical utility in risk stratification and in guidance for
surveillance and intensity of management. It is likely
that continuous activation of intramural inflammation
plays a role in the occurrence of cardiovascular events.
The positive association of sFlt-1 and level of alcohol

consumption is interesting and has been reported else-
where [34]. The U-shaped association of alcohol with

sFlt-1 below median 258 246 229 55 37 0 49(19.0%)

sFlt-1 above median 255 228 196 93 77 0 99(38.8%)

p< 0.001 n=513

Below Median sFlt-1

Above Median sFlt-1

Events

Fig. 2 Kaplan-Meier survival analysis of the CDCS cohort stratified by above and below median sFlt-1 levels
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Below median total pterin 69 69 68 67 66 24 7(10.1%)

Above median total pterin 69 67 60 55 52 23 23(33.3%)

Events

p< 0.005    n=138

Below Median Pterins

Above Median Pterins

Fig. 3 Kaplan-Meier survival analysis of the CDCS cohort stratified by above and below median total-pterin levels

Table 4 Cox’s proportional hazards regression model for mortality in the subgroup of the CDCS cohort assayed for sFlt-1
(n = 476, 143 deaths)

Coefficient SE Wald df Significance Hazard
Ratio

95% CI for HR

Lower Upper

Age at baseline 0.07 0.01 35.1 1 < 0.001 1.07 1.05 1.10

Male Gender 0.14 0.22 0.004 1 0.951 1.01 0.66 1.56

Log10 NTpro-BNP at baselinea 0.90 0.29 9.71 1 0.002 2.46 1.40 4.33

Log10 sFlt-1 at baselinea 1.10 0.49 5.15 1 0.023 3.00 1.16 7.76

Creatinine baseline 0.01 0.001 16.8 1 < 0.001 1.01 1.00 1.01

Log10Troponin I at baselinea 0.02 0.19 0.02 1 0.900 1.02 0.70 1.50

Physical Activity (scale 1–4)b −0.32 0.07 18.5 1 < 0.001 0.73 0.63 0.84

Alcohol consumption categoryc 3.25 2 0.197

Non-drinker v Current Drinker −0.21 0.12 2.99 1 0.84 0.81 0.63 1.03

Non-drinker v Ex-drinker 0.08 0.17 0.25 1 0.62 1.09 0.79 1.50

Previous Myocardial Infarction 0.49 0.20 6.17 1 0.013 1.62 1.11 2.38

Type 2 Diabetes 0.32 0.22 2.08 1 0.149 1.38 0.89 2.14

Ethnicity 1.05 3 0.789

European v Maori/Pasifika 0.24 0.60 0.16 1 0.691 1.27 0.39 2.11

European v Other 0.98 1.05 0.88 1 0.349 2.67 0.34 20.8

European v Unknown 11.5 201 0.003 1 0.954 < 0.01 < 0.01 2.9 × 10166

Acute Coronary Syndrome Diagnosis 1.31 2 0.518

NSTEMI v STEMI −0.20 0.28 0.48 1 0.488 0.82 0.47 1.43

NSTEMI v Unstable Angina −0.21 0.21 1.01 1 0.315 0.81 0.54 1.22

Time to Samplingd −0.001 0.01 0.02 1 0.901 0.99 0.98 1.02
aHazard Ratio represents the change in risk for every 10-fold increase in analyte level
bScore of 1 = sedentary, 2 = < 30 min activity on > 2 days/week, 3=≥30 min on 2 days/week, 4= ≥30 min on ≥3 days/week
cCurrent Drinker, Ex-drinker or Non-drinker
dDays between index admission and plasma sampling at recruitment visit
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CVD [35], may in part be explained by its association
with sFlt-1 levels in the plasma of acute coronary syn-
drome patients, potentially linking the consumption of
alcohol with angiogenesis via alcohol’s alternative activa-
tion of the VEGFR, KDR. Levels of sFlt-1 and sKDR
were not associated with angiographic measurements in
a robust fashion. The VEGFR SNPs assayed were also
not strongly associated with measurements of collateral
formation or myocardium at risk. While this suggests
that none of these markers have value as predictors of
collateral angiogenesis, the weak associations detected
suggest a thorough investigation of these metrics and a
more exhaustive set of genetic markers is warranted. Lin-
ear regression analysis suggests that as well as age, tropo-
nin I levels were associated with sFlt-1 levels at baseline. It
may be that levels of myocardial damage influence expres-
sion of sFlt-1 in post-acute coronary patients.
Levels of total pterins and 7,8 NP, were significantly

