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Abstract 

Bone fracture is a growing health concern in medicine. Current clinical assessment methods 

for bone fracture risk are bone mineral density (BMD)-based, as bone quantity is the only 

aspect of bone strength that is most readily measured in clinical practice. On their own, these 

framework methods can not exactly predict the likelihood of individuals to fracture, since 

bone strength and health are influenced by both quantity and quality; it is a multi-factored 

probability. A sounder understanding of both facets of bone strength would expedite more 

accurate fracture risk assessment. Better prevention and treatment of orthopaedic diseases 

now rest on a greater understanding of bone quality and its underlying factors, since bone 

quantity has historically received more research attention. One route to confront this challenge 

in progressing comprehension of the underlying mechanisms of bone quality is to use animal 

models of human bone diseases like osteoporosis and osteoarthritis (OA). Given that any 

atypical chemical alterations to bone’s main components are reflected in its microstructure, 

and therefore contribute to the development of various bone diseases, there is increasing 

interest in how molecular-level changes to bone affect overall bone quality. 

Molecular vibrational spectroscopy is often used as a tool in disease diagnosis, as any disease-

causing chemical alterations may be identified and monitored; it also holds the potential to 

enable prediction of any further complications. As Raman spectroscopy is not as water-

sensitive as infrared is, it is highly beneficial for characterising biological specimens. 

Bone tissues and other biological specimens are inherently intricate, as would be the chemical 

information collected from them; multivariate statistical analysis is required to aid in the 

simplification, extraction, and classification of these large volumes of chemical information 

collected. This cataloguing of the actual variation of bone tissue’s chemical information 

would improve understanding of how damage affects the interplay between bone’s various 

micro- and macrostructural aspects. 

Principal component analysis (PCA) – one such dimensionality-reducing statistical technique 

– was conducted on Raman spectral data collected from two separate sets of equine bone 

specimens: fracture-prone third metatarsal (Mt3) and induced osteoarthritic (OA) carpal joint 

sections. The results from both aggregated data sets suggested that some localised 

microstructural differences were detectable – especially within parts of the subchondral bone. 

What was unclear, however, was the likely cause of these differences. These differences could 
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potentially be highlighting areas of hypermineralisation or some organic matrix degradation 

within fracture predilection sites or OA-induced sites that may well be indicative of early 

development of orthopaedic diseases like osteoporosis or OA. Some of the common questions 

the PCA results raised were the extent of similarity between individuals with respect to the 

organic matrix component, and the extent of heterogeneity between individuals with respect 

to the mineral component. In order for any potential predictions to be applicable, addressing 

the multi-level nature of the multivariate spectral data obtained would be the first step in 

preparing this type of work for further validation and classification. Widening the scope of 

data analysis might then help in clarifying the classification of the spectral data. 

If not already available, condensed, fibre optic-style instrumentation might enable trialling of 

this technique in a practical, clinical setting. If it is practically feasible, instrumentation that 

even combines the two vibrational spectroscopic techniques in tandem with chemometrics to 

provide simultaneous groups of data from samples, could also be developed. 
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Chapter 1 – Introduction 

1.1 Functions of the skeletal system 

The mammalian skeletal system mainly imparts structural support and enables body 

movements, protects vital internal organs, and maintains mineral and lipid homeostasis 

(balance of physiological processes within an organism; it stores such necessary minerals as 

calcium, phosphorus, and magnesium) (1-4). It also acts as a centre for haematopoiesis (blood 

production and storage within the bone marrow of the medullary cavity of long bones) (1-4). 

Bone is always responding to the loads and forces that are applied to it during physical 

activity, adapting itself accordingly. When these loads and forces exceed what bone can 

readily or easily handle to maintain its optimum architecture, bone tends to fracture. 

Riggs (5) outlines three general pathways that can lead to fracture: abnormal loading of 

normal bone (‘monotonic fracture’), normal loading of abnormal bone (‘pathological 

fracture’), and intermittent, cyclic loading of fatigued bone (‘fatigue fracture’). Physiological 

changes caused by disease, other pathological anomalies or prescriptive drugs disrupt the 

delicate balance between bone resorption and bone formation processes. These all distort the 

‘normal’ state of bone’s structure. Fracture susceptibility and manifestation are the weightiest 

clinical concerns about bone diseases (4) as they entail profound disability and morbidity – 

perhaps even mortality, in the most severe cases. 

1.2 Structure and composition of bone 

There are five classes of bone: long, short or cuboidal, sesamoid (small bones found within 

tendons), flat, and irregular. Long bones provide leverage; short or cuboidal bones offer 

stability, support, and shock absorption (2, 6, 7). Sesamoid bones shield tendons and joints 

from compressive and tensile forces; flat bones grant muscle attachment points and protection 

of internal organs; irregular bones also guard internal organs (2, 6, 7). 

Bone has a complex hierarchical and heterogeneous structure. Macroscopically, mature bone 

tissue consists of a hard, dense exterior known as cortical (or ‘compact’) bone that surrounds 

highly porous trabecular (or ‘cancellous’ or ‘spongy’) bone. The perforation of cortical bone 

by holes and channels allows blood vessels and nerves into the medullary cavity where 

marrow resides; refer to Figure 1.1. 
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Figure 1.1 Cross-section of a long bone showing the trabecular and cortical bone encompassing 

marrow in the medullary cavity. From “File: Bone cross-section.svg”, by Pbroks13, 2008 

(https://commons.wikimedia.org/w/index.php?curid=5188772).  

CC BY 3.0. (https://creativecommons.org/licenses/by/3.0/). 

 

The surface where bones articulate is known as the articular surface. Underlying the articular 

surface is the articular cartilage (AC) which has two main zones (outermost to innermost): the 

hyaline articular cartilage (HAC) and the articular calcified cartilage (ACC; the ACC can 

simply be referred to as the calcified cartilage). The HAC is ‘uncalcified’ and can be further 

subdivided into three zones (again, outermost to innermost): superficial, middle, and deep. A 

tidemark or mineralising front separates the calcified and ‘uncalcified’ parts of the articular 

cartilage. Deeper are the subchondral bone (SCB) and cancellous bone (or ‘trabecular bone’); 

these tissue components are more mineralised than that of the ACC. 

Figure 1.2 illustrates the osteon (or ‘Haversian system’), which is a repetitive microscopic 

unit consisting of concentric layers known as lamellar bone (or ‘lamellae’). Osteons are found 

in cortical bone. Haversian canals, which run parallel to the long axis of a long bone, contain 

blood vessels and nerves that service the bone (that is, it is the nutrient canal of the bone). An 

osteon is where the bone has deposited and gradually mineralised. Like the rings of a tree, 

moving outwards from the centre of an osteon, the younger bone gives way to areas of older, 

more mineralised bone (‘interstitial lamellae’ or ‘interstitial bone’) and each osteon is 

separated from the others by a cement line. Volkmann’s canals run perpendicular to the long 

axis of the bone, connecting each of the Haversian systems (this permits communication 

between them). 

https://commons.wikimedia.org/w/index.php?curid=5188772
https://creativecommons.org/licenses/by/3.0/


3 

 

 

Figure 1.2 A cross-sectional view of the basic (microscopic) structural unit of bone: the osteon 

(adapted from “Bone structure” by OpenStax, 2013 (https://philschatz.com/anatomy-

book/contents/m46281.html)). CC BY 4.0. (https://creativecommons.org/licenses/by/4.0/) 

Bone is composed mainly of a mineral phase, an organic matrix, and water. The combination 

of mineral and organic components are what makes bone simultaneously strong, rigid, and 

flexible (4). Making up approximately 20 – 25 % of the composition by weight (1), the 

organic matrix is mostly made up of type I collagen, but also includes non-collagenous 

proteins and lipids (8). The collagenous component gives bone its flexibility and is a 

mineralisation template (9); this elasticity allows bone to withstand tensile loads and forces 

(10). 

The mineral phase (making up approximately 70 % of the composition (1)) is based on 

apatite, a calcium phosphate-containing species. The mineral component confers compressive 

resistance to the matrix, as its crystals are bound to the collagen fibres (10). 

1.3 Diagnosis of bone diseases and current methods of risk 

assessment 

From a clinical perspective, bone mineral density (BMD) is perceived as a suitable surrogate 

for skeletal mineral content (11). Two main reasons for its prevalence in clinical settings are 

Volkmann’s  

canal 

inner circumferential 

lamellae 

Haversian canal 

https://philschatz.com/anatomy-book/contents/m46281.html)
https://philschatz.com/anatomy-book/contents/m46281.html)
https://creativecommons.org/licenses/by/4.0/
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ease of its in situ measurement and the tendency towards fracture outcomes from low BMD-

related values (11). Current clinical assessment methods for bone fracture risk are BMD-

based as bone quantity is the only aspect of bone strength that is most readily measured in 

clinical practice (11-13). For example, the BMD-based photon absorption techniques, single 

and dual X-ray absorptiometry (DXA), quantitatively assess the areal mineral content of the 

entire skeletal system and sites most vulnerable to fracture. Patients’ DXA test results are 

reported back as so-called ‘T-scores’ and ‘Z-scores’; these measurements are based on BMD 

criteria from the World Health Organisation (WHO) Fracture Risk Assessment Working 

Group and the International Society for Clinical Densitometry (ISCD) (14, 15). 

The T-score – used for a patient who is aged 20 and above – is the number of standard 

deviations (SDs) that his or her bone density differs from that of an ethnicity- and sex-

matched healthy young adult. That is, the T-score shows the level of deviation from ethnicity- 

and sex-matched peak bone mass and is therefore indicative of bone loss since early 

adulthood. The Z-score, by contrast, is reported for all age groups. The Z-score is the number 

of SDs that a patient’s bone mass differs from that of age-, ethnicity-, height-, weight-, 

pubertal status-, and sex-matched bone mass (that is, deviation from appropriately matched 

reference individuals who have no fragility fractures) (14, 15). According to the WHO’s 

criteria, a T-score at and above 1.0 SD suggests normal bone density. The threshold for 

diagnosis of osteopenia (low bone mass) is when a T-score falls between 1.0 and 2.5 SDs 

below the mean, and for osteoporosis is when a T-score is at or below 2.5 SDs. A patient with 

a history of at least one prior fracture caused by mild trauma and a T-score below 2.5 SDs is 

more likely to be diagnosed with severe or established osteoporosis (14, 15). 

Where the Z-score is a more appropriate tool for osteoporosis or osteopenia – as, for instance, 

would especially be the case for paediatric patients – the criteria for diagnosis are two-fold: a 

significant fracture history and a Z-score below 2.0 SDs. According to the ISCD’s guidelines, 

this signals that a patient’s bone mass falls below the expected range for his or her age. A Z-

score above 2.0 SDs signifies that a patient’s bone mass falls within the expected range for his 

or her age (14, 15). It is due to this ease of categorisation of BMD-based values that DXA is 

considered the benchmark or gold standard diagnostic tool for diseases like osteoporosis. 

On their own, these framework methods cannot unerringly predict the likelihood of 

individuals to develop a fracture, since bone strength and health are influenced by both 

quantity and quality; it is a multi-factored probability (16). An individual may have seemingly 
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normal bone density, yet inexplicably fracture. Another individual may have lower bone 

density but may not fracture (16). Most research attention has historically been given to bone 

quantity. Still, there has been greater recognition of the need to be additionally addressing 

bone quality and the factors that affect it (17).  

Atypical alterations to either or both of bone’s main constituents contribute to the 

development of various bone diseases. For instance, mutations in collagenous and non-

collagenous proteins can make bone more brittle (giving rise to conditions such as 

osteogenesis imperfecta) (4). Osteomalacia is the end-result of inadequate mineralisation from 

dietary calcium deficiencies or phosphate deficiencies (4). Other methods are being sought to 

enable better grasp of bone’s chemical and structural composition (that is, its microstructure). 

These have the potential to fill any gaps in knowledge left by BMD-based measurements. 

Studies of chemical composition can provide insight into how interactions and alterations to 

bone components may affect the overall bone quality (given that any perturbations to bone are 

reflected in its microstructure) (18). A sounder understanding of both facets of bone strength 

expedites more accurate fracture risk assessment, and more generally, better-targeted medical 

practices. 

Bone fracture is a growing health concern in medicine. Annually, there are about 9 million 

osteoporotic fractures globally (13) because of low bone mass and tissue deterioration; these 

are more common in the hip, forearm, and spine (19). It is expected that as life expectancy 

increases (and, subsequently, a greater proportion of countries’ populations move into higher 

age brackets) and as more individuals become increasingly sedentary, the rates of 

osteoporosis and other orthopaedic diseases will rise (20). Greater bone fragility means 

greater fracture susceptibility (12). Such alarming prospects highlight the obvious need for 

better prevention and treatment of orthopaedic diseases. One route to confront this challenge 

is to use animal models of bone disease to progress comprehension of underlying 

mechanisms. 

1.4 The horse as a veterinary model for bone diseases in 

humans 

The equine and human skeletal systems are somewhat similar physiologically. Both creatures 

undergo an initial phase of rapid musculoskeletal growth and development before attaining 

skeletal maturity and progressively ageing (21-23). Both are also capable of adaptation to 
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mechanical loading (21-23). As there are both human and equine athletes, some parallels can 

be drawn between ailments that can afflict both creatures (21-23). Progressive ageing may 

bring with it naturally occurring, age- and exercise-related musculoskeletal diseases (21-23). 

The veterinary field, therefore, is increasingly interested in how equine bone strength and 

resistance are altered at the molecular level. These alterations might show how equine models 

for bone diseases and other musculoskeletal disorders and injuries might also help in human 

medicine. Since many horses are often euthanised after significantly traumatic injuries, and 

many ethical considerations need to be taken into account regarding the use of any human 

tissue in research, equine models provide a good starting point. There are not yet clear-cut 

clinical methods of identifying individuals who are likely to develop fractures. The exact 

pathogenesis of fractures, likewise, remains at best rather speculative. 

1.4.1 The equine skeletal system 

Figure 1.3 shows a picture of the equine skeletal system. 

 

Figure 1.3 A picture of the equine skeletal system in one of the teaching laboratories of the School of 

Veterinary Sciences (SVS; formerly the Institute of Veterinary, Animal, and Biomedical Sciences, 

IVABS) at Massey University. Image by author. 
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1.4.2 Hind limb in the equine skeletal system 

  

Figure 1.4 The equine hind limb; the third metatarsal (Mt3) bone was the most relevant with respect to 

the first part of the work conducted herein. Image by author. 
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The pelvis, femur, tibia and fibula, tarsus (or ‘hock’), three metatarsals (cannon and splint 

bones), three phalanges (long and short pastern bones, and the pedal bone), and three 

sesamoid bones (the ‘sesamoids’ and navicular bone) make up the hind limb of the horse; 

refer to Figure 1.4. 

1.4.2.1 Third metatarsal (Mt3) bone 

As indicated in Figure 1.5, the Mt3 bone (also known as the ‘cannon bone’) articulates 

proximally with the tarsus and distally with the phalanx. 

 

Figure 1.5 The equine third metatarsal (Mt3) bone and its articulations. Image by author. 

The distal epiphysis consists of the lateral and medial condyles that are separated by a sagittal 

ridge. Immediately adjacent to the sagittal ridge are the lateral and medial parasagittal 
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grooves; these anatomical components are apparent in Figure 1.6. The Mt3 bone is one of the 

bones within the athletic equine skeletal system prone to fracturing; it was the distal part of 

the Mt3 that bone sections came from for the first part of the data analysis in this body of 

work. 

 

Figure 1.6 The areas of the distal epiphysis of the equine third metatarsal (Mt3) bone. Image by 

author. 
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1.4.3 Forelimb in the equine skeletal system 

 

Figure 1.7 The equine forelimb; the bones of the carpal joint were those of interest with respect to the 

second part of the work conducted herein. Image by author. 
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As displayed in Figure 1.7, the forelimb of the horse is comprised of the scapula, humerus, 

radius and ulna, carpus (or ‘knee’), three metacarpals (cannon and splint bones), three 

phalanges, and three sesamoid bones (again, sesamoids and navicular bone). The bones of the 

carpal joint were those of interest as regards the second half of the work conducted in this 

thesis. 

1.4.3.1 Carpal joint 

The bones in the carpus (or carpal joint) are examples of short bones. Seven bones make up 

the carpus, arranged in two rows: the radial carpal (CR), intermediate carpal (CI), ulnar carpal 

(CU), and accessory carpal in the upper row; the second carpal (C2), third carpal (C3), and 

fourth carpal (C4) are in the lower row. The radius is proximal to the CR, CI, CU, and 

accessory carpal bones, the third and fourth metacarpal (Mc3 and Mc4, respectively) bones 

are proximal to the C2, C3, and C4 bones. Figure 1.8 shows the distal part of the forelimb, and 

Figure 1.9 gives a close-up of the carpal joint. 

It was the C3, C4, and CR bones of the carpal joint from which bone sections were taken for 

the second part of the data analysis in this body of work. 
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Figure 1.8 The distal equine carpal joint. Image 

by author. 

Figure 1.9 A close-up of the equine carpal joint. 

Image by author. 

 

1.5 Molecular vibrational spectroscopy 

Molecular vibrational spectroscopy probes the vibrational motion of bonds and groups of 

atoms in molecules and materials. Vibrational frequency mode is governed by atomic mass 

and bond strength, while intensity is determined by the magnitude of dipole change in the 

direction of vibrational motion. Generally, changes in chemical composition or structure will 

affect band position and intensity; this provides the basis for differentiating between samples 

of similar composition and structure. Figure 1.10 shows the infrared region of the 

electromagnetic spectrum, where molecular vibration occurs. 
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Figure 1.10 Schematic of the nature of molecular vibrational spectroscopy (adapted from “FTIR in Gem 

Testing” by Lotus Gemology, 2019 (http://www.lotusgemology.com/index.php/library/articles/294-ftir-in-

gem-testing-ftir-intrigue-lotus-gemology)). Copyright 2019 by Lotus Gemology. Reprinted with written 

permission. 

The application of molecular vibrational spectroscopy as a tool in disease diagnosis has 

become of increasing interest over the past two decades or so (24) – particularly as it allows 

for rapid structural characterisation and evaluation, and is a non-destructive technique (25, 

26). With molecular vibrational spectroscopy, any chemical alterations due to a disease 

process may be identified and monitored, and perhaps even enable prediction of any further 

complications. 

1.5.1 Infrared (IR) spectroscopy 

The direct excitation of molecular vibrations from the absorption of infrared photons forms 

the basis of infrared (IR) spectroscopy. Excitation is the result of an exact match between the 

molecular vibrational frequency and the radiation frequency as it passes through a layer of the 

sample medium. Changes in molecular dipole moments (the net distribution of electrical 

charge across a molecule) during vibration is what IR spectroscopy ascertains. IR 

spectroscopy is usually carried out in the mid-IR region. 

Samples of biological specimens are often aqueous. Infrared spectra of these types of samples 

show broad hydroxide (OH) bands; that is, water has a strong signal within the spectra. This 

http://www.lotusgemology.com/index.php/library/articles/294-ftir-in-gem-testing-ftir-intrigue-lotus-gemology
http://www.lotusgemology.com/index.php/library/articles/294-ftir-in-gem-testing-ftir-intrigue-lotus-gemology
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signal broadness is the main disadvantage of using IR spectroscopy as a characterisation 

technique for aqueous samples. 

1.5.2 Raman spectroscopy 

Raman spectroscopy arises from molecular vibrations caused by the difference in frequency 

between the incident and scattered photons; that is, it is a light-scattering technique. Only 

about one in every 10,000 photons, however, interacting with a molecule gives rise to the 

‘Raman effect’, so this Raman effect is weak. There is a much higher probability of there 

being no loss in energy – and therefore no change in frequency since it is the same as that of 

the excitation source – as excited molecular vibrations return to the ground state upon re-

emission of infrared radiation. This more probable event is known as ‘Rayleigh’ or ‘elastic’ 

scattering (‘elastic’ since energy from the incident photon is conserved). 

Raman scattering is considered ‘inelastic’ since it results from frequency differences between 

the incident and scattered photons. Raman scattering manifests in two forms: ‘Stokes’ (when 

the frequency of the scattered radiation is lower than that from the excitation beam; a loss of 

energy), and ‘anti-Stokes’ (when the frequency of the scattered radiation is higher than that 

from the excitation beam; a gain of energy). Raman spectroscopy measures changes in 

molecular polarisation (the temporary distortion of a molecule’s electron cloud). 

The foremost advantage Raman spectroscopy holds over infrared is that it is not as water-

sensitive; this is highly beneficial for samples of biological specimens. 

Infrared (IR) and Raman both provide characteristic peaks or bands (so-called ‘fingerprints’) 

for constituent chemical species in a given sample. The most important ones in bone include 

those arising from phosphates and carbonates (mineral component) and amides (collagenous 

components). IR and Raman spectroscopies are complementary techniques (both involve 

molecular vibrations but have differing mechanistic origins; refer to Figure 1.11). Together, 

they provide a fuller picture of the molecular vibrations of samples under study; their use is 

dependent upon the purpose of the study matter. 
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Figure 1.11 A Jablonski energy diagram depiction of the mechanistic origins of infrared (IR) and 

Raman spectroscopies, as well as the fluorescence that can overwhelm Raman spectra of biological 

specimens. 

E0: ground state energy; hν0: energy of incident photon; hνm: energy of molecular vibration; IVR: 

intramolecular vibrational relaxation. Diagram by author. 

1.5.3 Use of near-infrared (NIR) lasers with biological specimens 

Fluorescence (atomic or molecular excitation upon irradiation with photons, but followed by 

short-lived emission) interferes considerably in the collection of Raman spectral data from 

biological specimens, as it is so many orders of magnitude more intense than the inherently 

weak Raman scattering is. Near-infrared (NIR) lasers can be used to minimise fluorescence 

during the collection of Raman scattering from biological samples. NIR laser use is based on 

the premise that such lasers do not encounter as many strongly absorbing molecules and 

fluorescence in this part of the electromagnetic spectrum (26-28). 

1.6 Multivariate statistical analysis: Chemometrics 

Bone tissues and other biological samples are inherently intricate. Any chemical information 

presented from them will also be complicated and not necessarily straightforwardly 

interpretable (29, 30). Subtle variations (due, for instance, to pathological abnormalities) and 

overlaps in large volumes of spectral data are not readily detected manually (30). 

Unfortunately, any qualitative assignment of these changes is highly subjective and affected 

by extraneous and confounding factors (29, 30). This complexity necessitates the use of tools 
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to aid in simplification, extraction, and categorisation or classification of these data (26). 

Classification or categorisation of the actual variation of chemical information within bone 

tissue is critical to improving understanding of how damage affects the interplay between the 

various micro- and macrostructural aspects of bone (29, 31, 32). 

Multivariate measurements are common in biology and analytical chemistry; chemometrics 

can be thought of as the use of statistics and mathematics for the analysis of such chemical 

data (33). Principal component analysis and linear discriminant analysis are just two examples 

of such quantitative analytical methods. 

1.6.1 Principal component analysis (PCA) 

The fundamental aim of principal component analysis (PCA) is to extract the underlying 

information in the multivariate data; this then requires exploration and quantitative 

interpretation of patterns within those data (33). Similarities and differences within the data 

can be highlighted (34). What PCA does is reduce a vast number of experimental variables 

into a much smaller number of variables, known as ‘principal components’ and these are used 

as independent variables in model construction. 

These principal components (PCs) represent the direction of greatest variation observed in the 

original data, weighted by the amount of variation shown. Each PC has a characteristic value 

– a ‘score’ – that relates to a particular sample (34). These scores then comprise a new 

coordinate system used to build up a model that can eventually classify the spectra into 

different groups based on observed spectral differences caused by molecular structural 

variations. 

1.6.2 Linear discriminant analysis (LDA) 

The basic principle of linear discriminant analysis (LDA) is to find a linear combination of 

features to characterise or separate two or more groups of ‘objects’. The resulting 

combination could be used either directly as a linear differentiate or as a dimensionality 

reduction in later classification. LDA models class differences to maximise the ratio of 

between-sample variation to within-sample variation. 

What LDA has in common with PCA is that both dimensionality-reduction techniques try to 

find the linear combination of variables that best account for the variation within the original 

data. One distinguishing feature of LDA is that it explicitly attempts to model the difference 
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between the classes of data, based on a priori knowledge of the data. Another of its 

distinguishing features is its use of the class labels for model construction. Still, the risk in 

using LDA is that it always returns a classification, even if there are no separate classes within 

the data set. 

