Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

e-Process Selection using Decision Making Methods

A thesis presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Information Systems

at Massey University, Palmerston North, New Zealand

Erina Francina Albertyn

2010

E-process selection using decision making methods

Erina Francina Albertyn

Supervisors	:	Associate Professor R Kaschek
		Associate Professor E. Kemp
Department	:	Information Systems
Degree	:	Doctor of Philosophy

Keywords

E-Process, Selecting processes, e-Commerce, e-Commerce Information Systems, Case-Based Selection, Development Processes.

Summary

The key objective of this research is to develop a selection methodology that can be used to support and aid the selection of development processes for e-Commerce Information Systems (eCIS) effectively using various decision methods. The selection methodology supports developers in their choice of an e-Commerce Information System Development Process (e-Process) by providing them with a few different decision making methods for choosing between defined e-Processes using a set of quality aspects to compare and evaluate the different options. The methodology also provides historical data of previous selections that can be used to further support their specific choice.

The research was initiated by the fast growing Information Technology environment, where e-Commerce Information Systems is a relatively new development area and developers of these systems may be using new development methods and have difficulty deciding on the best suited process to use when developing new eCIS. These developers also need documentary support for their choices and this research helps them with these decision-making processes.

i

The e-Process Selection Methodology allows for the comparison of existing development processes as well as the comparison of processes as defined by the developers. Four different decision making methods, the Value-Benefit Method (Weighted Scoring), the Analytical Hierarchy Process, Case-Based Reasoning and a Social Choice method are used to solve the problem of selecting among e-Commerce Development Methodologies.

The Value-Benefit Method, when applied to the selection of an e-Process from a set of e-Processes, uses multiple quality aspects. Values are assigned to each aspect for each of the e-Processes by experts. The importance of each of the aspects, to the eCIS, is defined in terms of weights. The selected e-Process is the one with the highest score when the values and weights are multiplied and then summed.

The Analytic Hierarchy Process is used to quantify a selection of quality aspects and then these are used to evaluate alternative e-Processes and thus determining the best matching solution to the problem. This process provides for the ranking and determining of the relative worth of each of the quality aspects.

Case-Based Reasoning requires the capturing of the resulting knowledge of previous cases, in a knowledge base, in order to make a decision. The case database is built in such a way that the concrete factual knowledge of previous individual cases that were solved previously is stored and can be used in the decision process. Case-based reasoning is used to determine the best choices. This allows the user to either use the selection methodology or the case base database to resolve their problems or both.

Social Choice Methods are based on voting processes. Individuals vote for their preferences from a set of e-Processes. The results are aggregated to obtain a final result that indicates which e-Process is the preferred one.

The e-Process Selection Methodology is demonstrated and validated by the development of a prototype tool. This tool can be used to select the most suitable solution for a case at hand.

The thesis includes the factors that motivated the research and the process that was followed. The e-Process Selection Methodology is summarised as well as the strengths and weaknesses discussed. The contribution to knowledge is explained and future developments are proposed. To conclude, the lessons learnt and reinforced are considered.

ii

Dedication:

I would like to dedicate this thesis to my father, Albertus (Arrie) Schutte, who passed away in October 2007.

Acknowledgements

I would like to sincerely thank my husband, Pieter Albertyn, for his love and support and my daughters, Riani and Carin Albertyn for caring.

I should like to express my sincere thanks and appreciation to my supervisor, Associate Professor Roland Kaschek for his support and expert guidance. I would also like to thank Associate Professor Elizabeth Kemp for her willingness to support and guide me during the finalisation of the thesis.

I am also greatly indebted to the University of Massey and my employer, the Eastern Institute of Technology for their monitory support that made it possible to present the results of this research at a number of International Conferences.

