Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE X-LINKED *LSP1α* GENE OF *DROSOPHILA MELANOGASTER* IS NOT ACETYLATED BY MOF, BUT IS SEX-SPECIFICALLY REGULATED BY INDIVIDUAL COMPONENTS OF THE MSL COMPLEX

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Genetics

at Massey University, Palmerston North, New Zealand

Vikki Marie Weake 2005

ABSTRACT

Male *Drosophila melanogaster* double the transcription of most of the genes on their single X chromosome, to equal that from the two female X chromosomes, in a process termed dosage compensation. This process is mediated by the MSL complex, consisting of both protein and non-coding RNA components. This complex is only active in males due to the presence of MSL2, which is not translated in females.

The X-linked Lsp1 α gene of Drosophila melanogaster appears to escape dosage compensation, and exhibits two-fold higher levels of expression in females compared to males. The apparent lack of dosage compensation of $Lspl\alpha$ could be due to the promoter being more active in females than in males, or to a lack of regulation by the MSL complex. In this study, the mechanism by which this happens has been addressed. $Lspl\alpha$ is expressed exclusively in the fat body tissue of third instar larvae, and forms part of a multi-protein complex that acts as a nutrient reservoir during pupariation. In this study it has been shown that transgenes, in which the reporter gene, *lacZ*, is under the control of the $Lspl\alpha$ promoter, exhibit variable levels of increased activity in female compared to male third instar larvae. At high levels of transgene expression, activity of the transgene is equal in female and male larvae. When the expression of the transgene is low, the activity of the transgene is much higher in female compared to male larvae. This increased sensitivity of the $Lspl\alpha$ promoter to position effects in females appears to be mediated by one or more components of the MSL complex. Females ectopically expressing MSL2 exhibit decreased levels of transgene activity. Furthermore, overexpression of MSL1 causes an increase in the activity of transgenes subject to strong position effects.

Despite these findings, the sex-specific regulation of the $Lspl\alpha$ promoter does not account for the non-dosage compensated appearance of $Lspl\alpha$. Instead, unlike control dosage compensated X-linked genes, $Lspl\alpha$ is not enriched for a histone modification, acetylation of lysine 16 of histone H4 that is essential for dosage compensation by the MSL complex.

The developmental stage at which the four genes flanking $Lsp l\alpha$ are expressed has been determined using northern RNA hybridization. Expression of the gene immediately 3' of $Lsp l\alpha$ could not be detected at any developmental stage using northern RNA hybridization or in adults by RT-PCR. However, the two genes flanking $Lsp l\alpha$ are expressed in equal levels in male and female *Drosophila* as determined by quantitative RNase protection analysis. Furthermore, the regions between $Lsp l\alpha$ and these flanking dosage compensated genes do not prevent dosage compensation of an X-linked *arm-lacZ* reporter gene.

Bioinformatic analysis shows that $Lspl\alpha$ is present in three species closely related to *D*. *melanogaster* but is absent in more distantly related species. It is probable that because of its recent evolutionary origin, the $Lspl\alpha$ gene lacks the DNA sequences that are required to attract the MSL complex. More generally, a model is proposed in which dosage compensation involves binding of the MSL complex to DNA sequences in actively transcribed regions with possible limited spreading to closely associated active genes.

ACKNOWLEDGEMENTS

Thanks to my supervisor Dr. Max Scott, for his unflagging support, cheerful optimism, and willingness to listen to my most outrageous ideas for new experiments. Thanks also to my co-supervisor Dr. Kathryn Stowell, for her support and encouragement, and for all her practical advice throughout my entire time at university. Special acknowledgment must be made to all the past and present members of the Flyspot lab: Asela, Emma, Xuelei, Simon, Wayne, Wouter, Abhi, Anja, Corey, Carolina, Julia, Bradley, Esther, Jess and Fang. Special thanks go to my family and to Karl for all their support during my seemingly endless studies, and for at least trying to be interested in my crazy little flies.

I would like to acknowledge the funding I have received from the Foundation for Research, Science and Technology in the form of a Doctoral Scholarship, and from the Royal Society of New Zealand Marsden Fund.

Thanks also to Dr. Maria Flores and Professor Phil Crozier at the Auckland Medical school for the use of the Storm phosphorimager. I especially thank Dr. Tim Parnell and Dr. Edwin Smith for their advice on chromatin immunoprecipitation analysis, Dr. Brendon Monahan for assistance with Southern hybridization analysis, and Dr. Pete Lockhart for help with the phylogenetic analysis.

The creation of transgenic *Drosophila* lines in this study has been approved under the protocol number GMO 00/MU/51 by the Massey University Genetic Technology Committee.