1.6.3 Example of previous applications of PCA and LDA to equine 

bone tissue 

Diagnosis of musculoskeletal diseases with the aid of molecular vibrational spectroscopy is 

recent. Most of the (readily available and accessible) literature on its applications to bone 

tissues centres on infrared (IR) spectroscopy (use of Raman has probably only gathered more 

considerable momentum within the last decade or so). Literature exists on the application of 

Raman spectroscopy to some human and other animal bone specimens – particularly murine 

(rats or mice) bone specimens. There appears to be a paucity of Raman applications to equine 

bone that are used in tandem with PCA (or even LDA) for classification purposes. Many IR 

and Raman studies of bone quality in bone specimens have tended to spotlight other aspects 

of compositional analysis, such as possible implications of changes in specific parameters. 

These parameters – which are characteristically univariate – tend to be mineral-to-matrix ratio 

(amount of mineralisation), carbonate-to-phosphate ratio (degree of carbonate accumulation 

within biological apatite, and mineral crystal maturation status), mineral maturity or 

crystallinity, and collagen quality (17, 35, 36). 

Infrared probing of equine bone tissue is slightly more established than that of Raman but has 

focused on other subject matters. Proof-of-principle work conducted by Nicholson et al. in 

2012 (37) combined a type of infrared spectroscopy with chemometrics – specifically, LDA – 

to try to gain further insight into underlying causes of fracture initiation based on chemical 

and microstructural information. Their work also explored the use of that chemometric 

method in analysing that type of IR spectral data. 

The bone samples consisted of sections from the distal Mt3 bones of nine young thoroughbred 

racehorses (four newborn foals, four five-month-old foals, and a three-year-old horse) at sites 

where fractures are known to initiate (the medial and lateral parasagittal grooves). A third site 

– the medial condylar surface – acted as the ‘control’. The foals were clinically normal, but 

the three-year-old had known morphological abnormalities. The spectral collection itself was 

from the calcified cartilage and subchondral bone. 
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Among the authors’ findings were that bone microstructure and its variations within each 

horse group led to a lack of fracture resistance (that is, the bone was unable to cope with 

applied loads and forces). These variations, however, raised the question of the likelihood of 

fracture in individual horses due to earlier disadvantageous microstructural changes. Even 

though the classification via LDA provided a clear separation of the horses both by age and 

disease status, there were no clear-cut conclusions from the study. 

1.6.4 Other Raman, Raman-related, and Raman-chemometric 

applications to various bone tissue specimens 

As noted above in subsection 1.6.3, much of the Raman spectroscopy-led research that falls 

within medical and veterinary contexts has tended to focus on the inferences that could be 

made from changes to univariate spectral band parameters on bone quality. For example, with 

the aid of Raman spectroscopy, Khalid et al. (38) modelled staphylococcal osteomyelitis to 

determine changes that in vitro Staphylococcus aureus (S. aureus) infection might produce in 

human knee bone samples and the effect this infection would have on bone quality. S. aureus 

is the predominant (bacterial) cause of osteomyelitis, the inflammation and destruction of 

bone and bone marrow. Their investigation found that there was a marked reduction in the 

bone mineral quality and crystallinity parameters collected from the Raman spectral data from 

the in vitro S. aureus-infected human knee bone sections when compared to control bone 

sections. There was also altered collagen cross-linking of in vitro S. aureus-infected human 

knee bone sections. The group’s results implied that early diagnosis and treatment of 

osteomyelitis might eventually be possible.  

Down a similar line of investigation, de Souza et al. (39) exploited Raman spectroscopy to 

uncover osteoarthritis (OA)-related changes to collagen deposition and tissue remodelling in 

two well-established experimental rat knee OA models: collagenase-induced OA and 

treadmill exercise-induced OA. The experimental control group consisted of the preserved 

menisci-covered tibial joint. They observed that there was a distinct increase in the 

mineralisation and tissue remodelling-related parameters in both models when compared to 

the controls, pointing toward the successful induction of OA in the rats. Additionally, 

noticeably lower phenylalanine (Phe) content and higher crystallinity in the treadmill 

exercise-induced OA model than in the collagenase-induced OA model, connoted model-

dependent OA pathogenesis. These main findings highlighted the potential for the detection 

and diagnosis of OA-associated cartilage, subchondral bone, and overall joint damage. Such 
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studies as these demonstrate molecular vibrational spectroscopy’s capability in uncovering the 

differences in bone tissues, even using univariate statistics. 

Bonifacio et al.’s characterisation of articular cartilage hyperspectral data from a porcine 

humeral-scapular joint bone section via the combined used of univariate and multivariate 

statistical techniques (PCA, partial least-squares regression (PLSR), and hierarchical and 

fuzzy c-means cluster analyses) in (40) was one example of tandem Raman-chemometric 

applications to bone tissue specimens in medical and veterinary contexts. Briefly – as its name 

indicates – cluster analysis groups spectral data into clusters, based on the level of similarity 

or difference between spectral attributes, and there are two broadly different types of cluster 

analysis (34). The outcome of the hierarchical clustering method is akin to a dendrogram or 

tree where smaller clusters of more similar data give way to larger clusters of more dissimilar 

data (34); these are distinct clusters (40). From either a randomly chosen or a user-specified 

initial number of centroids, the fuzzy c-means clustering method groups the data iteratively 

into clusters. The final clusters would be those where the data have partial membership in 

multiple clusters rather than explicit membership in a distinct cluster (these membership 

values are normalised to take on values between zero and one, and indicate the level of 

similarity between a datum and the cluster mean) (40). PCA brought out the overall 

compositional changes by differentiating between the chief biochemical components 

(collagenous and non-collagenous proteins, proteoglycans, and nucleic acids). The two cluster 

analytical techniques, together with the PLSR, enabled detection of changes to these 

components in each of the cartilage’s three zones. From their results, there was again, the 

potential for further understanding of cartilage degradation processes. 

Toledano et al. (41) did Raman-cluster analysis work on human postmenopausal fractured 

femoral trabecular bone. It was a proposal of protocol for modelling trabecular bone 

degradation, based on microstructural modifications inferred from the specimens’ mineral and 

organic matrix’s Raman peak parameter measurements. These measurements also generated 

false-colour cluster and single-point maps via classical least-squares analysis (CLS), 

hierarchical cluster analysis (HCA), and PCA images. Clustering information from these 

images highlighted the differences and similarities in the specimens’ two main components’ 

chemical compositions. 

Other tandem applications to bone tissue and related specimens have not necessarily fallen 

into medical and veterinary contexts; many of these have tended to focus on bone 

microstructure as opposed to bone disease. There have been, for instance, applications from 
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the forensic sciences like McLaughlin and Lednev’s proof-of-principle partial least squares-

discriminant analysis (PLS-DA) of chicken, turkey, bovine, and porcine bone tissue 

specimens as a precursor to discriminating between human and non-human bone tissue 

specimens in (42). The first two components from the PLS-DA were able to separate the four 

species of origin, mainly based on contributions from the bone mineral and organic matrix. 

Likewise, Shimoyama et al.’s use of PCA and PLSR analysis (PLSR) to enable 

discrimination between two subspecies of African elephant, mammoth, hippopotamus, and 

sperm whale ivories in (43), and Brody et al.’s use of PCA and stepwise discriminant analysis 

to differentiate between ivories of six mammalian species in (44) were both also examples of 

species-of-origin discrimination of bone tissue. In (43), the first two PCs (accounting for 

about 84 % of the total spectral variation) were respectively capable of separating the two 

elephant subspecies’ ivories based on band intensity changes from interactions between 

collagenous proteins, non-collagenous proteins, and water, and sorting the elephant ivories 

from the other ivories. The PLSR was a predictive tool for specific gravity – based on second 

derivative spectral data collected from a set of five other ivories – with a correlation 

coefficient of 0.960 and root mean-square-error-of-cross-validation (RMSECV) of 0.037. In 

(44), there were two rounds of PCA conducted before the discriminant analysis. The first 

PCA was of spectral data from African elephant, ‘Asian’ elephant, hippopotamus, mammoth, 

sperm whale, and walrus dentine; sperm whale cementum; bovine, porcine, and ovine bones; 

and netsuke (derivatives of elephant or mammoth ivory). The second PCA was just of spectral 

data from African elephant, ‘Asian’ elephant, and mammoth dentine, and netsuke. In both 

rounds of PCA, the first two PCs accounted for most of the total spectral variation from the 

two main components in the specimens (about 81 % for the first PCA, and 70.6 % for the 

second PCA), differentiating to an extent between the dentine, bone, and cementum. The 

discriminant analysis did not give 100 % classification for each species since there remained 

an overlap between groups. 

Peak parameters – which provide information about bone compositional variation – correlate 

highly with bone’s physical properties and how well (or otherwise) it might cope with applied 

loads and forces (28). Despite peak ratio data giving insight into how bone quality may be 

altered, univariate statistical techniques have their limitations. Buckley et al. noted in (45) that 

the more experimental factors there are, the more poorly univariate methods perform. Hence, 

their power is most apparent with a small total number of factors. The literature debates which 

spectral bands to use as part of some of these peak parameters: as an example, with the 
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mineral-to-matrix ratio, the ν1 PO4
3- and Amide I bands have commonly been used as 

representatives of the inorganic and organic components of bone (28, 46). Some groups have 

suggested that, instead, the use of either the ν2 PO4
3- or ν4 PO4

3- band with the Amide III band 

would better represent mineralisation (35). There is the added complexity of some spectral 

bands’ dependence on bone tissue orientation that usually requires deconvolution and 

derivatisation of the spectral bands into their underlying peaks (17). Kazanci et al. have 

demonstrated the tissue orientation- and laser polarisability-dependence of the ν1 PO4
3- and 

Amide I bands in (47, 48). They highlighted the notion that the ν1 PO4
3-/Amide I ratio 

provided information about lamellar bone orientation, and the multiple vibration modes of the 

ν2 PO4
3-, ν4 PO4

3-, and Amide III bands meant that they were less susceptible to these two 

phenomena (47). Within the more readily available literature, if multivariate statistical 

techniques have been used, they have tended to be combined with univariate statistical 

techniques – probably to enable assessment of comparable information. Kerns et al. combined 

the peak ratio data with their PCA and PCA-LDA results collated from the subchondral bone 

spectra of human OA and non-OA tibial specimens in (49), alongside peripheral quantitative 

computed tomography (pQCT) and biochemical analysis results. Among their findings were a 

difference between the OA and non-OA specimens – with there being higher mineralisation in 

the OA specimens (via the phosphate-to-Amide I ratio, and a bioapatite-to-collagen ratio, 

which was based on the phosphate-to-hydroxyproline ratio). The first three PCs from the PCA 

found the phosphate and Amide I bands to be the primary contributors to the differences 

between the OA and non-OA specimens. The PCA-LDA results highlighted the phosphate, 

proline, hydroxyproline, and Amide III bands as being the discriminators between the OA and 

non-OA specimens. The majority of these discriminators being organic matrix-associated 

spectral bands, coupled with the hypermineralisation of the OA specimens, implied that there 

was a change in the organic matrix composition before subchondral bone thickening. That is, 

any changes to the collagenous component would alter the mineral component in the 

progression of OA.  

To reiterate, the highly overlapping spectral data collected from inherently complex bone 

tissue mean that univariate analytical methods may not necessarily give a proper narrative of 

any alteration, due to the multivariate dependencies of the spectral measurements taken. 

Univariate methods may give specific details; multivariate methods may clarify how these 

many specific details simultaneously fit into a bigger picture. From the PCA results that will 

be presented later in Chapters 3 and 4, both the PC loadings and PC scores’ distributions 

detected localised differences within the bone tissue specimens. These differences could 



22 

 

potentially be highlighting areas of hypermineralisation or some organic matrix degeneration 

within fracture predilection sites or OA-induced sites that may well be indicative of the early 

development of these orthopaedic diseases. That may be how information from a multivariate 

method might be comparable to that gleaned from the changes to univariate band ratios 

commonly presented in the literature. 

Each multivariate statistical technique also has its advantages and limitations and, in some 

contexts, combining techniques may overcome some of these inherent disadvantages and give 

more nuanced detection of variations in different regions of the bone tissue’s underlying 

microstructure. Bonifacio et al. found the hierarchical cluster analysis was better at separating 

areas of more distinct biochemical constituents, and the fuzzy c-means cluster analysis was 

better at differentiating between areas of more continuous changes in (40). In other contexts, 

sometimes following the Occam’s razor principle to enable sorting may allow better detection 

of microstructural variation. 

The work contained herein shares with these other multivariate studies the fact that they have 

been capable of determining – to various degrees – differences and similarities in the spectral 

information. 

1.7 Aims of this thesis 

IR spectroscopy and chemometrics have successfully detected differences in equine bone 

microstructure. It was proposed that Raman microspectroscopy and chemometrics would also 

be capable of identifying changes in the chemical composition of equine bone. Some of these 

changes might be indicative of abnormalities that could very well be precursors to bone 

fracture. 

The primary goals of this research were to a) conduct an analogous Raman microspectroscopy 

study to that done by Nicholson et al. on a different set of embedded equine Mt3 bone 

specimens, as well as b) as-yet uncharacterised (by Raman microspectroscopic methods, at 

least) fresh equine carpal joint bone specimens, and c) use multivariate statistical analytical 

techniques – namely PCA or LDA – to provide a classification model for the early stages of 

equine bone disease. The scope of this work was limited to the exploration of Raman 

microspectroscopy’s ability to determine – rather than quantify – differences. 

In contrast to Nicholson et al.’s scrutiny of a smaller number of specimens, work carried out 

as part of this study was on a larger number of specimens. All specimen samples had known 
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histories, but to minimise bias only details enough to enable Raman spectral data collection 

were shared. 
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Chapter 2 – Materials & Methods 

2.1 Sample preparation 

2.1.1 Equine third metatarsal (Mt3) bone specimens 

The third metatarsal (Mt3) bone specimens were from 30 thoroughbred racehorses of three 

different age groups (ten from newborn foals, ten from five-month-old foals, and ten from 

two-year-old horses). These samples were supplied prepared by Catherine Nicholson (Massey 

University), having been embedded in a polymethylmethacrylate (PMMA) resin due to prior 

analysis with specular reflectance Fourier-Transform infrared (SR FT-IR) spectroscopy. 

Figure 2.1 is a montage of photographs of the Mt3 bone sections from three of the 

thoroughbred racehorses (one from each age group). 
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Figure 2.1 Photographs of Mt3 bone specimens from three of the 30 thoroughbred racehorses (one from each 

age group): horses 9, 11, and 21. 

L to R for each horse: lateral parasagittal groove (section 1, prone to fracture), medial parasagittal groove 

(section 2, prone to fracture), medial condylar surface (‘control’ site). Image by author. 

Horse 9, a newborn foal 

Horse 11, a five-month-old foal 

Horse 21, a two-year-old horse 
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2.1.2 Equine carpal joint bone specimens 

The carpal joint bone specimens were from eight thoroughbred racehorses of two different 

age groups (seven from two-year-old horses, and one from a three-year-old horse). These 

samples were supplied prepared by Luca Panizzi (School of Veterinary Sciences (SVS), 

formerly the Institute of Veterinary, Animal, and Biomedical Sciences (IVABS), Massey 

University), having been kept in storage at approximately -80 °C until ready for analysis. 

Figure 2.2 is a montage of photographs of the carpal joint bone sections from one of the 

thoroughbred racehorses (one of the two-year-olds). 

 

Figure 2.2 Photographs of carpal joint bone sections from horse 17, one of the seven two-year-old 

thoroughbred racehorses. Image by author.  

The upper row consists of carpal joint bone sections from the left leg, whilst the lower row is of those from 

the right leg.  

L to R for both rows: third carpal bone (C3); fourth carpal bone (C4); and radial carpal bones (CR: upper part 

of the radial carpal bone, R2 and lower part of the radial carpal bone, R3). 

2.1.3 Preparation of the third metatarsal (Mt3) bone sections and 

polymer-embedded polished bone samples 

The distal Mt3 bone sections had been prepared as outlined in Nicholson et al. (37): a 2 mm 

thick palmar (posterior) bone slice was cut out at approximately 30° to the bone’s long axis. 

Three 5 mm by 5 mm sections were cut out of each palmar slice to encompass the lateral and 

medial parasagittal grooves (both known to be fractures sites) and the medial condylar surface 

(‘control’ site). In total, there were 90 bone sections (three for each horse). 

These bone sections had been previously analysed with backscattered electron microscopy 

(BSEM) and SR FT-IR spectroscopy. They would have been dehydrated in absolute ethanol 

before being embedded in PMMA and eventually polished with increasingly fine grades of 

carborundum paper, 3 μm Al2O3 powder and 0.3 μm Al2O3 powder. 
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2.1.4 Preparation of carpal joint bone sections 

The carpal joint bone sections had been cut out in slices of approximately 3 – 5 mm thickness 

from the dorsal aspect and along the long axis of the third, fourth, and radial carpal bones (C3, 

C4, and CR bones, respectively) to encompass just the articular cartilage and subchondral bone 

layers. Each horse had had one forelimb operated whereby a fragment or ‘chip’ had been 

surgically created. The opposite forelimb was the ‘control’ limb. That is, one leg was healthy; 

the other was ‘fractured’. Each of the horses had eight bone sections (four from the left leg, 

four from the right leg). In total, there were 32 bone sections. 

2.2  Epi-illumination for optical imaging of third metatarsal 

(Mt3) bone sections 

Visualisation of collection sites was performed just prior to Raman microspectroscopy to 

ensure (or at the very least, indicate) that an appropriate sampling point had been chosen, as, 

by nature, the samples were opaque. With the polished side face-down towards the objective, 

imaging was carried out with a puA1280-54uc digital camera (Basler, Ahrensburg, Germany) 

via the eyepiece/camera setting of a home-built Raman microscope system and captured with 

pylon Viewer software (version 5.0.0.6150, Basler, Ahrensburg, Germany). A white LED 

lamp cage-mounted system (ThorLabs, Newton, New Jersey) provided the collimated 

illumination source. 

2.2.1 No epi-illuminated optical images of carpal joint bone 

sections 

No epi-illuminated optical images of the carpal joint bone sections were taken, as in their 

natural state they did not have the smooth surface often required for visualisation. Therefore, 

determination of appropriate sample points before data collection was by the preview of 

Raman spectra within the LightField software (software details in the next section). Spectra 

from the articular cartilage (AC) would be expected to show more signals from the 

collagenous component. In comparison, spectra from the subchondral bone (SCB) were 

expected to show more signals from the mineralised component. Due to the randomness of the 

spectral sampling sites, it could not be disregarded that some of the Raman spectral data 

collected from the AC may have consisted of a mixture of non-mineralised hyaline articular 

cartilage (HAC) and mineralised articular calcified cartilage (ACC). 
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2.3 Raman microspectroscopy 

2.3.1 Raman microscope system 

The home-built Raman microscope system was set up for use with four different 

monochromatic lasers: 488 nm, 532 nm, 633 nm, and 785 nm. As the samples were of a 

biological nature, a 785 nm, 50 mW single-mode, 50 μm diameter fibre-coupled diode laser 

(Warsash Scientific, Sydney, Australia) served as the near-infrared (NIR) monochromatic 

excitation source, to reduce the fluorescence that is inherent to biological samples. 

As mentioned in the preceding sections, an epi-illumination system was necessary for the 

visualisation of the opaque bone sections under the microscope objective. An Olympus IX-70 

inverted fluorescence microscope body fitted with a 10× magnification objective (NA 0.25, 

Edmund Optics, Singapore) and a custom-manufactured 785 nm filter (Iridian Technologies, 

Ottawa, Ontario, Canada) passed the scattered light through a series of Volume Bragg Grating 

(VBG) interference (notch) filters (OptiGrate, Oviedo, Florida) to collect in a LS 785 

spectrograph (with Acton 2500i grating for the visible region of the electromagnetic 

spectrum) (Princeton Instruments, Trenton, New Jersey). 

The detector used was a liquid nitrogen-cooled Princeton Instruments PIXIS 400 charge-

coupled device (CCD). Slit width allowing light to the spectrograph and detector was set to 50 

μm. LightField software (version 6.0.4.1611, Princeton Instruments, Trenton, New Jersey) 

was used to obtain the Raman measurements. 

Figures 2.3 to 2.6 are annotated photographs of the set-up of the Raman microscope system, 

each highlighting different components: 
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Figure 2.3 Photograph of the home-built Raman microscope system, showing part of the spectral collection 

side of the set-up. Image by author. 

 

 

Figure 2.4 Photograph of the home-built Raman microscope, showing the other part of the spectral 

collection set-up. Image by author. 
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Figure 2.5 Photograph of the home-built Raman microscope system from another angle. Image by author. 

 

 

Figure 2.6 Photograph of the home-built Raman microscope system; the red arrows show the path of the 785 

nm laser from the 50 μm diameter excitation fibre optic into the inverted microscope. Image by author. 

2.3.2 Raman spectral data collection 

Each spectrum of Raman scattering would have been collected from an area determined by 

the laser spot size; this was approximately 10 μm under the 10× objective – a small area at the 

centre of the microscope camera’s 50 μm by 50 μm cross-hairs. 
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Spectra were collected over the wavelength range -500 – 2000 cm-1, with a spectral resolution 

of approximately 5 cm-1. Subsequent spectral pre-processing and statistical analysis focused 

on the wavelength range 300 – 2000 cm-1. The LightField software enabled online corrections 

such as background subtraction, cosmic ray removal, and CCD hardware orientation to be 

applied to each Raman spectrum before file exportation in .csv format. 

2.3.2.1 Raman spectral data collection for the third metatarsal (Mt3) 

bone sections 

As an aside, Nicholson et al. (37) remarked from work done by Firth et al. (50) that fractures 

of the parasagittal grooves of the equine Mt3 bone tend to initiate within the articular calcified 

cartilage (ACC) before moving into the subchondral bone and beyond. Considering each layer 

of bone sections from the fracture-prone lateral and medial parasagittal grooves, and the 

medial condylar surface, in turn, might shed light on any sites of possible microstructural 

abnormalities. 

Initially the plan had been to collect a total of 20 spectra in each of the three 5 mm by 5 mm 

Mt3 bone sections, to be comprised of (i) 16 in the articular cartilage (AC), and (ii) four in the 

subchondral bone (SCB), with a collection time of 2.5 minutes. It was this plan that was in 

mind when the spectral data collection began with bone sections from the two-year-old 

horses. Due, however, to time pressures, it was decided to collect ten spectra – six from the 

AC, four from the SCB – for the remaining Mt3 bone sections from the other two age groups, 

with a collection time of 1 minute. This period was deemed the minimum for still obtaining 

reasonably high signal-to-noise in the spectral data. Altogether, 60 spectra were collected for 

each of the two-year-old horses’ bone sections, while 30 spectra were obtained for each of the 

five-month-old foals’ and newborn foals’ bone sections. 

Each of the spectra from the two-year-olds and reference materials (sintered bone, hydroxy 

carbonated apatite, defatted bone, and pure PMMA; also kindly provided by Nicholson) 

represented an average of 15 accumulations; each of the spectra from the other horses 

represented an average of six accumulations. 

On a day-to-day basis, laser power would fluctuate between approximately 7 and 17 mW. 

This variability in laser power may have contributed to the changeable signals’ strengths 

observed in the Raman spectral data; this would also have precluded any calculation of 

absolute intensities of the Raman spectral bands. 
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2.3.2.2 Raman spectral data collection for the carpal joint bone 

sections 

A total of four spectra were collected in each of the carpal joint bone sections – two from the 

AC, two from the SCB – with the same 1-minute integration collection time as for two-thirds 

of the Mt3 bone sections. Altogether, 32 spectra were collected for each horse. 

Decreased laser power was used to minimise the potential burning of the fresh-frozen carpal 

joint bone sections (fluctuating between approximately 3 and 7.5 mW). There was a trade-off 

between the laser power and the signal-to-noise ratio (lower laser power, lower signal-to-

noise ratio). Despite the shorter integration time, the signal-to-noise ratio for the Raman 

spectral data from the carpal joint bone sections was surprisingly reasonable, as many of the 

expected bone spectral signatures were still detectable. 

2.4 Pre-processing of Raman spectral data 

The fluorescent nature of these samples meant that their Raman spectra had non-linear 

baselines; these had to be corrected for before any statistical analysis could be carried out, to 

minimise any extraneous sources of variation. Pre-processing of the Raman spectral data was 

carried out using the ChemoSpec (B. A. Hanson, version 4.4.17), R.utils (H. Bengtsson, 

version 2.5.0), baseline (K. H. Liland & B.- H. Mevik, version 1.2-1), wavelets (E. Aldrich, 

version 0.3-0), and signal packages within the programme RStudio (The R Foundation for 

Statistical Computing/R Core Team, version 1.0.136). ChemoSpec and R.utils enabled the 

input of the spectral data .csv files into RStudio, while baseline, wavelets, and signal 

implemented the actual baseline correction and smoothing algorithms. Exemplar R code used 

to enable the data pre-processing and multivariate statistical analysis can be viewed in 

Appendix A. Plots of the raw Raman spectra can be viewed in Appendix B. 

