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 ABSTRACT  

Next generation cellular networks will support many complex services for 

smartphones, vehicles, and other devices. To accommodate such services, 

cellular networks need to go beyond the capabilities of their previous 

generations. Device-to-Device communication (D2D) is a key technology that 

can help fulfil some of the requirements of future networks.  

The telecommunication industry expects a significant increase in the density of 

mobile devices which puts more pressure on centralized schemes and poses 

risk in terms of outages, poor spectral efficiencies, and low data rates. Recent 

studies have shown that a large part of the cellular traffic pertains to sharing 

popular contents. This highlights the need for decentralized and distributive 

approaches to managing multimedia traffic.  

Content-sharing via D2D clustered networks has emerged as a popular 

approach for alleviating the burden on the cellular network. Different studies 

have established that D2D communication in clusters can improve spectral and 

energy efficiency, achieve low latency while increasing the capacity of the 

network. To achieve effective content-sharing among users, appropriate 

clustering strategies are required. Therefore, the aim is to design and compare 

clustering approaches for D2D communication targeting content-sharing 

applications. Currently, most of researched and implemented clustering 

schemes are centralized or predominantly dependent on Evolved Node B 

(eNB). This thesis proposes a distributed architecture that supports clustering 

approaches to incorporate multimedia traffic. A content-sharing network is 

presented where some D2D User Equipment (DUE) function as content 

distributors for nearby devices. Two promising techniques are utilized, 

namely, Content-Centric Networking and Network Virtualization, to propose 

a distributed architecture, that supports efficient content delivery.  

We propose to use clustering at the user level for content-distribution. A 

weighted multi-factor clustering algorithm is proposed for grouping the DUEs 

sharing a common interest. Various performance parameters such as energy 

consumption, area spectral efficiency, and throughput have been considered 

for evaluating the proposed algorithm. The effect of number of clusters on the 

performance parameters is also discussed. The proposed algorithm has been 

further modified to allow for a trade-off between fairness and other 
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performance parameters. A comprehensive simulation study is presented that 

demonstrates that the proposed clustering algorithm is more flexible and 

outperforms several well-known and state-of-the-art algorithms. 

The clustering process is subsequently evaluated from an individual user’s 

perspective for further performance improvement. We believe that some users, 

sharing common interests, are better off with the eNB rather than being in the 

clusters. We utilize machine learning algorithms namely, Deep Neural 

Network, Random Forest, and Support Vector Machine, to identify the users 

that are better served by the eNB and form clusters for the rest of the users. This 

proposed user segregation scheme can be used in conjunction with most 

clustering algorithms including the proposed multi-factor scheme. A 

comprehensive simulation study demonstrates that with such novel user 

segregation, the performance of individual users, as well as the whole network, 

can be significantly improved for throughput, energy consumption, and 

fairness. 

 

Keywords: 5G and Beyond, Cellular Networks, Content-Sharing, Clustering 

Algorithms, Deep Neural Network, Device-to-Device (D2D) Communication, 

Machine Learning, Random Forest, Social-Aware Networks, Support Vector 

Machine.  
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1. CHAPTER 1  

2. INTRODUCTION 

1.1 Background 

Mobile communication has rapidly evolved from First Generation (1G) to Sixth 

Generation (6G) over the last few decades. Mobile Generation (G), in general, 

represents a significant change in technology, data rates, latency, capacity, 

frequency, and applications. Figure. 1.1 shows the evolution of mobile 

generations. 

1980 1990 2000 2010 2020 2030

1G

Voice Signals Only

Analogue Technology

NMT, AMPS

2G

Voice & Data Signal

Digital Technology

GSM, CDMA, TDMA

3G

Voice, Data & Video Internet 

Surfing

W-CDMA, UMTS

1G 2G 3G 4G 5G 6G

4G

Enhanced 3G Interoperability

High Speed & IP-Based

Mobile IP

5G

Ultra-high Definition Video

Virtual Reality

Dynamic Information Access

Wear-able Devices

Mobile Cloud Services

All Packet Based

6G

Multi-band Ultrafast Transmission

Holographic Beamforming

Operational and Service Intelligence

Distributed/Multi-Level Management

 

Figure. 1.1 The Evolution of Cellular Networks: From 1G to 6G. 

1G was analog in nature which supported voice calls only. The Second 

Generation (2G) introduced digital technology and the concept of text 

messaging. Cellular systems experienced a major upgrade for supporting data 

services. Before the next big leap from 2G to Third Generation (3G), interim 

standards 2.5G and 2.75G [1, 2] introduced packet switching technology. 3G 

delivered increased capacity, higher transmission rate, and multimedia 



   

2 | P a g e  
 

support. The Fourth Generation (4G) brought integration with fixed internet to 

support wireless mobile internet and in doing so, it overcame the limitations of 

3G [1].  

The Fifth Generation (5G) represents a new revolution in the cellular field. 

Cellular wireless networks based on 5G technology can provide unprecedented 

services with higher data rates, enhanced Quality of Experience (QoE), and 

lower energy consumption [2]. The upcoming 6G intends to leverage various 

new technologies such as Artificial Intelligence (AI), terahertz communication, 

three-dimensional networking, quantum communications, and big data 

analytics.  

The various emerging applications of next generation cellular networks can be 

realized if the networks are intelligent and dynamic, providing ultra-low 

latency and high-speed data transmission. 6G is expected to deliver data rates 

of 1Tbps with less than 1ms end-to-end latency [3]. One of the technologies that 

are considered essential for the realization of modern cellular networks, such 

as 5G and 6G, is Device to Device (D2D) communication [4-6].  

Direct communication between devices in proximity can take place using the 

concept of D2D communication. This type of communication does not need to 

traverse through the core network. It is different from the conventional 

network as the conventional network requires all the communication to go via 

the core network irrespective of the proximity of devices [7, 8]. The D2D 

concept is shown in Figure. 1.2. 
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D2D D2D

Conventional Cellular 
Communication

eNB

Legacy 
Users

  

Figure. 1.2 A D2D Operated Network. The red-colored devices are communicating directly in 

D2D mode whereas the blue-colored devices are the conventional cellular users. 

It is important to note that conventional communication is suitable for services 

such as low data rate voice calls and text messages. In contrast to this, today’s 

mobile users demand high data rate services like video sharing, online gaming, 

social-aware, and context-aware networking. Users close to each other 

demanding such services are very well suited to be served by D2D 

communication. D2D has two major advantages; it increases the spectral 

efficiency of the network by avoiding unnecessary transmissions and, achieve 

higher data rates by leveraging the proximity of users. However, these are not 

the only benefits of D2D communication. The concept of D2D communication 

has initiated numerous research works to assist cellular networks. The on-

going research in this field not only consists of proposals for relaying the 

cellular traffic, multicasting options, offloading cellular traffic, and content 

distribution [8], but also a complete architecture based on D2D communication 
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to work in tandem with cellular-based services supporting new types of 

applications [9].  

1.2 Applications of D2D Communication 

Many scenarios require users in close proximity to exchange information. 

Therefore, several applications exist for D2D communication. Some of these 

applications are depicted in Figure. 1.3 and described in the following sub-

section.    

Content Sharing

Content Sharing
Relaying

Vehicular 
Communication

Social And Commercial Services

Public Safety

 

Figure. 1.3 Various applications of D2D communication. 

1 - Cellular Offloading 

Cellular traffic offloading is an incentive for deploying the D2D 

communication. Any device having good connectivity with the central 

controller can be made responsible for data offloading or data caching from the 
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eNB so that devices nearby can download this data using direct links [10].  It 

can help a computational resource constrained user to offload the task to a 

nearby capable DUE. Various offloading techniques have been explored by 

different researchers [11]. 

2 - Coverage Extension 

D2D communication is an ideal candidate for coverage extension via relays. 

D2D relays can be used for coverage extension by enabling multi-hop 

communication.  Cooperative diversity is usually exploited to enhance the 

signal strength at the receiver by relaying it via multiple paths [12]. 

3 - Machine-to-Machine (M2M) communication 

D2D promises to offer real-time responses that can be leveraged for setting up 

the M2M communication for Internet of Things (IoT) based services [13]. 

4 - Public Safety 

D2D communication has the potential to support emergency services for public 

safety [14]. In the aftermath of a natural disaster (such as an earthquake), 

network failure may occur. In such scenario, safety organizations, such as 

police and rescue services, can rely on D2D communication to form 

communication links and convey important information to rescuers. 

5 - Vehicular Networks 

Vehicular Networks is another application of D2D communication that 

facilitates communication of a vehicle to other vehicles, devices, and 

infrastructure [15]. D2D links can help to share information among the vehicles 

and other entities. Moreover,  D2D can also help realize Intelligent 

Transportation Systems (ITS) by meeting its strict delay requirements [16].  
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6 - Content Multicasting 

One of the most promising applications of D2D communication is content 

multicasting. D2D communication can efficiently leverage local data services 

via different techniques such as unicast, broadcast, or group communication 

[17]. DUEs can transfer audio, video, and other files at higher data rates and 

most importantly with less energy and better power consumption. In such 

scenarios, group casting/multicasting can be used to convey the information to 

users in a group. The formation of clusters can facilitate such applications and 

services.  

1.3 Motivation 

Among the several D2D applications mentioned in the previous subsection, the 

focus of this thesis is on the multicasting/content-sharing scenarios. 

Multicasting is reliant on user cooperation and true potentials of user 

cooperation are exploited by D2D communication. It paves the path for cellular 

users to aid operators in developing techniques for cooperative communication 

which has the potential to enhance resource utilization efficiency [18]. One of 

the significant applications of D2D communication can be found in densely 

populated areas where many devices, confined in a small area, are demanding 

network resources. One such example is a concert, where many users are trying 

to download the same multimedia/social media contents. In such a scenario, 

the users can share common contents of interest. Multicasting via D2D 

communication can be exploited where a user is responsible for delivering the 

contents, received from the eNB, to different users. A multicasting scenario can 

be set up through the formation of clusters to deliver the contents. Clusters are 

composed of Cluster Members (CMs) that demand the content whereas a 

Cluster Head (CH) is selected to deliver the contents to its CMs. Clustering 
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organizes the users with social ties i.e. sharing similar interests and restructures 

the network topology to achieve network and cluster level performance 

improvements [7]. As a result of clustering, network performance can be 

improved in terms of throughput, spectral efficiency, power, and energy 

consumption [19]. Given the potential advantages of clustering for D2D-

enabled networks, designing and optimizing clustering algorithms is of utmost 

importance and therefore investigated in this thesis. We focus on the design, 

implementation, and comparative study of clustering algorithms targeting 

content-sharing applications. A distributed architecture supporting clustering 

is proposed as well. Machine Learning (ML) is subsequently employed as well 

to optimize the clustering algorithm and further improve the network 

performance.  

1.4 Thesis Layout 

Chapter Two presents the relevant literature review. The requirements of the 

proposed schemes are highlighted. The research objectives of the thesis are 

discussed as well. 

Chapter Three develops the proposed clustering algorithm supported by a 

distributed architecture. The scheme to identify the content of interest is 

presented as well. All the design parameters are detailed in this chapter.  

Chapter Four presents the performance of the designed clustering algorithm. 

Simulation setup and parameters of interest are discussed in this chapter as 

well. The performance with respect to aggregate throughput, energy 

consumption, throughput fairness, and area spectral efficiency are analyzed 

and discussed in detail. 

Chapter Five investigates the effect of clustering on individual users. ML 

algorithms are proposed to develop a user segregation scheme that identifies 
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the users that should be considered for clustering as opposed to putting all the 

users, interested in a particular content, in clusters. All the details of ML 

implementation are discussed in this chapter.   

Chapter Six discusses and analyzes all the results associated with the user 

segregation scheme detailed in Chapter Five. The performance of the 

implemented ML algorithms, as well as other performance parameters, are 

discussed as well.  

Chapter Seven concludes the thesis, highlights the contribution, and discusses 

future research directions.  
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                                                  CHAPTER 2  

LITERATURE REVIEW 

2.1 The Drive Towards Content-Centric Networks 

There is an unprecedented demand for multicast applications which is one of 

the driving forces to move towards content-centric cellular networks [20]. It is 

expected that content-sharing, specifically videos, will constitute more than 

70% of the future data traffic [21]. The expected distribution of data traffic (for 

the year 2021 – 2022) is represented in Figure. 2.1. 

 

Figure. 2.1 The expected percentage of data traffic (by type) for the year 2021- 2022. Video 

(generation and sharing) dominates the total traffic generated by the cellular users [22]. 