associated with all-cause mortality, in agreement with
past research relating inflammation to risk of death after
acute CVD events [36]. Neopterin has been previously
presented as an independent marker of acute coronary
events and all-cause mortality after an initial event [37].
However, that prior report only measured neopterin and
the finer-grained measurements presented here bring
additional information pertinent to prognosis. Enhanced
T-cell activity, resulting in increased production of
interferon-γ, is implicated in the pathogenesis of CVD
[38, 39]. Total pterin production by monocytes and
macrophages, is primarily a response to stimulation by
interferon-γ released by activated T-lymphocytes [40].
Therefore, the levels of total pterin observed may reflect
activation of cell-mediated immunity, in turn related to
disease severity and hence to mortality post-CVD event.
None of the gene polymorphisms investigated were as-

sociated with mortality, despite the fact that the VEGFR2
SNP rs1870377 AA genotype was associated with higher
levels of sFlt-1 and lower levels of sKDR. rs1870377
genotype has been associated with response to drug treat-
ment and survival in cancer, femoral head osteonecrosis and
recurrent pregnancy loss (www.snpedia.com/index.php/

rs1870377), suggesting a link to angiogenic potential.
Three polymorphisms of KDR have been shown to be
associated with risk of CHD in Han Chinese [28]. A
microsatellite in FLT-1 (VEGFR1) has been studied in
relation to coronary artery lesions in Japanese Kawasaki
disease patients, but was not associated with CAD [41].
Furthermore, mouse model studies have shown that
KDR knockout is not compatible with vascular develop-
ment [42]. Our findings are at best suggestive, needing
further validation in extensive surveys of genetic links
between angiogenesis, angiogenic biomarkers and clin-
ical outcome in cohorts of CHD patients.
Limitations of the study include: 1) missing data for

some parameters limited the power of this study to
explore their association with genotype and plasma ana-
lyte levels; 2) blood samples were collected at varying
times (median 32 days) after the index event in order
to avoid major influences from the acute event on
plasma analytes, while this variable may have affected
levels of these analytes, adjustment for time to sam-
pling was included in statistical analysis in an effort
to mitigate this; 3) CVs for the biomarkers sFlt-1 and
sKDR data were high, without the achievement of im-
proved assay performance this limits the accuracy and
utility of these biomarkers 4) the analyses for
VEGFR’s and pterins have only been conducted on a
minority of the total CDCS cohort; 5) rigorous cor-
rection for multiple testing would adjust some of the
uncorrected p-values across the p > 0.05 boundary; 6)
the majority of the CDCS cohort are patients of
European ancestry and the results should not be ex-
trapolated to other populations; 7) the CDCS cohort
was recruited over 9 years ago and therefore limited
availability of recent treatment regimes such as dual
anti-platelet therapy (received by 54% of the CDCS
cohort) may have affected clinical outcome endpoints.
In summary we report an independent association of

both plasma sFlt-1 and total pterin levels with all-cause
and cardiovascular mortality in a cohort of patients with
coronary artery disease followed up for several years after
an index acute coronary event. These findings should be

Table 5 Cox’s proportional hazards regression model for mortality in the subgroup of the CDCS cohort assayed for pterins
(n = 138, 32 deaths)

Coefficient SE Wald df Significance Hazard
Ratio

95% CI for HR

Lower Upper

Age at baseline 0.06 0.02 7.20 1 0.007 1.06 1.02 1.10

Log10 NTpro-BNP at baselinea 1.28 0.53 5.87 1 0.015 3.59 1.28 10.1

Log10s-Flt-1 at baselinea 3.06 1.38 4.87 1 0.027 21.2 1.41 319

Log10Total pterins at baseline
a 2.16 0.54 16.3 1 < 0.001 8.70 3.04 24.9

Time to samplingb 0.004 0.02 0.04 1 0.847 1.00 0.97 1.05
aHazard Ratio represents the change in risk for every 10-fold increase in analyte level
bDays between index hospital admission and plasma sampling
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regarded as hypothesis generating and should be subject
to validation studies in other cohorts.

Conclusions
sFlt-1 and pterins appear to have potential as prognostic
biomarkers in acute coronary syndromes patients. Genetic
markers from VEGF system genes, particularly rs1870377,
warrant further investigation as markers of levels of VEGF
system components in these patients.
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