2.4.1 Pre-processing of the third metatarsal (Mt3) bone sections’ 

Raman spectral data 

After much trial-and-error, it became apparent that the most useful algorithm for baseline 

correction of the Raman spectra collected from the equine Mt3 bone sections looked to be 

asymmetric least squares (ALS) coupled with Savitzky-Golay smoothing. None of the 

baseline correction algorithms available within RStudio’s baseline literature (including 

iterative restricted least squares, low-pass Fast Fourier Transform filtering, modified 
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polynomial fit, and simultaneous peak detection and baseline correction) did a perfect job of 

removing the fluorescence background. Still, gradual fine-tuning of the ALS baseline 

correction algorithm parameters eventually yielded corrected spectra. ALS is an iterative 

baseline correction algorithm that applies a second derivative constrained weighted regression 

to the spectral data matrix. For more details about the original ALS algorithm, refer to (51). 

Before baseline calculation and correction, single normal variate (SNV) scaling was done on 

the truncated and transposed Raman spectral data matrix. The spectral data matrix was 

truncated to remove the lower frequencies, which were not part of the spectral region of 

interest, and transposed, so each spectrum occupied a row to be more amenable to later 

statistical analysis. SNV scaling uses the total intensities within each Raman spectrum to scale 

each of the raw spectra. The data are then scaled by standard deviation and mean-centred. 

Mean-centring is required in PCA, as it is not scale-invariant. Scaling to unit standard 

deviation is useful to avoid samples that are at the “edges” of the data set dominating the 

principal components. Creation or calculation of the baseline and baseline correction were 

then applied to the SNV-scaled data frame with the ALS method (with the following 

parameters: second derivative constraint, λ = 4; weighting of positive residuals, p = 0.001; 

maximum number of iterations, maxit = 10). Lastly, Savitzky-Golay derivation and smoothing 

were utilised on the baseline-corrected Raman spectral data matrix (with these parameters: 1 = 

performed on matrix rows (again, one spectrum per row); filter length, n = 13, mth derivative 

of the filter coefficients, m = 0). 

2.4.2 Pre-processing of the carpal joint bone sections’ Raman 

spectral data 

Pre-processing of Raman spectra from the equine carpal joint bone sections required a slightly 

different approach since the make-up of this data set was more complicated than that of the 

Mt3 bone data set. The fact that information about each bone section was also dependent on 

the forelimb (left or right) and the condition of that forelimb (‘control’ or ‘chip’) from which 

it was excised meant that set-up would need to take into account differencing of spectra. 

The carpal joint Raman spectral data set was initially subdivided into two to make later 

aggregation, differencing, and PCA easier. One subset consisted solely of the ‘chip’ spectral 

data from all eight horses’ carpal joint bone sections, and the other contained the equivalent 

‘control’ spectral data. 
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As with spectral data from the Mt3 bone sections, finding an acceptable baseline correction 

algorithm was a trial-and-error procedure and, again, none of those available was perfect; the 

ALS method seemed the most suitable for this data set, too (parameters: second derivative 

constraint, λ = 4; weighting of positive residuals, p = 0.002; maximum number of iterations, 

maxit = 10). The same Savitzky-Golay filter parameters as for the Mt3 bone sections’ data 

were used (that is, 1, n = 13, m = 0). 

2.5 Multivariate statistical analysis of Raman spectral data 

2.5.1 Multivariate statistical analysis for the third metatarsal 

(Mt3) bone sections 

PCA of the covariance matrix (the Raman spectral data matrix multiplied by its transpose) 

from the Savitzky-Golay-smoothed, ALS baseline-adjusted Raman spectral data from the Mt3 

bone sections was also carried out using the programme RStudio. 

Spectral data collected from the Mt3 bone sections were aggregated by computing the means 

to remove some of the influence of each horse. This so-called ‘horse effect’ would control for 

horse-related bias and remove between-object variability to obtain more comprehensible 

results later. An observed spectrum can be thought of as consisting of various factors or 

influences; in this context, it would have been those of each horse, section, layer, and any 

errors. Since the data set was “balanced”, with the same number of observations for each 

combination of horse, section, and layer, an estimate of the ‘horse’ influence could be made 

by averaging over the other influences. This balance was required so that the ‘section’ and 

‘layer’ effects averaged out in the estimated ‘horse’ effects; subtracting the horse-level 

averages removed its effect from the remainder of the spectral data structure. This subtraction 

meant that spectral variations due to the influence of section and layer should have been more 

apparent. 

The collapsed spectral data generated a summary of PCA results, as well as a scree plot, 

loadings and scores matrices, loadings plots, and scores plots for pairs of the first six PCs 

labelled by layer, section, and combinations of the two.
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2.5.2 Multivariate statistical analysis for the carpal joint bone 

sections 

As had been done for the Mt3 bone specimens’ Raman spectral data, horse-related bias from 

each of the carpal joint spectral data subsets needed to be minimised so that any effects due to 

section and layer could be more easily seen. Each subset generated a summary of PCA results, 

as well as the expected scree plot, loadings and scores matrices, loadings plots, and scores 

plots for pairs of the first six PCs labelled by layer, section, and combinations of the two. 

Each data subset also produced two PCA result sub-subsets: PCA of spectral data solely from 

the articular cartilage (AC), and PCA of spectral data from the subchondral bone (SCB). Plots 

of the PCs were labelled by section, condition, and combinations of the two. 

Differenced spectra were also considered to find out if contributing chemical functionalities 

for the ‘condition’ of each spectral data subset would be more recognisable. They were 

created by subtracting the aggregated ‘control’ data from the aggregated ‘chip’ data. These 

differenced spectral data also generated the expected PCA results (such as the summary, scree 

plot, and loadings and scores matrices). 

Another two sets of PCA results were generated from the carpal joint bone sections’ spectral 

data. For the first set of results, the data were created by stacking together the aggregated 

‘chip’ and ‘control’ data. The usual PCA results were generated (PCA summary, scree plot, 

loadings and scores matrices, and loadings and scores plots for pairs of the first six PCs 

labelled by section, layer, and condition, and combinations of the three). For the second set of 

PCA results, the initial data were formed by again stacking together the aggregated ‘chip’ and 

‘control’ data. This time, however, mean spectral intensities’ values for each combination of 

horse, section, and layer were computed (to remove any replicate effects). These means were 

then subtracted from the individual values in the original ‘stacked’ data (again, to remove 

their respective ‘averages’, with the expectation that only the effect of ‘condition’ might 

linger). PCA was performed on these mean-adjusted, stacked, and aggregated data; yet again, 

the usual PCA results were generated (such as the PCA summary, scree plot, and loadings and 

scores matrices; plots of the PCs were labelled by section, layer, and combinations of the 

three). 

Two PCA result subsets were also produced from these mean-adjusted data: PCA of spectral 

data solely from the articular cartilage (AC), and PCA of spectral data from the subchondral 
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bone (SCB). Plots of the PCs were labelled by section, condition, and combinations of the 

two.  
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Chapter 3 – Results & Discussion: Embedded samples 

from the equine third metatarsal (Mt3) bone specimens 

3.0 Introduction 

As outlined in Chapter 1, a lack of literature exists on tandem Raman microspectroscopy-

chemometrics applications to equine bone specimens (particularly that of principal component 

analysis) for categorisation. This chapter should aid in starting to fill the gap. 

This chapter covers the outcome of multivariate statistical analysis performed on Raman 

spectral data collected from the embedded equine third metatarsal bone specimens, preceded 

by exemplar epi-illuminated images and pre-processed Raman spectral plots from three of the 

horses (one from each age group). It also includes two tables – one of expected Raman 

spectral assignments associated with bone specimens and another summarising the data 

groupings – before moving into the actual results of the principal component analysis of the 

data set. Discussion of the results and the limitations of this aspect of the body of work are 

also presented. 

3.1 Epi-illuminated optical images of equine third metatarsal 

(Mt3) bone sections 

Many of the epi-illuminated optical images of the equine third metatarsal (Mt3) bone sections 

were not completely clear. The basic outline of the osteon within the subchondral bone, 

however, was readily observable (more so in the five-month-old foals and two-year-old 

horses). The greenish hue in the images was the result of viewing each of the images through 

the 785 nm Raman edge filter (which blocked red light but passed most of the green; the low 

contrast was due to the filter simply blocking a reasonable fraction of the reflected light). 

Spectroscopic sampling areas were from a small portion – approximately 10 μm under the 

10× objective – of the area at the centre of the microscope camera cross-hairs. 

Owing to its location in the distal part of long bones, the articular cartilage (AC) cushions 

joints to minimise friction in the transfer of applied loads and forces to the subchondral bone 

(SCB). The SCB, conversely, provides structural support for the AC and acts as a shock 

absorber. To restate from subsection 2.3.2.1, fractures of the parasagittal grooves of the 

equine Mt3 bone typically work their way inwards from the articular cartilage (37, 50). As the 
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statistical analysis results later in subsection 3.3.2 attempt to show, considering each layer of 

bone sections from the fracture-prone lateral and medial parasagittal grooves, and the medial 

condylar surface, in turn, might shed light on any sites of possible microstructural 

abnormalities. 

 

Figure 3.1 Montage of epi-illuminated optical images from horse 1, one of the newborn foals. The upper row 

and first image in the lower row are images of the articular cartilage (AC). The final four images are of sites 

within the subchondral bone (SCB). The wavier, more open appearance of cartilage in bone typical of younger 

individuals and in more recently formed bone is evident in the AC. Scale bar length = 50 μm.  

Image by author. 

Figure 3.1 is a montage of the epi-illuminated optical images from horse 1, one of the 

newborn foals. Though not easily visible, the scale bars in each image represent a length of 50 

μm. The upper row and the first image in the lower row are images of the articular cartilage 

(AC), and the final four images in the lower row are of sites within the subchondral bone 

(SCB). The images from the AC hint at the generally wavier and more open appearance of 

typical of bone cartilage from younger individuals and in immature, more recently formed 

bone. This more recently formed bone would have minimal, if any, mineralisation. 

As another aside, due to the difficulty in differentiating between the non-mineralised and 

mineralised sublayers of the AC, it could not be discounted that many of both the optical 

images and the Raman spectral data collected from the AC may have consisted of a mixture 

of non-mineralised hyaline articular cartilage (HAC) and mineralised articular calcified 

cartilage (ACC). 
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Figure 3.2 Montage of epi-illuminated optical images from horse 11, one of the five-month-old foals. The 

upper row and first image in the lower row are images of the AC. The final four images are of sites within the 

SCB. Both the AC and the SCB look denser, compared to specimens from a younger foal such as horse 1. 

Scale bar length = 50 μm.  

Image by author. 

Figure 3.2 is a montage of the epi-illuminated optical images from horse 11, one of the five-

month-old foals. As with Figure 3.1 previously, the first six images are of sites within the AC, 

and the last four are of the SCB. Both the AC and SCB look denser when compared to that 

from a younger horse such as horse 1. This denser appearance is due to the continued 

development of the equine skeletal system, notably the progressive mineralisation of the AC. 

 

Figure 3.3 Montage of epi-illuminated optical images from horse 21, one of the two-year-old horses. The 

upper two rows and first three images in the third row are of sites in the AC. The last seven are of sites within 

the SCB. The images from the two-year-old horses probably best depict the denser appearance of the SCB, 

with its highly lamellar structure.  

Image by author. 

Figure 3.3 is a montage of the epi-illuminated optical images from horse 21, one of the two-

year-old horses. The two upper rows and the first three images in the third row are of sites in 

the AC, and the last seven are of sites within the SCB. The images from the two-year-old 
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horses probably best depict the denser appearance of the SCB with its highly lamellar 

structure. The apparent lamellar structure is indicative of the remodelling process (bone 

formation and resorption) typical of bone in response to applied loads and forces. 

3.2 Raman spectral data from the equine third metatarsal 

(Mt3) bone sections 

The following information in this section is provided to help with understanding the loadings 

plots as part of the principal component analysis (PCA) results later in subsection 3.3.2. 

3.2.1 Typical Raman spectral assignments of bone 

Bands from several different functionalities are expected to fall into certain ranges, as 

outlined in Table 3.1: 

Table 3.1 Some of the typical functionalities that tend to appear roughly in the 400 – 1800 cm-1 region of a 

Raman spectrum of bone (adapted from (52, 53)). 

Vibration Wavenumbers (cm-1) Raman intensity1 

ν2 PO4
3- ~ 422 – 454 m, sh 

ν4 PO4
3- ~ 578 – 617 m, sh 

hydroxyproline ~ 855 – 876 w, sh 

ν1 PO4
3- ~ 857 – 962 vs 

proline ~ 921 sh 

phenylalanine (Phe) ~ 1004 w 

ν3 PO4
3- ~ 1006 – 1055 sh 

ν1 CO3
2-/ν3 PO4

3- ~ 1065 – 1071 sh 

Amide III ~ 1242 – 1340 br 

δ(CH2), scissoring/deformation ~ 1447 – 1452 m 

Amide II ~ 1540 – 1580 w, br 

Amide I ~ 1595 – 1700 br 

 

                                                 
1 The intensities of the peaks or bands that appear in a Raman spectrum tend to be characterised as any of the following: 

weak (w), medium (m), strong (s), very strong (vs), shoulder (sh), broad (br). 
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Raman signals from inorganic functionalities (phosphate (PO4
3-) and carbonate (CO3

2-)) tend 

to be sharper than those from organic functionalities are (such as proline, hydroxyproline, 

phenylalanine (Phe), lipids, and Amides I, II, and III; cf. IR spectra where the opposite is 

true). The Amide III band from proteins tends to be more complicated because it involves 

several bonds. The Amide I band (which appears anywhere between about 1595 and 1700 cm-

1) is due to the carbonyl (C=O) stretch. 

3.2.2 Raman spectral data from the reference materials 

Figure 3.4 shows the processed Raman spectral data from the reference materials: defatted 

bone, hydroxy carbonate apatite, the embedding material polymethylmethacrylate (PMMA), 

and sintered bone. Defatted bone included collagen and apatite; the sintered bone was ‘pure’ 

mineral. These spectra from the defatted bone, hydroxy carbonate apatite, and sintered bone 

were coloured turquoise, violet-red, and blue, respectively. As can be seen in the figure, 

PMMA’s Raman spectral bands – in black – tended to intersect with many of those from bone 

components, highlighting the need for a quantitative method like chemometrics to extract the 

subtle variations in bone microstructure that would not be readily discernible by merely 

relying on qualitative assignments. 

 

Figure 3.4 Processed Raman spectra of the reference materials: defatted bone (included collagen and apatite; 

turquoise), hydroxy carbonate apatite (violet-red), polymethylmethacrylate (PMMA; black), and sintered 

bone (‘pure’ mineral; blue). 
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3.2.3 Raman spectral data from the equine third metatarsal (Mt3) 

bone sections 

Figures 3.5 to 3.7 are a few examples of the processed Raman spectral data from the Mt3 

bone sections – one from a horse in each of the three age groups (horses 1, 11, and 21). The 

SCB spectra are shown as their band assignments were less ambiguous than the AC spectra, 

which tended to have bands that appeared to have been overlaid with those from the 

embedding material, PMMA. 

 

Figure 3.5 A Raman spectrum of the subchondral bone (SCB) from horse 1, one of the newborn foals. 

Typical band assignments from the mineral and matrix components are highlighted. 
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Figure 3.6 A Raman spectrum of the SCB from horse 11, one of the five-month-old foals. 

 

 

Figure 3.7 A Raman spectrum of the SCB from horse 21, one of the two-year-old horses. 
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3.3 Multivariate statistical analytical results 

3.3.1 Summary table 

Table 3.2 below outlines the Raman spectral data groupings that follow in subsection 3.3.2: 

Figure Spectral data grouping 

3.8 
scree plot of aggregated spectral data from equine Mt3 

bone sections 

3.9 
first six PCs’ loadings plots from aggregated spectral 

data 

3.10 PC4 loadings plot from aggregated spectral data 

3.11 
PC2 vs PC1 scores plot from aggregated spectral data, 

by section and layer 

3.12 
montage of PC2 vs PC1 scores plot from aggregated 

spectral data, by section (columns) and layer (rows) 

3.13 

upper panel of PC2 vs PC1 scores plot from aggregated 

spectral data: AC layer of all three equine Mt3 bone 

sections 

3.14 

lower panel of PC2 vs PC1 scores plot from aggregated 

spectral data: SCB layer of all three equine Mt3 bone 

sections 

3.15 
PC3 vs PC1 scores plot from aggregated spectral data, 

by section and layer 

3.16 
PC3 vs PC2 scores plot from aggregated spectral data, 

by section and layer 

3.17 
paired scores plot matrix for the first six PCs from 

aggregated spectral data, by section and layer 

 

3.3.2 PCA 

Following are results from the PCA of the aggregated Raman spectral data from the equine 

Mt3 bone sections. The spectral data were average by horse (again, having incorporated extra 

details about the horses). These average spectra were subtracted from the data to remove a so-
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called fixed ‘horse effect’ (containing horse-related bias and between-object variability). Its 

removal should have made within-object variability more understandable (refer to subsection 

2.5.1, if necessary). Figure 3.8 shows the scree plot of the variances of the first 10 PCs. The 

first six PCs accounted for approximately 97.2 % of the total spectral variation, rapidly tailing 

off after PC3. PC1 had the greatest variance, explaining about 64.9 % of the total variation 

while PCs 2 through six explained approximately 17.8 %, 10.8 %, 2.3 %, 1.3%, and 0.824 %, 

respectively. 

 

Figure 3.8 Scree plot of the aggregated Raman spectral data from the equine Mt3 bone sections. 

Cumulatively, the first six PCs accounted for approximately 97.2 % of the total spectral variation; 

individually, they explained about 64.9 %, 17.8 %, 10.8 %, 2.3 %, 1.3 %, and 0.8 %, respectively. 

The loadings plots for the first six PCs (based on the covariance matrix) are shown in Figure 

3.9. The loadings plot for PC1 appeared to represent the contribution from the mineral 

component of bone (like the original spectra), with the most dominant loading originating 

from the ν1 PO4
3- band within the 960 cm-1 region. The other noticeable loadings for PC1 

were also phosphate-related bands: the ν2 PO4
3- and ν4 PO4

3- bands within the 400 – 620 cm-1 

region. The loadings plot for PC2 appeared to be a mixture of the mineral and matrix 

components (with the major loadings again coming from the phosphate bands, alongside 

loadings from the Amide III, alkyl (CH2) deformation, and Amide I functionalities within the  

1240 – 1700 cm-1 region). The derivative-like shape of the ν1 PO4
3- band in the 960 cm-1 

region of the PC2 loadings plot suggested some environmental change occurring for the bone 

mineral phosphate. The loadings plot for PC3 – also a mixture – showed more readily 
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distinguishable ‘features’ from the collagenous component around the 1240 – 1700 cm-1 

region (this time, those from the hydroxyproline, proline, and phenylalanine functionalities 

around approximately 855 – 877 cm-1, 921 cm-1, and 1004 cm-1, respectively, were also 

visible). It is interesting to note that apart from the scale of the loadings and the derivative-

like shape of the ν1 PO4
3- band within the 960 cm-1 region observed in the PC2 loadings plot, 

the appearance of the loadings plot for PC3 was somewhat similar to that for PC2. 

 

Figure 3.9 The first six PCs’ loadings of the aggregated Raman spectral data from the equine Mt3 bone 

sections. The loadings plot for PC1 closely resembled the original spectra with respect to the mineral 

component. The loadings plots for PCs 2 and three appeared to be mixtures of contributions from the 

mineral and matrix components; the PC3 loadings seemed to show slightly more readily distinguishable 

features from the matrix component. PC4 seemed to be the contribution from the embedding material, 

polymethylmethacrylate (PMMA). The loadings for PC5 were likely also PMMA-related, but the loadings 

for PC6 were difficult to interpret. 

Figure 3.10 shows the loadings plot for PC4, which resembled the mirror image of a Raman 

spectrum of the embedding material, PMMA (refer to the black spectrum in Figure 3.4). 

Though the PMMA did not disappear even after subtracting off the so-called ‘horse’ average, 

to some extent, PCA could separate it from the rest of the Raman spectral data. Since it 

occupied an entire principal component loading, it was likely that its contribution to the 

overall variation within the Raman spectral data was another indication of its infiltration into 
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the equine Mt3 bone sections’ void and marrow spaces. As can be noted from the loadings 

plots of PCs 5 and six in Figure 3.9, identification of the functional groups that contributed to 

the higher PCs appeared to be noisier. The loadings plot for PC5 was probably also PMMA-

related; it was difficult to determine what information could be garnered from the loadings 

plot for PC6. 

 

Figure 3.10 PC4 loadings plot of the aggregated Raman spectral data from the equine Mt3 bone sections 

appears to be the contribution from the embedding material, polymethylmethacrylate (PMMA), 

reminiscent of its Raman spectrum (cf. Figure 3.4). 
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Figure 3.11 Scores plot for PC2 against PC1 from the aggregated equine Mt3 bone Raman spectral data (by 

section and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta). 

S1 = lateral parasagittal groove (prone to fracture); S2 = medial parasagittal groove (prone to fracture); S3 = 

medial condylar surface (‘control’ site);  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 1 – 10 = newborn foals; horses 11 – 20 = five-month-old foals; horses 21 – 30 = two-year-old horses. 

Figure 3.11 shows the scores plot for the second PC against the first for the six combinations 

of section and layer from the aggregated Raman spectral data collected from the articular 

cartilage and subchondral bone of the equine Mt3 bone specimens. It also draws attention to 

the fact that PCA could separate the sections and layers into clusters to bring out the within-

object variations. The samples’ scores showed a higher degree of separation along PC2; it 

raised the question of similarities between individuals concerning the matrix component. 

Most of the scores for the AC (L1) in all three sections (lateral parasagittal groove (S1), 

medial parasagittal groove (S2), and medial condylar surface (S3); coloured black, green, and 

cyan, respectively) tended to cluster towards the left-hand, negative side of the plot along PC1 

(the exception being S1 and S2 scores from horse 24, a two-year-old). 

There was greater scatter from the SCB (L2) in all three sections (coloured red, blue, and 

magenta, respectively) along PC1; this spread raised the question of the extent of 

heterogeneity between individuals in the mineral component of this layer of bone.  

Scores from the SCB for S1 and S2 (coloured red and blue, respectively) were divided 

somewhat sparsely along PC1. For S1, all the newborn foals gathered closer to the centre of 

the plot. Of the five-month-old foals, horses 12 to 14, and 20 fell further to the right of centre. 
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The most spread along PC1 for S1 was from the two-year-olds, raising the question of the 

possibility of an age effect for the mineral component for this particular bone section. 

In contrast to their ‘counterpart’ scores from the AC, scores from the SCB for S1 and S2 were 

located somewhat more haphazardly along PC2. For S1, the scores from most of the foals 

formed something of a gradient around the centre of the plot (whilst horses 11, 14, and 15 

bunched in near two-year-old horses 26 and 29 slightly further down the horizontal axis). 

Many of the two-year-olds each seemed to be somewhat isolated within PC2. 

Similarly, for S2, the scores from most of the foals formed a ‘trend’ along the uppermost part 

of the plot (the exceptions being horses 12 and 13, found slightly further down). Apart from 

horse 20, which was closer to most of the foals along PC2, scores from the two-year-old 

horses were far more spread out. 

Most of the foals gathered loosely centre-left (excepting horses 12, 13, and 18) along PC2 for 

S3 (coloured magenta). Scores from many of the two-year-old horses tended to fall within the 

upper part of the scores plot for the PC2 dimension. 

The scores plots of PC2 against PC1 in Figures 3.12 through 3.14 show an overview of the 

aggregated equine Mt3 bone Raman spectral data according to section (columns) and layer 

(rows). In the upper row are scores plots of the AC (L1) for the lateral parasagittal groove 

(S1), medial parasagittal groove (S2), and medial condylar surface (S3). In the lower row are 

the corresponding scores plots of the SCB (L2). Figures 3.13 and 3.14 are simply the 

respective halves of Figure 3.12. 

The score for one of the two-year-old horses, horse 21, appeared slightly separated from the 

others along PC1 – towards the right-hand side of the plot – for the AC of both the lateral and 

medial parasagittal grooves (S1L1 and S2L1, respectively). The score from horse 16, a five-

month-old foal, was also slightly separated from the others in S2L1 along PC2. Superficially, 

there appeared to be two clusters in the scores plot for S3L1 along PC2, seemingly with most 

of the foals in the upper cluster and most of the older horses in the lower cluster. 