Due to the surge in multimedia services [23, 24], existing centralized 

architectures and mechanisms may not be able to meet the content-sharing 

demands [2, 20]. Therefore, decentralized architectures and load mitigation 

techniques are required. It is worthwhile to offload some of the multimedia 

traffic to the D2D tier to reduce the load on the cellular network’s 

infrastructure. In practice, popular content, such as Social Media platform 

content (Facebook, Twitter, etc.), YouTube videos, are requested much more 

frequently than others. As a result, the eNB often ends up serving different 

mobile users with the same contents using multiple duplicate transmissions. 

The initial transmission of popular content can be cached and users demanding 

Video (more than 70% of the total traffic)

Audio

Web Browsing

Social Networking

Software (Download & Update)
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the same contents, that are within the transmission distance, can receive the 

“cached” contents directly through D2D communication. 

Ultra-dense networks have encouraged many researchers to study the 

feasibility of clustering and relaying techniques. Various research works have 

targeted D2D clustering which has found that relaying traffic to different 

cellular users by clustering them, can achieve lower signaling overhead and 

better spectral and energy efficiency [25, 26].  

2.2 D2D Clustering Literature 

An introductory study of D2D multicast is available in [18] that forms clusters 

with a predetermined number of D2D devices. It shows the gain in data rate 

achieved through cooperative multicast transmission for clustered D2D 

communication. Another study has been conducted in [27], with a point of view 

of reducing data distribution time. It provides an approach to better handle the 

transmission failures by letting CHs assist CMs to retransmit the failed 

transmission. Yaacoub et al., [28] utilize game theory for collaborative 

communication among D2D clusters. A comprehensive study has been 

presented in [29] to determine the effect of varying data transfer rates on energy 

consumption. 

It is suggested that multicast performance can be improved by clustering [30, 

31]. Moreover, it is emphasized that D2D multicast can yield better results as 

compared to non-cellular short-range technologies [32]. Another application 

supporting traffic safety introduced multi-hop architecture in [33], to maximize 

transmission distance and minimize transmission delay. 

The users are actively involved in social interactions and wireless networks can 

gain benefits from such interactions [34]. Social ties have been exploited in [35] 

to evaluate the gains of cooperative communication in a D2D enabled cellular 
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network. This work exploited social reciprocity and trust. Optimization of the 

D2D network is presented in [36] by introducing social ties among users. 

Clustered D2D communication has been studied in [37] where a joint 

optimization methodology was presented for precoding D2D and cellular 

transmissions. It is important to note that all the above-mentioned works 

consider distance among DUEs as the main metric for clustering. However, 

later in Chapter 4, it is shown that other parameters are important and should 

be considered while forming clusters.  

D2D clustering and relaying have been popularly used for coverage 

improvements and traffic aggregation [38-42]. These works derived analytical 

expressions for throughput, power, and energy efficiencies. In [41], the trade-

off between latency and transmit power is shown highlighting that transmit 

power can be reduced subject to increased latency. It has been shown in many 

works that the formation of appropriate clusters lead to better performance in 

underlay D2D networks. Many research works have taken into consideration 

different factors like location, social characteristics, and contents similarity 

while making clustering decisions. In [42], cluster formation was based on 

location. Another research work [43], jointly considers location and social 

characteristics for clustering. In [44] and [27], it is shown that the performance 

of a cluster is greatly affected by the cluster head selection. In these works, a 

cluster head is considered to be a device having content to share with the 

highest number of D2D links.  

2.2.1 Inherent Benefits of D2D Clustering 

While discussing clustering for D2D networks, it is very important to study the 

inherent benefits of introducing clustering into D2D-enabled networks. 

Different research works (listed in Table 2.1) have evaluated the throughput 
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performance of the clustered network. Analytical and simulation-based results 

are presented to support their observations and findings. According to the 

results, the clustering algorithm for D2D pairs can produce higher throughput 

as compared to other works that do not consider clustering. 

Carpio. et al. [45] suggest that the conventional method for increasing the 

throughput and capacity of the network includes physical-layer capacity 

improvement, increasing the area spectral efficiency by reducing the cell size 

but clustering promises to present a simpler and viable solution for the 

improvement in the capacity and throughput especially in case of high user 

density. Guo et al.,  [46] used the graph theory for cluster formation and 

resource assignment for the D2D network. The numerical results show that 

their algorithm can achieve better throughput as compared to conventional 

LTE networks. Authors in [47] show that cooperatively formed clusters for D2D 

users can produce the benefits of higher throughput and better energy 

consumption. Their results show that throughput is scalable with the increase 

in size and number of clusters. A greedy heuristic algorithm is proposed in [48] 

to maximize the number of satisfied users in a cluster. Results show that the 

throughput is much higher than the un-clustered networks and a significant 

increase in the number of satisfied users is seen as compared to other works 

considering the same performance parameters. A location-based clustering 

algorithm is utilized in [49] to propose a model for inter-cluster 

communication. They have used cooperative relays to improve the 

retransmission throughput as compared to a conventional network which does 

not consider clustering and cooperative relaying. 

Some researchers have utilized game theory to jointly optimize power and 

resource allocation for overall improvement in the system throughput while 
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others focus on better resource allocation strategies for throughput 

maximization via transmission rate improvement [50]. The major 

categorization of these models includes cooperative and non-cooperative game 

nature. All these models have proven to provide better resource management 

techniques with improved throughput, especially for a clustered network [51]. 

Stackelberg game is popularly used for resource allocation among Cellular 

User Equipment (CUEs) and DUEs [50, 52-54]. These works employ a buyer-

seller scenario to maximize the utilities of the users and central controller. The 

authors in these works show that individual utilities of users and central 

controllers eventually reach an equilibrium where throughput, power, and 

interference levels cannot be further improved. The only problem is that 

throughput achieved via this technique is lower as compared to other methods 

targeting clustering applications. Moreover, though the game theory 

optimization techniques are effective, they increase the signaling load of the 

central controller. 

2.3 The Requirement of Clustering Algorithm and Supporting Decentralized 

Network Architecture 

Collaborative communication, content, and resource sharing can be realized by 

clustering the DUEs in proximity [55]. By allowing DUEs to form clusters 

collaboratively, network resources can be better utilized, interference can be 

managed, intra-cell and intragroup communication can be efficiently 

coordinated and social interactions can be improved as well [56].  

D2D enables the merger of the attributes and capabilities of both distributed 

and centralized communication mechanisms. [57]. Moreover, D2D 

communication in a clustered environment can be easily integrated into a 
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cellular network with the help of cognitive radio and cooperative 

communication.  

It should be noted that D2D communication in clusters also helps in designing 

distributed mechanisms for network management. Distributed mechanisms 

are significant for today’s cellular networks since the number of mobile users 

have increased rapidly over the past decade. Smartphones and other handheld 

devices have played a vital role in this exponential rise of mobile users (see 

Figure. 2.2 for relevant data).  

 

Figure. 2.2 Increasing trend of mobile users where smartphones have played a significant role 

[21]. 

With exponentially increasing network devices, it is becoming difficult to fulfil 

the QoS requirements of multimedia services [58, 59]. The growth of cellular 

devices has been addressed with the concept of dense networks having a large 

number of small cells. However, the limited capacity of the backhaul becomes 

a bottleneck in such a scenario [60]. It has been proposed that the significant 

growth in 5G networks and beyond can be accommodated by investing more 

in Content-Centric Networks (CCN). The rationale behind a CCN is to present 

a scalable and efficient mechanism for content delivery [61]. The techniques 

developed around CCN are expected to reduce the transmission delay by 

20
17

20
18

20
19

20
20

20
21

20
22

0

5

10

15

B
il
li
o

n
s
 o

f 
D

e
v
ic

e
s

Smartphones

Phablets

Tablets

M2M

Nonsmartphones

PCs



   

15 | P a g e  
 

caching the data within the network. Data caching is performed closer to the 

group of mobile devices/content requesters by exploiting social ties (e.g., 

shared interest in similar content) [62, 63]. In CCN [64], contents are acquired 

by their name rather than the IP address of the entity hosting the content. This 

communication paradigm is expected to decrease network congestion while 

providing fast and secure distribution of the contents [65].  

Device-level caching can be facilitated by D2D communication. D2D has been 

effectively used to disseminate data in various network scenarios. However, 

the network architectures presented in many of these works [62, 63, 66, 67] (and 

other works mentioned in Table 2.1) that consider D2D multicasting scenarios 

are centralized in nature and require massive message passing to make the 

whole scheme work. Such schemes do not meet the requirements of dense 

future networks such as 6G. Contrary to this, a decentralized architecture is 

proposed in this thesis (please see Chapter 3) that can effectively support the 

D2D multicasting scenario. 

Apart from CCN, researchers have investigated other technologies that address 

the scalability of the network and the ability to cater to the growth in wireless 

traffic and services. The Network Virtualization (NV) concept has been widely 

used [60, 61, 63] in this context. Virtual Private Networks (VPN) is one such 

example. Network virtualization aims to slice the resources of cellular 

architecture into virtual resources to be shared among multiple users. It should 

be noted that by cellular resources we mean a licensed spectrum and 

infrastructure e.g., Core Network and Radio Access Network, etc. [63]. All the 

signalling and message passing that needs to take place to set up the virtual 

network is well researched and presented in the literature [60, 61, 63].  
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This thesis proposes a network architecture that combines the concepts of CCN 

and NV. This is different from the schemes found in literature, as we merge 

both the technologies. There are significant advantages to the proposed merger. 

One of the most important features is that not only the cellular resources but 

the actual contents can be shared. Duplicate transmissions exhaust the cellular 

resources. The content-sharing among the networks with the aid of 

virtualization can significantly reduce these redundant transmissions. Details 

of the proposed architecture are presented in the next chapter. 

When a multicasting scenario is considered in the literature within the context 

of clustering, most works assume that users sharing a common interest have 

already been identified. Furthermore, if a system model is presented, how a 

typical cellular architecture can support such a model is not shown or glossed 

over. Most articles either discuss social tie/social interest modelling or 

clustering algorithm in detail but not both [68, 69]. For instance, in [68], a 

clustering algorithm has been proposed and social metric is also considered as 

an important factor. However, it does not provide any details around how the 

users having the same interest are identified. The architecture that supports 

their system model is not presented either. Research work presented in [69] 

discusses the social ties/social attributes in detail and effectively describes the 

mechanism behind modelling social metrics. It also considers clustering for a 

multicasting scenario but the clustering itself is assumed to have taken place by 

placing the users in a certain grid. Therefore, clustering and its effects on the 

performance parameters have not been discussed. It should be noted that that 

[68, 69] uses centralized mechanisms. Similar is the case with various other 

works mentioned in Table 2.1. It also suggests that most studies focus on 

throughput, energy consumption, and area spectral efficiency (ASE) but 

fairness has not been given due attention in the relevant literature which is 
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elaborated in Figure. 2.3. On the other hand, research suggests that throughput 

fairness is an important parameter for evaluating a cellular network [70-73].   

As shown in Table 2.1, a clustering algorithm that is supported by a distributed 

architecture, considers different performance parameters including fairness, 

and offers the flexibility to trade-off the performance for fairness is not seen in 

the recent and relevant literature. Moreover, since the content-sharing scenario 

is considered, a network architecture that conforms to the requirements of 

content identification is required as well.  Therefore, the first part of this thesis 

is dedicated to accomplishing these tasks and addresses this gap by developing 

a clustering algorithm along with decentralized architecture and a mechanism 

to identify the content of interest.  

Table 2.1 Summary of Clustering Related Articles and Their Performance Parameters 

Research Year 
Distributed 

Architecture 

Performance Parameters 
User 

Segregation Throughput 
Energy 

Consumption 
ASE Fairness 

Xu et al. [74] 2014   ✓ ✓   

Militano et al. 

[75] 

2015 
  ✓    

Asadi et al. 

[47] 

 2016 
 ✓ ✓  ✓  

Ashraf et al. 

[76] 

2016 
 ✓     

Afshang et al. 

[77] 

2016 
   ✓   

Afshang et al. 

[78] 

2016 
   ✓   

Zhang et al. 

[79] 

 2017 
  ✓    
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Doumiati et al. 

[80] 

2017 
  ✓    

Yi et al. [81] 2017    ✓   

Xia et al. [82] 2017   ✓    

Niu et al. [83] 2017   ✓    

Ren et al. [84] 2017  ✓     

Kitagawa et 

al. [85] 

2017 
 ✓     

Tulu et al. [86] 2017  ✓ ✓    

Xu et al. [87] 2017   ✓ ✓   

Huang et al. 

[88] 

2017 
  ✓ ✓   

Li et al. [89] 2017   ✓ ✓   

Duan et al. 

[90] 

2017 
  ✓ ✓   

Yaacoub et al. 