TABLE OF CONTENTS

ABSTRA	CTII
ACKNOV	VLEDGEMENTSIV
LIST OF	TABLESXIII
LIST OF	FIGURESXV
ABBREV	IATIONSXVII
1. INTR	ODUCTION1
1.1 Ch	IROMATIN STRUCTURE
1.1.1	Histone acetylation1
1.1.2	Histone methylation
1.1.3	Histone phosphorylation
1.1.4	Histone ubiquitination
1.1.5	Chromatin assembly and remodeling
1.2 Tr	ANSCRIPTION
1.3 CI	IROMATIN INSULATORS AND BOUNDARY ELEMENTS
1.3.1	The SCS/SCS' insulators
1.3.2	The gypsy insulator
1.3.3	The bithorax complex insulators
1.3.4	Vertebrate insulators
1.3.5	Models for insulator function8
1.4 Do	SAGE COMPENSATION IN MAMMALIAN CELLS
1.5 Do	DSAGE COMPENSATION IN <i>DROSOPHILA MELANOGASTER</i>
1.5.1	Male-specific lethal mutations11
1.5.2	Evidence for a complex consisting of the MSL proteins
1.5.3	Ectopic expression of msl2 in females induces association of the MSL
protei	ns with the X chromosome15
1.5.4	Chromatin structure of the male X chromosome
1.5.5	Histone acetylation is associated with the presence of MSL complex and is
essent	ial for dosage compensation15

ł

	1.5	5.6 A	kinase, JIL-1 is involved in the complex	16
	1.5	5.7 N	oncoding RNAs form part of the MSL complex	17
	1.5	5.8 I.	SWI functions antagonistically to MSL complex	18
	1.:	5.9 H	listone methylation of H4K20 is under-represented on the male X	
	ch	romos	ome	19
	1.:	5.10	The helicase activity of MLE is essential for dosage compensation	20
	1	5.11	Assembly of the MSL complex	20
	1	5.12	Recognition of the X chromosome by the MSL complex	23
		1.5.12.	A partial MSL complex bind to 30-40 high affinity sites that include the <i>ro.</i>	X
	1	genes		24
		1.5.12.2	2 The MSL complex exhibits limited spreading from CES into flanking regio	ns
	•	of the c	hromosome	26
		1.5.12.	3 The MSL complex is recruited to sequences lacking CES	28
	1	5.13	The MSL complex upregulates transcription and relieves position effects	29
	1.6	Geni	ES DOSAGE COMPENSATED BY AN ALTERNATIVE MECHANISM TO THE MSL	
	СОМ	IPLEX .		. 31
	1.7	Non	DOSAGE COMPENSATED GENES	. 31
	1.	7.1 L	sp-1a is not dosage compensated	. 31
	1.	7.2 7	he Lsp1α gene domain	. 33
	1.8	AIM.		. 36
2	M	ATER	IALS AND METHODS	. 38
	2.1	ΒΛCT	FERIAL MEDIA	. 38
	2.2	Anti	BIOTICS AND MEDIA ADDITIVES	. 38
	2.3	GRO	WTH OF BACTERIAL CULTURES	. 38
	2.4	Sтос	K SOLUTIONS	. 38
	2.5	Dros	SOPHILA MELANOGASTER	. 38
	2.	5.1 L	Description of stocks	. 38
		2.5.1.1	y w	39
		2.5.1.2	Male-specific actin-GFP	39
		2.5.1.3	L ² /CyO	39
		2.5.1.4	GFP CyO	39
		2.5.1.5	Ser/Sb	39
		2.5.1.6	GFP Ser/Sb	39
		2.5.1.7	CyO/Bc	39