> Frina Albertyn July 2010 Napier, New Zealand

TABLE OF CONTENTS

	Page
Copyright	xiv
Publications and this thesis	XV
Chapter 1 Introduction	1
PART A INTRODUCTORY CONCEPTS	7
Chapter 2 PROBLEM EXPOSITION	9
2.1 Introduction	9
2.2 Research methodology	13
2.3 E-Process Selection Methodology Description	19
2.4 Objective Statement	23
2.5 Importance of the Research	24
2.6 Limitations of the research	28
2.7 Summary	28
Chapter 3 INVESTIGATIVE INITIAL CASE STUDY	29
3.1 Introduction	29
3.2 Investigative research	29
3.2.1 ISD process usage	29
3.3 Conclusion	34
Chapter 4 QUALITY ASPECTS	35
4.1 Introduction	35
4.2 High level quality aspects	39
4.3 Second level quality aspects	39
4.4 Conclusion	41
Chapter 5 e-PROCESS ALTERNATIVES OVERVIEW	42
5.1 Introduction	42
5.2 E-Commerce Information Systems	43
5.3 eCIS Development Processes	44
5.4 Framework for Comparison	46
5.5 Rational Unified Process	47
5.6 Agile methods and extreme programming	50
5.7 Open source development process	52
5.8 User Profiling and Storyboarding	53
5.8.1 User Profiling	54
5.8.2 Storyboarding	56
5.9 Comparison of RUP, AM(XP), OSS and SBUP	57

5.10 Summary	65
PART B DECISION MAKING METHODOLOGY	67
Chapter 6 DECISION MAKING	69
6.1 Introduction	69
6.2 Conceptualisation of Decision Making	69
6.3 Quantitative and qualitative decision rules	71
6.4 Purpose of Decision Making	72
6.5 Types of decisions and software options	73
6.6 Decision analysis and Decision Making Methods	75
6.7 Multi-criteria decision making	78
6.8 Decision making aspects for this research	81
6.9 Conclusions	84
Chapter 7 DECISION MAKING APPROACH – THE META-MODEL	85
7.1 Introduction	85
7.2 Value Benefit Analysis (Weighted score) (VBA)	86
7.2.1 Un-weighted 0-1 factor method	86
7.2.2 Weighted scoring method	87
7.2.3 VBA e-Process Ontology	89
7.2.4 e-Process VBA Selection Methodology	90
7.2.5 e-Process Selection VBA Meta-Model	91
7.3 Analytic Hierarchy Process	93
7.3.1 An AHP example	95
7.3.2 AHP e-Process Selection Model	96
7.3.3 Quality aspect ranking and e-Process alternative ranking	97
7.3.4 Scoring and first recommendation	99
7.3.5 Sensitivity Analysis	99
7.3.6 e-Process Selection AHP Meta-Model	101
7.4 Case-base Reasoning Approach	103
7.4.1 CBR technique used	103
7.4.2 CBR e-Process Selection	106
7.4.3 CBR e-Process Vocabulary	106
7.4.4 CBR e-Process Selection and the similarity measure	106
7.4.5 CBR e-Process Selection Case Base	107
7.4.6 e-Process and solution transformation	108
7.4.7 e-Process Selection CBR Meta-Model	108
7.5 Social Choice Method	109
7.5.1 Social Choice Theory	110
7.5.2 SCM quality aspects used	112

7.5.3 The SCM e-Process Selection Methodology	112
7.5.4 e-Process Selection SCM Meta-Model	113
7.6 Integrated e-Process Selection Meta-Model	114
7.7 Conclusion	114
Chapter 8 DECISION MAKING METHODS – RECOMMENDED USAGE	116
8.1 Introduction	116
8.2 Decision model usage comparison	118
8.2.1 Value Benefit Analysis	118
8.2.2 Analytic Hierarchy Process	119
8.2.3 Case-Base Reasoning	121
8.2.4 A Social Choice Method	121
8.3 Conclusion	122
PART C APPLYING DECISION MAKING METHODS	123
Chapter 9 APPLYING THE DIFFERENT DECISION MAKING METHODS to	
e-PROCESS SELECTION	125
9.1 Introduction	125
9.2 Applying e-Process Selection using Value Benefit Analysis	127
9.2.1 The sample problem (Club eCIS)	127
9.2.2 Applying VBA	129
9.3 Applying e-Process selection using AHP	131
9.3.1 The sample problem (Quilting eCIS)	131
9.3.2 Applying AHP	133
9.4 Applying e-Process selection using Case-Based Reasoning	137
9.4.1 The sample problem (Packaging eCIS)	137
9.4.2 Applying CBR	138
9.5 Applying e-Process Selection using a Social Choice Method	141
9.5.1The sample problem (Kayak eCIS)	141
9.5.2 Applying SCM	142
9.6 Validation	144
9.6.1 Cross Case analysis	144
9.6.2 Validation of VBA	145
9.6.3 Validation of AHP – applying sensitivity analysis	148
9.6.4 Validation of CBR	151
9.6.5 Validation of SCM	154
9.6.6 Analysis of results obtained by applying DMM	155
9.6.7 Feasibility of using the e-Process selection Methodology	158
9.7 Final Conclusions	164