[91] 

2018 
  ✓    

Zhao et al. [92] 2018   ✓    

Sharafesddine 

et al. [93] 

2018 
 ✓     

Yang et al. [94]  2018   ✓    

Huang et al. 

[95] 

 2018 
 ✓     

Rahman et al. 

[96] 

 2018 
  ✓    

Amer et al. [97] 2018  ✓ ✓    

Pizzi et al. [98] 2019  ✓     

Aslam et al. 

[99] 

2019 
 ✓ ✓ ✓   

Shi et al. [100] 2019   ✓    

Wu et al. [101] 2019  ✓     
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Wang et al. 

[102] 

2019 
   ✓   

Yin et al. [103] 2019   ✓ ✓   

Zhou et al. 

[104] 

2020 
  ✓ ✓   

Zhang et al. 

[55] 

2020 
  ✓    

Yin et al. [93] 2020  ✓     

Gong et al. 

[105] 

2021 
 ✓     

Jian et al. [106] 2021  ✓ ✓    

The Proposed 

Work 

2021 
✓ ✓ ✓ ✓ ✓ ✓ 

  

 

Figure. 2.3 Performance parameters considered by various research articles. It clearly shows 

that throughput fairness has not been widely considered by the clustering-related works. The 

proposed study considers Throughput Fairness while evaluating the performance of the 

clustered network. 

2.4 The Requirement for Optimizing the Clustering Process  

For content-sharing applications, it is important to design clustering algorithms 

and study content caching techniques. However, while these works improve 

the performance of the clustered network, optimization of the clustering 
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scenario has not been well explored. A further investigation of the D2D 

clustering-related literature suggests that the focus of most research works is 

only on system-level performance. The effect of clustering on user-level 

performance needs to be investigated. Some users can be at a disadvantage 

after being placed in the clusters. Therefore, this thesis aims at optimizing the 

clustering process by investigating the effect of clustering on the performance 

of an individual user.  

A study of recent clustering algorithms [74 - 106] shows that these works place 

all the users that are interested in sharing the same content in clusters. While 

this is a standard practice among clustering works, it does not reflect the effect 

of clustering on the performance of the individual users.  More precisely ‘all in 

cluster’ approach does not consider the possibility of having two distinct 

groups of users: users better served in clusters, and users that are better served 

without being in clusters (i.e. connected to eNB). We aim to identify the users 

better served by not being in clusters communicating directly with the eNB. 

Therefore, a mixed-mode clustering approach is proposed (also called the ‘user 

segregation’ approach). It is shown that such an approach improves various 

performance parameters significantly.  

As far as the author is aware, the concept of user segregation has not been 

explored before in the literature. All the research works mentioned in Table 2.1 

do not consider the user segregation concept. 

To perform the user segregation, ML has been utilized. Specifically, various 

classifiers have been explored and applied to segregate the users (details can 

be found in Chapter 5). The following sub-section describes the basics of ML, 

the rationale of using ML, present various applications of ML as applied to 

wireless networks and discuss related research works as well. 
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2.5 The Key Concepts of Machine Learning 

Machine Learning aims at designing algorithms that train on the input data to 

predict an output. Conventional modelling often falls short of learning the 

complex relationships that exist among various parameters of wireless 

networks [107]. For example, it may be difficult to accurately model a 

communication scenario owing to the non-linearities brought into the system 

due to hardware impairments, propagation complexities, etc. [107, 108]. 

Therefore, ML algorithms are often utilized to address these challenges. A 

sequence of steps is followed to train the ML algorithm that are briefly 

described in the following text. 

1. Data Collection and Data Preparation 

The first step is to gather the data. It is significantly important since the quantity 

and quality of the collected data impacts the performance of the trained 

algorithm. Once the data is collected, it needs to be prepared for training. To 

prepare the data, it needs to be cleaned (eliminate duplicates, address missing 

value issues, randomize the data, etc.) and most importantly split into training 

and testing sets.   

2. Selection of Training Model 

Different ML algorithms are available, and it is important to choose a particular 

model that suits the data and the application scenario. The details on different 

ML algorithms can be found in the subsequent sub-section. 

3. Train a Model 

At this stage, input data (usually set aside for training known as training data) 

is used to learn the relationship between input and output and make accurate 
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predictions. It is an iterative process where each training epoch updates the 

algorithm.  

4. Model Validation 

Once the model is trained, it is evaluated against unseen data. Difference 

performance metrics evaluate the trained model such as accuracy, loss, area 

under the curve, etc. Based on the results, various parameters (known as 

hyperparameters) are tuned to improve the performance of the trained 

algorithm.  

5. Model Testing 

The last step utilizes the withheld data (known as test data) to test the model 

and make predictions for the problem under consideration. This step best 

approximates the practicality of the model to a real-world application. 

2.5.1 Machine Learning Techniques 

Various machine learning techniques exist in the literature that can be used to 

address different challenges of wireless networks. A brief description of these 

techniques is provided below. 

➢ Supervised Learning 

A ML approach that aims to learn the relationship between input and output 

given that labelled data is utilized for learning. The output of the learning 

algorithm is compared with the intended output to determine the errors and 

this information is then utilized to improve the accuracy of the algorithm. This 

learning approach can be used either for classification (predicting a class label) 

or regression (predicting a numerical value). Support Vector Machines (SVM) 

and K- Nearest Neighbors are examples of supervised learning algorithms.  
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➢ Unsupervised Learning 

Unsupervised learning algorithms aim to learn the hidden functions/relations 

given that the data is not labelled. In this technique, the algorithm itself uncover 

the associations, similarities, and patterns. Among many examples, K-Means 

clustering algorithms and Principal Component Analysis (PCA) are the two 

popular learning techniques [109]. 

➢ Reinforced Learning 

The objective of Reinforced Learning (RL) is to optimize an objective function. 

An agent, a component of the system, is utilized for learning. The agents learn 

from their environment and perform the optimization. 

➢ Neural Networks 

As the name suggests, Neural Networks are comprised of neurons, attached to 

their respective weights that pass through an activation function to provide an 

output. There can be several layers of this network, each layer can have a 

different number of neurons and different activation functions. To optimize the 

network different backpropagation techniques can be applied such as Adam 

etc. [110].  

All of the above-mentioned learning techniques can be further divided into 

various algorithms. These are summarized in Figure. 2.4. 

The problem discussed in this thesis falls under the category of classification 

and specifically, it is a binary classification problem (highlighted in Figure. 2.4). 

Binary classification refers to the problems that involve two classes. It assigns 

a data instance to one of the two classes. An example is classifying an email as 

“spam” or “not spam”. In this thesis, binary classification is utilized to 

determine whether a node should be a part of the cluster or should be 
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associated with the eNB. Various binary classifiers such as Decision Trees, 

Neural Networks and Supports Vector Machines are available and investigated 

in this thesis. Details can be found in Chapters 5 and 6.  

Neural Networks

• Deep Neural Network

• Recurrent Neural Network

• Convolutional Neural Network

• Feed Forward Neural 

Network

Machine Learning Techniques

Supervised 

Learning

Unsupervised 

Learning

Reinforced 

Learning

Regression Classification Clustering Association Classification Control

Binary 

Classification

Support Vector Machines

Random Forest

K-Nearest Neighbors

Decision Trees 

Linear Regression

K-Means Clustering

Principal Component Analysis

Association Rules 

Q-Learning

Multi-Armed Bandit Learning

Actor-Critic Learning

Deep Reinforcement Learning

Joint Utility and Strategy Estimation

Multi-class 

Classification

Typical Application and Algorithms 

for Supervised Learning

Typical Application and Algorithms 

for Unsupervised Learning

Typical Application and Algorithms 

for Reinforced Learning

  

Figure. 2.4 Categorization of Various Machine Learning Algorithms. Neural Networks can be 

used for both Supervised and Unsupervised Learning. This study utilizes ML for Binary 

Classification. 

2.6 Machine Learning for Wireless Networks 

The last decade has seen numerous applications of ML for different fields of 

study. Similarly, ML has gained the attention of the wireless communications 
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discipline as well. The reasons for utilizing ML for wireless network solutions 

are as follows: 

• Conventional approaches present an undesirable burden on the central 

controllers owing to massive signaling/message passing between 

various entities of the cellular network. 

• Simulation enables the researchers to create training sets that best 

approximate the real-world data. 

• Explanations for various wireless solutions are not required rather a 

black box realization is sufficient.   

ML has been utilized for providing solutions for wireless networks ranging 

from the physical layer to the application layer [111]. Some of these works 

focused on Wireless Sensors Networks (WSNs) [112, 113], Wireless Adhoc 

Networks (WANET) [114], Cognitive Radio (CR) [115], and IoT [116]. For 

instance, WSN employs machine learning techniques to adapt to dynamic 

environments. WSN utilizes machine learning to optimize energy 

consumption, scheduling, routing, and security, etc. [113]. Authors in [117] 

jointly consider cognitive radio and machine learning to investigate the 

complex spectrum requirements of the communication system. The authors 

propose a new model of anti-jamming, based on machine learning. On the other 

hand, [118] investigates the spectrum sharing problem. A multi-agent learning 

framework has been introduced to optimize the spectrum sharing process. 

Considering the characteristics of future wireless networks, it is envisioned that 

ML will substantially improve network performance. This is possible by 

learning the real-time wireless environment.  
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Machine learning (ML) is applied to various problems in wireless networks 

[119]. To be able to run the network economically, the system needs to be self-

aware and adaptive [120]. Conventional methods of network maintenance are 

not efficient any longer. However, machine learning allows the network to 

perform proactive and predictive maintenance. It has been reported in the 

literature that machine learning has found several applications in wireless 

networks that help the cellular operators to find unknown properties, identify 

anomalies in the network, identify correlation in the data generated by cellular 

networks that is impossible to be inspected otherwise, and based on these 

observations find novel ways to optimize the networks [121, 122]. 

The three important drivers of applying machine learning to cellular networks 

are cost & service, usage, and technology [121]. It is easy to optimize the 

network by applying machine learning algorithms trained offline which 

reduces the cost of network maintenance. On the other hand, cellular resources 

are not increasing proportionally to the traffic load, therefore it is important to 

manage the network traffic more efficiently. Recent research has proven that 

machine learning algorithms are efficient in regulating the network load [120-

124]. Another important application of machine learning is that it helps balance 

the distributed and centralized functionality of the network [121, 122].  

As we are moving towards the deployment of 5G, the focus has shifted towards 

developing the technologies necessary to realize the next generation cellular 

networks such as 6G. Besides the improvement in the current techniques, ML 

approaches have been recognized by many researchers as a potential tool to 

provide optimal solutions to the complexities of the 6G network [125]. It should 

be noted that ML algorithms not only deliver network optimization solutions, 

but they also profoundly change the architecture of the 6G network. Therefore, 
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data storage and learning servers are now an essential part of the cellular 

network architecture [121, 122, 126-129]. 

Recent works have focused on ML applications of clustered cellular networks 

[130, 131]. 6G is envisioned to have various D2D use-cases and research 

suggests that many of these applications are better realized by applying 

clustering algorithms [3]. A few preliminary studies have shown that clustering 

is going to be an integral part of 6G [132]. A summary of various ML 

applications specific to cellular networks and clustering is presented in Figure. 

2.5. 
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Figure. 2.5 Machine Learning Applications for Next Generation Cellular Networks. 

While incorporating ML into wireless networks, two implementation 

mechanisms need to be considered namely, online and offline [122, 133]. Online 

learning considers the live network data whereas offline learning exploits a 
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static dataset often referred to as batch learning. During offline learning, ML 

parameters are updated once the whole batch is consumed. On the other hand, 

in an online implementation, parameters are updated based on one training 

sequence.  

Online ML algorithms are part of the networking algorithms or protocols 

whereas offline ML algorithms may be executed by a computing facility 

(remote or co-located)  connected to network entities [122, 133]. Offline 

implementation is realized via offline learning servers that are now essentially 

part of the cellular network (more details can be found in Chapter 5). Offline 

ML is important due to the strict latency requirements of modern cellular 

networks.  

Owing to the benefits of ML and offline learning, we utilize ML for the 

proposed work. It is synergistic to the other ML proposals as well. However, 

we are targeting a clustering application and proposing user segregation for 

performance improvement. Moreover, if we consider an online network, then 

solving this problem conventionally, without utilizing the ML, will present an 

impractical scenario, where the signalling required to set up an eNB assisted 

solution would be unrealistic. Therefore, offline training makes the scheme 

distributive and hence, realizable in a real-world scenario. 

2.7 Research Objectives 

While different research works have achieved promising results, based on the 

literature review, this thesis aims for the following research objectives: 

RO. 1:  Design clustering algorithm for content-sharing scenarios supported by 

a decentralized architecture.  
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1.1 Clustering based on parameters other than conventional ‘node location’. 