2.5.1.8	CyO/Tft	40
2.5.1.9	Transposase stock	40
2.5.1.1	0 Homologous recombination	40
2.5.1.1	1 Constitutive FLP	40
2.5.1.1	2 FLP test stock	40
2.5.1.1	3 hsp83-MSL2	40
2.5.1.1	4 hsp70-MSL1	41
2.5.1.1	5 hsp70-MSL3	41
2.5.1.1	6 hsp70-MLE	41
2.5.1.1	7 hsp70-HA-MOF	41
2.5.2 1	Description of fly crosses	43
2.5.2.1	Linkage analysis	43
2.5.2.2	Scheme to move transgene inserts from the second chromosome to the X	
chrom	osome by mobilization of P-elements	43
2.5.2.3	Homologous recombination scheme	44
2.5.2.4	Homologous recombination test crosses	44
2.5.2.5	Overexpression of MSL2 in flies carrying reporter constructs	44
2.5.2.6	Overexpression of MSL1 in flies carrying reporter constructs	44
2.5.2.7	Overexpression of MSL3 in flies carrying reporter constructs	45
2.5.2.8	Overexpression of MLE in flies carrying reporter constructs	45
2.5.2.9	Overexpression of MOF in flies carrying reporter constructs	45
2.5.3	Generation of transgenic fly lines	45
2.5.3.1	Co-precipitation of plasmid DNA	45
2.5.3.2	Microinjection of plasmid DNA into Drosophila embryos	46
2.5.3.3	Crossing of adult survivors and identification of transformants	46
2.5.4 (Collection of developmental stages of Drosophila	46
2.5.4.1	Collection of Drosophila staged embryos, larvae, pupae and adult flies	46
2.5.4.2	Collection of synchronous third instar larvae	46
2.6 Mol	ECULAR BIOLOGY METHODS	47
2.6.1	RNA	47
2.6.1.1	Isolation of RNA from <i>Drosophila</i>	47
2.6.1.2	DNase treatment of RNA for RNase protection analysis	47
2.6.1.3	DNase treatment of RNA for real-time RT-PCR analysis	48
2.6.1.4	Quantification of RNA with Ribogreen kit	48
2.6.1.5	Purification of poly(A) ⁺ RNA from total RNA preparations	48
2.6.1.6	Northern hybridization analysis	48

2.6.1.7	In vitro transcription of RNA probes for RNase protection analysis	49
2.6.1.8	RNase protection analysis	50
2.6.1.9	Reverse transcription	50
2.6.2 DN	NA	51
2.6.2.1	Molecular size markers	51
2.6.2.2	Isolation of DNA from adult Drosophila	51
2.6.2.3	Southern hybridization analysis	51
2.6.2.4	Plasmid DNA	52
2.6.2.5	Restriction endonuclease digestion	
2.6.2.6	Dephosphorylation of 5' ends	52
2.6.2.7	Polynucleotide kinase treatment of linker DNA	53
2.6.2.8	Blunt end production	53
2.6.2.9	Ligation	53
2.6.2.10	Gel purification	53
2.6.3 PC	CR	53
2.6.3.1	Inverse PCR determination of the site of transgene insertion	54
2.6.4 Tr	ansformation of E. coli	54
2.6.5 Se	quencing	55
2.6.6 CH	hromatin immunoprecipitation	55
2.6.7 Qu	uantitative real-time PCR	57
2.7 Enzym	ME ASSAYS	58
2.7.1 β-	galactosidase assays	58
2.7.2 Pr	otein concentration determination	59
	ND DOSAGE COMBENSATION STATUS DETERMINATI	
J SIAGEA	AND DOSAGE COMPENSATION STATUS DETERMINATION	UN 00
3.1 cDNA	AND GENOMIC CLONES UTILIZED IN NORTHERN AND $RNASE$ protections	CTION
ANALYSES		60
3.1.1 Ac	equired cDNA and genomic clones	60
3.1.2 Ex	perimentally obtained cDNA and genomic clones	61
3.1.2.1	CG15730 in pBluescript II KS	61
3.1.2.2	$Lspl\alpha$ into pBluescript II KS	61
3.1.2.3	Cloning of Lsp1α 3' UTR into pGEM®-T Easy	62
3.1.2.4	Subcloning of CG2560 fragment into pBluescript II KS	62
3.2 STAGE	E-SPECIFIC EXPRESSION OF GENES WITHIN THE LSP 1 $lpha$ gene domain .	64

3.2.1 The CG15730 transcript can not be detected in adult $poly(A)$ + mRNA using
<i>RT-PCR</i>
3.3 PRODUCTION OF PROBES FOR <i>IN VITRO</i> TRANSCRIPTION
3.4 DETERMINATION OF THE LINEAR RANGE OF THE RNASE PROTECTION ASSAYS75
3.5 <i>CG15926</i> is upregulated in male adults
3.6 Determination of the dosage compensation status of $CG2560$ 86
3.7 DETERMINATION OF THE DOSAGE COMPENSATION STATUS OF $LSPl \alpha$ and
<i>CG2556</i>
3.8 Expression of $CG2556$ and $CG2560$ in the fat body of third instar
LARVAE
4 MEASUREMENT OF PROMOTER ACTIVITY
$4.1 \text{Generation of constraints} \qquad 104$
4.1 Jeolation of Lenla genomic regions
4111 Isola promoter into pGEM® T Easy
4.1.1.2 Mutant $I sp / a$ promoter into pGEM®-T Easy 104
4.1.1.3 Genomic region between CG2560 and Lsp1 a into pGEM®-T Easy
4.1.1.4 Genomic region between $Lsp \mid \alpha$ and $CG2556$ into pGEM®-T Easy
4.1.2 Construction of the pCaSpeR-Lsp1 α - β gal and pCaSpeR-I- β gal reporter
constructs
4.1.3 Construction of the pCaSpeR-Lspl α mut- β gal plasmid containing a mutation
in the putative DSX binding site of the Lsp1 α promoter
4.1.4 Insertion of the putative insulator region between Lspla and CG2556, 3' of
lacZ under the control of the extended Lsp1a promoter
4.1.5 Insertion of putative insulator regions either side of arm-lacZ in pCaSpeR-
arm-βgal
4.2 GENERATION OF TRANSGENIC FLY LINES CARRYING REPORTER CONSTRUCTS 108
4.2.1 Characterization of transgenic Drosophila lines
4.2.2 β-galactosidase activity is linear over a large ange
4.2.3 The difference in the level of protein between female and male third instar
larvae does not affect the female/male β -galactosidase activity ratio
4.3 The regions flanking $Lspl\alpha$ do not block dosage compensation of an X-
LINKED TRANSGENE