There was greater scatter in the scores for the SCB of all three sections along both PC1 and 

PC2. There also appeared to be something of a ‘trend’ along PC2 in all three sections, with 

looser clusters along PC1. Generally, it was the older horses (horses 21 to 30) that tended to 

spread out the most, implying there were more considerable microstructural differences 

within this age group. Interestingly, some of the newborn and five-month-old foals clustered 
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together with some of the two-year-olds; this suggests that perhaps some of the two-year-olds 

had areas of bone that were more recently formed, similar in composition to the immature 

bone of younger individuals. These areas of bone were not readily discernible in the epi-

illuminated optical images of sampling areas from the older horses. Along PC1 for S3L2, 

horse 1 (a newborn foal) appeared to have a slightly different profile from the others. Along 

PC2, some horses from different age groups amassed in proximity to each other: horses 17 

and 20 (a five-month-old and a two-year-old, respectively) were bunched with horse 10 (a 

newborn foal) near the centre of the plot. Scores from horses 7 and 19 (a newborn and a five-

month-old foal, respectively) clustered together not too far away from that grouping, and the 

score for two-year-old horse 29 was rather close to those for horses 11, 14, and 15 (five-

month-old foals). Apart from horses 12 to 14, 17, and 20, the foals seemed to separate well 

from the two-year-olds along both PC dimensions for S2L2; horses 21 to 24 were further 

separated from the other two-year-old horses along PC2. Likewise, with the exceptions of 

horses 12, 13, 18, and 21 (five-month-olds and a two-year-old), the foals and two-year-olds 

were well separated along PC1 for S3L2; scores from horses 12 and 13 (five-month-old 

foals), and horses 21 to 23 (two-year-olds) were disconnected from the others along PC2.
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Figure 3.12 Montage of scores plots for PC2 against PC1 from the aggregated equine Mt3 bone Raman spectral data, by section (columns) and layer (rows): S1L1 

(black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta). 

S1 = lateral parasagittal groove (prone to fracture); S2 = medial parasagittal groove (prone to fracture); S3 = medial condylar surface (‘control’ site);  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 1 – 10 = newborn foals; horses 11 – 20 = five-month-old foals; horses 21 – 30 = two-year-old horses. 
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Figure 3.13 Upper panel of scores plots for PC2 against PC1 from the aggregated equine Mt3 bone Raman spectral data, by section (columns) and layer (row): 

S1L1 (black); S2L1 (green); S3L1 (cyan). 

S1 = lateral parasagittal groove (prone to fracture); S2 = medial parasagittal groove (prone to fracture); S3 = medial condylar surface (‘control’ site);  

L1 = articular cartilage (AC);  

horses 1 – 10 = newborn foals; horses 11 – 20 = five-month-old foals; horses 21 – 30 = two-year-old horses. 
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Figure 3.14 Lower panel of scores plots for PC2 against PC1 from the aggregated equine Mt3 bone Raman spectral data, by section (columns) and layer (row): 

S1L2 (red); S2L2 (blue); S3L2 (magenta). 

S1 = lateral parasagittal groove (prone to fracture); S2 = medial parasagittal groove (prone to fracture); S3 = medial condylar surface (‘control’ site);  

L2 = subchondral bone (SCB);  

horses 1 – 10 = newborn foals; horses 11 – 20 = five-month-old foals; horses 21 – 30 = two-year-old horses. 
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Figure 3.15 shows the scores plot of the third PC against the first for the six combinations of 

section and layer from the aggregated equine Mt3 bone Raman spectral data. Some similar 

patterns to those in Figure 3.11 exist: a ‘trend’ along PC3 was noticeable. Likewise, many of 

the scores for the AC in all three sections (coloured black, green, and cyan) tended to cluster 

towards the left-hand side of the plot along PC1 (the scores from the two-year-old horse 24 

and one from the 5-month-old horse 16 again being the odd ones out). S1L1 and S2L1 still 

coincided, with scores from S3L1 still being a little distinct from them. Scores from the SCB 

in all three sections (coloured red, blue, and magenta) were more disperse along PC1. There 

was some mixing between scores from different-aged horses, and scores from the older 

individuals were generally more diffuse in both dimensions. 

Curiously, about half of the scores from the SCB in S2 were contiguous with clusters from the 

AC of S1 and S2 – most of them from both sets of foals (horses 12 to 14, 17, and 20 appeared 

around centre-right along PC1). Unlike in Figure 3.11, there was no overlap between scores 

from the two layers of the medial condylar surface (coloured cyan and magenta, respectively) 

in either dimension. Some of the scores from the SCB in S1 and S2 (red and blue) collected 

together: for instance, S2 from horse 12 near S1 scores from horses 6 and 16 along a PC3 

gradient in the centre-right of the plot, and S1 from horse 12 near S2 from horse 30 towards 

the far right of the plot. Most of the scores from the SCB of S3 from the foals could be found 

near the bottom left-hand side of the plot; horses 12 and 18 appeared in the bottom centre-

right. Apart from horse 21 near bottom centre-left, the older horses were towards the far 

central-right and bottom-right of the plot. 
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Figure 3.15 Scores plot for PC3 against PC1 from the aggregated equine Mt3 bone Raman spectral data 

(labelled by section and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 

(magenta). 

S1 = lateral parasagittal groove (prone to fracture); S2 = medial parasagittal groove (prone to fracture); S3 = 

medial condylar surface (‘control’ site);  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 1 – 10 = newborn foals; horses 11 – 20 = five-month-old foals; horses 21 – 30 = two-year-old horses. 

Figure 3.16 shows the scores of the third PC against the second for the six combinations of 

section and layer from the aggregated equine Mt3 bone spectral data. Some patterns persisted: 

the older horses had – yet again – tended to be more spread out than the younger ones. Scores 

from the articular cartilage of all three sections were more bunched together than those from 

the subchondral bone, and ‘trends’ were more evident in the PC3 dimension than in the PC2. 

There were two groupings of the SCB from S2: scores from all except two of the foals (horses 

12 and 13 fell in with the larger group of older horses in the grouping just to the left) were on 

the far centre-right of the plot. Those from most of the older horses were located near SCB 

scores for S1 and S3 (those from horses 21 to 24 were far more detached, about the lower left-

hand part of the plot). 



56 

 

 

Figure 3.16 Scores plot for PC3 against PC2 from the aggregated equine Mt3 bone Raman spectral data 

(labelled by section and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 

(magenta). 

S1 = lateral parasagittal groove (prone to fracture); S2 = medial parasagittal groove (prone to fracture); S3 = 

medial condylar surface (‘control’ site);  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 1 – 10 = newborn foals; horses 11 – 20 = five-month-old foals; horses 21 – 30 = two-year-old horses. 

 

 

Figure 3.17 Paired scores plot matrix for the first six PCs from the aggregated equine Mt3 bone Raman 

spectral data (labelled by section and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 

(cyan); S3L2 (magenta). 

S1 = lateral parasagittal groove (prone to fracture); S2 = medial parasagittal groove (prone to fracture); S3 = 

medial condylar surface (‘control’ site);  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB). 
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Figure 3.17 shows a scatterplot matrix of the fifteen combinations of pairs of the first six PCs 

(from the six combinations of section and layer) from the aggregated equine Mt3 bone Raman 

spectral data. Surveying the scatterplot matrix, some of the spreading or grouping of the PC 

scores from the Raman spectral data may have been slightly more apparent with pairs from the 

lower PCs than from those of the higher PCs. The following general observations were made 

about PC scores from PC pairs not covered in Figures 3.11 to 3.16. Some of the subchondral 

bone-associated L2 scores (specifically those coloured blue (medial parasagittal groove) and 

magenta (medial condylar surface)) seemed to share similar mineral profiles with many of the 

articular cartilage-associated L1 scores (representing the lateral and medial parasagittal 

grooves (coloured black and green, respectively)), and medial condylar surface (coloured 

cyan) along the PC1 dimension. It could almost be said that PC1 roughly separated many of 

the AC-associated L1 scores (coloured black, green, and cyan, respectively) from SCB-

associated L2 scores (coloured red, blue, and magenta, respectively). 

As noted earlier in Figure 3.9, loadings for the second and third PC dimensions represented 

contributions to spectral variation from mineral-matrix component mixtures. The loadings for 

both PCs were still dominated by mineral phosphate-related functionalities, but also showed 

noticeable contributions from organic matrix hydroxyproline, proline, phenylalanine, Amide 

III, CH2 deformation, and Amide I functionalities. For the most part, the PC2 dimension 

tended to differentiate many of the S2L2 scores (coloured blue, representing the SCB of the 

medial parasagittal groove; associated with some of the newborn foals and two-year-old 

horses in the individual paired PC scores plot, not shown) from the other scores. The PC3 

dimension would typically segregate many of the S3L2 scores (coloured magenta, 

representing the SCB of the medial condylar surface) from the other scores. The fourth to sixth 

PC dimensions showed a greater overall scattering of the scores. The PMMA-representative 

PC4 dimension did not seem to show any exceptionally distinctive groupings. The PC5 

dimension tended to split some of the AC-associated L1 scores (coloured black, green, and 

cyan, respectively; associated with some two-year-old horses in individual paired PC scores 

plot, not shown) from the other scores. The PC6 dimension seemed to isolate all the scores 

related to one horse – horse 11 (a five-month-old foal; in individual paired PC scores plot, not 

shown) – and some of the S3L1 scores (coloured cyan, representing the AC of the medial 

condylar surface) from the other scores. 
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3.4 Discussion 

Bone microstructure reflects any abnormalities within its major components, but these are not 

necessarily plain in gross clinical appraisals; if left undetected and unmonitored, such 

anomalies could lead to orthopaedic diseases like osteoporosis. Current clinical risk 

assessment methods only address one aspect of bone strength and health: quantity; more 

research attention needs to turn to bone quality to gain a better understanding of overall bone 

strength. A better understanding would mean more accurate risk assessment and improved 

general medical practice. Timely detection, interpretation and classification of changes in the 

chemical composition of bone hold the potential to help with eventual identification of at-risk 

individuals. Molecular vibrational spectroscopy, in tandem with multivariate statistical 

analytical techniques, would seem a logical starting point in this pursuit. This field is recent, 

with infrared (IR) probing of model animal bone specimens being a bit more established than 

Raman is within the literature. 

There was a dearth of (readily available and accessible) literature with previous vibrational 

spectroscopy-chemometrics applications on equine bone specimens – one of the few studies 

being that of IR-linear discriminant analysis (LDA) work conducted by Nicholson et al. in 

(37). Exploratory work herein was to determine the ability of coupled Raman 

microspectroscopy and chemometrics (namely, principal component analysis (PCA)) to 

identify possible changes in the chemical composition of equine bone specimens; some of 

these changes could potentially help in building a classification model for the early stages of 

equine bone disease. 

For some time, many researchers have been making a more thorough investigation into the 

structure of bone, rather than how bone microstructural alterations play a major role in the 

development of various orthopaedic diseases. Since bone microstructural alterations can 

provide much information about the individual from which it originated, it has also naturally 

lent itself to other research fields, including the forensic, anthropological (as touched on in 

Chapter 1), and archaeological sciences. France et al. screened for collagen diagenesis 

(alterations to collagen that lead to its degradation) from the outer surfaces and inner cross-

sections of a collection of archaeological and palaeontological bone specimens with bivariate 

and multivariate statistics (PCA and partial least-squares-discriminant analysis (PLS-DA)) 

(54). The condition of the collagen in the bone specimens ranged from poorly preserved to 

well preserved. The mineral-to-matrix peak ratio (based on the first symmetric phosphate band 
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and the carbonyl backbone of the Amide I band) was found to best distinguish between the 

poorly preserved and well-preserved collagen. Specimens that had well-preserved collagen 

had a lower ratio – especially those from the inner cross-sections. The PCA was able to 

separate most of the well-preserved specimens from the poorly preserved specimens, with 

collagen-associated bands in both first two principal components’ (PCs) loadings being 

highlighted as the most important sources of spectral variation. These indications, together 

with the ratio values, then informed predictions of collagen quality for a training set. The PLS-

DA gave sensitivity rates of 95 % and 68 % for the inner cross-sectional and outer surface 

spectra, respectively. These rates also pointed towards the greater likelihood of correct 

classification for the well-preserved specimens. Thus, their findings eventually established a 

method of accurate collagen quality determination in bone specimens before conducting other 

more destructive tests. The PC loadings in their work, like the work here, highlighted the 

functionalities that were the more likely sources of spectral variation separating the bone 

specimens. 

It must be stated from the outset that with minimal a priori knowledge about the horses’ 

backgrounds (utterly separate from Nicholson who, having provided the bone samples, did 

have prior knowledge), the following interpretations of PCA results in this chapter are at best 

speculative. Raman spectral data were collected from the articular cartilage (AC) and 

subchondral bone (SCB) of the lateral and medial parasagittal grooves (fracture predilection 

sites) and medial condylar surface (‘control’ site) of the third metatarsal (Mt3) bone specimens 

of 30 thoroughbred racehorses (ten newborn foals, ten five-month-old foals, and ten two-year-

olds). The data were aggregated via means, labelled by section and layer, to minimise a so-

called ‘horse effect’ that might have obscured other patterns within the chemical data; PCA 

was then conducted across the whole Raman spectral range on the condensed data set. PCA 

was used to identify the primary sources of variation across the entire Raman spectral range of 

bone tissue within microstructural dimensions, enabling identification of structural make-up 

features that differ between the bone tissue layers. 

PCA results yielded six principal components (PCs) relating to the bone components, which 

accounted for approximately 97.2 % of the total spectral variation. These six PCs represented 

a contribution from the mineral component, as well as some opposing inputs from mineral-

matrix component mixtures, and the embedding material, PMMA. Additionally, the 

represented ‘mixture’ contributions highlighted some compositional changes to the mineral 

component. That is, these PCA results suggested that localised microstructural differences 
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were detectable – especially within the bone mineral. From a statistical point of view, this type 

of PCA was an analysis of group means, having taken out averages and analogous to 

performance of analysis-of-variance (ANOVA) on a massively multivariate data set. The 

overall variation from multiple correlated response variables was considered simultaneously, 

assessing whether differences in combinations of correlated attributes among samples were 

detectable. 

One of the main patterns observed in the distribution of aggregated PC scores in the subspace 

was that the PC scores relating to the articular cartilage of all three equine Mt3 bone specimen 

sections tended to cluster more closely together. PC scores from the subchondral bone 

consistently showed greater scatter. There could have been to some extent, some similarity 

between individuals concerning the matrix component. There are different developmental 

timescales for an equine bone joint’s substructures (AC and SCB, in this case) such that its 

collagenous matrix develops and matures earlier than the mineral component (55, 56). There 

do not tend to be any significant biochemical and structural modifications to the collagen 

network after about six months to one year of age; the mineral component of equine 

subchondral bone, however, continues development until a horse is about four-years-old (55, 

56). These different development timescales – as well as structural alterations due to recurring 

bone remodelling – for the two major bone components would affect the bone’s overall load-

bearing capacities (55-57). There may also have been the possibility of variation from the 

mineral component masking that of the organic matrix component. Inorganic functionalities 

like phosphates and carbonates’ Raman spectral signals are inherently stronger and sharper 

than those from organic functionalities such as amides are. 

There was also the question of the degree of heterogeneity in the bone mineral of individuals, 

especially in the subchondral bone. Of the three age groups, the two-year-old horses tended to 

have the most spread in their PC scores. Interestingly, both the PC scores for the 

representative mineral contribution to the AC from the fracture-prone lateral and medial 

parasagittal grooves from two-year-old horse 24, were separate from its co-aged group 

members, raising the question as to whether some abnormality was starting to manifest itself 

within this particular horse’s mineral substructures. 

The subchondral bone (SCB) is more heavily mineralised than the articular cartilage (which 

has some degree of mineralisation, particularly in its calcified sublayer (the articular calcified 

cartilage, ACC)). It is thought that fracture predilection sites such as the lateral and medial 

parasagittal grooves in the equine hind limb have a higher degree of mineralisation. Doube et 
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al. (58) point out a likely indication of early defect development is highly mineralised ACC 

and SCB layers – that are stiffer and less stiff, respectively – when compared to control sites 

within the same joint. Delayed chondroclastic resorption of the ACC in earlier life leads to 

improper fusion of the cartilage and SCB, thus, increasing the probability of expanding linear 

defects (58). 

PC scores from some of the older horses tended to cluster together with some of the younger 

horses’ scores. This PC score distribution implied that perhaps aggregates of sampled sites 

from the older horses were those of more recently-formed or remodelled bone somewhat 

similar in composition to those from younger individuals. Both shifts in wavenumber and 

changes to the relative intensities of sub-bands in the PC loadings plots suggested subtle bone 

tissue compositional differences. Shifts were indicative of different chemical environments 

and intensity changes of amounts of bone tissue component present. Phosphate functionalities 

relayed information about bone mineral present in the sample; amides pointed at the amount 

and properties of the organic matrix. The additional presence of carbonate functionalities in 

the Raman spectra of bone tissue would be indicative of the mineral crystals’ maturation 

status, as they are associated with older mineral crystals (35, 53). Tissue age can often be a 

confounding factor with specimen age since there are various ongoing biological processes 

within each individual (35). Interstitial lamellar bone is older than osteonal bone since the 

remodelling process triggers osteon formation. 

As an indirect comparison, there were ‘contrasting’ chemometric results obtained by infrared 

(in (37)) and Raman spectroscopies due, in part, to the complementary nature of the two 

vibrational spectroscopic techniques. IR would show groupings based on the matrix, Raman 

would show groupings based on the mineral. Again, amide spectral bands were more intense 

in the former and phosphates stronger in the latter. Contrasting results were also likely 

attributable to the chosen chemometric technique: PCA will create ‘natural’ separation of 

unlabelled data with no initial knowledge of the expected differences; LDA, however, 

attempts to group data into predefined or a priori classes (59). The spectral collection 

methodologies differed, too: spectra from an amalgamated AC layer here as opposed to 

distinct spectra from each of the hyaline articular cartilage (HAC) and ACC layers in (37).
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 Limitations 

There were a few limitations in this study. Fluctuating laser power day-to-day may have 

affected signal strength of the embedded bone specimens’ chemical functionalities, especially 

the already weaker organics. 

The epi-illumination set-up gave a rather low-contrasting view of the cartilaginous layers in 

the bone specimens, so the majority of the time there was difficulty distinguishing between the 

HAC and ACC layers, even when collecting test spectra to try to confirm spectral differences. 

Thus, the decision was made to amalgamate the two into a single AC layer. If it had been 

easier to identify non-calcified sites, both visually and spectrally, there might have been 

different and perhaps more apparent clustering results from the aggregated spectral data. 

There were also timeline alterations and contractions to data collection procedures from 

pressure due to competing uses of the multi-laser inverted Raman microscope system. 

Due to the need to generate some results for two data sets, the PCA conducted on the spectral 

data from the Mt3 bone specimens was abbreviated; perhaps subsetting the aggregated spectral 

data may have also generated more understandable clustering results. 
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Chapter 4 – Results & Discussion: Fresh samples from 

the equine carpal joint bone specimens 

4.0 Introduction 

Likewise, a shortage of literature covering fresh equine carpal bone specimens that have been 

characterised and analysed by way of Raman microspectroscopy and chemometrics exists; any 

inferences that could be made from this chapter should relieve some of the shortage. This 

chapter covers the application of multivariate statistical analysis to Raman spectral data 

collected from the equine carpal joint bone specimens. It is again prefaced with exemplar plots 

of the pre-processed Raman spectral plots from two of the horses (one from each age group) 

and a table summarising the data groupings. It then moves towards the actual findings of the 

multivariate statistical analysis of the two data subsets and their ‘layered’ sub-subsets, the 

differenced data set, the ‘stacked’ data set (that is, the combination of the two subsets), the 

mean-adjusted, ‘stacked’ data set, and ‘layered’ subsets of this whole data set. It discusses 

each one in turn, before finally rounding off with the limitations of this aspect of the presented 

body of work. 

4.1 Raman spectral data from the equine carpal joint bone 

sections 

Figures 4.1 to 4.8 are some examples of the processed Raman spectral data from the equine 

carpal joint bone sections – two from each subset (one from a horse in each of the two age 

groups (horses 4 and 19)). If necessary, refer back to Table 3.1 in subsection 3.2.1 for typical 

Raman spectral assignments of bone. 

Many of the spectral assignments for the articular cartilage (AC) were likely to be those from 

collagen. Some spectral bands from other functional groups, however, like lipids and 

macromolecules can overlap with those from smaller proteins. As with the subchondral bone 

(SCB) spectra from the third metatarsal (Mt3) bone specimens, many of the expected 

functional groups from both components were present. 
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Figure 4.1 An aggregated ‘chip’ Raman spectrum from the articular cartilage (AC) of the third carpal bone 

(C3) from horse 4, one of the two-year-old horses. Typical band assignments from the collagenous 

component are highlighted. 

 

 

Figure 4.2 An aggregated ‘chip’ Raman spectrum from the subchondral bone (SCB) of the third carpal 

bone (C3) from horse 4. Typical assignments from the mineral and matrix components are highlighted. 
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Figure 4.3 An aggregated ‘chip’ Raman spectrum from the AC of the third carpal bone (C3) from horse 

19, a three-year-old horse. 

 

 

Figure 4.4 An aggregated ‘chip’ Raman spectrum from the SCB of the third carpal bone (C3) from horse 

19. 
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Figure 4.5 An aggregated ‘control’ Raman spectrum from the AC of the C3 from horse 4. 

 

 

Figure 4.6 An aggregated ‘control’ Raman spectrum from the SCB of the C3 from horse 4. 



67 

 

 

Figure 4.7 An aggregated ‘control’ Raman spectrum from the AC of the C3 from horse 19. 

 

 

Figure 4.8 An aggregated ‘control’ Raman spectrum from the SCB of the C3 from horse 19. 
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4.2 Multivariate statistical analytical results 

4.2.1 Summary table 

Table 4.1 outlines the Raman spectral data groupings that follow in subsection 4.2.2: 

Table 4.1 Summary of the Raman spectral data groupings used in the PCA of the equine carpal joint bone 

specimens. 