Exploit the information acquired during the discovery phase and utilize it 

for cluster formation for a distributive mechanism. 

1.2 Propose decentralized network architecture that can complement the 

proposed clustering algorithm supported by a content-identification 

technique.  

1.3 Demonstrate the impact of social-interest on the throughput of the D2D 

clustered network. 

1.4 Evaluate the clustering algorithm for various performance parameters such 

as throughput, energy consumption, area spectral efficiency, and 

throughput fairness.   

1.5 Investigate the effect of forming a various number of clusters on 

performance parameters.  

RO. 2: Optimize the clustering process by evaluating the effect of clustering on 

individual user’s performance.  

2.1 Utilize machine learning algorithms to perform user segregation. Determine 

the nodes that are better off without clusters. 

2.2 Determine the effect of user segregation on various performance 

parameters.  

2.3 Identify the data collection opportunities in the cellular networks to present 

a practical ML based solution. 

2.4 Determine the machine learning algorithms that should be used for user 

segregation as several algorithms (or classifiers) exist in the literature.  

2.5 Investigate the loading effects of user segregation.  
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2.6 Demonstrate that the user segregation improves the performance of the 

system irrespective of the clustering scheme applied i.e. improvement due to 

user segregation is independent of the clustering algorithm. 

2.8 Research Methodology 

Standard research methodology was utilized in this thesis that also conforms 

to the research work taking place in the field of cellular communications. The 

first phase of this research was dedicated to literature review. Literature review 

provided insights into the state-of-the-art schemes related to cellular 

architectures, clustering algorithms, optimization techniques, and performance 

parameters. The literature also steered the research towards MATLAB based 

simulation. In the second phase of the research, various classical and state-of-

the-art clustering schemes were implemented for replication of the results 

presented in the literature. Lastly, the system model was developed, and the 

proposed clustering algorithm and user segregation schemes were thoroughly 

evaluated by exhaustive simulation. The proposed schemes were benchmarked 

against several algorithms and found to be superior.  
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                                            CHAPTER 3 

THE CLUSTERING ALGORITHM 

The concept of clustering users in proximity sharing a common interest has 

been very popular for multicasting scenarios [20]. Typically, an intermediate 

node which is a CH fetches the content from the eNB and delivers it to several 

content requestors [51, 134, 135]. A similar multicasting scenario is considered 

in this chapter. The concept is illustrated in Figure. 3.1. 
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Figure. 3.1 A typical clustering scenario. A few users sharing a common interest are going to 

be served in clusters. Red devices represent CHs, which fetch data from the eNB and serve the 

cluster members. 

To realize clustering that supports content-sharing via D2D, a suitable network 

architecture is necessary that not only conforms to the standards of future 

cellular networks but needs to be distributive as well. Moreover, it should be 
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capable of handling a high user density. Therefore, we propose a decentralized 

architecture suitable for content-sharing. The proposed architecture is suited 

for 5G and beyond. As discussed, this architecture utilizes Content-Centric 

Networking and Network Virtualization, the key technologies required to 

realize a 5G architecture [136-141]. The proposal also employs the same frame 

structure as employed in the published article on 5G [142-145].  

Recent literature suggests that the geographical distribution of mobile users 

plays a vital role in successful content caching [146]. Moreover, to ensure 

nearby availability of content, caching at a D2D device should consider social 

ties and request patterns. Therefore, it is important to identify users having 

common social characteristics.  

In this study, the proposed decentralized architecture is supported by simple 

hash-based functions that have been previously used in multimedia broadcast 

networks for identifying users with a common interest. These users are then 

organized in clusters. The clustering takes place based on the multi-factor 

algorithm considering proximity, channel gain, and channel variance, detailed 

in Section 3.3. The clustering algorithm is optimized using fuzzy optimization 

which is useful in optimizing clustering as well as other parameters of a cellular 

network [147-150]. Once the clustering takes place, CHs are responsible for 

multicasting the required information to their cluster members. The summary 

of the proposed research is presented in Figure. 3.2. 
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Figure. 3.2 Summary of the Proposed Mechanism. The four critical aspects are: distributed 

architecture implementation using Content-Centric Networking (CCN) and Network 

Virtualization (NV), identification of users with common interest using hash functions, cluster 

formation with the proposed multi-factor algorithm, and optimizing the clustering algorithm 

using fuzzy logic. 

3.1 The Distributed Architecture 

The concept of CCN is predicated on the requested content reaching the 

requester without needing to reach the content publisher/provider [63]. 

Therefore, caching the requested content at an intermediate node will enable 

content delivery with reduced energy consumptions and latency. Once the 

intermediate node has cached the content, it can be provided to several 

requesters. Architectures supporting CCN have been proposed in the literature 

[61, 63, 151, 152]. However, these works consider centralized mechanisms.   

The architectures presented in [61, 63] involve eNB, and significant signaling is 

required to take place between eNB and the D2D nodes, before the content 

delivery. On the other hand, [151] does not provide any details on the 
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architecture. The work presented in [152] does consider decentralized 

mechanisms, but it does not explicitly show any architecture that supports their 

mechanism. Our research considers a similar approach as presented in [61, 63] 

with necessary modifications to accommodate the clustering of users for content-

sharing scenarios and making the scheme distributive. Figure. 3.3 shows the 

network model of the proposed content-centric architecture. It is different from 

a conventional wireless network such as Internet Protocol (IP).  

 

Figure. 3.3 The proposed distributed network architecture. Each red device represents a cluster 

head that forwards the requested content to the virtualization controller that connects with the 

multimedia servers to fetch the contents. 

The basic difference lies in the establishment of the connection. IP based 

networks first establish the connection between the requestor and the provider 

before the content is delivered. In contrast, the content is requested without the 
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establishment of the connection with the host/content provider in CCN. The 

proposed architecture utilizes CCN as well as network virtualization. The 

controller for virtualization, shown in Figure. 3.3, is responsible for providing 

the location of the content-holder as well as setting the virtual infrastructure 

components for the content delivery. With the help of virtualization, 

infrastructure and radio resources such as spectrum resource, RAN and core 

networks, etc., can be sliced into the virtual network resources shared by various 

cellular networks [61]. This provides operational efficiency, extra resources, and 

ease in delivering the contents for all the networks involved in virtualization. In 

the proposed merger of CCN and NV, virtualization controller (VC) is significant 

for efficient content delivery. The VC is responsible for managing and 

customizing the sliced network resources and most importantly providing 

programmability of the virtual resources [61]. VC decouples the data and control 

plane so that network operators can customize the sliced resources according to 

their requirements. Scheduling and forwarding of contents can be customized 

by VC as well. It is important to note that VC is not centralized in its operation 

since it controls several cellular networks participating in virtualization. 

Therefore, the architecture proposed in Figure. 3.3 is independent of eNB and 

depends on virtualization controller having distributed functionality.    

Another important entity of the proposed architecture is the caching server. It is 

an integral part of the network which caches popular contents and reduces 

duplicate transmissions. 
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Figure. 3.4 The visualization of a layered network showing the interaction between social users 

and the corresponding physical layer. 

The proposed architecture relies on CCN. Therefore, content can be delivered 

from any network location/device. Most elements in a CNN are assigned hash 

spaces where contents can be identified and stored. When a user requests a 

particular content, the request goes to the VC via a CH (please see Figure 3.3). 

The VC determines both the content location as well as the routing process. The 

content request is sent to the router, and if the requested content is cached in the 

corresponding router, the content is delivered to the user via CH, otherwise, the 

request is forwarded to the content/multimedia server. 
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Figure. 3.4 shows the layered network. The first layer, termed as a social layer, 

represents the social ties that exist among different groups of users. The physical 

layer represents the mobile devices that model the communication taking place 

in various clusters represented by a CH. It also shows the supporting 

infrastructure required to set up the communication and making content 

delivery possible. 

3.2 Content Identification Using Hash Functions 

One of the important aspects of the proposed architecture is the mechanism 

that addresses the content-identification. When several users request similar 

content, they need to be identified so that they can be part of the same group. 

We propose to utilize Hash Functions [153] for the content-identification.  

Hash functions perform the mapping between the given data and hash of a 

specific length. The size/length of the output of a hash function does not depend 

on the length of the input. Hash can be regarded as a ‘signature’ for a given text 

[153-155]. The output binary sequence is termed as ‘Hash’ (Figure. 3.5). One of 

the major applications of hash functions lies in the field of multimedia 

broadcast networks, as a content identifier [153-155]. The hash function aids the 

network by providing the content identification to easily determine which 

content has been broadcasted, timing information, and to what station. Several 

hashing algorithms exist in the literature; we suggest using SHA-256 due to its 

reduced complexity and speed [156, 157].  

Since this work is considering content-centric networks, it is important to name 

the contents rather than naming the network devices or hosts. For example, in 

a typical Named-Data Network, all the data/content is named and ‘digitally 

signed’ by the publisher of the content. The binary sequence generated by the 

hash functions for a particular ‘text’ or ‘name’ will always be the same. 
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Therefore, if we produce the hash of various contents at the content servers, 

then the hash value can be matched with the one generated by the content 

requestors. If the hash value matches, it means that the same content is being 

demanded. Moreover, based on the hash values, groups can be identified 

requesting the same content. It is clear that hashing will not only help in 

identifying the content but also the group of users sharing the same interest. 

Therefore, we believe, that hashing is a natural choice.  

To further elaborate the concept, let us consider a scenario where a group of 

users is interested in a certain ‘music video’. Based on the generated hash, users 

sharing the same interest are identified and the request is forwarded to the CH, 

the intermediate node. CH only uses the hash value to transmit it to the content-

server that exists in the proposed architecture, given in Figure. 3.3. When such 

a match is found in the content server, the CH receives the content and 

broadcast it to the content requestors/users in a group. It should be noted that 

the content publishers/content servers do not need to share the details of the 

contents to the intermediate nodes or CH rather, only the information needs to 

be forwarded.  

 

 

Figure. 3.5 The Hash Function: Plain Text to Hash Value. 
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3.3 Clustering Mechanism 

Clustering commences once users demanding the same content have been 

identified. The user clustering process consists of three main steps: the selection 

of appropriate clustering metrics, identification of the devices suitable for being 

a CH, and finally, associating the cluster members with their respective CHs. 

The overall clustering process is shown in the flow chart of Figure. 3.6. 

 

 

Figure. 3.6 Flow Chart of the Clustering Algorithm. 
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All the information required for forming clusters can be obtained via D2D 

discovery. This information is obtained and utilized to form clusters without 

the involvement of eNB or any other centralized controller. Therefore, the 

clustering algorithm can be characterized as decentralized.  

It has been reported in the literature that distance and channel conditions can 

be obtained via the D2D discovery process [158, 159]. Each device/user runs the 

clustering algorithm, summarized in the flow chart of Figure. 3.6.  

Before communication takes place, all the devices need to be discovered. Each 

device maintains a neighborhood table which is obtained by sending peer 

discovery signals [160]. This signal may contain the positioning information 

and device ID. Once the discovery signal is successfully received by other 

devices, a response signal is sent back with all the necessary information like 

channel conditions and distance to the user of interest. Therefore, all the devices 

after discovery possess the necessary information of clustering metrics. Each 

device calculates its weight and broadcast to its neighbors. Once the signals 

from multiple devices are received, the devices with the best weights broadcast 

cluster joining requests, and all the devices that receive this request, get 

associated to that CH that serves them the best, and thus clusters are formed. 

This process of cluster formation is solely dependent on users and independent 

of the eNB or any other central controller.  

3.3.1 Weighted Clustering Approach 

Cluster heads are selected on a per-frame basis. The duration of one frame is 10 

ms following the relevant literature. All the users are considered CHs for the 

first frame; therefore, the clustering algorithm is implemented for the next 

frames. It is assumed that every node is capable of being a CH and has enough 

energy [94]. The position of the nodes remains the same during one frame. 
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However, for the next frame user distribution/placement of users change and, 

therefore, every simulation represents a different user distribution. This is 

following the standard literature relevant to multimedia multicasting scenarios 

[62, 94]. If the users are mobile, mobility will need to be accounted for with a 

clustering metric since CH needs to be in the cluster to serve its members. If the 

CH moves too fast, the stability of the cluster will be affected. Moreover, there 

will be frequent re-selection of CHs that will increase the computational 

complexity.  

After the initialization, the algorithm gathers the information about the 

clustering metrics, and clusters are formed, details of which can be found in the 

subsequent sections. Before the clustering takes place, the distance among the 

devices and the channel conditions are obtained and conveyed to all the 

neighbors during the discovery phase as explained in the next subsection. 