4.4 Au	TOSOMAL INSERTIONS OF X-LINKED PROMOTERS SHOW INCREASED ACTIVITY
IN MALES	
4.5 <i>LSP</i>	$pl\alpha$ promoter activity is higher in Female Larvae
4.5.1	The female to male promoter activity ratio decreases with increased
activity	
4.5.2	Mutation of a putative DSX binding site in the Lsp1 α promoter does not
reduce	female promoter activity
4.5.3	Lsp1 α promoter activity is reduced by overexpression of MSL2
4.5.4	The Lsp1 α promoter is upregulated by overexpression of MSL1, but not by
other c	components of the MSL complex
4.6 SU	MMARY OF THE PROMOTER ACTIVITY RESULTS
5 ATTE	MPT TO INTRODUCE REPORTER GENES INTO THE ORF OF
LSP1 a IN	<i>VIVO</i>
5 1 Uo	NOT OCOUR RECOMPLY ATION CONSTRUCTION INTERTION OF 40.4 ± 4.7 INTO
5.1 HU	MOLOGOUS RECOMBINATION CONSTRUCTFOR INSERTION OF ARM-LACZ INTO
THE LSP1	
5.1.1	Genomic region between CG2560 and CG2556 into pGEM®-1 Easy 132
5.1.2	Insertion of GMR-3xP3-DsRed-hsp/0polyA into pCaSpeR-arm-Bgal
Stul/N	otl
5.1.3	Replacement of GH02424 cDNA with PstI – Notl linker in
pOT2/	GH02424
5.1.4	Insertion of the 9.4 kb Lsp1 α genomic region into pOT2
5.1.5	Insertion of the arm-lacZ/GMR-3xP3-DsRed-hsp70polyA reporter genes
into th	e Lsp1 α open reading frame
5.1.6	Insertion of the 9.4 kb Lsp1 α genomic region carrying the arm-lacZ/GMR-
3xP3-1	DsRed-hsp70polyA reporter genes into the pW30 homologous recombination
vector	
5.2 Ho	MOLOGOUS RECOMBINATION CONSTRUCT FOR INSERTION OF ARM -EGFP INTO
THE ORF	F OF <i>LSP1</i> α
5.2.1	Replacement of lacZ-SV40 with the Asp718 – PstI linker 135
5.2.2	Replacement of Pub promoter in pB[PUbnlsEGFP] with armadillo
promo	ter
5.2.3	Insertion of the arm-EGFP reporter gene into the Lsp1a open reading
frame.	