Figure Spectral data grouping 

4.9 
scree plot of aggregated ‘chip’ spectral data subset from 

equine carpal joint bone sections 

4.10 
first six PCs’ loadings plots from aggregated ‘chip’ 

spectral data 

4.11 
PC2 vs PC1 scores plot from aggregated ‘chip’ spectral 

data subset, by section and layer 

4.12 

paired scores plot matrix for the first six PCs from 

aggregated ‘chip’ spectral data subset, by section and 

layer 

4.13 

scree plot of the articular cartilage (AC) spectral data 

subset of aggregated ‘chip’ spectral data subset from 

equine carpal joint bone sections 

4.14 

first six PCs’ loadings plots from articular cartilage 

(AC) spectral data subset of aggregated ‘chip’ spectral 

data subset 

4.15 

PC2 vs PC1 scores plot from articular cartilage (AC) 

spectral data subset of aggregated ‘chip’ spectral data 

subset, by section and layer 

4.16 

paired scores plot matrix for the first six PCs from 

articular cartilage (AC) spectral data subset of 

aggregated ‘chip’ spectral data subset, by section and 

layer 

4.17 

scree plot of subchondral bone (SCB) spectral data 

subset of aggregated ‘chip’ spectral data subset from 

equine carpal joint bone sections 
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4.18 

first six PCs’ loadings plots from the subchondral bone 

(SCB) spectral data subset of aggregated ‘chip’ spectral 

data subset 

4.19 

PC2 vs PC1 scores plot from the subchondral bone 

(SCB) spectral data subset of aggregated ‘chip’ spectral 

data subset, by section and layer 

4.20 

paired scores plot matrix for the first six PCs from the 

subchondral bone (SCB) spectral data subset of 

aggregated ‘chip’ spectral data subset, by section and 

layer 

4.21 
scree plot of aggregated ‘control’ spectral data subset 

from equine carpal joint bone sections 

4.22 
first six PCs’ loadings plots from aggregated ‘control’ 

spectral data subset 

4.23 
PC2 vs PC1 scores plot from aggregated ‘control’ 

spectral data subset, by section and layer 

4.24 

paired scores plot matrix for the first six PCs from 

aggregated ‘control’ spectral data subset, by section and 

layer 

4.25 

scree plot of articular cartilage (AC) spectral data subset 

of aggregated ‘control’ spectral data subset from equine 

carpal joint bone sections 

4.26 

first six PCs’ loadings plots from articular cartilage 

(AC) spectral data subset of aggregated ‘control’ 

spectral data subset 

4.27 

PC2 vs PC1 scores plot from articular cartilage (AC) 

spectral data subset of aggregated ‘control’ spectral data 

subset, by section and layer 

4.28 

paired scores plot matrix for the first six PCs from 

articular cartilage (AC) spectral data subset of 

aggregated ‘control’ spectral data subset, by section and 

layer 
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4.29 

scree plot of subchondral bone (SCB) spectral data 

subset of aggregated ‘control’ spectral data subset from 

equine carpal joint bone sections 

4.30 

first six PCs’ loadings plots from the subchondral bone 

(SCB) spectral data subset of aggregated ‘control’ 

spectral data subset 

4.31 

PC2 vs PC1 scores plot from the subchondral bone 

(SCB) spectral data subset of aggregated ‘control’ 

spectral data subset, by section and layer 

4.32 

paired scores plot matrix for the first six PCs from the 

subchondral bone (SCB) spectral data subset of 

aggregated ‘control’ spectral data subset, by section and 

layer 

4.33 
scree plot of aggregated, differenced spectral data from 

equine carpal joint bone sections 

4.34 
first six PCs’ loadings plots from aggregated, 

differenced spectral data 

4.35 
PC2 vs PC1 scores plot from aggregated, differenced 

spectral data, by section and layer 

4.36 

paired scores plot matrix for the first six PCs from 

aggregated, differenced spectral data, by section and 

layer 

4.37 
scree plot of aggregated, ‘stacked’ spectral data from 

equine carpal joint bone sections 

4.38 
first six PCs’ loadings plots from aggregated, ‘stacked’ 

spectral data 

4.39 
PC2 vs PC1 scores plot from aggregated, ‘stacked’ 

spectral data, by section and layer 

4.40 

montage of PC2 vs PC1 scores plot from aggregated, 

‘stacked’ spectral data, by section (columns) and layer 

(rows) 

4.41 
paired scores plot matrix for the first six PCs from 

aggregated, ‘stacked’ spectral data, by section and layer 
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4.42 
scree plot of mean-adjusted, aggregated, ‘stacked’ 

spectral data from equine carpal joint bone sections 

4.43 
first six PCs’ loadings plots from mean-adjusted, 

aggregated, ‘stacked’ spectral data 

4.44 

PC2 vs PC1 scores plot from mean-adjusted, 

aggregated, ‘stacked’ spectral data, by section, layer, 

and condition 

4.45 

paired scores plot matrix for the first six PCs from 

mean-adjusted, aggregated, ‘stacked’ spectral data, by 

section, layer, and condition 

4.46 

scree plot of mean-adjusted, aggregated, ‘stacked’ 

articular cartilage (AC) spectral data subset from equine 

carpal joint bone sections 

4.47 

first six PCs’ loadings plots from mean-adjusted, 

aggregated, ‘stacked’ articular cartilage (AC) spectral 

data subset 

4.48 

PC2 vs PC1 scores plot from mean-adjusted, 

aggregated, ‘stacked’ articular cartilage (AC) spectral 

data subset, by section and condition 

4.49 

paired scores plot matrix for the first six PCs from 

mean-adjusted, aggregated, ‘stacked’ articular cartilage 

(AC) spectral data subset, by section and condition 

4.50 

scree plot of mean-adjusted, aggregated, ‘stacked’ 

subchondral bone (SCB) spectral data subset from 

equine carpal joint bone sections 

4.51 

first six PCs’ loadings plots from mean-adjusted, 

aggregated, ‘stacked’ subchondral bone (SCB) spectral 

data subset 

4.52 

PC2 vs PC1 scores plot from mean-adjusted, 

aggregated, ‘stacked’ subchondral bone (SCB) spectral 

data subset, by section and condition 



72 

 

4.53 

paired scores plot matrix for the first six PCs from 

mean-adjusted, aggregated, ‘stacked’ subchondral bone 

(SCB) spectral data subset, by section and condition 

 

4.2.2 PCA 

This section covers various results from the PCA of the aggregated Raman spectral data from 

the equine carpal joint bone sections. 

4.2.2.1.1 PCA of the ‘chip’ spectral data subset 

Results from the PCA of the aggregated ‘chip’ spectral data subset from the equine carpal 

joint bone sections follow below. In a similar fashion to the Mt3 bone sections, additional 

details about the horses were incorporated into the analysis; the subset was also averaged by 

horse to make within-object variability more intelligible (refer back to subsection 2.5.2, if 

necessary). 

Figure 4.9 shows the scree plot of the variances for the first 10 PCs from the ‘chip’ subset. The 

first six PCs accounted for approximately 97.4 % of the total variation in the data subset, 

rapidly tailing off after PC4. PC1 explained about 64.1 % of the total variation, while PCs 2 

through six accounted for about 23.8 %, 5.9 %, 2.5 %, 0.677 %, and 0.448 %, respectively. 
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Figure 4.9 Scree plot for the aggregated ‘chip’ Raman spectral data subset from the equine carpal joint bone 

sections. Cumulatively, the first six PCs accounted for approximately 97.4 % of the total spectral variation; 

individually, they explained about 64.1 %, 23.8 %, 5.9 %, 2.5 %, 0.7 %, and 0.5 %, respectively. 

The loadings plot for the first six PCs (based on the covariance matrix) is shown in Figure 

4.10. The loadings plot for PC1 appeared to represent a mixture of contributions from the 

mineral and organic matrix components of bone (much like the original spectra from the 

subchondral bone and hinting at the subchondral bone spectral data’s influence on this 

subset’s PCA results). The most prominent loading originated from the ν1 PO4
3- band in the 

960 cm-1 region; there were more subdued loadings from the ν2 PO4
3- band around  

~ 430 cm-1, ν4 PO4
3- band ~ 590 cm-1, ν3 PO4

3- band ~ 1030 cm-1, Amide III ~ 1250 cm-1, alkyl 

(CH2) deformation ~ 1490 cm-1, and Amide I ~ 1600 cm-1. The loadings plot for PC2 also 

appeared to show a mixture of contributions from both components (with the ‘primary’ 

loadings coming from the ν1 PO4
3- band ~ 960 cm-1, ν3 PO4

3- band ~ 1030 cm-1, Amide III ~ 

1250 cm-1, CH2 deformation ~ 1490 cm-1, and Amide I ~ 1600 cm-1). Loadings for PC3 

seemed to represent more of a contribution from the collagenous component – especially those 

originating from the Amide III, CH2  deformation, and Amide I functionalities, around ~ 1250 

cm-1, ~ 1490 cm-1, and ~ 1600 cm-1, respectively. To a lesser extent, there were also loadings 

from proline, hydroxyproline, and phenylalanine around ~ 920 cm-1, ~ 930 cm-1, and ~ 1004 

cm-1, respectively. Likewise, the loadings plot for PC4 seemed to represent more contributions 

from the collagenous component; loadings from hydroxyproline around ~ 930 cm-1, Amide III 

~ 1250 cm-1, CH2  deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 stood out more. The 

loadings plot for PC5 also looked like mixed contributions from both components, with the ν2 
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PO4
3- band ~ 430 cm-1 and Amide I ~ 1600 cm-1 a little more evident in this PC, alongside 

loadings from hydroxyproline ~ 930 cm-1, Amide III ~ 1250 cm-1, and CH2  deformation ~ 

1480 cm-1. Loadings for PC6 were considerably noisier, likely representing a contribution 

from the Amide I functionality (~ 1600 cm-1) of the organic matrix. 

 

Figure 4.10 The first six PCs’ loadings plots for the aggregated ‘chip’ spectral data from the equine carpal 

joint bone sections. PC1 closely resembled the original spectra with respect to both the mineral and 

organic matrix components. PC2 loadings also appeared to be a mixture of contributions from both 

components; PCs 3 and four seemed to represent more contributions from the matrix component. Though 

the loadings for PC5 also looked like a mixed contribution from both components, those for PC6 were 

noisier in appearance, and vaguely suggestive of another contribution from the organic matrix. 
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Figure 4.11 Scores plot for PC2 against PC1 from the aggregated ‘chip’ spectral data subset (by section and 

layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); S4L1 (yellow); 

S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.11 shows the scores plot for the second PC against the first for the eight combinations 

of section and layer from the aggregated ‘chip’ spectral data subset from the articular cartilage 

and subchondral bone layers of the equine carpal joint bone specimens. Again, PCA was 

capable of separating the sections and layers into clusters to bring out some of the within-

object variations. 

The most immediately noticeable feature was that scores for the AC (L1) in all four sections 

(third carpal (S1), fourth carpal (S2), the upper part of the radial carpal (S3), and the lower 

part of the radial carpal (S4); coloured black, green, cyan, and yellow, respectively) tended to 

cluster on the left-hand, negative side of the plot along the PC1 axis. Scores from the SCB 

(L2) in all four sections (coloured red, blue, magenta, and grey, respectively) tended to cluster 

along the right-hand, positive side of the plot along PC1. Score distribution along the PC2 axis 

was slightly more ambiguous than along the PC1 axis. 
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Figure 4.12 Paired scores plot matrix for the first six PCs from the aggregated equine carpal joint ‘chip’ 

spectral data subset (by section and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 

(cyan); S3L2 (magenta); S4L1 (yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB). 

Figure 4.12 shows a scatterplot matrix of the fifteen combinations of pairs of the first six PCs 

(from the eight combinations of section and layer) from the aggregated equine carpal joint 

‘chip’ Raman spectral data. Surveying the scatterplot matrix, some of the spreading or 

grouping of the PC scores from the Raman spectral data was more obvious with pairs from the 

lower PCs than from those of the higher PCs. Like Figure 4.11, the PC scores from each 

section were more easily separated – by layer – along PC1 than along the other PCs. Overall, 

score distribution along these other PCs’ axes was, again, more unclear. 

4.2.2.1.2 PCA of the articular cartilage (AC) spectral data subset of the 

‘chip’ spectral data subset 

Results from the PCA of the articular cartilage (AC) subset of the aggregated ‘chip’ subset 

from the equine carpal joint bone sections are presented below. 
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Figure 4.13 shows the scree plot of the variances for the first 10 PCs from the articular 

cartilage (AC) sub-subset. The first six PCs accounted for approximately 94.1 % of the total 

variation in the sub-subset, again, rapidly tailing off after PC4. PC1 explained about 56.3 % of 

the total variation, whilst PCs 2 through six accounted for roughly 18.2 %, 10.6 %, 5.7 %,  

2.1 %, and 1.3 %, respectively. 

 

Figure 4.13 Scree plot for the articular cartilage (AC) Raman spectral data subset of the aggregated ‘chip’ 

data subset from the equine carpal joint bone sections. Cumulatively, the first six PCs accounted for 

approximately 94.1 % of the total spectral variation; individually, they explained about 56.3 %, 18.2 %, 10.6 

%, 5.7 %, 2.1 %, and 1.3 %, respectively. 

Figure 4.14 shows the loadings plots for the first six PCs (again, based on the covariance 

matrix). Loadings plots for PCs 1, two, and four appeared to represent contributions from the 

organic matrix. The loadings plot for PCs 3 and five, though, seemed to be denoting a mixed 

contribution from the mineral and matrix components. Along similar lines to PC6 loadings 

from the original aggregated ‘chip’ subset in Figure 4.10, loadings for PC6 were noisier than 

the previous PCs. The ‘major’ loadings for PCs 1 and two were from proline around  

~ 920 cm-1, hydroxyproline ~ 930 cm-1, Amide III ~ 1250 cm-1, CH2  deformation  

~ 1480 cm-1, and Amide I ~ 1600 cm-1. The ν1 PO4
3- band ~ 960 cm-1 dominated the loadings 

for PC3, with less intense loadings from the ν2 PO4
3- band ~ 450 cm-1, ν4 PO4

3- band 

 ~ 590 cm-1, ν3 PO4
3- band ~ 1030 cm-1, CH2 deformation ~ 1480 cm-1, and Amide I ~ 1600 

cm-1. Like the equivalent loadings from the original aggregated ‘chip’ subset in Figure 4.10, 

loadings from hydroxyproline ~ 930 cm-1, Amide III ~ 1250 cm-1, CH2  deformation ~ 1480 

cm-1, and Amide I ~ 1600 cm-1 were a bit more marked for PC4. The loadings from 

hydroxyproline ~ 930 cm-1, Amide III ~ 1250 cm-1, CH2  deformation ~ 1480 cm-1, and Amide 
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I ~ 1600 cm-1 for PC5 somewhat resembled those from the original aggregated ‘chip’ subset in 

Figure 4.10. The hydroxyproline and Amide I functionalities (~ 930 cm-1 and 1600 cm-1, 

respectively) were the only easily discernible loadings for PC6. 

 

Figure 4.14 The first six PCs’ loadings plots for the articular cartilage (AC) Raman spectral data subset of 

the aggregated ‘chip’ data subset from the equine carpal joint bone sections. The loadings for PCs 1, two, 

and four appeared to be representative of contributions from the organic matrix, whereas those from PCs 3 

and five seemed to represent mixed contributions from the mineral and matrix components. The loadings for 

PC6 were much noisier. 

Figure 4.15 shows the scores plot for the second PC against the first for the four combinations 

of section and layer from the AC sub-subset of the aggregated equine carpal joint ‘chip’ 

Raman spectral data subset. PCA was capable of separating the sections and layer; the data 

had been subdivided to the point that there were no longer any recognisable patterns in either 

PC dimension. 
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Figure 4.15 Scores plot for PC2 against PC1 for the articular cartilage (AC) Raman spectral data subset of 

the aggregated ‘chip’ data subset (by section and layer): S1L1 (black); S2L1 (green); S3L1 (cyan); S4L1 

(yellow). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.16 shows a scatterplot matrix of the fifteen combinations of pairs of the first six PCs 

(from the four combinations of section and layer) from the AC sub-subset. Like Figure 4.15, 

there were no longer any discernible clusters of the PC scores because of the Raman spectral 

data being extensively subdivided by this point. 
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Figure 4.16 Paired scores plot matrix for the first six PCs for the articular cartilage (AC) Raman spectral data 

subset of the aggregated equine carpal joint ‘chip’ data subset (by section and layer): S1L1 (black); S2L1 

(green); S3L1 (cyan); S4L1 (yellow). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC). 

4.2.2.1.3 PCA of the subchondral bone (SCB) spectral data subset of the 

‘chip’ spectral data subset 

Results from the PCA of the subchondral bone (SCB) subset of the aggregated ‘chip’ subset 

from the equine carpal joint bone sections are displayed below. 

Figure 4.17 shows the scree plot of the variances for the first 10 PCs from the subchondral 

bone (SCB) sub-subset. The first six PCs accounted for approximately 97.3 % of the total 

variation in the sub-subset, rapidly tailing off after PC3. PC1 explained about 66.3 % of the 

total variation, while PCs 2 through six accounted for approximately 21.9 %, 5.6 %, 1.6 %, 

 1.1 %, and 0.799 %, respectively. 
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Figure 4.17 Scree plot for the subchondral bone (SCB) Raman spectral data subset of the aggregated ‘chip’ 

data subset from the equine carpal joint bone sections. Cumulatively, the first six PCs accounted for 

approximately 97.3 % of the total spectral variation; individually, they explained about 66.3 %, 21.9 %,  

5.6 %, 1.6 %, 1.1 %, and 0.8 %, respectively. 

Figure 4.18 shows the loadings plot for the first six PCs (again, based on the covariance 

matrix). The loadings plot for PC1 appeared to represent a mixed contribution from the 

mineral and organic matrix components (again, much like the original spectra from the 

subchondral bone). Like the PC1 loadings plot from the original aggregated ‘chip’ subset in 

Figure 4.10, the main loading for PC1 was from the ν1 PO4
3- band in the 960 cm-1 region. 

There were more subdued loadings from the ν2 PO4
3- band around ~ 430 cm-1, ν4 PO4

3- band 

 ~ 590 cm-1, ν3 PO4
3- band ~ 1030 cm-1, Amide III ~ 1250 cm-1, CH2 deformation ~ 1490 cm-1, 

and Amide I ~ 1600 cm-1. The loadings plot for PC2 also appeared to be a mixed contribution 

from both components, with the primary loadings originating from the ν1 PO4
3- band around 

 ~ 960 cm-1, Amide III ~ 1250 cm-1, CH2 deformation ~ 1490 cm-1, and Amide I ~ 1600 cm-1. 

There were more muted loadings from the proline, hydroxyproline, and ν3 PO4
3- functionalities 

around ~ 920 cm-1, ~ 930 cm-1, and ~ 1030 cm-1, respectively. The loadings plots for PCs 3, 

four, and six were rather noisy, though they seemed vaguely suggestive of another mixed 

contribution from both components. For PC3, the more perceptible loadings looked to be the 

ν1 PO4
3- band around ~ 960 cm-1, Amide III ~ 1250 cm-1, CH2 deformation ~ 1490 cm-1, and 

Amide I ~ 1600 cm-1. For PC4, they were the ν4 PO4
3- band ~ 590 cm-1 and CH2 deformation  

~ 1490 cm-1. For PC6, there was an almost derivative-like shape to the ν2 PO4
3- and ν4 PO4

3- 

bands around ~ 480 – 575 cm-1. The loadings plot for PC5 seemed to be yet another mixed 

contribution from both components, with subtle loadings from the ν2 PO4
3- band around ~ 430 

cm-1, proline  
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~ 920 cm-1, hydroxyproline ~ 930 cm-1, Amide III ~ 1250 cm-1, CH2  deformation ~ 1490 cm-1, 

and Amide I ~ 1600 cm-1. 

 

Figure 4.18 The first six PCs’ loadings plots for the subchondral bone (SCB) Raman spectral data subset of 

the aggregated ‘chip’ data subset from the equine carpal joint bone sections. PC1 closely resembled the 

original spectra from the SCB with respect to both the mineral and organic matrix components. PCs 2 

through six also appeared to be a mixed contribution from both components, though loadings for PCs 3, four, 

and six were noisier than the others. 

Figure 4.19 shows the scores plot for the second PC against the first for the four combinations 

of section and layer from the SCB sub-subset of the aggregated equine carpal joint ‘chip’ 

Raman spectral data subset. As was also the case with the AC sub-subset in subsection 

4.2.2.1.2, there were no longer any recognisable patterns in either PC dimension even though 

PCA was once again capable of separating the sections and layer. 
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Figure 4.19 Scores plot for PC2 against PC1 for the subchondral bone (SCB) Raman spectral data subset of 

the aggregated ‘chip’ data subset (by section and layer): S1L2 (red); S2L2 (blue); S3L2 (magenta); S4L2 

(grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L2 = subchondral bone (SCB);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.20 shows a scatterplot matrix of the fifteen combinations of pairs of the first six PCs 

(from the four combinations of section and layer) from the SCB sub-subset. Again, like Figure 

4.19, there were no longer any distinct clusters of the PC scores because of the extensive 

subdivision of the Raman spectral data by this point. 
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Figure 4.20 Paired scores plot matrix for the first six PCs for the subchondral bone (SCB) Raman spectral 

data subset of the aggregated equine carpal joint ‘chip’ data subset (by section and layer): S1L2 (red); S2L2 

(blue); S3L2 (magenta); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L2 = subchondral bone (SCB). 

4.2.2.2.1 PCA of the ‘control’ spectral data subset 

Results from the PCA of the aggregated ‘control’ spectral data subset from the equine carpal 

joint bone sections follow on. As with the ‘chip’ subset, incorporation and averaging of 

additional information about the horses before PC analysis was necessary to make within-

horse variability more discernible. 

Figure 4.21 shows the scree plot of the variances for the first 10 PCs from the ‘control’ subset. 

The first six PCs accounted for approximately 97.3 % of the total variation in the data subset, 

again, rapidly tailing off after PC4. PC1 explained about 71.8 % of the total variation, while 

PCs 2 through six comprised approximately 16.5 %, 5.2 %, 2.6 %, 0.723 %, and 0.473 %, 

respectively. 
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Figure 4.21 Scree plot for the aggregated ‘control’ spectral data subset from the equine carpal joint bone 

sections. Cumulatively, the first six PCs accounted for approximately 97.3 % of the total spectral variation; 

individually, they explained about 71.8 %, 16.5 %, 5.2 %, 2.6 %, 0.7 %, and 0.5 %, respectively. 

Figure 4.22 shows the loadings plots for the first six PCs. As with the ‘chip’ subset, the 

loadings for PC1 from the ‘control’ subset also closely resembled the original Raman spectra – 

especially those from the SCB. The dominant loading originated from the ν1 PO4
3- band within 

the 960 cm-1 region. The other loadings for PC1 were from the ν2 PO4
3- band around  

~ 430 cm-1, ν4 PO4
3- band ~ 590 cm-1, ν3 PO4

3- band ~ 1030 cm-1, Amide III ~ 1250 cm-1, CH2  

deformation ~ 1490 cm-1, and Amide I ~ 1600 cm-1. The loadings plot for PC2 also appeared 

to show a mixture of contributions from both components (again, with the ‘primary’ loadings 

coming from the ν1 PO4
3- band ~ 960 cm-1, ν3 PO4

3- band ~ 1030 cm-1, Amide III ~ 1250 cm-1, 

CH2  deformation ~ 1490 cm-1, and Amide I ~ 1600 cm-1). The loadings plots for PCs 3 and 

four seemed to represent more of a contribution from the collagenous component. For PC3 

these came from the Amide III, CH2  deformation, and Amide I functionalities in particular, 

around ~ 1250 cm-1, ~ 1480 cm-1, and ~ 1600 cm-1, respectively. To a lesser extent, there were 

also loadings from the proline, hydroxyproline, and phenylalanine around ~ 920 cm-1, ~ 930 

cm-1, and ~ 1004 cm-1, respectively. Loadings from hydroxyproline around ~ 930 cm-1, Amide 

III ~ 1250 cm-1, CH2  deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 were the ‘primary’ 

loadings for PC4. Interestingly, many of the contributory loadings for the second, third, and 

fourth PCs had opposite signs to their ‘chip’ equivalents. The loadings plot for PC5 also 

looked like a contribution from the matrix component; the major loadings came from proline, 

hydroxyproline, CH2 deformation, and Amide I, around ~ 920 cm-1, ~ 930 cm-1, ~ 1480 cm-1 
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and ~ 1660 cm-1, respectively. Much like its ‘chip’ equivalent, the loadings plot for PC6 was 

much noisier, likely representing contribution from the ν4 PO4
3- band (~ 590 cm-1) from the 

mineral component. 

 

Figure 4.22 The first six PCs’ loadings plots for the aggregated ‘control’ Raman spectral data from the 

equine carpal joint bone sections. Again, PC1 closely resembled the original spectra with respect to both the 

mineral and organic matrix components. PC2 loadings also appeared to be a mixture of contributions from 

both components; PCs 3 and four seemed to represent more contributions from the matrix component. PC5 

also looked like a contribution from the organic matrix. Loadings for PC6 were noisier in appearance, and 

vaguely suggestive of another contribution from the mineral component. 

Figure 4.23 shows the scores plot for the second PC against the first for the eight combinations 

of section and layer from the aggregated equine carpal joint ‘control’ spectral data subset from 

the articular cartilage and subchondral bone of the equine carpal joint bone specimens. Again, 

PCA was capable of separating the sections and layers into clusters to bring out some of the 

within-object variations. 

As with the ‘chip’ subset, the scores for the AC (L1) in all four sections (third carpal (S1), 

fourth carpal (S2), the upper part of the radial carpal (S3), and the lower part of the radial 

carpal (S4); coloured black, green, cyan, and yellow, respectively) from the ‘control’ subset 

tended to cluster along the negative side of PC1. Scores from the SCB (L2) in all four sections 
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(coloured red, blue, magenta, and grey, respectively) clustered along the positive side of PC1. 

Score distribution along the PC2 axis was, again, vaguer than along the PC1 axis. 

 

Figure 4.23 Scores plot for PC2 against PC1 from the aggregated ‘control’ spectral data subset (by section 

and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); S4L1 

(yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.24 shows a scatterplot matrix of the fifteen combinations of pairs of the first six PCs 

(from the eight combinations of section and layer) from the aggregated equine carpal joint 

‘control’ Raman spectral data subset. Spreading or grouping of some PCs, was, once again, 

more evident with pairs from the lower PCs than from the higher PCs. Like Figure 4.23, the 

scores from each section were more easily separated – by layer – along PC1 than along the 

other PCs. Overall score distribution along these other PCs’ axes was once more unclear. 
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Figure 4.24 Paired scores plot matrix for the first six PCs from the aggregated ‘control’ spectral data subset 

(by section and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); 

S4L1 (yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB). 

4.2.2.2.2 PCA of the articular cartilage (AC) spectral data subset of the 

‘control’ spectral data subset 

Results from the PCA of the articular cartilage (AC) subset of the aggregated ‘control’ subset 

from the equine carpal joint bone sections are set out below. 