Based on the information received, CHs announce its cluster members. It is 

assumed that multiple users can be detected simultaneously by the CH. All the 

members listen to the broadcast of the CHs and get attached to the one that 

serves them the best considering distance and channel conditions. 

3.3.2 Device Discovery  

Though the device discovery is out of the scope of this research, we utilized the 

information obtained through the device discovery. Therefore, device 

discovery is described within the context of the proposed algorithm. 

Before the clustering takes place, it is necessary to discover the devices and 

create a neighbor list. It is assumed, as is common practice in the literature [48, 

161-164], that the neighbor list is available with the nodes. For these tasks, we 

propose to use the Peer Discovery Resource (PDR). PDR represents a resource 

unit, used to transmit the discovery signal or beacon signal. Two of the 
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standard PDR structures that are used in published literature are LTE-A and 

FlashlinQ. The PDR structures are shown in Figure. 3.7. Literature suggests that 

a considerable amount of information can be conveyed using either of these 

structures [47, 48, 163]. Moreover, different research works have utilized PDR to 

send clustering-related information [162, 163]. We propose to utilize the same 

concept and use the PDR to send the information regarding the predefined 

clustering metric detailed in the subsequent section. Therefore, the signaling load 

for the proposed clustering scheme will be accommodated by standard signaling 

taking place in a D2D network. 

The users in proximity to one another receive the discovery signals. Devices 

decode this signal containing information such as device or user ID and its link 

characteristics (such as SINR, channel conditions) with the user. Based on these 

characteristics, a device decides which of the users whose signal it has received 

can be classified as neighbors. There are various advanced channel estimation 

algorithms and processes for 5G networks [164] that can be utilized for this 

purpose. Once the neighbor detection has taken place, every user possesses a 

list of its neighbors. 

 

Figure. 3.7 The Two Standard PDR Structures. 
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3.3.3 Clustering Metrics 

The selection of clustering metrics significantly impacts the system’s 

performance. Therefore, the metrics selected for clustering the users are based on 

performance parameters. This work presents two different sets of clustering 

metrics that demonstrate the trade-off among various performance parameters. 

To target aggregate throughput, ASE and energy consumption, distance, and 

channel conditions among the users are considered. However, it was noticed that 

recent clustering algorithms have not considered fairness. The literature suggests 

that fairness is crucial for evaluating a cellular network [165, 166]. Therefore, we 

extended the proposed algorithm to suit the throughput fairness as well. To 

target fairness, we introduced another clustering metric—the variance among 

the channel conditions of the users. All these metrics are attached to their 

respective weight. The details of the clustering metrics are provided in the 

following text. 

1. The Distance Among the Nodes 

Recent literature has identified the significance of the spatial distribution of users 

as it directly influences the caching efficiency [146]. Furthermore, there is a high 

probability of successful D2D transmission if the devices are in proximity [62]. 

Hence, we chose distance among the nodes as an important metric for forming 

appropriate clusters. It is also important since users that do not exist in proximity 

are not ideal candidates for being a part of the same cluster even with a strong 

social relationship. 

2. Channel Conditions 

Since we are considering a multicasting scenario where a CH will be 

communicating with the rest of the cluster members, the cluster members need 

to have a good link with the CH. If we ignore these conditions, both inter-cluster 

and intra-cluster communication might be impaired. Therefore, we believe that 
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the channel condition between the prospective CH and its cluster members is an 

important metric. 

3. Variance Among Channel Conditions 

Considering only absolute channel conditions might disregard many users 

having unfavorable channel conditions. Therefore, in that case, there would be a 

significant difference in the throughputs of the individual users. Owing to this 

reason, we introduced variance of channel conditions, and our assumption is 

validated by the results demonstrating throughput fairness, shown later in this 

section. 

Moreover, since we are considering a multicasting scenario, we are looking for 

approximately similar channel conditions with each node. The reason being, in a 

multicasting scenario, if each device receives the transmission at significantly 

different rates, then the complexity of the system would increase and might 

become infeasible [18]. 

Let us take an example of a scenario where a video stream needs to be broadcasted 

to a group of users. Assume that there are a few users with higher rates as 

compared to the others. Since we are considering broadcasting, the maximum 

achievable rates are determined by the worst physical link in the group. 

Therefore, users having higher rates will face long delays waiting for the other 

users to catch up. This reason makes it even more significant to have variance in 

channel conditions as an important factor in addition to just the absolute channel 

conditions. Though, owing to the degradation in the throughput performance, 

variance in channel conditions cannot be selected as the sole criterion. Therefore, 

the clustering algorithm considers all three different metrics which are attached 

to their respective weights. 
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3.3.4 Cluster Head Selection 

During the CH selection process, devices use PDR to broadcast beacons 

continuously. These beacons include predefined metrics (e.g., distance, channel 

conditions). Every device decoding the beacon stores the corresponding metric 

and its identifiers (as per the details given in Section 3.3.2). This information is 

vital for the devices to select a CH and delegating the control to it for further 

communication. If a certain device is not able to receive a beacon signal, it might 

be out of reach of another device, and it can self-select itself as CH. Once the 

metric information is received from the beacons, all the devices compare their 

metrics. The devices with the lowest metric values are identified as CHs. The 

remaining becomes the cluster members. It should be noted here that all the 

users need to fulfill the predefined criterion to be considered for clustering. It 

is based on the social relationship among the devices. The following steps 

summarize the proposed algorithm. 

Step 1: Determine the neighbors of each node using D2D discovery. 

Parameters of interest are stored. 

Step 2: Determine the nodes sharing the same interest/content using the 

hash function. 

Step 3: Compute the sum of distances (Euclidean Distance) for all the nodes 

against all their neighbors. 

𝐷(𝑎,𝑏) =  √(𝑎𝑋
2 −  𝑏𝑋

2
) +  (𝑎𝑌

2 − 𝑏𝑌
2) (1) 

where a and b represent any two neighboring devices. 

Step 4: Weights of the nodes are accumulated as follows: 

𝑊𝑇 = 𝐼. [𝑤1 ∗ 𝐷(𝑎,𝑏) +  𝑤2 ∗ (
1 

ℎ𝑎𝑏 
)] (2) 
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𝑤1, 𝑤2 represents the weights given to distance, channel gains, respectively. ℎ𝑎𝑏 

represents the channel gain between the nodes 𝑎 and 𝑏. The weights 

represented in Equation (2) are such that ∑ 𝑤𝑓
2
𝑓=1 = 1. The node with the 

minimum 𝑊𝑇 is chosen as the CH. 

Since only nodes sharing a common interest should be considered for 

clustering, the total weight is being multiplied with a binary interest-factor 

denoted by “𝐼”, so that if 𝑧 =  𝑤1 ∗ 𝐷(𝑎,𝑏) +  𝑤2 ∗ (
1 

ℎ𝑎𝑏 
), then, 

𝑊𝑇 =  {
𝑧,     𝐼 ≠ 0
0,     𝐼 = 0

} (3) 

In Equation (3), 𝐼 represent the interest factor. Since clusters are formed only 

for those users that are interested in sharing a specific content, 𝐼 should be non-

zero for a node to be considered for clustering.  

Step 5: Compare the weights for each node and select the cluster head 

corresponding to the smallest 𝑊𝑇. 

Step 6: For the remaining devices, repeat steps 3 and 4, until each node is 

either selected as a CH or a CM. 

        Step 7: Clustering optimization using Fuzzy. 

 

It should be noted that only two clustering metrics (distance and channel 

conditions) have been considered in the above-mentioned cluster head 

selection process. These two metrics target throughput, ASE, and energy 

consumption. We can add the third metric “channel variance” to target 

throughput fairness. However, the algorithm remains the same, as represented 

in Figure. 3.6. The introduction of variance among channel conditions modifies 

Equation (2), to the following: 
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𝑊𝑇 = 𝐼. [𝑤1 ∗ 𝐷(𝑎,𝑏) +  𝑤2 ∗ (
1 

ℎ𝑎𝑏 
) + 𝑤3 ∗ 𝑣𝑎𝑟(ℎ)] (4) 

𝑤3 represents the weight given to variance of the channel gains. The term 

"𝑉𝑎𝑟(ℎ)" represents the variance among the channel conditions of the users. 

The weights represented in Equation (4) are such that ∑ 𝑤𝑓
3
𝑓=1 = 1. The node 

with the minimum 𝑊𝑇 is chosen as the CH. 

3.3.5 Fuzzy Optimization of Clustering 

The initial clusters formed based on the proposed algorithm need to be 

optimized. Therefore, a fuzzy optimization technique was applied. Fuzzy 

optimization partitions the users into 𝐶 clusters based on the proposed criterion 

of clustering. Each input to this function is attached to an attribute such as the 

weights in our study (i.e., 𝑤1, 𝑤2, 𝑤3 of Equation (4)). Fuzzy optimization aims 

at minimizing the objective functions given in Equation (6). In fuzzy 

optimization, the membership of each user is spread among all clusters. One of 

the advantages of this technique is that it handles the outliers effectively. 

Therefore, outliers do not influence the clustering decisions.  

The fuzzy optimization initializes with the cluster heads obtained via the 

proposed algorithm. Hence, the fuzzy optimization algorithm converges faster 

as compared to conventional cases. After the initialization of CHs, the 

membership matrix (presented in Equation (5)) is calculated, and new clusters 

are formed. Finally, the absolute difference between two consecutive 

membership matrices is calculated to check the condition for convergence. This 

optimization is an iterative process where the steps mentioned above are 

repeated until the condition of convergence is achieved. The process stops 

when the clusters stabilize i.e. the clusters from the previous iteration are 

similar to those obtained in the current iteration, conforming to the given error 

threshold (∊). In this optimization, we have selected ∊ ≤ 0.01.  



   

48 | P a g e  
 

Fuzzy optimization is based on a membership matrix 𝑃 where membership 

degree, 𝑝𝑖𝑘 ∊ {0,1}, of user 𝑖 to cluster 𝑘, is defined as follows [167, 168]; 

 ∑ 𝑝𝑖𝑘 = 1 ; 0 ≤  𝑝𝑖𝑘 ≤ 1

𝐶

𝑘=1

 (5) 

The objective function of Fuzzy Optimization is given by Equation (6) [167, 

168]: 

𝑂𝐹 (𝑃, 𝑉) = ∑ ∑ 𝑝𝑖𝑘 

𝐶

𝑘=1

𝑁

𝑖=1

‖𝑋𝑖 − 𝑉𝑘‖2 (6) 

Equation (6) represents the objective function where 𝐶 is the number of clusters 

and 𝑉 is the set of cluster centers. 𝑁 represents the number of samples (users in 

our case) and 𝑋𝑖 is the 𝑖𝑡ℎ calculated sample where ‖. ‖2represents the Euclidean 

norm, and 𝑝𝑖𝑘  denotes the membership of 𝑋𝑖 to cluster 𝑘. Each element of the 

partition matrix is a measure of the extent to which a particular user belongs to 

a certain cluster. The complete optimization process is explained in the flow 

chart of Figure. 3.8. 
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Figure. 3.8 The Optimization Flow Chart. 

3.3.6 Communication 

After the selection of CHs, they broadcast a message containing their IDs. They 

can use the same PDR used for neighbor detection to broadcast the results once 

the broadcast is received, and all the non-CH devices select those CHs to which 

they are closest and receive better channel conditions. The cluster members 

then associate themselves with a certain cluster, and the formation of the 

clusters is complete. The above-mentioned procedure is completely 

decentralized which is very important for dense networks. Once the clusters 

Start
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Calculate the 
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are formed, all the cluster members communicate via the CH. The operating 

phases of the proposed algorithm are shown in Figure. 3.9. The next frame 

follows the same activities. 

 

Figure. 3.9 Frame Structure for Clustering. 

3.4 System Model  

We consider a single cell where users are randomly distributed. In-band D2D 

communication using the underlaying concept is considered. In this case, D2D 

reuses cellular resources. These techniques are well researched [94, 169, 170]. 

The reason for considering the underlaying concept is that reutilizing the 

resources improve spectral efficiency. However, it creates interference and, 

therefore, was considered in the simulation scenario. Conventionally, eNB 

provides the requested content; however, it comes at the expense of increased 

energy consumption and usage [169, 170]. In contrast, the CH is responsible for 

delivering the contents to the requestors as depicted in Figure. 3.3. Once the data 

has been fetched by the CH, the requested content is distributed utilizing the 

D2D multicast communication. 
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3.5 Mathematical Models for Performance Parameters 

3.5.1 Achievable Rates for Cluster Head and Cluster Members 

There are total 𝑁 users in the network which constitute the set 𝑁 =

 {𝑚1, 𝑚2, 𝑚3− − −,𝑚𝑁}. The CHs and cluster members are indexed as 𝑗 and 𝑘, 

respectively. For clarity, all the other symbols are summarized in Table 3.1. 