	5.2.	4 Insertion of the 9.4 kb Lsp1α genomic region carrying the arm-EGFP	
	rep	orter gene into the pW30 homologous recombination vector	136
	5.3	The <i>DsRed</i> marker is not visible in <i>pW30-Lsp1</i> α - <i>armLacZ/GMR-3xP3</i> -	
	DSRE	D TRANSGENIC FLY LINES	140
	5.4	Homologous recombination was not successful with <i>pW30-Lsp1</i> α -	
	ARMLA	ACZ/GMR-3xP3-DsRed transgenic fly lines	140
	5.5	Homologous recombination was not successful with <i>pW30-Lsp1</i> α -	
	ARME	GFP TRANSGENIC FLY LINES	141
	5.6	The <i>pW30-Lsp1</i> α - <i>ArmEGFP</i> construct is not excised by the FLP site-	
	SPECI	FIC RECOMBINASE	141
6	СН	ROMATIN IMMUNOPRECIPITATION ANALYSIS	143
Ū			
7	PH	YLOGENY	153
8	DIS	SCUSSION	158
Ű			
	8.1	FUTURE DIRECTIONS	166
9	RE	FERENCES	170
1	0 41	PPFNDICFS	189
•			
	10.1	PRIMER SEQUENCES	189
	10.2	INVERSE PCR PRIMERS	192
	10.3	SEQUENCING PRIMERS	193
	10.4	OLIGONUCLEOTIDE PAIRS ANNEALED AS LINKERS IN CLONING	194
	10.5	PLASMID MAPS	195
	10.	5.1 p CaSpeR-arm-pgal (15881 bp)	195
	10.	5.2 pCaSpeR-arm-pgal Stull/Noll (15919 bp)	190
	10.	5.5 p Casper-EA- p gai (12120 p)	19/
	10.	p Casper-Lsp1 α -pgal (12753 bp)	190
	10.	$5.5 p \in asper - Lsp \mid amai - pgai (12/35 \ op)$	199
	10.	5.0 pCaspeK-I-pgal (13043 bp)	200
	10.	5.7 pCaspeK-1-pgal-12 (1/095 bp)	201
	10.	5.8 pCaSpeK-I-arm-βgal-12 (19433 bp)	202
	10.	5.9 pGEM®-TEasy (3015 bp)	203

10.5.10 pOT2 (1665 bp)
10.5.11 pB[PUbnlsEGFP] (9423 bp)
10.5.12 pB[SCS-GMR-3xP3-DsRed-SCS'] (8827 bp)
10.5.13 pFLC-1 (3005 bp)
10.5.14 pOTB7 (1815 bp)
10.5.15 pW30 (8865 bp)
10.6 ALIGNMENT OF GENOMIC SEQUENCES FROM <i>Y W</i> STRAIN WITH <i>Y2; CN BW SP</i>
STRAIN USED FOR BDGP GENOMIC SEQUENCE
10.6.1 Alignment of Lsp1 α 3' UTR genomic sequences from y w strain and y2; cn
bw sp BDGP strain
10.6.2 Alignment of genomic region from $CG2560 - Lsp1\alpha$, including $Lsp1\alpha$
promoter, from y w flies and the y2; cn bw sp BDGP strain
10.7 ALIGNMENT OF PROTEIN SEQUENCES FROM <i>DROSOPHILA</i> SPECIES
10.7.1 Alignment of putative CG15730 proteins from Drosophila species
10.7.2 Alignment of putative LSP1 proteins from Drosophila species
10.8 RAW REAL-TIME RT-PCR DATA
10.9 RAW CHROMATIN IMMUNOPRECIPITATION DATA
10.9.1 Example graph showing fluorescence intensity over the PCR reaction 224
10.9.2 Chromatin immunoprecipitation crossing points for each PCR reaction 225

LIST OF TABLES

TABLE 1. THE MALE-SPECIFIC LETHAL PROTEINS 13
TABLE 2. Predicted genes within the LSP1 α gene domain
TABLE 3. FLY STOCKS UTILIZED IN THIS STUDY THAT WERE NOT GENERATED IN THIS
PROJECT
TABLE 4. SUMMARY OF THE TEMPLATES USED FOR THE IN VITRO TRANSCRIPTION OF
ANTISENSE SSRNA PROBES FOR RNASE PROTECTION ANALYSIS
TABLE 5. THE LIGHTCYCLER PROTOCOL USED IN QUANTITATIVE REAL-TIME PCR
Table 6. Volume of homogenate assayed for β -galactosidase activity
TABLE 7. CDNA AND GENOMIC CLONES ACQUIRED FROM RESGEN OR DR. SCOTT
TABLE 8. cDNA and genomic clones constructed for northern and RNAse
PROTECTION ANALYSES
TABLE 9. SUMMARY OF THE TEMPLATES USED FOR THE IN VITRO TRANSCRIPTION OF
ANTISENSE SSRNA PROBES FOR RNASE PROTECTION ANALYSIS
TABLE 10. Levels of $CG15926$, PGD and $RP49$ transcripts in male and female
Hemisected $y w$ adult flies determined by RNASE protection analysis 84
TABLE 11. FEMALE: MALE RATIOS OF $CG15926$ and PGD transcript levels
TABLE 12. Levels of $CG2560$, PGD and $RP49$ transcripts in male and female first
INSTAR LARVAE DETERMINED BY MULTI-PROBE RNASE PROTECTION ANALYSIS 88
TABLE 13. Female: male ratios of $CG2560$ and PGD transcript levels
TABLE 14. MEAN FEMALE: MALE RATIOS OF $CG2560$ and PGD
TABLE 15. Levels of <i>RP49</i> , <i>PGD</i> , <i>CG2556</i> and <i>LSP1</i> α transcripts in male and
FEMALE THIRD INSTAR LARVAE STAGED BY THE BROMOPHENOL BLUE-METHOD 94
TABLE 16. Levels of <i>RP49</i> , <i>PGD</i> , <i>CG2556</i> and <i>LSP1</i> α transcripts in male and
FEMALE THIRD INSTAR LARVAE STAGED BY AGE/SIZE
TABLE 17. MEAN <i>RP49</i> , <i>PGD</i> , <i>CG2556</i> AND <i>LSP1</i> α transcript levels in male and
FEMALE THIRD INSTAR LARVAE STAGED BY BROMOPHENOL BLUE-METHOD AS
DETERMINED BY RNASE PROTECTION ANALYSIS
TABLE 18. MEAN <i>RP49</i> , <i>PGD</i> , <i>CG2556</i> AND <i>LSP1</i> α transcript levels in male and
FEMALE THIRD INSTAR LARVAE STAGED BY AGE/SIZE AS DETERMINED BY RN Ase
PROTECTION ANALYSIS