Figure 4.25 shows the scree plot of the variances for the first 10 PCs from the articular 

cartilage (AC) sub-subset. The first six PCs accounted for approximately 91.9 % of the total 

spectral variation in the sub-subset, again, rapidly tailing off after PC4. PC1 explained about 

58.4 % of the total spectral variation, whilst PCs 2 through six accounted for roughly 17 %, 

7.7 %, 4.5 %, 2.8 %, and 1.5 %, respectively. 
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Figure 4.25 Scree plot for the articular cartilage (AC) Raman spectral data subset of the aggregated ‘control’ 

data subset from the equine carpal joint bone sections. Cumulatively, the first six PCs accounted for 

approximately 91.9 %; individually, they explained about 58.4 %, 17 %, 7.7 %, 4.5 %, 2.8 %, and 1.5 %, 

respectively. 

Figure 4.26 shows the loadings plots for the first six PCs. Loadings plots for PCs 1, two, four, 

and five appeared to represent contributions from the organic matrix. The loadings plot for 

PC3, though, seemed to be denoting a mixed contribution from both the mineral and matrix 

components. Loadings for PC6 were much noisier than the preceding PCs; it was difficult to 

extract any useful information from it. Loadings from PC1 were subtler than for PC2, hinting 

at contributions from the phenylalanine around ~ 1004 cm-1, CH2  deformation ~ 1480 cm-1, 

and Amide I ~ 1600 cm-1. The ‘primary’ loadings for PC2 were from the proline around  

~ 920 cm-1, hydroxyproline ~ 930 cm-1, Amide III ~ 1250 cm-1, CH2  deformation ~ 1480  

cm-1, and Amide I ~ 1600 cm-1. The ν1 PO4
3- band in the 960 cm-1 region was the most 

noticeable loading for PC3; the ν2 PO4
3- band ~ 450 cm-1, ν4 PO4

3- band ~ 590 cm-1, ν3 PO4
3- 

band ~ 1030 cm-1, CH2 deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 loadings were not 

as substantial. Loadings from phenylalanine around ~ 1004 cm-1, Amide III ~ 1250 cm-1, CH2  

deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 somewhat resembled the equivalent PC4 

loadings from the original aggregated ‘control’ subset in Figure 4.22. Curiously, like the 

original aggregated ‘control’ subset there seemed to be something of a change in the shape of 

the Amide III band, suggesting a possible change in some part of the collagen’s secondary 

structure. The proline, hydroxyproline, and Amide I functionalities (~ 920 cm-1, ~ 930 cm-1, 

and ~ 1600 cm-1, respectively) were the more recognisable features in the PC5 loadings. There 

were also – to a lesser extent – the phenylalanine ~ 1004 cm-1, and Amide III ~ 1250 cm-1. 
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Figure 4.26 The first six PCs’ loadings plots for the articular cartilage (AC) Raman spectral data subset of 

the aggregated ‘control’ data subset from the equine carpal joint bone sections. PCs 1, two, four, and five 

appeared to be representative of contributions from the organic matrix, and those from PC3 seemed to 

represent mixed contributions from both the mineral and matrix components. The loadings for PC6 were 

much noisier. 

Figure 4.27 shows the scores plot for the second PC against the first for the four combinations 

of section and layer from the AC sub-subset of the aggregated equine carpal joint ‘control’ 

Raman spectral data subset. As was the case with the ‘chip’ subset, PCA was again capable of 

separating the sections and layer; the data had been subdivided to the point that there were no 

longer any recognisable patterns in either PC dimension. 
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Figure 4.27 Scores plot for PC2 against PC1 for the articular cartilage (AC) Raman spectral data subset of 

the aggregated ‘control’ data subset (by section and layer): S1L1 (black); S2L1 (green); S3L1 (cyan); S4L1 

(yellow). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.28 shows a scatterplot matrix of the fifteen combinations of pairs of the first six PCs 

(from the four combinations of section and layer) from the AC sub-subset. Like Figure 4.27, 

there were no longer any discernible clusters of the PC scores because of the Raman spectral 

data being extensively subdivided by this point. 
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Figure 4.28 Paired scores plot matrix for the first six PCs for the articular cartilage (AC) Raman spectral data 

subset of the aggregated equine carpal joint ‘control’ data subset (by section and layer): S1L1 (black); S2L1 

(green); S3L1 (cyan); S4L1 (yellow). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC). 

4.2.2.2.3 PCA of the subchondral bone (SCB) spectral data subset of the 

‘control’ spectral data subset 

Results from the PCA of the subchondral bone (SCB) subset of the aggregated ‘control’ subset 

from the equine carpal joint bone sections are set out below. 

Figure 4.29 shows the scree plot of the variances for the first 10 PCs from the subchondral 

bone (SCB) sub-subset. The first six PCs accounted for approximately 96.7 % of the total 

variation in the sub-subset, rapidly tailing off after PC3. PC1 explained about 65.9 % of the 

total variation, while PCs 2 through six accounted for around 19.4 %, 7.9 %, 2 %, 0.817 %, 

and 0.682 %, respectively. 
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Figure 4.29 Scree plot for the subchondral bone (SCB) Raman spectral data subset of the aggregated 

‘control’ data subset from the equine carpal joint bone sections. Cumulatively, the first six PCs accounted for 

approximately 96.7 % of the total spectral variation; individually, they explained about 65.9 %, 19.4 %, 

 7.9 %, 2 %, 0.8 %, and 0.7 %, respectively. 

Figure 4.30 shows the loadings plots for the first six PCs. The loadings plots for five of the six 

PCs appeared to represent – to varying degrees – mixed contributions from both the mineral 

and organic matrix components (only the fifth PC appeared to represent a contribution from 

the mineral component). Additionally, many of these PCs’ loadings were barely 

distinguishable from the baseline. The ν1 PO4
3- band in the 960 cm-1 region was the most 

noticeable loading for PC1; loadings from the ν2 PO4
3- band ~ 450 cm-1, ν4 PO4

3- band ~ 590 

cm-1, and ν3 PO4
3- band ~ 1030 cm-1 were not as substantial. The Amide III band around  

~ 1250 cm-1, CH2  deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 were slightly more 

noticeable than the loadings from the ν4 PO4
3- band around ~ 590 cm-1, proline ~ 920 cm-1, 

hydroxyproline ~ 930 cm-1, ν1 PO4
3- band ~ 960 cm-1, and ν3 PO4

3- band ~ 1030 cm-1 for PC2. 

Loadings from the ν1 PO4
3- band around ~ 960 cm-1, Amide III ~ 1250 cm-1, CH2  deformation 

~ 1480 cm-1, and Amide I ~ 1600 cm-1 barely stood out from the baseline for PC3. The loading 

from the ν4 PO4
3- band around ~ 590 cm-1 was the stand-out for PC4; the ν2 PO4

3- band ~ 450 

cm-1, ν1 PO4
3- band ~ 960 cm-1, and Amide I ~ 1600 cm-1 were barely detectable. PC5 was also 

very noisy – there appeared to be a very subtle loading from the ν4 PO4
3- band around ~ 590 

cm-1. Lastly, there were subdued loadings from the ν2 PO4
3- band ~ 450 cm-1, ν4 PO4

3- band  

~ 590 cm-1, proline ~ 920 cm-1, hydroxyproline ~ 930 cm-1, Amide III ~ 1250 cm-1, and Amide 

I ~ 1600 cm-1 for PC6. 



94 

 

 

Figure 4.30 The first six PCs’ loadings plots for the subchondral bone (SCB) Raman spectral data subset of 

the aggregated ‘control’ data subset from the equine carpal joint bone sections. PCs 1, two, three, four, and 

six seemed to represent mixed contributions from both the mineral and matrix components. PC5 represented 

a contribution from the mineral component; its loadings were much noisier. 

Figure 4.31 shows the scores plot for the second PC against the first for the four combinations 

of section and layer from the SCB sub-subset of the aggregated equine carpal joint ‘control’ 

Raman spectral data subset. Likewise following its ‘chip’ counterparts (subsections 4.2.2.1.2 

and 4.2.2.1.3) where there was an apparent lack of pattern, there were no longer any instantly 

recognisable patterns in either PC dimension even though PCA was once again capable of 

separating the sections and layer. 
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Figure 4.31 Scores plot for PC2 against PC1 for the subchondral bone (SCB) Raman spectral data subset of 

the aggregated ‘control’ data subset (by section and layer): S1L2 (red); S2L2 (blue); S3L2 (magenta); S4L2 

(grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L2 = subchondral bone (SCB);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.32 shows a scatterplot of the fifteen combinations of pairs of the first six PCs (from 

the four combinations of section and layer) from the SCB sub-subset. Again, like Figure 4.27, 

there were no longer any distinct clusters of the PC scores because of the extensive 

subdivision of the Raman spectral data by this point. 

 



96 

 

 

Figure 4.32 Paired scores plot matrix for the first six PCs for the subchondral bone (SCB) Raman spectral 

data subset of the aggregated equine carpal joint ‘control’ data subset (by section and layer): S1L2 (red); 

S2L2 (blue); S3L2 (magenta); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L2 = subchondral bone (SCB). 

4.2.2.3 PCA of the differenced spectral data 

Results from the PCA of the differenced spectral data from the equine carpal joint bone 

sections are shown below. 

Figure 4.33 shows the scree plot of the variances for the first 10 PCs from the differenced 

spectral data set. The first six PCs accounted for approximately 92.3 % of the total variation in 

the spectral data, again, rapidly tailing off after PC4. PC1 explained about 38 % of the total 

variation whilst PCs 2 through six accounted for approximately 24.7 %, 20.5 %, 5.8 %, 2.1 %, 

and 1.3 %, respectively. 
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Figure 4.33 Scree plot for differenced Raman spectral data from the equine carpal joint bone sections. 

Cumulatively, the first six PCs accounted for approximately 92.3 % of the total spectral variation; 

individually, they explained about 38 %, 24.7 %, 20.5 %, 5.8 %, 2.1 %, and 1.3 %, respectively. 

Figure 4.34 shows the loadings plots for the first six PCs from the differenced spectral data 

set. Loadings for the first two PCs both appeared to be representative of contributions from 

both components, dominated to some extent by the first symmetric stretch phosphate peak at  

~ 960 cm-1. PC1’s loadings hinted at the likelihood of there being some functional group 

dissimilarities between the ‘chip’ and the ‘control’ subsets, especially concerning the loading 

for the first symmetric stretch of the phosphate. Within PC2 only the loadings for the first 

symmetric stretching and second and fourth bending vibrations from the phosphate (located 

around ~ 960 cm-1, ~ 450 cm-1, and ~ 590 cm-1, respectively) had a closer resemblance to those 

from the ‘chip’ subset; many of the other functional groups’ loadings mimicked those from the 

‘control’ subset. The loadings for PCs 3 through five seemed more representative of 

contributions from the collagenous component, namely from the proline, hydroxyproline, 

phenylalanine, Amide III, CH2 deformation, and Amide I functionalities (located around ~ 920 

cm-1, ~ 930 cm-1, ~ 1004 cm-1, ~ 1250 cm-1, ~ 1480 cm-1, and ~ 1600 cm-1, respectively). PC3 

loadings resembled those from the ‘chip’ subset, while loadings from PCs 4 and five were 

more like those from the ‘control’ subset (the main loadings for PC5 being hydroxyproline, 

Amide III, CH2  deformation, and Amide I located around ~ 920 cm-1, ~ 1250 cm-1, ~ 1480 

cm-1, and ~ 1600 cm-1, respectively). With another mixed representative contribution from 

both components, subtle loadings from the ν4 PO4
3- band around ~ 590 cm-1 and Amide I  
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~ 1600 cm-1 seemed to be the more distinguishable features for PC6. Its loadings also 

somewhat resembled those from the ‘control’ subset. 

 

Figure 4.34 The first six PCs’ loadings plots for the differenced Raman spectral data from the equine carpal 

joint bone sections. Again, PCs 1 and two were mixed contributions dominated by the first symmetric stretch 

phosphate band from the mineral component. PCs 3 through five seemed to represent more contributions 

from the matrix component. PC6 seemed like another mixed contribution from both components. 

Figure 4.35 shows the scores plot for the second PC against the first for the eight combinations 

of section and layer from the differenced spectral data from the articular cartilage and 

subchondral bone of the equine carpal joint bone specimens. Again, PCA was capable of 

separating the sections and layers into clusters to bring out some of the within-object 

variations. Scores for the AC (L1) in all four sections (third carpal (S1), fourth carpal (S2), the 

upper part of the radial carpal (S3), and the lower part of the radial carpal (S4); coloured black, 

green, cyan, and yellow, respectively) showed seemingly random scatter. Likewise, those for 

the SCB (L2) in all four sections (coloured red, blue, magenta, and grey, respectively) showed 

no distinct clustering within either PC dimension. 
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Figure 4.35 Scores plot for PC2 against PC1 from the differenced Raman spectral data (by section and 

layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); S4L1 (yellow); 

S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.36 shows a scatterplot matrix of the fifteen combinations of pairs of the first six PCs 

(from the eight combinations of section and layer) from the aggregated equine carpal joint 

differenced Raman spectral data. There was no explicit score clustering in any other pairs of 

PC dimensions upon a survey of the scatterplot matrix. 
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Figure 4.36 Paired scores plot matrix for the first six PCs for the differenced Raman spectral data from the 

equine carpal joint bone sections (by section and layer): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 

(blue); S3L1 (cyan); S3L2 (magenta); S4L1 (yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB). 

4.2.2.4 PCA of the ‘stacked’ spectral data 

PCA results for the ‘stacked’ (that is, the two subsets combined), aggregated spectral data 

from the equine carpal joint bone sections follow. 

Figure 4.37 shows the scree plot of the variances for the first 10 PCs from the stacked, 

aggregated spectral data set. The first six PCs accounted for approximately 97 % of the total 

variation in the data, again, rapidly tailing off after PC4. PC1 explained about 67.6 % of the 

total variation while PCs 2 through six accounted for approximately 19.6 %, 6.2 %, 2.5 %, 

0.657 %, and 0.429 %, respectively. 
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Figure 4.37 Scree plot for stacked, aggregated Raman spectral data from the equine carpal joint bone 

sections. Cumulatively, the first six PCs accounted for approximately 97 % of the total spectral variation; 

individually, they explained about 67.6 %, 19.6 %, 6.2 %, 2.5 %, 0.7 %, and 0.4 %, respectively. 

Figure 4.38 shows the loadings plots for the first six PCs from the stacked, aggregated spectral 

data set. The first four PC loadings closely resembled those of the aggregated ‘chip’ spectral 

data subset. Loadings for the first two PCs both appeared to be representative of contributions 

from both components, dominated to some extent by the first symmetric phosphate stretch at  

~ 960 cm-1. The other loadings for PC1 came from the ν2 PO4
3- band around ~ 430 cm-1,  

ν4 PO4
3- band ~ 590 cm-1, ν3 PO4

3- band ~ 1030 cm-1, Amide III ~ 1250 cm-1, CH2  deformation  

~ 1490 cm-1, and Amide I ~ 1600 cm-1. For PC2, the other loadings were from the ν3 PO4
3- 

band around ~ 1030 cm-1, Amide III ~ 1250 cm-1, CH2 deformation ~ 1490 cm-1, and Amide I 

~ 1600 cm-1. Loadings from the third PC were more suggestive of matrix component 

contributions, and those from the fourth PC were more suggestive of another mixed 

contribution. For PC3, these loadings looked to be from the proline, hydroxyproline, Amide 

III, CH2 deformation, and Amide I functionalities (located around ~ 920 cm-1, ~ 930 cm-1, 

 ~ 1250 cm-1, ~ 1480 cm-1, and ~ 1600 cm-1, respectively). In addition to these, PC4 had 

loadings from the ν2 PO4
3- band around ~ 430 cm-1, ν4 PO4

3- band ~ 590 cm-1, and 

phenylalanine ~ 1004 cm-1. The loadings plots for PCs 5 and six were also more suggestive of 

a mixed contribution. There were more subdued loadings from the ν2 PO4
3- band around ~ 430 

cm-1, proline ~ 920 cm-1, hydroxyproline ~ 930 cm-1, phenylalanine ~ 1004 cm-1, Amide III  

~ 1250 cm-1, CH2  deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 for PC5. The loadings 

plot for PC6 was much noisier, likely representing a mixed contribution from the ν2 PO4
3- 
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band (around ~ 430 cm-1) of the mineral component, and Amide I (~ 1600 cm-1) from the 

organic matrix component. 

 

Figure 4.38 The first six PCs’ loadings of the stacked, aggregated Raman spectral data from the equine 

carpal joint bone sections. The first four PC loadings closely resembled those from the original aggregated 

‘chip’ spectral data subset. Most of the six PCs seemed to represent mixed contributions from both 

components (only the third PC seemed to represent a contribution from the organic matrix. The sixth PC was 

much noisier in appearance than the others). 

Figures 4.39 and 4.40 show the scores plot for the second PC against the first for the sixteen 

combinations of section, layer, and condition from the stacked, aggregated equine carpal joint 

spectral data. Again, PCA was capable of separating the sections, layers, and conditions into 

their respective clusters to bring out some of the within-object variations. Two overall clusters 

of scores formed within the PC1 dimension based on bone layer: the AC (L1) from each of the 

four sections (coloured black, green, cyan, and yellow, respectively) on the negative side, and 

the SCB (L2) from each of the four sections (coloured red, blue, magenta, and grey, 

respectively) on the positive side. There was, however, considerable overlap between the two 

conditions’ scores. Removing the average ‘horse-section-layer’ effects did not achieve 

separation of the PC scores based on the ‘condition’ of the bone sections, but seemingly still 

separated the scores based on layer. 
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Figure 4.39 Scores plot for PC2 against PC1 from the stacked, aggregated Raman spectral data (by section, 

layer, and condition): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); 

S4L1 (yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3; 

L1 = articular cartilage (AC); L2 = subchondral bone (SCB); 

open square = ‘chip’ condition, filled circle = ‘control’ condition; 

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

 

 

Figure 4.40 Montage of scores plots for PC2 against PC1 from the stacked, aggregated Raman spectral data 

by section (columns), layer (rows), and condition (open square = ‘chip’ condition, filled circle = ‘control’ 

condition): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); S4L1 

(yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 
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Figure 4.41 shows the scatterplot matrix of the fifteen combinations of pairs of the first six 

PCs (from the sixteen combinations of section, layer, and condition) from the stacked, 

aggregated equine carpal joint spectral data. Spreading or grouping of some PC scores was, 

yet again, more evident with pairs from the lower PCs than from the higher PCs. Like Figures 

4.39 and 4.40, there was easier ‘layer’-influenced separation of each bone section’s PC scores 

along PC1 than along the other PCs. There was also still no PC score separation by ‘condition’ 

for the higher PCs, and the overall score distribution along these other PCs’ axes was unclear. 

 

Figure 4.41 Paired scores plot matrix for the first six PCs for the stacked, aggregated Raman spectral data 

from the equine carpal joint bone sections (by section, layer, and condition): S1L1 (black); S1L2 (red); S2L1 

(green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); S4L1 (yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

open square = ‘chip’ condition, filled circle = ‘control’ condition. 

4.2.2.4.1 PCA of the mean-adjusted, ‘stacked’ spectral data 

PCA results for the mean-adjusted, stacked, and aggregated spectral data from the equine 

carpal joint bone sections are displayed below. 

Figure 4.42 shows the scree plot of the variances for the first 10 PCs from the mean-adjusted, 

stacked spectral data set. The first six PCs accounted for approximately 96.9 % of the total 

variation in the data, again, rapidly tailing off after PC4. PC1 explained about  

73.2 % of the total variation whilst PCs 2 through six accounted for approximately 15.3 %, 4.7 

%, 2.5 %, 0.692 %, and 0.374 %, respectively. 
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Figure 4.42 Scree plot for the mean-adjusted, stacked Raman spectral data from the equine carpal joint bone 

sections. Cumulatively, the first six PCs accounted for approximately 96.9 % of the total spectral variation; 

individually, they explained about 73.2 %, 15.3 %, 4.7 %, 2.5 %, 0.7 %, and 0.4 %, respectively. 

Figure 4.43 shows the loadings plots for the first six PCs from the mean-adjusted, stacked and 

aggregated spectral data set. Loadings for the second, third, fourth, and fifth PCs bore some 

passing similarities to their respective counterparts from the ‘control’ subset – especially the 

latter three PCs. PC1 appeared to represent a contribution from the mineral component. The 

dominant loading for PC1 was the first symmetric phosphate stretch at ~ 960 cm-1; the other 

loadings from the ν2 PO4
3- band ~ 430 cm-1, ν4 PO4

3- band ~ 590 cm-1, and ν3 PO4
3- band  

~ 1030 cm-1 were much more subdued. Loadings for the latter five PCs were of rather low 

intensity. PC2 seemed to represent a mixture of contributions from both components. The 

proline, hydroxyproline, ν1 PO4
3- band, ν3 PO4

3- band, Amide III, CH2  deformation, and 

Amide I (located around ~ 960 cm-1, ~ 1030 cm-1, ~ 1250 cm-1, ~ 1480 cm-1, and ~ 1600 cm-1, 

respectively) were the noticeable loadings for PC2. The third and fourth PCs seemed to 

represent more of a contribution from the organic matrix component. PC3 had loadings from 

Amide III, the CH2 deformation, and Amide I around ~ 1250 cm-1, ~ 1490 cm-1, and ~ 1600 

cm-1, respectively. To a lesser extent, there were also loadings from the proline, 

hydroxyproline, and phenylalanine around ~ 920 cm-1, ~ 930 cm-1, and ~ 1004 cm-1, 

respectively. Loadings from hydroxyproline around ~ 930 cm-1, Amide III ~ 1250 cm-1, CH2  

deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 were the ‘primary’ loadings for PC4. The 

fifth and sixth PCs seemed to each represent another mixture of contributions from both 

components. PC5’s loadings were mainly from the ν2 PO4
3- band around ~ 430 cm-1, proline  
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~ 920 cm-1, hydroxyproline ~ 930 cm-1, the CH2  deformation ~ 1480 cm-1, and Amide I  

~ 1600 cm-1. The more easily identifiable loadings for PC6 looked to be from the ν2 PO4
3- 

band around ~ 430 cm-1, ν4 PO4
3- band ~ 590 cm-1, CH2  deformation ~ 1480 cm-1, and Amide 

I ~ 1600 cm-1. 

 

Figure 4.43 The first six PCs’ loadings plots from the mean-adjusted, stacked Raman spectral data from the 

equine carpal joint bone sections. The loadings for PCs 2 to five held some passing similarities to those from 

the aggregated ‘control’ spectral data subset. All six PCs, again, showed varying contributions from the 

mineral and matrix components. 

Figure 4.44 shows the scores plot for the second PC against the first for the sixteen 

combinations of section, layer, and condition from the mean-adjusted, stacked and aggregated 

equine carpal joint spectral data. Though there seemed to be three overall clusters of the scores 

around the PC1 dimension, as with the PCA of the original stacked spectral data, there was, 

unfortunately, still considerable overlap between the two conditions’ scores. This overlap 

suggested that no separation of the two ‘conditions’ of the carpal joint bone specimens was 

possible. 
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Figure 4.44 Scores plot for PC2 against PC1 from the mean-adjusted, stacked Raman spectral data (by 

section, layer, and condition): S1L1 (black); S1L2 (red); S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 

(magenta); S4L1 (yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3; 

L1 = articular cartilage (AC); L2 = subchondral bone (SCB); 

open square = ‘chip’ condition, filled circle = ‘control’ condition; 

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.45 shows the scatterplot matrix of the fifteen combinations of pairs of the first six 

PCs (from the sixteen combinations of section, layer, and condition) from the mean-adjusted, 

stacked, and aggregated equine carpal joint spectral data. Spreading or grouping of some PC 

scores was more evident from the lower PCs than from the higher PCs. Like Figure 4.44, only 

PC1 seemed to separate the PC scores – by layer – into three main clusters. There was – once 

more – neither any PC score separation by ‘condition’ nor any intelligible PC score clustering 

with any of the higher PCs. 
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Figure 4.45 Paired scores plot matrix for the first six PCs for the mean-adjusted, stacked, aggregated spectral 

data from the equine carpal joint bone sections (by section, layer, and condition): S1L1 (black); S1L2 (red); 

S2L1 (green); S2L2 (blue); S3L1 (cyan); S3L2 (magenta); S4L1 (yellow); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC); L2 = subchondral bone (SCB);  

open square = ‘chip’ condition, filled circle = ‘control’ condition. 

4.2.2.4.2 PCA of the mean-adjusted, ‘stacked’ spectral data from the 

articular cartilage (AC) 

PCA results for the mean-adjusted stacked, and aggregated spectral data from the articular 

cartilage (AC) of the equine carpal joint bone sections are presented below. 