Table 3.1 List of Symbols 

Symbol Representation 

𝑵 Set comprises of all the users 

𝒌 Index of cluster member 

𝑪𝑯 Cluster Head 

𝑹𝑪𝑯𝒋
 Achievable Rate of 𝐶𝐻𝑗when receiving the contents from the Base Station (BS) 

𝑺𝑵𝑹𝑪𝑯𝒋
 Signal-to-Noise Ratio of a 𝐶𝐻𝑗 

𝑵𝒐  Noise Spectral Density 

𝑩 Bandwidth of the Transmission Channel 

𝒉𝑩𝑺,𝑪𝑯𝒋
 Channel Gain between the BS and the 𝐶𝐻𝑗 

𝑷𝑩 Transmit Power of the BS 

𝑹𝒎𝒌
 Achievable Rate of cluster member 𝑚𝑘 

𝒉𝒎𝒌,𝑪𝑯𝒋
 Channel Gain between the cluster member 𝑚𝑘 and 𝐶𝐻𝑗 

𝑷𝑪𝑯𝒋
 Transmit Power of the 𝐶𝐻𝑗 

𝑭𝑺 File Size (size of the demanded content) 

𝑷𝒄𝒉𝒓𝒙 Power consumed by the CH to receive the contents from BS 

𝑷𝒎𝒓𝒙 
Power consumed by the cluster member to receive the content from cluster head 

(CH) 

The achievable rate at the CH can be written as: 

𝑅𝐶𝐻𝑗
= 𝐵 𝑙𝑜𝑔2 ቀ1 + 𝑆𝑁𝑅𝐶𝐻𝑗

ቁ (7) 

where the SNR of the 𝐶𝐻𝑗 is given by: 
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𝑆𝑁𝑅𝐶𝐻𝑗
=  

𝑃𝐵 ℎ𝐵𝑆,𝐶𝐻𝑗

𝑁𝑜 𝐵
 (8) 

Therefore, we may write Equation (7) as: 

𝑅𝐶𝐻𝑗
= 𝐵 log2 (1 +

𝑃𝐵  ℎ𝐵𝑆,𝐶𝐻𝑗

𝑁𝑜𝐵 
)  (9) 

Since we are considering a multicasting scenario, the achievable rate depends 

on the worst physical link. Otherwise, the successful reception of the content 

for all cluster members cannot be made certain. Therefore, the achievable rate 

at the cluster member 𝑚𝑘 can be written as follow: 

𝑅𝑚𝑘
= 𝐵 log2 (1 +

𝑃𝐶𝐻𝑗
ℎ𝑚𝑘,𝐶𝐻𝑗

𝑁𝑜  𝐵
) (10) 

It should be noted that 𝑅𝑚𝑘
 is the minimum achievable rate to make sure that 

all the cluster members receive the content. 

3.5.2 Energy Model 

Downlink energy consumption is considered in this study. We utilized the 

energy consumption model presented in [28]. We assumed that the content 

demanded by the users is a file of size “𝐹𝑆” 𝑏𝑖𝑡𝑠. Suppose this file needs to be 

transmitted from 𝐶𝐻𝑗 to cluster member 𝑚𝑘 with an achievable data rate of 𝑅𝑚𝑘
. 

The time required to transmit this file is (
𝐹𝑆

𝑅𝑚
)

𝑘

𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Therefore, energy 

consumption 𝐸𝐶 in one of the clusters "𝐶" can be written as: 

𝐸𝑐 =  
𝐹𝑠𝑃𝑐ℎ𝑟𝑥

𝑅𝐶𝐻𝑗

+  
𝐹𝑠𝑃𝐶𝐻𝑗

𝑅𝑚𝑘

+ ∑
𝐹𝑠𝑃𝑚𝑟𝑥

𝑅𝑚𝑘

 
𝑗≠𝑚
∀m

 (11) 

Equation (11) represents the sum of three independent terms. Energy 

consumption of CH to receive data is represented by the first term, whereas the 

second term represents the energy consumed by the CH to transmit the data to 
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their cluster members. The sum of the energy consumed by the cluster 

members to receive the demanded content is shown by the last term in 

Equation (11). 

3.6 The Complexity of the Proposed Clustering Algorithm 

The computational complexity is an important parameter to determine the 

applicability of the algorithm. Generally, an algorithm’s complexity is defined 

by the worst-case running time, represented by the Big-O notation. We use the 

same notation to describe the complexity of the proposed clustering algorithm. 

It has been described in section 3.3.2 that the signaling required to implement 

the proposed clustering algorithm can be accommodated by the standard D2D 

signaling (discovery and communication). However, we describe the 

computational complexity of the proposed algorithm and compare the 

execution time of each of the implemented algorithms. The proposed clustering 

algorithm is summarized in the flow chart of Figure. 3.6. To determine the 

overall complexity of the algorithm, the complexity of each step of Figure. 3.6 

is analyzed next.  

1 – Computation of Sum of Distances (Euclidean Distance) 

Complexity: 𝑂(𝑛) 

2 – Sorting of the Channel Gains  

Sorting Algorithm: Heapsort 

Complexity: 𝑂(𝑛 𝑙𝑜𝑔 (𝑛)) 

3 – Comparison of Weights 

Complexity: 𝑂(𝑛) 
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4 – Initial Clusters Formation/ Communicating Information for Joining 

Clusters or CH selection 

It is assumed that 𝑇𝑆𝑡𝑒𝑝 represent the time taken by the user to gather 

information about its neighbours. Hence, it also means that 𝑇𝑆𝑡𝑒𝑝 is the 

minimum time required before a user decides to join a cluster or announce itself 

as a CH. It is already mentioned in section 3.3.1 that multiple users can be 

detected simultaneously by the CH and all the members can get attached to the 

one CH that serves them the best (as per the defined clustering metrics). 

Therefore, in case, the user is a CH, a message needs to be broadcasted to its 

neighbours, which will take one 𝑇𝑆𝑡𝑒𝑝. Same is the case if the user decides to join 

a cluster as a member. Since the cluster heads are selected on a per-frame basis, 

the complexity of the formation of the initial cluster is 𝑂(1) 

5 – Optimization Using FCM 

The objective function of FCM is given in Equation (6). It shows for the 

optimization, we need to communicate information such as initial cluster 

centers, membership matrix, and the number of clusters to be formed. 

Accordingly, the complexity of optimization is given as follows. 

Complexity: 𝑂(𝑛𝑛𝐶
2𝑛𝑓𝑛𝑖) 

𝑛  = total number of nodes/users   

𝑛𝐶 = number of clusters (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑎𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 4.4)  

 𝑛𝑓 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 (𝑡𝑤𝑜 𝑜𝑟 𝑡ℎ𝑟𝑒𝑒, 𝑝𝑙𝑒𝑎𝑠𝑒 𝑠𝑒𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 2 & 4) , 

 𝑛𝑖 = number of iterations 

Overall Complexity:  

𝑂(𝑛) +  𝑂(𝑛𝑙𝑜𝑔𝑛) + 𝑂(𝑛) + 𝑂(1) + 𝑂(𝑛𝑛𝐶
2𝑛𝑓𝑛𝑖) = 𝑂(𝑛𝑛𝐶

2𝑛𝑓𝑛𝑖) 



   

55 | P a g e  
 

∵  𝑂(𝑛𝑛𝐶
2𝑛𝑓𝑛𝑖) > 𝑂(𝑛𝑙𝑜𝑔𝑛) > 𝑂(𝑛) > 𝑂(1) 

3.6.1 The Execution Time 

The execution time represents the time taken to form clusters by each of the 

implemented algorithms (benchmarked as well as the proposed clustering 

algorithm). The simulation setup and parameters utilize to implement these 

algorithms are summarized in Chapter 4 (Section 4.1). The experiments were 

performed on a 64-bit Intel 4600 GPU, Core i7-4790 CPU @ 3.60 - 4 GHz 

processor having a 12GB RAM. MATLAB was used for the implementation. 

The execution times for all the implemented algorithms are described in the 

following table. 

Table 3.2 The Execution Times of Implemented Clustering Algorithms 

Clustering Algorithm Execution Time (sec) 

K-Medoids 3.43755 

FCM 6.12589 

*Proposed in [86] 13.08578 

*Proposed in [171] 9.11457 

The Proposed Algorithm 11.13785 

 

*These are the benchmarked algorithms considered in this study. The detail on these 

algorithms is given in Chapter 4 (Section 4.3). 

3.7 Summary 

Chapter three discusses the proposed distributed architecture and develops the 

clustering algorithm. The distributed architecture relies on the merger of the 

CCN and NV. The architecture is independent of the eNB and employs a VC. 

Moreover, hash functions are utilized to identify the contents. The proposed 

multi-factor clustering algorithm has been described in detailed as well. Three 

different clustering metrics are selected to facilitate a trade-off between 
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throughput, energy consumption, area spectral efficiency, and throughput 

fairness. All the relevant details about collecting information for clustering 

metrics and optimization have been presented in this chapter as well. Finally, 

the complexity of the proposed and benchmarked algorithms is described and 

compared. 

3.8 Related Publication 

The work presented in this chapter has been published in the following 

research article: 

S. Aslam, F. Alam, S. F. Hasan and M. A. Rashid, " A Novel Weighted Clustering Algorithm Supported by a Distributed 

Architecture for D2D Enabled Content-Centric Networks," Sensors 2020, 20, 5509. https://doi.org/10.3390/s20195509. 

URL: https://www.mdpi.com/1424-8220/20/19/5509 

License: CC BY 4.0. 
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      CHAPTER 4 

    PERFORMANCE EVALUATION OF 

   THE CLUSTERING ALGORITHM 

This chapter comprehensively evaluates the performance of the clustering 

algorithm proposed in the previous chapter.  

4.1 Simulation Setup 

The simulation environment was built on MATLAB. A single cell of 1 sq. km 

area was considered. For the conventional cellular communication scenario, the 

eNB was placed at the center of the cell. Moreover, it is important to mention 

that we explored the performance of a multimedia application (content). The 

packet size is 100 kB as suggested by relevant literature [172]. This simulation 

can easily be extended for any other multimedia application (e.g., online 

gaming, eHealth, etc.) by varying the file size and packet interarrival rates [172]. 

We selected the weights empirically, which can be adjusted according to the 

system requirements. The number of clusters formed to produce all the results 

were chosen using the Calinski–Harabasz criteria [173]. Various user densities 

have been considered to produce the results. The optimum number of clusters 

for various user densities are different, and hence, a specific number is not 

explicitly mentioned. All the simulation parameters of interest are detailed in 

Table 4.1. Parameters related to channel and energy consumption are adapted 

from the relevant literature [28],[88, 174, 175]. 

It should be noted that the results presented in Section 4.2 - 4.4 consider 

Equation (2) targeting throughput, energy consumption, and area spectral 

efficiency whereas Sections 4.5 & 4.6 evaluate the performance of the algorithm 
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considering Equation (4), therefore targeting throughput fairness and 

demonstrating the trade-off between performance parameters. 

4.2 Impact of Clustering and Social-Interest 

The proposed study takes clustering and social interest into account, as both 

have a significant impact on the system. To demonstrate this impact, we 

consider three different scenarios. In the first scenario, conventional cellular 

communication takes place that does not involve D2D mode and clustering. 

The other two cases consider the proposed clustering algorithm, explained by 

the following text. 

• Clustered D2D users with no interest factor 

In this case, we assume that users do not share a common interest i.e., all of 

them are not interested in a single file (content). Users demand files of various 

sizes varying from 10 to 100 kB in a random manner. Though this scenario does 

not consider the interest factor, we still cluster the users, as the literature 

suggests that even without the interest factor, clustering yields significant 

throughput gains [20, 62, 135, 145]. The clustering criteria for these nodes are 

the same as mentioned in Equation (2) except that the interest-factor “I” is not 

considered. The weights selected are as follows: 𝑤1 =  0.4, 𝑤2 =  0.6. These were 

empirically selected to maximize the throughput performance. 

• Clustered D2D users with an interest factor 

The third scenario considers the interest factor i.e., all the users in a given cluster 

are interested in a single file of size 100 kbits. This emulates social gatherings such 

as a concert or a stadium, where there is a large gathering, interested in a similar 

video/content. This scenario was implemented using the proposed algorithm. The 

value of the two weights remains the same as discussed in the previous scenario. 