TABLE 19. FEMALE: MALE RATIOS OF PAIRS, AND MEAN RATIOS OF $RP49$, PGD , $CG2556$
AND $Lspllpha$ transcript levels in third instar larvae staged by the
BROMOPHENOL BLUE-METHOD
TABLE 20. FEMALE: MALE RATIOS OF PAIRS, AND MEAN RATIOS OF $RP49$, PGD , $CG2556$
and Lsp1 $lpha$ transcript levels in third instar larvae staged by age/size 98
TABLE 21. FOLD ENRICHMENT OF SPECIFIC CDNAS IN FAT BODY TISSUE COMPARED TO
WHOLE THIRD INSTAR LARVAE
TABLE 22. THE COPY NUMBER AND CHROMOSOMAL POSITION OF THE TRANSGENE IN EACH
line as determined by Southern hybridization analysis and inverse ${ m PCR}$
TABLE 23. THE POSITION OF INSERTION OF TRANSGENES UNDER THE CONTROL OF THE
LSP1 α promoter on the X chromosome
TABLE 24. MEAN MALE AND FEMALE β -galactosidase activities and ratios in
ADULT FLIES
TABLE 25. MEAN MALE AND FEMALE β -galactosidase activities and ratios in
BROMOPHENOL BLUE-STAGED THIRD INSTAR LARVAE
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
BROMOPHENOL BLUE-STAGED THIRD INSTAR LARVAE124TABLE 26. FAT BODY AND WHOLE LARVAL PROTEIN LEVELS IN MALE AND FEMALE THIRD INSTAR LARVAE125TABLE 27. MEAN β-GALACTOSIDASE ACTIVITY RATIOS IN STAGED-THIRD INSTAR LARVAE OVEREXPRESSING MSL2127TABLE 28. MEAN β-GALACTOSIDASE ACTIVITIES IN AUTOSOMAL ARM-LACZ AND P-LACZ STAGED-THIRD INSTAR LARVAE OVEREXPRESSING MSL1, MSL3, MLE OR MOF . 130TABLE 29. FOLD ENRICHMENT FROM CHROMATIN IMMUNOPRECIPITATION WITH ANTI- H4K16AC ON P-LACZ: 9B4, P-LACZ: 19E7 AND Y W MALE THIRD INSTAR LARVAL FAT
BROMOPHENOL BLUE-STAGED THIRD INSTAR LARVAE
BROMOPHENOL BLUE-STAGED THIRD INSTAR LARVAE
BROMOPHENOL BLUE-STAGED THIRD INSTAR LARVAE
BROMOPHENOL BLUE-STAGED THIRD INSTAR LARVAE.124TABLE 26. FAT BODY AND WHOLE LARVAL PROTEIN LEVELS IN MALE AND FEMALE THIRD INSTAR LARVAE.125TABLE 27. MEAN β-GALACTOSIDASE ACTIVITY RATIOS IN STAGED-THIRD INSTAR LARVAE OVEREXPRESSING MSL2127TABLE 28. MEAN β-GALACTOSIDASE ACTIVITIES IN AUTOSOMAL ARM-LACZ AND P-LACZ STAGED-THIRD INSTAR LARVAE OVEREXPRESSING MSL1, MSL3, MLE OR MOF. 130TABLE 29. FOLD ENRICHMENT FROM CHROMATIN IMMUNOPRECIPITATION WITH ANTI- H4K16AC ON P-LACZ:9B4, P-LACZ:19E7 AND Y W MALE THIRD INSTAR LARVAL FAT BODIES.BODIES150TABLE 30. PCR EFFICIENCIES OF REAL-TIME PCR DATA.152TABLE 31. ACCESSION NUMBERS FOR LSP1 PROTEIN SEQUENCES.156TABLE 32. LSP1 α IS FLANKED BY CG2560 AND CG15730 IN FOUR DROSOPHILA SPECIES,
BROMOPHENOL BLUE-STAGED THIRD INSTAR LARVAE.124TABLE 26. FAT BODY AND WHOLE LARVAL PROTEIN LEVELS IN MALE AND FEMALE THIRD INSTAR LARVAE.125TABLE 27. MEAN β-GALACTOSIDASE ACTIVITY RATIOS IN STAGED-THIRD INSTAR LARVAE OVEREXPRESSING MSL2127TABLE 28. MEAN β-GALACTOSIDASE ACTIVITIES IN AUTOSOMAL ARM-LACZ AND P-LACZ STAGED-THIRD INSTAR LARVAE OVEREXPRESSING MSL1, MSL3, MLE OR MOF . 130TABLE 29. FOLD ENRICHMENT FROM CHROMATIN IMMUNOPRECIPITATION WITH ANTI- H4K16AC ON P-LACZ: 9B4, P-LACZ: 19E7 AND Y W MALE THIRD INSTAR LARVAL FAT BODIES.BODIES150TABLE 30. PCR EFFICIENCIES OF REAL-TIME PCR DATA.152TABLE 31. ACCESSION NUMBERS FOR LSP1 PROTEIN SEQUENCES.156TABLE 32. LSP1 α IS FLANKED BY CG2560 AND CG15730 IN FOUR DROSOPHILA SPECIES, BUT THESE GENES LIE IMMEDIATELY ADJACENT TO ONE ANOTHER IN THE OTHER