Figure 4.46 shows the scree plot of the variances for the first 10 PCs from the mean-adjusted, 

stacked, and aggregated spectral data subset. The first six PCs accounted for approximately 

93.9 % of the total variation in the spectral data, again rapidly tailing off after PC4. PC1 

explained about 53.2 % of the total variation, while PCs 2 through six accounted for about 

24.2 %, 10 %, 4.2 %, 1.6 %, and 0.794 %, respectively. 
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Figure 4.46 Scree plot of the mean-adjusted, stacked Raman spectral data from the articular cartilage (AC) of 

the equine carpal joint bone sections. Cumulatively, the first six PCs accounted for approximately 93.9 % of 

the total spectral variation; individually, they explained about 53.2 %, 24.2 %, 10 %, 4.2 %, 1.6 %, and  

0.8 %, respectively. 

Figure 4.47 shows the loadings plots for the first six PCs from the mean-adjusted, stacked, and 

aggregated articular cartilage (AC) spectra data subset. Most of these loadings appeared to be 

nearly identical to those from the original mean-adjusted, stacked, and aggregated data set 

(namely the first four PCs), suggesting that the variations between the two layers of bone may 

have overwhelmed any observable differences in this data set. That is, PCs associated with the 

AC may have dominated the PCA of this original mean-adjusted, stacked, and aggregated data 

set. PC1 once again appeared to represent a contribution from the mineral component. The 

dominant loading for PC1 was the first symmetric phosphate stretch at ~ 960 cm-1; the other 

loadings from the ν2 PO4
3- band around ~ 430 cm-1, ν4 PO4

3- band ~ 590 cm-1, and ν3 PO4
3- 

band ~ 1030 cm-1 were much more subdued. PC2 seemed to represent a mixture of 

contributions from both components. The proline, hydroxyproline, ν1 PO4
3- band, ν3 PO4

3- 

band, Amide III, CH2  deformation, and Amide I (located around ~ 920 cm-1, ~ 930 cm-1, 

 ~ 960 cm-1, ~ 1030 cm-1, ~ 1250 cm-1, ~ 1480 cm-1, and ~ 1600 cm-1, respectively) were the 

noticeable loadings for PC2. The third and fourth PCs seemed to represent more of a 

contribution from the organic matrix component. PC3 had loadings from Amide III, the CH2  

deformation, and Amide I around ~ 1250 cm-1, ~ 1490 cm-1, and ~ 1600 cm-1, respectively (to 

a lesser extent there were also loadings from the proline, hydroxyproline, and phenylalanine 

around ~ 920 cm-1, ~ 930 cm-1, and ~ 1004 cm-1, respectively). Loadings from hydroxyproline 

around ~ 930 cm-1, Amide III ~ 1250 cm-1, CH2  deformation ~ 1480 cm-1, and Amide I 
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 ~ 1600 cm-1 were the ‘primary’ loadings for PC4. The loadings for PCs 5 and six were also 

more suggestive of a mixed contribution, albeit somewhat closer in appearance to the 

equivalent loadings from the original stacked and aggregated spectral data set in subsection 

4.2.2.4. There were, again, subdued loadings from the ν2 PO4
3- band around ~ 430 cm-1, 

proline ~ 920 cm-1, hydroxyproline ~ 930 cm-1, phenylalanine ~ 1004 cm-1, Amide III ~ 1250 

cm-1, CH2  deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1 for PC5. The loadings plot for 

PC6 was a little noisier, likely representing a mixed contribution from the ν2 PO4
3- band 

(around ~ 430 cm-1) of the mineral component, and Amide I (~ 1600 cm-1) from the organic 

matrix component. 

 

Figure 4.47 The first six PCs’ loadings plots of the mean-adjusted, stacked Raman spectral data from the 

articular cartilage (AC) of the equine carpal joint bone sections. Most of the loadings were nearly identical to 

those from the original mean-adjusted, stacked Raman data set. PCs 1, two, five, and six appeared to 

represent mixed contributions from both components, whereas PCs 3 and four were more representative of 

organic matrix contributions. 

Figure 4.48 shows the scores plot for the second PC against the first for the eight combinations 

of section and condition from the mean-adjusted, stacked, and aggregated articular cartilage 

(AC) spectral data subset. Two overall clusters formed: the third carpal (S1) with the upper 

part of the radial carpal (S3) (coloured black and cyan, respectively), and the fourth carpal 

(S2) with the lower part of the radial carpal (S4) (coloured green and yellow, respectively). As 

with the PCA of the original mean-adjusted stacked spectral data, there was still considerable 

overlap between the two conditions’ scores. 
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Figure 4.48 Scores plot for PC2 against PC1 from the mean-adjusted, stacked Raman spectral data from the 

articular cartilage (AC) of the equine carpal joint bone sections (by section and condition): S1L1 (black); 

S2L1 (green); S3L1 (cyan); S4L1 (yellow). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC);  

open square = ‘chip’ condition, filled circle = ‘control’ condition;  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.49 shows the scatterplot matrix of the fifteen combinations of pairs of the first six 

PCs (from the eight combinations of section, layer, and condition) from the mean-adjusted, 

stacked, and aggregated equine carpal joint articular cartilage spectral data. Spreading or 

grouping of some PC scores was more evident with pairs from the lower PCs than from the 

higher PCs. Like Figure 4.48, only PC1 seemed to separate the PC scores by layer (and to a 

lesser extent, section) into two main clusters. There was neither any PC score separation by 

‘condition’ nor any other intelligible PC score dispersal with any of the higher PCs. 
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Figure 4.49 Paired scores plot matrix for the first six PCs for the mean-adjusted, stacked, and aggregated 

Raman spectral data from the articular cartilage (AC) of the equine carpal joint bone sections (by section and 

condition): S1L1 (black); S1L2 (red); S2L1 (green); S3L1 (cyan); S4L1 (yellow). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L1 = articular cartilage (AC);  

open square = ‘chip’ condition, filled circle = ‘control’ condition. 

4.2.2.4.3 PCA of the mean-adjusted, ‘stacked’ spectral data from the 

subchondral bone (SCB) 

In this final subsection, PCA results for the mean-adjusted, stacked, and aggregated spectral 

data from the subchondral bone (SCB) of the equine carpal joint bone sections are set out 

below. 

Figure 4.50 shows the scree plot of the variances for the first 10 PCs from the mean-adjusted, 

stacked, and aggregated spectral data subset. The first six PCs accounted for approximately 

97.5 % of the total variation in the spectral data, again, rapidly tailing off after PC4. PC1 

explained about 71.6 % of the total variation, and PCs 2 through six accounted for 

approximately 18.2 %, 4.6 %, 2 %, 0.64 %, and 0.498 %, respectively. 
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Figure 4.50 Scree plot of the mean-adjusted, stacked Raman spectral data from the subchondral bone (SCB) 

of the equine carpal joint bone sections. Cumulatively, the first six PCs accounted for approximately 97.5 % 

of the total spectral variation; individually, they explained about 71.6 %, 18.2 %, 4.6 %, 2 %, 0.6 %, and 

 0.5 %, respectively. 

Figure 4.51 shows the loadings plots for the first six PCs from the mean-adjusted, stacked, and 

aggregated subchondral bone (SCB) spectral data subset. Though the loadings for PC1 were 

nearly identical to those from the original mean-adjusted, stacked, and aggregated data set, 

there were, however, some subtle differences in the loadings for PC2 – particularly in the  

~ 855 – 925 cm-1 region where hydroxyproline and proline Raman bands usually reside. The 

dominant loading for PC1 was the first symmetric phosphate stretch at ~ 960 cm-1; there were 

more minor loadings from the ν2 PO4
3- band around ~ 430 cm-1, ν4 PO4

3- band ~ 590 cm-1, and 

ν3 PO4
3- band ~ 1030 cm-1. There were also barely perceptible loadings from the Amide III, 

CH2 deformation, and Amide I functionalities (found around ~ 1250 cm-1, ~ 1480 cm-1, and  

~ 1600 cm-1, respectively). Though the loadings for PCs 3 through five also showed some 

mixed contributions from the mineral and matrix components within the bone, they did not 

seem to bear much resemblance to their equivalent PC loadings from the original mean-

adjusted, stacked, and aggregated data set. The loadings for PC3, rather, more closely 

resembled the equivalent PC loadings from the original stacked and aggregated data set in 

subsection 4.2.2.4. Again, these loadings looked to be from the proline, hydroxyproline, 

Amide III, CH2 deformation, and Amide I functionalities (located around ~ 920 cm-1, ~ 930 

cm-1, ~ 1250 cm-1, ~ 1480 cm-1, and ~ 1600 cm-1, respectively). PC4 loadings seemingly 

originated from the ν4 PO4
3- band around ~ 590 cm-1, proline ~ 920 cm-1, hydroxyproline 

 ~ 930 cm-1, phenylalanine ~ 1004 cm-1, Amide III ~ 1250 cm-1, CH2  deformation 
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 ~ 1480 cm-1, and Amide I ~ 1600 cm-1. PC5’s ‘main’ loadings were from the ν2 PO4
3- band 

 ~ 430 cm-1, ν4 PO4
3- band ~ 590 cm-1, proline ~ 920 cm-1, hydroxyproline ~ 930 cm-1, CH2  

deformation ~ 1480 cm-1, and Amide I ~ 1600 cm-1. Like the previous three PCs, the loadings 

plot for PC6 did not look much like its equivalent from the original mean-adjusted, stacked, 

and aggregated data set. PC6 loadings, instead, somewhat resembled their equivalent PC 

loadings from the aggregated ‘control’ data subset in subsection 4.2.2.2.1, with a ‘large’ 

loading from the mineral component’s ν2 PO4
3- band around ~ 430 cm-1. 

 

Figure 4.51 The first six PCs’ loadings plots of the mean-adjusted, stacked Raman spectral data from the 

subchondral bone (SCB) of the equine carpal joint bone sections. The loadings for PC1 were nearly identical 

to those of the original mean-adjusted, stacked Raman spectral data; there were, however, some subtle 

differences in some of the loadings for PC2 – particularly in the ~ 855 – 925 cm-1 region. The loadings for 

PCs 3 through five also showed some mixed contributions from the mineral and matrix components within 

the bone. PC6 looked like a representative contribution from the bone mineral component. 

Figure 4.52 shows the scores plot for the second PC against the first for the eight combinations 

of section and condition from the mean-adjusted, stacked, and aggregated subchondral bone 

(SCB) spectral data subset. Again, two overall clusters formed: the third carpal (S1) with the 

upper part of the radial carpal (S3) (coloured red and magenta, respectively), and the fourth 

carpal (S2) with the lower part of the radial carpal (S4) (coloured blue and grey, respectively). 

As had been the case with the PCA of the original stacked and aggregated spectral data, there 

was still considerable overlap between the two conditions’ scores. SCB PC scores were 

generally more scattered than PC scores from the articular cartilage (AC) in Figures 4.48 and 

4.49. 
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Figure 4.52 Scores plot for PC2 against PC1 from the mean-adjusted, stacked Raman spectral data from the 

subchondral bone (SCB) of the equine carpal joint bone sections (by section and condition): S1L2 (red); 

S2L2 (blue); S3L2 (magenta); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L2 = subchondral bone (SCB);  

open square = ‘chip’ condition, filled circle = ‘control’ condition;  

horses 4, 5, 9, 12, 14, 15, & 17 = two-year-old horses; horse 19 = three-year-old horse. 

Figure 4.53 shows the scatterplot matrix of the fifteen combinations of pairs of the first six 

PCs (from the eight combinations of section, layer, and condition) from the mean-adjusted, 

stacked, and aggregated equine carpal joint subchondral bone spectral data. Spreading or 

grouping of some PC scores was slightly more evident with pairs from the lower PCs than 

from the higher PCs. Like Figure 4.52, only PC1 seemed to partially separate the PC scores 

(again, more so by layer than by section) into two main clusters. There was neither any PC 

score separation by ‘condition’ nor any other intelligible PC score dispersal with any of the 

higher PCs. 
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Figure 4.53 Paired scores plot matrix for the first six PCs for the mean-adjusted, stacked, and aggregated 

spectral data from the subchondral bone (SCB) of the equine carpal joint bone sections (by section and 

condition): S1L2 (red); S2L2 (blue); S3L2 (magenta); S4L2 (grey). 

S1 = third carpal bone, C3; S2 = fourth carpal bone, C4; S3 = upper part of the radial carpal bone, CR/R2; S4 

= lower part of the radial carpal bone, CR/R3;  

L2 = subchondral bone (SCB);  

open square = ‘chip’ condition, filled circle = ‘control’ condition. 

4.3 Discussion 

As noted earlier in Chapters 1 and 3, it is hoped that information provided by the combined 

use of molecular vibrational spectroscopy (particularly Raman in this context) and 

chemometrics would continue to broaden understanding of bone quality (and therefore overall 

bone strength and health). The desired outcome is the pinpointing of individuals most at risk 

of developing musculoskeletal diseases like osteoporosis and osteoarthritis (OA). 

The equine carpal joints are among the most commonly OA-affected joints, as they are high 

motion joints. Since joint microstructures act together as single functional units, any change in 

one substructure of the joint affects the others (60). One of the characteristics of joint diseases 

like OA is subchondral bone sclerosis (that is, stiffening of the SCB), particularly in its later 

stages (61). This sclerosis accompanies articular cartilage volume loss, a sign of its 

degradation (60). 

Groups such as Frisbie et al. (62) have conducted studies of experimentally induced equine 

carpal OA as part of animal models for human OA. As was the case with the equine Mt3 bone 

specimens, though, little of the readily available and accessible literature had examples of 

previous tandem Raman-chemometrics applications (especially PCA) to equine carpal joint 

bone specimens. There were, however, a few of these tandem applications with other animals. 
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Ahmed et al. (63), for instance, used PCA (and subsequently LDA, along with Raman peak 

parameters and other characterisation techniques) as part of their assessment of a calvarial 

defect-healing model in murine parietal bone specimens. The PCA results generated in (63) 

suggested that the first two PCs, in particular, were able to separate Raman spectral data from 

the three treatment conditions: in vivo defects, control defects, and normal surfaces (areas 

within 2 mm of defect sites). Both of the first two PCs distinguished between in vivo defects 

and the latter two conditions; the first symmetric phosphate stretch (958 cm-1) was the major 

source of variation from PC1, whereas it was the CH2 deformation (1448 cm-1) for PC2. 

Fu et al. (64) also used PCA (and later, LDA, along with Raman peak parameters and receiver 

operating characteristic curves (ROC curves)) to determine the effects of ovariectomy on rat 

mandibular cortical bone specimens as an experimental model for human postmenopausal 

osteoporosis. As an aside, these ROC graphs determine the performance of a classification 

model in discriminating between positive and negative tests (65). According to Fawcett (66), 

such graphs show the compromise between classifiers’ ‘hit’ and ‘false alarm’ rates. 

Additionally, quantification of the diagnostic accuracy of a test lies in the measurement of 

sensitivity (sometimes called the ‘true positive rate’) and specificity (sometimes called the 

‘true negative rate’) and the trade-off between the two (65-67). With the first three PCs 

together accounting for more than 85 % of the total variance, their PCA results suggested that 

the first two PCs more clearly delineated between average Raman spectral data from the two 

treatment groups – an ovariectomised group (OVX) and a sham-operated group (SHAM) – by 

the latest post-operation time-point. The bone specimens from each group were harvested at 

three time-points: two months, four months, or eight months post-operation. There were no PC 

loadings plots in (64). It could be surmised, though, from the difference spectra and other 

aspects of their results that the first symmetric phosphate stretch (959 – 960 cm-1) – related to 

a gradual decrease in the relative mineral content – was likely the main determining factor for 

separation of the two groups. Mangueira et al. also used PCA in their investigation of low-

level laser therapy (LLLT)-associated changes to damaged cartilage in collagenase-induced 

OA murine tibial specimens, alongside Raman spectroscopy and histomorphometry in (68). 

There were four experimental groups: a ‘control’ group (GCON), a collagenase-without-

treatment group (GCOL), a collagenase-660 nm LLLT group (G660), and a collagenase-780 

nm LLLT group (G780). The first three PCs – especially the second and third – highlighted 

types II and III collagen-related Raman spectral bands (between ~1245 and 1460 cm-1) as the 

leading sources of LLLT-induced fibrocartilage synthesis (which aids in the collagen-rich 

cartilage’s repair process) for the two treated groups, best separating them from the other two 
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experimental groups. Such work as done by these parties, and the PCA results therein, 

demonstrate the capabilities of tandem Raman-chemometrics applications to differentiate 

between and classify healthy and diseased tissues within biomedical contexts. 

The PCA results from the differenced spectral data above in subsection 4.2.2.3, again 

suggested that some localised microstructural differences were detectable. What was observed 

in the distribution of aggregated PC scores in the subspace between the two spectral data 

subsets was their clear separation by layer (articular cartilage and subchondral bone) along the 

PC1 axis. As noted above, separation by section (third, fourth, upper radial, and lower radial 

carpal bones) along other PC axes was ambiguous. 

PCA results from the differenced data also suggested the likelihood of some disparity between 

the ‘chip’ and ‘control’ subsets within the PC1 dimension; the latter PCs had loadings from 

one or more functional groups simulating respective loadings from either original spectral 

subset. Presumably, on the one hand, those loadings that mimicked loadings from the ‘chip’ 

subset may have been hinting at some of the OA-associated degenerative processes within the 

carpal joint bones. On the other hand, if there had been, for instance, a more intense loading 

from the carbonate-phosphate functionality (~ 1065 – 1071 cm-1) concomitant with a less 

intense loading from the first symmetric phosphate stretch (~ 857 – 962 cm-1), perhaps more 

appreciable carbonate accumulation could be inferred (69). Increased carbonate substitution of 

apatite structures within the SCB of OA bone tissue is also seen as a compensatory occurrence 

due to its hypomineralisation from abnormal remodelling (69). As such, the first symmetric 

phosphate stretch being the major source of variation for the first two PCs suggested that there 

might be the start of some adverse mineralisation occurring within the carpal joint in that 

respect. 

As indicated above, loadings from functional groups associated with the organic matrix had a 

comparatively more mixed outcome: within PCs 2 and four, many of their loadings were more 

like those from the ‘control’ subset, and those from PC3 were more closely related to the 

‘chip’ subset. These results suggested that some aspects of the protein backbone of the carpal 

joint specimens might have been pointing to the beginning of cartilage degeneration, even as 

others may still have been maintaining cartilage homeostasis. 

The possibility of some organic matrix masking remained, due to the inherent characteristics 

of the Raman technique – as was seen with the Mt3 bone specimens. 

The PCA results from both the stacked spectral data and the mean-adjusted, stacked spectral 

data above suggested that variations between the two layers of bone (the AC and the SCB) 
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may have obscured any otherwise observable differences between the two ‘conditions’ within 

the data set. As alluded to above in subsection 4.2.2.4, removing the average ‘horse-section-

layer’ effect did not separate the PC scores based on the ‘condition’ of the bone sections. 

Nevertheless, it seemingly did so on ‘layer’, as a ‘layer effect’ was seen along the PC1 axis in 

the PC scores plots for the original stacked spectral data. This outcome suggested the 

possibility that the ‘condition effect’ might show up in one layer of bone, but not the other. 

The next analytical step was to determine if adjusting for this would better separate the two 

conditions. 

Despite adjustments for this ‘layer effect’ and ‘condition effect’ in the stacked spectral data, 

the desired separation did not occur. There may have been some other (not-yet-considered) 

underlying feature that led to the outcome observed in the PCA of the mean-adjusted, stacked 

spectral data. 

It was interesting to note that the PC scores for the SCB were much more scattered than those 

from the AC were, suggesting that there might have been some phenomenon occurring in the 

AC that was not yet or as strongly evident in the SCB. 

PC scores from the upper part of the radial carpal bone tended to cluster together with those 

from the third carpal bone, whereas those from the lower part of the radial carpal bone tended 

to cluster closer to the fourth carpal bones’ PC scores. The former was understandable, as the 

radial and third carpal bones are in anatomic proximity to each other, the latter, however, was 

a little puzzling, as the fourth carpal bone is not as close to the radial carpal bone. Had the 

PCA results from the Raman spectral data herein been more unambiguous, some comparison 

could have been made with similar research work, as in (49), for instance. One part of Kerns et 

al.’s PCA results indicated that there was a more marked distinguishing between OA and non-

OA specimens when the PCA was distinctly applied in turn to spectral data from the medial 

and lateral compartments of tibial specimens. The phosphate and Amide I bands best aided in 

this partition for the medial compartment; it was the hydroxyproline, proline, Amide I and 

phosphate-related bands for the lateral compartment. Although different microstructure-related 

Raman spectral bands contributed to some division between the different specimens in work 

presented herein, a complete OA-to-non-OA split of bone sections remained elusive. 

Relative principal component analysis (RPCA) – seemingly closely related to LDA – is a new 

method developed by such groups as Ahmad et al. (70), which seeks to extract information 

that best explains changes due to the differences between two data sets. This method contrasts 

with PCA’s extraction of the most sizable variations within one data set. This technique holds 
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the promise of adaptability for determining differences between sets of spectral data. It would 

require further understanding before it could be implemented. 

 

 Limitations 

Laser power may have had some influence over signal strength from the organic 

functionalities within the carpal joint bone specimens; there was a trade-off between signal 

strength and fresh tissue preservation for other characterisation methods. 

There were also unforeseen time contractions that precluded a more thorough PCA of the 

Raman spectral data from the equine carpal joint bone sections. 

PCA was an appropriate method to use in this context because the real issue in the data sets 

presented both in Chapter 3 and here in Chapter 4 was the presence of multiple levels. This 

thesis focused on approaches to correctly analysing multi-level multivariate data sets. In future 

work, once the methodology for handling multi-level multivariate data sets has been refined, 

other multivariate methods like k-means cluster analysis and soft-independent modelling of 

class analogy or analogies (SIMCA) could be investigated. SIMCA is somewhat similar to 

fuzzy c- and k-means cluster analyses in that an object can simultaneously belong to more than 

one class – after performing PCA on each class of objects – so that each class is independent 

of the others (29, 71). Both data sets were too small to have performed something like PLS. 

The number of observations in both data sets were too small to have given reliable results with 

PLS because PLS incorporates the observations into the feature construction process, as it 

inherently aims to find the maximum covariance between the original data matrix, X, and Y (a 

matrix consisting of some property within the sample or samples that needs prediction) (72). 

There were a very small number of observations in both data sets, to reiterate. The data 

presented in this body of work are likely to have much potential within them, but to make 

another repetition, until the issue of having multiple levels within multivariate data is 

adequately addressed, that potential cannot be fully realised by interrogating the data with 

more sophisticated multivariate statistical techniques. 
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Chapter 5 – Summary 

5.1 Summary 

Both quantity and quality influence bone strength and health; there needs to be greater 

attention paid to the nuances of bone quality to understand better the factors that might lead to 

the development of musculoskeletal diseases (whose pervasiveness are increasing due to 

greater longevity among more of the world’s population). Study of microstructural changes in 

bone (by way of molecular vibrational spectroscopy) may enhance interpretation of the impact 

that interactions between and alterations to bone’s major components have on its overall 

quality. A greater grasp of both facets of bone strength and health should eventually encourage 

better-targeted medical practices: animal models of human medicine seem a reasonable 

starting point. 

Owing to the intricate nature of biological samples such as bone tissue, and the often-complex 

results of probing its structure, multivariate statistical analytic techniques – chemometrics in 

the context of analytical chemical and biological data – assist in simplifying, extracting, and 

categorising or classifying the underlying patterns within the data. Principal component 

analysis (PCA) and linear discriminant analysis (LDA) are just two of the available 

quantitative methods.  

A prior tandem infrared spectroscopy-chemometrics study was successful in detecting 

differences in equine bone disease. An analogous, exploratory Raman study of other sets of 

equine bone specimens should also have been capable of determination. Principal component 

analysis of aggregated Raman spectral data collection from the fracture-prone, embedded 

equine third metatarsal (Mt3) bone specimens suggested that some localised microstructural 

differences were detectable – especially within parts of the subchondral bone. What was 

unclear, however, was the likely cause of these differences. Similarly, PCA of aggregated 

Raman spectral data collected from the fresh equine carpal joint bone specimens did not 

provide any clear underlying factors for potential differences observed between the ‘control’ 

and ‘induced’ osteoarthritic ‘chip’ subsets. Some of the common questions the PCA results 

raised included the extent of similarity between individuals with respect to the organic matrix 

component, and the extent of heterogeneity between individuals with respect to the mineral 

component. 
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5.2 Future work 

Any potential applicable clinical predictions for orthopaedic disorders like osteoporosis and 

OA necessitate validation and classification of the Raman spectral data beforehand. It was 

thought that PCA could have classified the Raman spectral data from the embedded equine 

Mt3 bone specimens according to the ‘status’ of the bone sections (since no assumptions were 

made about there being differences between the groups). 