 



   

59 | P a g e  
 

Table 4.1 Simulation Parameters for Clustering Algorithm Implementation 

Parameters Value 

Simulation Platform MATLAB 

Channel Model Rayleigh Distributed 

User Placement Uniformly Distributed 

Node Density 100 to 1000 

Cluster Size Variable 

Path Loss for DUEs 2.5 

Path Loss for CUEs 3.5 

Transmission Power of BS 46dBm 

Transmission Power of DUE 24dBm 

Shadowing Standard Deviation 8dB 

𝑵𝒐 -174dBm/Hz 

Number of Clusters Variable 

Transmit Power of CH 1.425 Joules/s 

Power required to receive data from BS 1.8 Joules/s 

Power required to receive data from CH 0.925 Joules/s 

Content Considered A file of size 100 kBits 

Classical benchmarked Schemes 
K-Medoids (KM), Genetic Algorithm (GA),  

Fuzzy C-Means (FCM) 

State-of-the-art benchmarked Schemes 

Proposed in [86]. 

(referred in this document as benchmarked I) 

Proposed in [171]. 

(referred in this document as benchmarked II) 

Number of Simulation Runs 10,000 

 

Figure. 4.1 shows the result of aggregate throughput versus the number of 

users. It clearly shows the impact of social awareness as the aggregate 

throughput was maximum when it was considered. On the other hand, 

aggregate throughput was considerably low when social awareness was 
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ignored. At the user density of one hundred, the difference between the two 

curves was approximately 19%. The throughput for a conventional cellular 

network with no clustering remained considerably low compared to the other 

two scenarios. This result, therefore, shows that clustering does play a vital role 

in enhancing the system’s performance. Furthermore, it can be seen that both 

social-interest and physical parameters (e.g., spatial distribution and channel 

gains) should be considered while modelling a system as it may bring 

significant benefits for the users as well as the whole network. 

 

Figure. 4.1 The impact of clustering and social-interest on throughput. 

4.3 Benchmarking against Existing Algorithms 

We selected five algorithms to benchmark against. Three of these are classical 

algorithms that are widely found in the literature, namely K-Medoids, Fuzzy 

C-Means (FCM), and Genetic Algorithm (GA) based clustering. These three 

algorithms have not been investigated and benchmarked within the context of 

D2D clustering and content-sharing applications, though an initial 

investigation was performed in our previous work [99]. The remaining two are 

the state-of-the-art and recently proposed algorithms. “Benchmarked I” has 
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been proposed by Tulu et al. [86]. This algorithm applies the concept of entropy 

of betweenness centrality (EBC) to select CHs for content-sharing. The entropy 

of betweenness is based on the social relationship between the nodes and the 

shortest paths that exist between the nodes. “Benchmarked II” is proposed by 

Kazez C.A et al. [171]. This algorithm takes the neighbors and distance among 

the users as inputs for the selection of CHs. 

1. Throughput Comparison 

The following result shows the comparison of the throughput performance. 

The proposed algorithm utilizes the social interest and physical parameters of 

the users to enhance the system’s performance. This was discussed in the 

previous result, and it is further elaborated in Figure. 4.2, as it demonstrates 

that the proposed algorithm performs approximately 7% better than the next 

best algorithm (Benchmarked I) at one thousand nodes. Benchmarked 

algorithms I and II utilize the social interest, but they do not consider both 

distance and channel conditions among the users for clustering the users. Our 

result shows that consideration of both metrics does have a positive effect on 

the system’s throughput. This is because many users that are in proximity to 

each other may not have better channel conditions due to various factors (e.g., 

shadowing). 

2. Energy Consumption of Users 

The result shown in Figure. 4.3 represents the energy consumption of the nodes 

in Joules with a varying number of users. It is evident from Figure. 4.2 that we 

achieved better throughput as compared to the rest of the algorithms. If the file 

size of 100 kbits is constant, then the energy consumptions will be significantly 

dependent on the transfer rate. Consequently, the proposed algorithm 

performed the best (demonstrated by least energy consumptions) at different 
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user densities as compared to the other algorithms. At one thousand nodes, the 

proposed algorithm approximately consumed 6% less energy as compared to 

the second-best algorithm. 

 

Figure. 4.2 Aggregate Throughput: comparison with the benchmarked (𝑤1 =  0.4, 𝑤2 =  0.6). 

 

Figure. 4.3 Energy Consumption: comparison with the benchmarked (𝑤1 =  0.4, 𝑤2 =  0.6). 

The energy consumption of the proposed algorithm is further elaborated in 

Figure. 4.4. The Cumulative Distribution Function (CDF) of the energy 
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consumption is presented for the proposed algorithm and the benchmarked 

clustering algorithms at a user density of one thousand. We can observe that 

even at the node level, energy consumption demonstrated by the proposed 

algorithm outperformed the benchmarked algorithms in all quartiles. 

Therefore, the overall lower energy consumption was not achieved by favoring 

a few nodes to a large extent while disregarding the others. 

 

Figure. 4.4 Cumulative Distribution Function (CDF) of energy consumption (𝑤1 =  0.4, 𝑤2 =

 0.6). 

3. Area Spectral Efficiency 

Area Spectral Efficiency represents the sum of average achievable rates per unit 

bandwidth per unit area [176]. To the best of the authors’ knowledge, ASE has 

not been evaluated for all the five benchmarked algorithms. It can be observed 

in Figure. 4.5 that the ASE of the proposed algorithm was better than all the 

benchmarked algorithms. ASE depends significantly on the average rates of the 

users if the area and per unit bandwidth remain constant. Therefore, the 

proposed algorithm has a higher ASE. It is also encouraging to observe that the 

performance improved for the proposed algorithm as the user density 
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increased. This shows the scalability of the proposed algorithm. The proposed 

algorithm showed approximately 3% improvement in ASE at the node density 

of one thousand, as compared to the benchmarked scheme I that showed the 

second-best performance. The classical algorithms for generic clustering are not 

purpose-built for a D2D scenario and are far inferior to the proposed, 

“Benchmarked I” and “Benchmarked II” algorithms. 

 

 

Figure. 4.5 ASE: comparison with the benchmarked (𝑤1 =  0.4, 𝑤2 =  0.6). 

4.4 The Optimal Number of Clusters 

The three well-known criteria for selecting the number of clusters are: Calinski-

Harabasz Criteria (Cal-Har Criteria), Silhouette Coefficient (SC), and Davies-

Bouldin Index (DB-I) [177]. DB-I and SC have high computational complexity. 

Moreover, if the clusters are not well separated, DB-I and SC tend to form a 

large number of clusters creating a large overhead for cluster formation. 

Moreover, significant signalling will be required to manage the clusters. 

Therefore, in this thesis, Cal-Har criterion was selected. In this study, we 

demonstrated that the Cal-Har criterion can be effective in selecting the number 
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of clusters since it impacts the performance parameters such as energy 

consumption and ASE. The results presented later, show a comparative study 

of performance parameters attained after forming clusters based on Cal-Har 

criterion against a range of randomly selected cluster numbers. 

We investigated the effect of the number of clusters on energy consumption 

and ASE. It has not been reported in the literature considering D2D Content-

Centric Networks. The selection of the number of clusters significantly affects 

the clustering performance. A trade-off always exists when it comes to selecting 

the number of clusters. Increasing the number of clusters up to a certain extent 

will bring benefits but at the expense of increased signaling and complexity. 

The clustering metrics that we selected for the proposed algorithm can vary 

significantly; thus, it is not easy to predetermine the cluster size. Therefore, the 

size of the cluster is variable. However, there should be a criterion that can help 

determine the number of clusters that can be formed based on a given scenario 

such as user distribution, values of the clustering metrics, etc. In this study, the 

Calinski–Harabasz (Cal–Har) criterion [173] was selected. It is also termed as 

the variance ratio criterion. Mathematically, it can be defined as: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆𝑖𝑧𝑒(𝐶𝑎𝑙−𝐻𝑎𝑟) =  
𝑉𝐵

𝑉𝑊
∗

(𝑁 − 𝐶)

(𝐶 − 1)
 (12) 

In Equation (12), 𝑉𝐵 represents the between-cluster variance. It can also be 

defined as the separation between clusters. On the other hand, 𝑉𝑊 is the with-

in cluster variance. It can be defined as the compactness of the cluster. The idea 

is to form non-overlapping clusters and therefore, the optimal number of 

clusters are obtained by maximizing the Cal-Har criterion. Since the input to 

this criterion was the clustering solution provided by the proposed algorithm, 

so weights used are similar to the ones defined in Equation (4). 
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The total number of users is denoted by 𝑁, whereas 𝐶 is the number of clusters 

against which this criterion will be judged. Clustering metrics determine the 

variance between and within clusters. To find the optimal solution, Equation 

(12) needs to be maximized with respect to the number of clusters. As the ratio 

of the variances given in Equation (12) increases, user association with a certain 

cluster becomes more precise which leads to the optimal number of clusters. 

For a user density of one thousand, the Cal–Har criterion result is depicted in 

Figure. 4.6. The criterion value was highest when the number of clusters was 

seven. Therefore, for the given user distribution and node density, the optimal 

number of clusters should be seven. We then investigated whether this is the 

optimal choice when considering energy consumption, and ASE. Results for 

both parameters for a various number of clusters are presented in Figures. 4.7 

and 4.8, respectively. A trade-off can be seen for the choice of the number of 

clusters. As shown in Figure. 4.6, the result for energy consumption aligns with 

the Calinski–Harabasz criterion, as the lowest energy consumption occurred 

when the number of clusters was seven to ten. On the other hand, the optimal 

number of clusters for ASE appears to lie between 10 and 15. 
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Figure. 4.6 Optimal number of clusters: Cal–Har criterion. To choose the value of the number 

of clusters, Cal-Har criterion needs to be maximized. For the given node density and 

distribution of users, the highest value occurs at 7, indicated by a circle.  

 

 

Figure. 4.7 Energy consumption and the number of clusters: a comparison. 
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Figure. 4.8 ASE and the number of clusters: a comparison. 

It is not straightforward to suggest a certain number of clusters based on the 

above-mentioned results. It is important to consider a few additional factors 

that might influence the selection. The signaling overhead and complexity of 

cluster maintenance increase with the increase in the number of clusters. 

Moreover, we can observe from the results presented in Figure. 4.8 that ASE 

did not differ significantly when forming seven to ten clusters as opposed to 

forming 10 – 15. Therefore, seven is likely to be a better choice, since it 

represents the lowest energy consumption while sacrificing minimal ASE gain 

for lower signaling overhead and complexity. 

Various external factors influence the choice of the number of clusters as well. 

As discussed earlier, our study considers forming clusters only for those users 

that are interested in content-sharing. Therefore, in some situations, only a few 

users might be interested in content-sharing, and hence, making a certain 

number of clusters is not necessary. On the other hand, a scenario can build up 

where a large group of users is interested in content-sharing, but even in this 

case, the physical location of the users might influence the choice of the number 
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of clusters. A large number of closely packed users at a concert or a sports event 

only need a few clusters. As opposed to this scenario, users sharing a common 

interest might be dispersed in a geographical area, requiring a higher number of 

clusters. More clusters can also be formed in a scenario where users might be in 

close vicinity, but they have different content of interest. In that case, users 

sharing the same interest are expected to be in one cluster, whereas the rest of 

the users should form a separate cluster. Moreover, some users may be better 

served by the BS, and it should not be mandatory for all the users to be 

considered for the clustering.  

4.5 Throughput Fairness 

Jain’s fairness model [178] was used to evaluate the fairness performance of the 

proposed algorithm. The Jain’s fairness index denoted by 𝐽(𝑥) is represented 

by Equation (13). 

𝐽(𝑥) =  
(∑ 𝑥𝑖

𝑀
𝑖=1 )2

𝑀 ∑ 𝑥𝑖
2𝑀

𝑖=1

 (13) 

𝑥𝑖 represents the throughput of the 𝑖𝑡ℎ user, given that there are total 𝑀 users. 

The algorithm was simulated with the weights as follows (for Equation (4)): 

𝑤1 = 𝑤2 = 0.1, 𝑤3 = 0.8. The weights selected for this result were empirically 

adjusted to enhance fairness. So, the maximum weight is given to the variance 

of channels. Though the selected weights did not yield the best energy 

consumption and ASE, the proposed algorithm did outperform all the 

benchmarked algorithms when it comes to fairness. This is depicted in Figure. 

4.9. At the user density of one thousand, the proposed algorithm performed 

approximately 7% better than the benchmarked scheme I, which performed the 

best among the existing algorithms. This result demonstrates the flexibility of 

the proposed algorithm. By simply adjusting the weights, it is possible to 
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achieve better fairness. It should be noted that the works reporting the 

benchmarked algorithms I and II do not discuss fairness. These algorithms also 

do not have any parameter to perform this trade-off. 

 

Figure. 4.9 Jain’s Fairness Index: Comparison with the benchmarked (𝑤1 = 𝑤2 = 0.1, 𝑤3 =

0.8). 