PART D PROTOTYPE DEVELOPMENT	165
Chapter 10 PROTOTYPE DEVELOPMENT DOCUMENTATION	167
10.1 Introduction	167
10.2 Requirement Specification	168
10.3 Use Case Diagrams	169
10.4 Activity Diagrams	172
10.5 Decision Analysis	176
10.6 Three-tier System Software Architecture	179
10.7 Database Schema	182
10.8 System Implementation	184
Chapter 11 PROTOTYPE TOOL	185
11.1 Introduction	185
11.2 Phase 1 – focus on VBA	185
11.3 Phase 2 – focus on AHP	188
11.4 Phase 3 – focus on CBR	191
11.5 Phase 4 – focus on SCM and other admin functions	193
11.6 Conclusions	195
PART E CONCLUSION AND FUTURE WORK	197
Chapter 12 CONCLUSION AND FUTURE WORK	199
12.1 Introduction	199
12.2 Assessment of objectives achieved	199
12.3 Summary of the Research Process	200
12.4 Strengths and Challenges of the e-Process Methodology	201
12.5 Contribution to Knowledge	203
12.6 Future development	204

APPENDIX A: Publications by author on e-Process Selection	205
APPENDIX B: Technology Specifications	207
APPENDIX C: Legends of different types of figures used in thesis	208
APPENDIX D: Methodological Survey into Web Development Usage	210

References	213
Glossary of terms	226
Index of terms	228

List of Figures

Figure 1.1: Thesis Framework	4
Figure 2.1: Framework for discussion of Problem Exposition	9
Figure 2.2: Decision Methods used in e-Process Selection	12
Figure 2.3: Methodology framework	20
Figure 2.4: Comparison of development processes	26
Figure 3.1: Investigative Case Studies Framework	29
Figure 3.2: Structured development process usage	32
Figure 3.3: Specific Methods used by Developers	33
Figure 4.1: Framework for quality aspects	35
Figure 5.1: Framework for e-Process alternatives overview	42
Figure 5.2: IS development abstraction layers	46
Figure 5.3: The RUP dimensions and phases	48
Figure 6.1: Aspects of decision making included in this chapter	70
Figure 6.2: The Relative Value of Decision Support and Decision Automation for	
Different Types of Decisions (based on Taylor, 2007)	74
Figure 6.3: A taxonomy of MCDA methods (Chen and Hwang, 1991)	81
Figure 6.4: A semantic view of the decision meta-model	83
Figure 7.1 Aspects of a decision making meta-model	85
Figure 7.2 Sample Project Evaluation Form	86
Figure 7.3: Mathematical form of the weighted scoring method	87
Figure 7.4: Example Weight Scoring Models (Mantel, Meredeith, et al., 2005)	88
Figure 7.5: e-Process Selection VBA Meta-Model	92
Figure 7.6: Analytic Hierarchy Process	94
Figure 7.7: Sensitivity diagram example	100
Figure 7.8: e-Process Selection AHP Meta-Model	102
Figure 7.9: CBR process	105
Figure 7.10: e-Process Selection CBR Meta-Model	108
Figure 7.11: e-Process Selection SCM Meta-Model	113
Figure 7.12: Integrated e-Process Selection Meta-Model	114
Figure 8.1: Decision Making Methodology Framework	116
Figure 8.2: Decision making and decision models	117
Figure 9.1: Framework for Value-Benefit Method discussion	126
Figure 9.2: Second-level aspect scores for high level quality aspect: e-P aspects	136
Figure 9.3: Final e-Process Scores and contributions of quality aspects	136
Figure 9.4: Sensitivity diagram for the Quality Concepts	149