It was thought that PCA could also have classified the Raman spectral data from the equine 

carpal joint bone specimens according to the ‘condition’ of the bone sections. The results did 

not truly reflect this. Widening the scope for future data analysis to include LDA (which 

would process spectra to detect any differences relating to the groups to see if this will help 

clarify the classification), would be one of the first steps. The issue of proper handling of 

multi-level multivariate data sets needs to be fully addressed, though, before LDA and other 

more sophisticated multivariate analytical techniques can be applied to the data. 

Some recommendations for future research include the following: refined adaptation of the 

multi-laser Raman microscope system set-up to better handle spectral data collection from 

biological samples like the opaque bone sections (perhaps with an upright mode). A higher-

contrast epi-illumination set-up with either or both of a wider range of magnification 

objectives and cameras such that it would include those that can provide a view of the bone 

section layer features in greater detail. 

As to continuation and expansion of this work, validation and classification of the Raman 

spectral data set would be necessary in order for any potential predictions to be applicable. If 

not readily available, condensing instrumentation into fibre optics might enable trialling of this 

technique in a practical, clinical setting. Perhaps – if feasible practically – even 

instrumentation that combines the two vibrational spectroscopic techniques in tandem with 

chemometrics, in order to provide simultaneous information about groupings of samples. 
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Appendices 

Appendix A – Exemplar of the type of R code used for multivariate statistical analysis 

from the equine third metatarsal (Mt3) and carpal joint bone specimens 

Below is only a fraction of the R code used to enable multivariate statistical analysis – namely principal component analysis – of Raman 

spectral data collected from the two sets of equine bone specimens (third metatarsal (Mt3) and carpal joint). 

 

The first block of code was to enable R to read the spectral data .csv files correctly – via the ChemoSpec package – after having loaded 

libraries of various packages that would be necessary to enable data inputting, pre-processing, plotting, and analysis. These ‘spectral 

objects’ were saved to avoid constantly repeating the read-in process: 

library(baseline) 

library(ChemoSpec) 

library(R.utils) 

library(wavelets) 

library(signal) 

library(ggplot2) 

library(ggrepel) 

library(gtools) 

library(MASS) 

library(pBrackets) 

 

# Read in & convert spectral data csv files into a 'SpectraObject' in ChemoSpec package 
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files2SpectraObject(gr.crit = c("RSL\\d+\\s{1}C1", "RSL\\d+\\s{1}C2", "RSL\\d+\\s{1}C3", 

"98B\\d+\\s{1}C1", "98B\\d+\\s{1}C2", "98B\\d+\\s{1}C3", 

"M(\\d+|\\d+PE)\\s{1}C1", "M(\\d+|\\d+PE)\\s{1}C2", "M(\\d+|\\d+PE)\\s{1}C3"), 

gr.cols = c("olivedrab1", "olivedrab3", "olivedrab4", 

"orange1", "orange3", "orange4", 

"firebrick1", "firebrick3", "firebrick4"), 

freq.unit = "Raman shift (cm^-1)", int.unit = "intensity", 

descrip = "Thoroughbred racehorse Mt3 bone specimen study", 

fileExt = "\\.(csv|CSV)$", header = TRUE, sep = ",", dec = ".", out.file = "bone2") 

bone2.Raman <- loadObject("bone2.RData") 

 

# Inspect several ways 

sumSpectra(bone2.Raman) 

str(bone2.Raman) 

levels(bone2.Raman$groups) 

 

# Fix the names of the horse groups; need to keep groups as a factor 

levels(bone2.Raman$groups) <- list( 

"RSL_C1" = "RSL\\d+\\s{1}C1", 

"RSL_C2" = "RSL\\d+\\s{1}C2", 

"RSL_C3" = "RSL\\d+\\s{1}C3", 

"98B_C1" = "98B\\d+\\s{1}C1", 

"98B_C2" = "98B\\d+\\s{1}C2", 

"98B_C3" = "98B\\d+\\s{1}C3", 
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"M_C1" = "M(\\d+|\\d+PE)\\s{1}C1", 

"M_C2" = "M(\\d+|\\d+PE)\\s{1}C2", 

"M_C3" = "M(\\d+|\\d+PE)\\s{1}C3") 

 

levels(bone2.Raman$groups) 

 

 

sumSpectra(bone2.Raman) 

 

 

# Fix alt symbols 

bone2.Raman$alt.sym 

 

<- 

 

ifelse(bone2.Raman$group 

 

== 

 

"RSL_C1", "a", bone2.Raman$alt.sym) 

bone2.Raman$alt.sym <- ifelse(bone2.Raman$group == "RSL_C2", "b", bone2.Raman$alt.sym) 

bone2.Raman$alt.sym <- ifelse(bone2.Raman$group == "RSL_C3", "c", bone2.Raman$alt.sym) 

 

bone2.Raman$alt.sym 

 

<- 

 

ifelse(bone2.Raman$group 

 

== 

 

"98B_C1", "d", bone2.Raman$alt.sym) 

bone2.Raman$alt.sym <- ifelse(bone2.Raman$group == "98B_C2", "e", bone2.Raman$alt.sym) 

bone2.Raman$alt.sym <- ifelse(bone2.Raman$group == "98B_C3", "f", bone2.Raman$alt.sym) 

 

bone2.Raman$alt.sym 

 

<- 

 

ifelse(bone2.Raman$group 

 

== 

 

"M_C1", "g", bone2.Raman$alt.sym) 

bone2.Raman$alt.sym <- ifelse(bone2.Raman$group == "M_C2", "h", bone2.Raman$alt.sym) 



134  

bone2.Raman$alt.sym <- ifelse(bone2.Raman$group == "M_C3", "i", bone2.Raman$alt.sym) 

 

 

# Check results 

sumSpectra(bone2.Raman) 

 

unique(bone2.Raman$alt.sym) 

# Now use the ifelse strategy to fix the colours and symbols 

# Samples: 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "RSL_C1", "olivedrab1", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "RSL_C1", 1, bone2.Raman$sym) 

 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "RSL_C2", "olivedrab3", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "RSL_C2", 2, bone2.Raman$sym) 

 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "RSL_C3", "olivedrab4", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "RSL_C3", 3, bone2.Raman$sym) 

 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "98B_C1", "orange1", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "98B_C1", 4, bone2.Raman$sym) 
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bone2.Raman$colors <- ifelse(bone2.Raman$group == "98B_C2", "orange3", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "98B_C2", 5, bone2.Raman$sym) 

 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "98B_C3", "orange4", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "98B_C3", 6, bone2.Raman$sym) 

 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "M_C1", "firebrick1", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "M_C1", 7, bone2.Raman$sym) 

 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "M_C2", "firebrick3", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "M_C2", 8, bone2.Raman$sym) 

bone2.Raman$colors <- ifelse(bone2.Raman$group == "M_C3", "firebrick4", bone2.Raman$colors) 

bone2.Raman$sym <- ifelse(bone2.Raman$group == "M_C3", 9, bone2.Raman$sym) 

 

# Be sure to run sumSpectra when done as it checks things internally 

sumSpectra(bone2.Raman) 

 

# To save bone.Raman for future use without re-running above code 

library(R.utils) 

saveObject(bone2.Raman, file = "bone2.Raman.RData") 
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# To retrieve bone.Raman when starting up at a later point 

bone2_Raman <- loadObject(file = "bone2.Raman.RData") 

Here was the baseline correction procedure itself, beginning with conversion of the spectral data into matrix form. This conversion was 

followed by transposition of the truncated spectral data to row form to be amenable to later statistical analysis. The spectral intensities were 

scaled by single normal variate (SNV; that is, scaled by standard deviation and mean-centred) before the asymmetric least squares (ALS) 

baseline correction algorithm was created and calculated to the SNV-scaled data frame. As a reminder, the actual parameters for the ALS 

method were: second derivative constraint, λ; weighting of positive residuals, p; and maximum number of iterations, maxit. The final step 

was Savitzky-Golay filtering of the baseline-corrected Raman spectral data matrix (parameters: 1 = performed on matrix row, with one 

spectrum per row; filter length, n; and mth derivative of the filter coefficients, m). The column of wavelengths (Raman frequencies) was 

created as a separate data frame: 

## Baseline correction 

# Convert Raman spectral data into a matrix 

bone2.Raman.frame <- as.matrix(bone2_Raman$data) 

rownames(bone2.Raman.frame) <- as.character(c(bone2_Raman$names)) 

. 

. 

. 

# To save bone2.Raman.frame for future use without re-running above code 

library(R.utils) 

saveObject(bone2.Raman.frame, file = "bone2.Raman.frame.RData") 
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# To retrieve bone2.Raman.frame when starting up at a later point 

bone2.Raman.frame <- loadObject(file = "bone2.Raman.frame.RData") 

 

freq2 <- as.data.frame(bone2_Raman$freq) 

 

 

# SNV scaling of transposed Raman spectral data matrix (transposed so samples/cases as rows) 

# Baseline correction using asymmetric least squares (ALS) method 

bone2.Raman.SNV <- scale(t(bone2.Raman.frame[, -(1:300)]), center = TRUE, scale = TRUE) 

bone2.cor <- baseline.als(t(bone2.Raman.SNV), lambda = 4, p = 0.001, maxit = 10) 

 

# Baseline creation 

bone2.baseline <- as.data.frame(bone2.cor$baseline) 

bone2.baselinecorrected <- as.data.frame(bone2.cor$corrected) 

 

# Savitzky-Golay derivation/smoothing of baseline-corrected Raman spectral data matrix 

bone2.cor.als.SG <- apply(bone2.baselinecorrected, 1, sgolayfilt, n = 13, m = 0) 

. 

. 

. 

 



138  

The pre-processed Raman spectral data were subsequently saved as a new .csv file and read back into R before additional details about the 

horses were incorporated into the data frame: 

## Prepare the Savitzky-Golay-smoothed, ALS baseline-corrected Raman spectral data for PCA 

# by including extra information about horses; save as csv file 

View(bone2.cor.als.SG) 

Horses <- t(bone2.cor.als.SG) 

View(Horses) 

write.csv(Horses, "C:/…/Horses.csv") 

 

 

# Make a copy of 'Horses' csv file to be able to add in details about 

# age, horse ID, section & location 

# Read csv back into R 

Horses <- read.csv("C:/…/Horses2.csv", header = TRUE, sep = ",") 

View(Horses) 

 

# Assign numeric values to age groups for horses 

Horses$Age <- 1 

Horses$Age[substr(Horses$Horse, start = 1, stop = 1) == "9"] <- 2 

Horses$Age[substr(Horses$Horse, start = 1, stop = 1) == "M"] <- 3 

 

# Assign values '1', '2' & '3' to sections C1, C2 & C3, respectively 
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Horses$Section <- as.numeric(Horses$Section) 

 

 

# Check the storage mode of the 'Horse' column 

mode(Horses$Horse) 

 

# Create a new variable, 'Horse ID' 

Horses$HorseID <- as.numeric(Horses$Horse) 

 

Horses$HorseID <- ifelse(Horses$Age == 1, Horses$HorseID - 20, Horses$HorseID) 

Horses$HorseID <- ifelse(Horses$Age == 2, Horses$HorseID + 10, Horses$HorseID) 

Horses$HorseID <- ifelse(Horses$Age == 3, Horses$HorseID + 10, Horses$HorseID) 

 

# Fix order of 'Horse ID' for 98Bs (5-month-old foals) 

 

 

Horses$HorseID[Horses$Horse == "98B4"] <- 11 

Horses$HorseID[Horses$Horse == "98B6"] <- 12 

Horses$HorseID[Horses$Horse == "98B7"] <- 13 

Horses$HorseID[Horses$Horse == "98B8"] <- 14 

Horses$HorseID[Horses$Horse == "98B9"] <- 15 

Horses$HorseID[Horses$Horse == "98B11"] <- 16 

Horses$HorseID[Horses$Horse == "98B16"] <- 17 
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Horses$HorseID[Horses$Horse == "98B18"] <- 18 

Horses$HorseID[Horses$Horse == "98B25"] <- 19 

Horses$HorseID[Horses$Horse == "98B30"] <- 20 

.     

.     

. 

# Create another variable, 'Layer', 

# by splitting up 'Location' into specific layers: 'AC' & 'SCB' 

Horses$Layer <- 1 

Horses$Layer[Horses$Age == 1 & Horses$Location > 6] <- 2 

Horses$Layer[Horses$Age == 2 & Horses$Location > 6] <- 2 

Horses$Layer[Horses$Age == 3 & Horses$Location > 13] <- 2 

. 

. 

. 

 

The fully-detailed data frame was saved as a separate .csv file and read back into R. These data were aggregated by computing the means to 

minimise horse-related bias and between-object variability to obtain multivariate statistical analytical results that should have been more 

comprehensible later on. As pointed out in subsection 2.5.1 of Chapter 2, having some ‘balance’ in the data set, with the same number of 

observations for each combination of horse, section, and layer, an estimate of the ‘horse’ influence could be made by averaging out over the 

other influences (section and layer). Subtracting out the horse-level averages from the data structure should have made spectral variations 
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due to the influence of section and layer more apparent. These aggregated data were saved as a final .csv file to be read back into R, ready 

for principal component analysis (PCA): 

# Save 'Horses' data frame as another csv file 

# containing all above added details about horses 

write.csv(Horses, "C:/…/Horses3.csv") 

 

# Read in fully detailed csv file of 'Horses' 

Horses <- read.csv("C:/…/Horses3.csv", header = TRUE, sep = ",") 

 

# Compute the averages for the variables in 'Horses', 

# grouped according to the Horse, Section & Layer that 

# each spectrum comes from 

Horses <- Horses[, -(2), drop = FALSE] 

Horses.aggdata.HSL <- aggregate(Horses, by = list(Horses$HorseID, Horses$Section, Horses$Layer), FUN = mean) 

View(Horses.aggdata.HSL) 

 

# Remove columns 'Group.1', 'Group.2', 'Group.3' & 'Location' 

Horses.aggdata.HSL.new <- Horses.aggdata.HSL[, -c(1:3, 7)] 

View(Horses.aggdata.HSL.new) 

 

# To average spectra by 'Horse' 
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Horses.aggdata.H <- aggregate(Horses.aggdata.HSL.new, by = list(Horses.aggdata.HSL.new$HorseID), FUN = mean) 

Horses.aggdata.H.new <- Horses.aggdata.H[, -c(1:2, 4:5)] 

View(Horses.aggdata.H.new) 

 

 

# Create another data frame that contains only information about 'HorseID' 

Horses.aggdata.HSL.Honly <- Horses.aggdata.HSL.new[, 1:4] 

View(Horses.aggdata.HSL.Honly) 

 

# Merge 'Horses.aggdata.HSL.Honly' & 'Horses.aggdata.H.new' data frames 

Horses.aggdata.HSLmerged <- merge(Horses.aggdata.HSL.Honly, Horses.aggdata.H.new, by = "HorseID") 

View(Horses.aggdata.HSLmerged) 

Horses.aggdata.matrix <- as.matrix(Horses.aggdata.HSL.new) - as.matrix(Horses.aggdata.HSLmerged) 

View(Horses.aggdata.matrix) 

Horses.aggdata <- cbind(Horses.aggdata.HSL.new[, 1:4], Horses.aggdata.matrix[, 5:1044]) 

Horses.aggdata <- as.data.frame(Horses.aggdata) 

View(Horses.aggdata) 

 

 

# Save 'Horses.aggdata' as csv file 

write.csv(Horses.aggdata, "C:/…/Horses.aggdata.csv") 
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# Read 'Horses.aggdata' back in as csv file 

Horses.aggdata <- read.csv("C:/…/Horses.aggdata.csv", header = TRUE, sep = ",") 

View(Horses.aggdata) 

 

This final block of code shows PCA was conducted on the covariance matrix of this aggregated data frame. The PCA generated a 

summary of the first six principal components (PCs), the scree plot, and loadings and scores matrices and their respective plots (with the 

scores plots being labelled by horse, and combinations of section and layer that the aggregated data PC scores came from). Pairwise PC 

scores plots and a PC scores plot matrix could also be constructed: 

## Perform PCA on collapsed data frame, 'Horses.aggdata', 

# labelling by Section &/or Layer 

Horses.aggdata.pca <- prcomp(Horses.aggdata[, -(1:4)]) 

print(summary(Horses.aggdata.pca)$importance[, 1:6], digits = 4) 

 

par(mfrow = c(1, 1)) 

screeplot(Horses.aggdata.pca) 

 

# Generate Loadings & Scores Matrices 

LoadMat3 <- Horses.aggdata.pca$rotation 

ScoreMat3 <- predict(Horses.aggdata.pca) 

 

# Look at the structure of the Loadings & Scores Matrices 

str(LoadMat3) 
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str(ScoreMat3) 

n3 <- dim(ScoreMat3)[1]; n3 

 

 

 

# Generate Loadings plots for 1st 6 PCs 

layout(matrix(c(1, 1, 4, 4, 2, 2, 5, 5, 3, 3, 6, 6), nrow = 3, byrow = TRUE), respect = TRUE) 

par(oma = c(3, 2, 4, 2), mar = c(4, 2, 2, 2)) 

plot(freq2[-(1:300), ], LoadMat3[, 1], type = "l", 

xlab = "", ylab = "", main = "PC 1", col = 1, lty = 1, 

cex.lab = 1, cex.axis = 1, cex.main = 1, cex.sub = 1, xlim = c(300, 1800), ylim = c(-0.3, 0.3)) 

abline(h = 0, lty = 2, col = "red") 

plot(freq2[-(1:300), ], LoadMat3[, 2], type = "l", 

xlab = "", ylab = "", main = "PC 2", col = 1, lty = 1, 

cex.lab = 1, cex.axis = 1, cex.main = 1, cex.sub = 1, xlim = c(300, 1800), ylim = c(-0.3, 0.3)) 

abline(h = 0, lty = 2, col = "red") 

plot(freq2[-(1:300), ], LoadMat3[, 3], type = "l", 

xlab = "", ylab = "", main = "PC 3", col = 1, lty = 1, 

cex.lab = 1, cex.axis = 1, cex.main = 1, cex.sub = 1, xlim = c(300, 1800), ylim = c(-0.3, 0.3)) 

abline(h = 0, lty = 2, col = "red") 

plot(freq2[-(1:300), ], LoadMat3[, 4], type = "l", 
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xlab = "", ylab = "", main = "PC 4", col = 1, lty = 1, 

cex.lab = 1, cex.axis = 1, cex.main = 1, cex.sub = 1, xlim = c(300, 1800), ylim = c(-0.3, 0.3)) 

abline(h = 0, lty = 2, col = "red") 

plot(freq2[-(1:300), ], LoadMat3[, 5], type = "l", 

xlab = "", ylab = "", main = "PC 5", col = 1, lty = 1, 

cex.lab = 1, cex.axis = 1, cex.main = 1, cex.sub = 1, xlim = c(300, 1800), ylim = c(-0.3, 0.3)) 

abline(h = 0, lty = 2, col = "red") 

plot(freq2[-(1:300), ], LoadMat3[, 6], type = "l", 

xlab = "", ylab = "", main = "PC 6", col = 1, lty = 1, 

cex.lab = 1, cex.axis = 1, cex.main = 1, cex.sub = 1, xlim = c(300, 1800), ylim = c(-0.3, 0.3)) 

abline(h = 0, lty = 2, col = "red") 

mtext(text = expression("Raman shift" ~ (cm^{-1})), side = 1, line = 0, outer = TRUE) 

mtext(text = "Loadings", side = 2, line = -1, outer = TRUE) 

mtext(text = (expression(paste("1"^"st", " 6 PC loadings for equine Mt3 bone sections"))), side = 3, line = 1, 

outer = TRUE) 

 

 

# PC1 = 64.9 %, PC2 = 17.8 %, PC3 = 10.8 %, PC4 = 2.3 %, PC5 = 1.3 %, PC 6 = 0.824 % 

 

 

# Generate Scores plots for pairs of 1st 6 PCs  

# Create a colour vector corresponding to levels 
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# of Layer, Section & combinations of the 2 

# in 'Horses.aggdata' 

Lcol <- Horses.aggdata$Layer 

Scol <- Horses.aggdata$Section 

LScol <- 2*(Scol - 1) + Lcol 

# Scores plots by Layer 

par(par(mfrow = c(1, 1))) 

plot(x = ScoreMat3[, 1], y = ScoreMat3[, 2], xlab = "PC 1 (64.9 %)", ylab = "PC 2 (17.8 %)", pch = 20, col = 

Lcol, frame = TRUE) 

legend(x = 0, y = 8, xpd = TRUE, horiz = TRUE, legend = c("1", "2"), col = 1:2, title = "Layer", pch = 20, 

pt.cex = 1, cex = 0.7) 

abline(h = 0, v = 0, lty = 2) 

text(ScoreMat3[, 1:2], label = Horses.aggdata$HorseID, cex = 0.7, pos = 3) 

. 

. 

. 

# Scores plots by Section 

par(par(mfrow = c(1, 1))) 

plot(x = ScoreMat3[, 1], y = ScoreMat3[, 2], xlab = "PC 1 (64.9 %)", ylab = "PC 2 (17.8 %)", pch = 20, col = 

Scol) 

legend(x = 0, y = 8, xpd = TRUE, horiz = TRUE, legend = c("1", "2", "3"), col = 1:3, title = "Section", pch = 

20, pt.cex = 1, cex = 0.7) 
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abline(h = 0, v = 0, lty = 2) 

text(ScoreMat3[, 1:2], label = Horses.aggdata$HorseID, cex = 0.7, pos = 3) 

. 

. 

. 

# Scores plots by Section & Layer 

par(par(mfrow = c(1, 1))) 

plot(x = ScoreMat3[, 1], y = ScoreMat3[, 2], xlab = "PC 1 (64.9 %)", ylab = "PC 2 (17.8 %)", pch = 20, col = 

LScol) 

legend(x = -4, y = 8, xpd = TRUE, horiz = TRUE, legend = c("S1L1", "S1L2", "S2L1", "S2L2", "S3L1", "S3L2"), col 

= 1:6, title = "Section & Layer", pch = 20, pt.cex = 1, cex = 0.7) 

abline(h = 0, v = 0, lty = 2) 

text(ScoreMat3[, 1:2], label = Horses.aggdata$HorseID, cex = 0.7, pos = 3) 

. 

. 

. 

# Scores plots matrix by Section & Layer 

par(par(mfrow = c(1, 1))) 

pairs(ScoreMat3[, 1:6], pch = 20, cex = 0.7, col = LScol, upper.panel = NULL) 

mtext(text = (expression(paste("Paired scores plots for ", "1"^"st", " 6 PCs from equine Mt3 bone sections by 

section & layer"))), side = 3, line = 12, outer = TRUE) 
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legend(x = -2, y = 5.8, xpd = NA, horiz = TRUE, legend = c("S1L1", "S1L2", "S2L1", "S2L2", "S3L1", "S3L2"), col = 

1:6, bty = "n", pch = 20, pt.cex = 1.5, cex = 0.85) 
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Appendix B – Raw Raman spectra from the equine third 

metatarsal (Mt3) and carpal joint bone specimens 

Figure B.1 is a plot of the raw Raman spectra from the equine third metatarsal (Mt3) bone 

specimens, showing the non-linear, fluorescent baseline. 

 

Figure B.1 Raw Raman spectra from the equine third metatarsal (Mt3) bone specimens. 

 

Figure B.2 is a plot of the raw Raman spectra from the equine Mt3 bone specimens depicting 

one of the pre-processing steps. The truncated and transposed spectra were scaled by standard 

deviation and mean-centred (that is, the spectra were subjected to single normal variate (SNV) 

scaling). Again, the fluorescent background could still be seen. 
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Figure B.2 Raw Raman spectra from the equine Mt3 bone specimens, scaled by standard deviation and mean- 

centred (i.e. SNV scaling). 

 

Figures B.3 and B.4 are plots of the raw and SNV-scaled Raman spectra from the equine 

‘chip’ carpal bone specimens where the fluorescent background was also still evident. 

 

 

Figure B.3 Raw Raman ‘chip’ spectra from the equine carpal joint bone specimens. 
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Figure B.4 SNV-scaled raw Raman ‘chip’ spectra from the equine carpal joint bone specimens. 

 

Figures B.5 and B.6 are plots of the raw and SNV-scaled Raman spectra from the equine 

‘control’ carpal joint bone specimens where the fluorescent background was again still 

evident. 

 

 

Figure B.5 Raw Raman ‘control’ spectra from the equine carpal joint bone specimens. 
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Figure B.6 SNV-scaled raw Raman ‘control’ spectra from the equine carpal joint bone specimens. 
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