ł

LIST OF FIGURES

FIGURE 1. CHROMATIN LOOPING MODEL OF INSULATOR ACTION
FIGURE 2. MODEL OF THE MSL COMPLEX
FIGURE 3. <i>LSP1</i> α gene domain
FIGURE 4. STAGE-SPECIFIC EXPRESSION OF CG15926, CG2560 and CG255668
FIGURE 5. NORTHERN ANALYSIS OF $CG15730$
FIGURE 6. STAGE-SPECIFIC EXPRESSION OF $Lspl\alpha$
Figure 7. $CG1573\theta$ is not detected in mixed adult poly(A) ⁺ mRNA relative to
CG2556USING RT-PCR
FIGURE 8. RNASE PROTECTION ANALYSIS OF CG15926, CG2560, LSP1 α , CG2556, PGD
AND <i>RP49</i>
FIGURE 9. LINEAR RANGE OF <i>RP49</i> RNASE PROTECTION ANALYSIS
FIGURE 10. LINEAR RANGE OF PGD RNASE PROTECTION ANALYSIS
FIGURE 11. LINEAR RANGE OF $LSP1\alpha$ RNASE protection analysis
FIGURE 12. LINEAR RANGE OF $CG2560$ RNASE PROTECTION ANALYSIS
FIGURE 13. LINEAR RANGE OF CG2556 RNASE PROTECTION ANALYSIS
FIGURE 14. LINEAR RANGE OF $CG15926$ RNASE protection analysis
FIGURE 15. RNASE PROTECTION ANALYSIS OF <i>RP49</i> , <i>PG</i> and <i>CG15926</i> transcripts in
MALE AND FEMALE HEMISECTED ADULTS
FIGURE 16. <i>CG2560</i> DOSAGE COMPENSATION ASSAY
FIGURE 17. RNASE PROTECTION ANALYSIS OF <i>RP49</i> , <i>PGD</i> , <i>CG2556</i> and <i>Lsp1α</i>
TRANSCRIPTS IN MALE AND FEMALE THIRD INSTAR LARVAE
FIGURE 18. MEAN <i>RP49</i> , <i>PGD</i> , <i>CG2556</i> and <i>Lsp1</i> α transcript levels in male and
FEMALE THIRD INSTAR LARVAE STAGED BY BROMOPHENOL BLUE-METHOD AS
DETERMINED BY RNASE PROTECTION ANALYSIS
FIGURE 19. MEAN <i>RP49</i> , <i>PGD</i> , <i>CG2556</i> AND <i>Lsp1</i> α transcript levels in male and
FEMALE THIRD INSTAR LARVAE STAGED BY AGE/SIZE AS DETERMINED BY ${f RN}$ ASE
PROTECTION ANALYSIS
Figure 20. Foldenrichment of the genes flanking LSP1 α in fat body tissue
COMPARED TO WHOLE THIRD INSTAR LARVA
FIGURE 21. SCHEMATIC OF CONSTRUCTS

1 1 1

i.