Figure 10.1: Framework for eProcSel specification	167
Figure 10.2: eProcSel Use Case Diagram	169
Figure 10.3: VBA Use Case Diagram	170
Figure 10.4: AHP Use Case Diagram	170
Figure 10.5: CBR Use Case Diagram	171
Figure 10.6: SCM Use Case Diagram	171
Figure 10.7: eProcSel Activity Diagram	172
Figure 10.8: eProcSel VBA Decision Making Method Activity Diagram	173
Figure 10.9: eProcSel AHP Decision Making Method Activity Diagram	174
Figure 10.10: eProcSel CBR Decision Making Method Activity Diagram	175
Figure 10.11: eProcSel SCM Decision Making Method Activity Diagram	176
Figure 10.12: System Software Architecture	179
Figure 11.1: VBA Initial Screen	186
Figure 11.2: VBA High Quality Aspect Entry	186
Figure 11.3: First Phase Suitability Check	187
Figure 11.4: VBA Second Level Quality Aspect Values Entry	187
Figure 11.5: Initial setup of goal, criteria and alternatives	189
Figure 11.6: Rating of alternatives to all criteria (quality aspects)	190
Figure 11.7: Initial Results on e-Process Selection	190
Figure 11.8: Sensitivity Analysis	191
Figure 11.9: Capturing CBR information - determine similar cases	192
Figure 11.10: CBR Similar Result	193
Figure 11.11: Capturing SCM results	194
Figure 11.12: Entering Quality Aspect Information	195
Figure 12.1: Framework for evaluation, conclusions and future work	199

List of Tables

Table 4.1: Hierarchy Structure of Software Product Quality Aspects	37
Table 5.1: Comparison of e-Processes	57
Table 7.1: e-Process Selection VBA Meta-Model Data Dictionary	92
Table 7.2: Pair-wise Comparison Values	95
Table 7.3: Object preferences	95
Table 7.4: Weights on objectives	95
Table 7.5: Salary scores and relative scores	96
Table 7.6: Relative scores per objective	96
Table 7.7: e-Process Selection AHP Meta-Model Data Dictionary	102
Table 7.8: e-Process Selection CBR Meta-Model Data Dictionary	109
Table 7.9: e-Process Selection SCM Meta-Model Data Dictionary	113
Table 7.10: Combined e-Process Selection Meta-Model Data dictionary	115
Table 9.1: Definition of weights and alternative values the quality aspects	130
Table 9.2: Selected experts' e-Process quality aspects scores	134
Table 9.3: High Level Quality Aspects Ranking	135
Table 9.4: Comparing high level quality aspects for two cases with problem	139
Table 9.5: Low level quality assessment results	140
Table 9.6: Scores obtained when applying Borda voting	143
Table 9.7: Comparing high level quality aspects for two cases with problem (2)	146
Table 9.8: Low level quality assessment results	147
Table 9.9: CBR values used in applying VBA	153
Table 9.10: Cost/Benefit Analysis of applying SCM to Kayak eCIS	155
Table 9.11: Comparing the decision making methods	157
Table 9.12: Operational feasibility of the new e-Process Selection Methodology	158
Table 9.13: Cost associated with the development of the methodology	161
Table 9.14: Cast associated with the implementation of the methodology	162
Table 9.15: Cost/benefit analysis	163
Table 10.1: Comparison of candidate solutions	177
Table 10.2: Feasibility Analysis Matrix	178
Table 12.1 Thesis objectives and analysis of results	200

Copyright

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the author.

Publications and this thesis

Much of the information contained in this thesis has been published in journals, international conference proceedings, and national conference proceedings or as technical papers. The style in the chapters might in some cases be in the style of the particular publication. Consequently, there is some repetition, particular in the application sections and there are stylistic differences between the chapters.

Some of the published work included other authors. For each of the chapters my input was substantial. The initial design of the research, some of the fieldwork, the analysis and the writing of the publication has been mainly my work. For some of the publications I was, however, assisted by co-authors and would like to thank them for their contributions.

A list of publications by the author on e-Process Selection can be found in appendix A.