Figure 22. Southern hybridization analysis of transgenic fly lines 113 $$
Figure 23. β -galactosidase activity increases in a linear manner with
INCREASING HOMOGENATE VOLUME
FIGURE 24. THE FEMALE TO MALE ACTIVITY RATIO IS PROPORTIONAL TO THE LEVEL OF
MALE ACTIVITY
FIGURE 25. SCHEMATIC OF HOMOLOGOUS RECOMBINATION CONSTRUCTS 138
FIGURE 26. HOMOLOGOUS RECOMBINATION CROSSING SCHEME
FIGURE 27. DAPI STAIN OF FAT BODY NUCLEI PREPARATION PRIOR TO SONICATION AND
IMMUNOPRECIPITATION
FIGURE 28. SONICATION TRIAL OF DNA FROM NUCLEI PRIOR TO CHROMATIN
IMMUNOPRECIPITATION149
FIGURE 29. MEAN FOLD ENRICHMENT FROM CHROMATIN IMMUNOPRECIPITATION WITH
ANTI-H4K16AC ON <i>P-LACZ:9B4</i> , <i>P-LACZ:19E7</i> AND <i>Y W</i> MALE THIRD INSTAR LARVAL
FAT BODY NUCLEI
FIGURE 30. PHYLOGENY AND KARYOTYPE OF SEQUENCE DROSOPHILA SPECIES 155
Figure 31. LSP1 α is present in four closely related Drosophila species but is
absent in more distantly related species, although LSP1 β and LSP1 γ are
PRESENT IN ALL SPECIES
FIGURE 32. MODEL: LSP1 α is not regulated by the MSL complex because
SPREADING OF THE COMPLEX IS LIMITED

.

ABBREVIATIONS

ATP	adenosine 5'-triphosphate
BDGP	Berkeley Drosophila Genome Project
bp	base pair
BSA	bovine serum albumin
°C	degrees Celsius
ca.	approximately
cDNA	copy deoxyribonucleic acid
CES	chromatin entry site
ChIP	chromatin immunoprecipitation
cpm	counts per minute
CsCl	cesium chloride
CTD	C-terminal domain
dATP	2'-deoxyadenosine 5'-triphosphate
dCTP	2-deoxycytidine 5'-triphosphate
DF	dilution factor
dGTP	2'-deoxyguanosine 5'-triphosphate
DHS	DNaseI hypersensitive site
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
DTT	dithiothreitol
dTTP	2'-deoxythymidine 5'-triphosphate
E. coli	Escherichia coli
EDTA	ethylenediaminetetraacetic acid
g	gram
GFP	green fluorescent protein
h	hour
H3K20	lysine 20 of histone H3
H3S10P	phosphorylated serine 10 of histone H3
H4K16ac	acetylated lysine 16 of histone H4
HA	hemagglutinin

L

1

HAT	histone acetyl transferase
HCl	hydrochloric acid
HDAC	histone deactylase
НМТ	histone methyl transferase
IGEPAL	octylphenylpolyethylene glycol
kb	kilobase-pairs
kDa	kilodaltons
KOAc	potassium acetate
L	litre
LB	Luria-Bertani (media or broth)
Μ	molar, moles per litre
mg	milligram
μL	microlitre
mL	millilitre
Milli-Q water	water purified by a Milli-Q ion exchange column
μΜ	micromolar, micromoles per litre
mM	millimolar, millimoles per litre
min	minute
M _r	relative molecular mass (g mol ⁻¹)
mRNA	messenger ribonucleic acid
MSL	male specific lethal
NaOAc	sodium acetate
nmol	nanomole
nt	nucleotide
ORF	open reading frame
PCR	polymerase chain reaction
рН	-Log $[H^+]$
$poly(A)^+$	polyadenylated
RNA	ribonucleic acid
RNAPII	RNA polymerase II
RNase	ribonuclease
RNAi	RNA interference
RT-PCR	reverse transcriptase-polymerase chain reaction
rpm	revolutions per minute

1

I

second
sodium dodecyl sulfate
single nucleotide polymorphism
single stranded
10 mM Tris, 1 mM EDTA (pH 8.0)
N, N, N', N'-tetramethyl-ethylendiamin
tris(hydroxymethy)aminomethane
polyoxyethylenesorbitan monolaurate
untranslated region
ultra violet light
$volt (m^2 kg s^{-3} A^{-1})$
wild-type
volume per volume
weight per volume
weight per weight

i.