4.6 The Trade-Off Between Fairness and Other Performance Parameters 

The energy consumption and ASE for the weights 𝑤1 = 𝑤2 = 0.1 and 𝑤3 = 0.8 

are presented in Figures. 4.10 and 4.11, respectively. It can be observed that the 

cost of improved fairness is a slight degradation in performance with respect 

to energy consumption and ASE. However, the performance of the proposed 

algorithm is satisfactory in the sense that it is better than the other four 

benchmarked algorithms and there is only a very small performance gap with 

the best scheme. The proposed algorithm is able to trade-off energy 

consumption and ASE with fairness, which is not possible in any of the 

benchmarked algorithms. Our algorithm provides this flexibility of weights 

adjustment to enhance the desired performance parameter. It can achieve the 

best performance for a given parameter while providing a satisfactory 

performance with respect to the rest. 



   

71 | P a g e  
 

To the best of our knowledge, the algorithms considered for benchmarking in 

this study have not been investigated for all the three performance parameters 

i.e., energy consumption, ASE, and fairness. 

 

 

Figure. 4.10 Energy consumption: comparison with the benchmarked schemes (𝑤1 = 𝑤2 =

0.1, 𝑤3 =  0.8). 

 

Figure. 4.11 ASE: comparison with the benchmarked schemes (𝑤1  =  𝑤2 =  0.1, 𝑤3  =  0.8). 

 



   

72 | P a g e  
 

4.7 Summary of Results 

It is evident from the results that the proposed Multi-Factor clustering 

enhanced the system’s performance. The performance of the proposed 

algorithm was thoroughly investigated against different popular clustering 

algorithms. The proposed algorithm shows a significant improvement in 

throughput performance, a 6% improvement in energy consumption while 

achieving 3% better ASE as compared to the best of the benchmarked 

algorithms. The improvement in energy consumption of the proposed scheme 

compared to all other schemes was 8%, 14.5%, 17%, and 24 % with respect to 

Benchmarked II, FCM, k-Medoids, and GA respectively. The improvement in 

ASE of the proposed scheme compared to all other schemes was 4% for 

Benchmarked II, 8% for FCM, 14% for k-Medoids, and 15% for GA.  

Most of the research works focus on forming a fixed number of clusters for 

various user densities. As opposed to this approach, we use a criterion to form 

clusters appropriate for a given node density and geographical location.  

The effect of the number of clusters on the energy consumption of users and 

ASE was also investigated. A trade-off exists between the two metrics in the 

selection of the number of clusters. The optimal energy consumption was 

achieved at a smaller number of clusters as compared to ASE. It is suggested 

that signalling overhead required to set up more clusters should be considered 

while selecting the number of clusters. Hence, the formation of a smaller 

number of clusters showing optimal energy consumptions at the cost of 

marginal degradation in ASE is acceptable.  

A slight modification in the algorithm and weight adjustment improved 

throughput fairness up to 7%. This improvement came at the cost of a slight 

degradation in energy consumption and ASE.  
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4.8 Related Publication 

The work presented in this chapter has been published in the following 

research article: 

S. Aslam, F. Alam, S. F. Hasan and M. A. Rashid, " A Novel Weighted Clustering Algorithm Supported by a Distributed 

Architecture for D2D Enabled Content-Centric Networks," Sensors 2020, 20, 5509. https://doi.org/10.3390/s20195509. 

URL: https://www.mdpi.com/1424-8220/20/19/5509 

License: CC BY 4.0. 
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  CHAPTER 5 

USER SEGREGATION: A MACHINE LEARNING 

APPROACH TO ENHANCE THE PERFORMANCE OF 

CLUSTERED NETWORK 

The previous chapter demonstrated the significance of applying a clustering 

algorithm to the content-sharing network. Although the proposed algorithm 

produced significant performance gains, we believe that there is a need to 

optimize the clustering process as there always exist some users better off with 

the eNB rather than being in the clusters. Therefore, this chapter is dedicated to 

present the impact of user segregation on different performance parameters 

such as throughput, energy consumption, and fairness. We utilize machine 

learning algorithms namely, Deep Neural Network (DNN), Random Forest 

(RF), and Support Vector Machine (SVM), to segregate the users that are better 

off with the eNB and form clusters for the rest of the users. We explore the 

performance of all the algorithms when applied to the user’s segregation 

problem (please see Section 6.3). Applying these methods, it has been 

demonstrated that the performance of the individual users as well as the whole 

network, has been improved significantly.  

5.1 Introduction 

The works presented in Chapter 2, show that the importance of clustering is 

not specific to content-centric broadcast networks and can be applied to various 

applications as shown in the literature [84-93, 103, 179-182]. Since all these 

clustering works are meant for performance enhancement of various 

parameters, therefore a fundamental question would be, is there any scope of 

improvement within the clustering process itself? To answer this question, let 
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us consider a few users interested in the same content. Once users sharing a 

common interest are identified (several processes exist in the literature for 

content/interest identification such as shown in Chapter 3), they are either 

served directly by the eNB or by the Cluster Heads (CHs) in clusters. Clusters 

are formed only for the users that are interested in the same content. Different 

research works that consider clustering, place all the users/nodes in clusters 

whereas on the other hand if clustering is not performed then all the users are 

associated with eNB. However, we believe there is a better approach to 

clustering, so we suggest user segregation; some users communicate with CHs 

while being in clusters, whereas the remaining communicate directly with the 

eNB. Nevertheless, as a result of this segregation, only a certain percentage of 

users communicate directly with eNB and the majority of the users still stay in 

clusters and exploit D2D communication. 

To further elaborate on the proposed concept, let us consider a social gathering, 

such as a football match. Users (socially aware nodes) are interested in the same 

videos of their favorite players. Conventionally, all these users sharing a 

common interest will be considered for clustering. However, even within a 

socially connected group, user segregation needs to take place to enhance the 

performance. Hence, in the proposed scheme, there are three types of users; 

CHs (responsible for fetching the content from eNB), cluster members (part of 

the cluster and receiving the requested content from CH via D2D), and 

segregated users (downloading the content directly from the eNB). This user 

segregation has not been reported in the literature. We will demonstrate that 

segregation has a significant impact on the performance of both individual 

users as well as the network. 

It should be noted that the concept of user segregation is not specific to any 

particular application of the D2D clustered network. It can be applied to any 
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clustering scenario and/or application. However, we have evaluated the 

proposed scheme for a content-sharing D2D enabled network. It is also 

understood that D2D communication is meant to offload the central controller 

and socially connected users are meant to be in the same group. However, we 

focus on optimizing the clustering scenario by introducing the segregation 

concept. eNBs often have the spare capacity [183-185] and we are proposing to 

exploit this capacity leading to better performance and more efficient 

utilization of resources. Various research works focus on exploiting the spare 

capacity to improve the system’s performance [186-189], but not for clustering. 

Therefore, this study proposes trading off significant performance 

improvement with an increase in load on the central controller. Later in the 

Results chapter, we show the performance improvement at various loading 

factors.  

For the proposed scheme to work, the fundamental task would be to categorize 

the users into two groups; one group contains all the users better served in 

clusters while the other group consists of users better off with the eNB. To 

perform the segregation, this study opts for the ML approach. ML is an ideal 

tool for the proposed problem since we take advantage of offline training, 

without involving the eNB, making the training, and segregation process 

distributive. The machine learning algorithms employed are: Support Vector 

Machine (SVM) [190, 191], Random Forest (RF)[192], and Deep Neural 

Network (DNN)[193]. Literature suggests that SVM and DNN have been 

widely used for classification problems [109]. Moreover, the problem discussed 

in this thesis is a binary classification problem which has found even more 

applications for SVM and DNN [113]. Similarly, RF has found many use-cases 

for classification and regression problems targeting wireless networks [109, 
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194].  The concept of the proposed scheme; user segregation, utilization of ML 

algorithms is shown in Figure. 5.1. 

Substantial Performance Improvement

(Aggregate Throughput, Energy Consumption, Throughput 

Fairness)

User Segregation

Machine 
Learning

Classification Problem

Pre-Clustering Stage

All the Socially-Connected 
Users Should Not Be In 

Clusters

All Users in 
Clusters 

Conventionally

ML Approach

Users in Clusters
Remaining 

Users with  eNBUsers Sharing 
Common Interest

Exploit Social Relationship & 

Improve Performance Via Clustering

 

Figure. 5.1 Proposed User Segregation before clustering. Segregation is carried out using 

Machine Learning and as a result, few users are shown communicating in clusters whereas the 

rest communicate directly with the eNB. 

5.2 Data Collection for Machine Learning 

The significance of applying ML to various cellular network scenarios has 

already been presented in section 2.6. To realize all the applications of the 

machine learning paradigm, it is important to first address the data collection 

required for the learning to take place. Due to extensive interest in machine 

learning schemes, data storage is now an essential part of the cellular network 

architecture therefore data is stored by COs to make it readily available for 

analysis [121, 122, 126-129]. Specifically, the collection of data can be 

accomplished by UEs, Core Network (CN), and the Radio Access Network 

(RAN)[195]. Figure. 5.2 presents the details of different data collection sources 

within the cellular network [195]. Once the data from different sources come in, 
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it needs to be processed so that machine learning algorithms can be designed 

to improve the performance of the network.  

 

Figure. 5.2 Data Collection Opportunities to Construct Training Corpus in Cellular Networks. 

5.3 The System Model 

We assume that the eNB is placed at the center of the cell. It should be noted that 

the placement of the eNB does not affect machine learning since users are 

randomly distributed and therefore, the distance of users to the eNB and/or 

distance of users among themselves is random as well. Moreover, the 

geographical location of users for which the clustering is taking place does not 

specifically represent a macro cell or small cell. The learning does not consider a 

particular shape of the cell. The concept can be validated for any scenario since 

the learning was not subjected to any of these factors (geographical location of 

eNB and/or type of cell). Therefore, the scheme can be adapted for next 
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generation networks such as 6G, where eNB is likely to exist to support the users 

even though the concept of cell is not relevant.   

A typical network model is presented in Figure. 5.3. It is assumed that users are 

interested in certain content. These users are going to be served in clusters via a 

CH (UEs shown with red tops). However, there are certain nodes better served 

with the eNB and are communicating directly in Figure. 5.3 (UEs shown with 

blue tops). Moreover, the machine learning aspect is shown as well, 

complementing the network model. 

Core Network

Data Collection

Data PreprocessingMachine Learning

Core Network UERAN

Storage 
Management

All Users Share Common Interest. 

Modern Cellular Architectures 
Enabling Data Storage and ML 

INTERNET

CONTENT SERVER
IN-NETWORK CACHE

Cache Information

Users sharing the same interest as the 
ones in clusters but are served by eNB.

 

Figure. 5.3 The network model supported by Machine Learning. A separate learning server, 

linked with core networks, has been considered an important part of modern cellular networks. 

The users are represented by the set 𝑈, which comprises of both CUE and DUE, 

such that, 𝑈 = 2𝑈𝐷 + 𝑈𝐶 , where 2𝑈𝐷 represents 𝑈𝐷 D2D pairs and 𝑈𝐶  are 
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cellular users. We may write the capacity of the system represented by both 

types of users as: 

𝐶𝑈 = 𝑊 (∑ log2 ቀ1 + 𝑆𝑁𝑅𝑈𝐶𝑖
ቁ

𝑈𝐶

𝑖 = 1

+ ∑ log2 ቀ1 + 𝑆𝑁𝑅𝑈𝐷𝑗
ቁ

𝑈𝐷

𝑗 = 1

) (14) 

where 𝑖 & 𝑗 denote indices of CUEs and DUEs respectively and 𝑊represents the 

bandwidth of the cellular network.  

𝑆𝑁𝑅𝑈𝐶
and 𝑆𝑁𝑅2𝑈𝐷

 represents SNR of the cellular and D2D users respectively, 

which can be written as 

𝑆𝑁𝑅𝑈𝐶𝑖
=  

𝑃𝑒𝑁𝐵ℎ𝑒𝑁𝐵,𝑈𝐶𝑖

𝑁𝑜𝐵
        

(15) 

  

Where 𝑃𝑒𝑁𝐵 is the transmit power of eNB.  

The channel between eNB and 𝑖𝑡ℎ CUE is represented by ℎ𝑒𝑁𝐵,𝑈𝐶𝑖
.  

 

 

𝑆𝑁𝑅𝑈𝐷𝑗
=  

𝑃𝑚
𝑇ℎ𝑈𝐷𝑗

,𝑚

𝑁𝑜𝐵
        

(16) 

 

𝑃𝑚
𝑇 is the power of the D2D transmitter indexed 𝑚. The channel between the 

𝑚𝑡ℎ DUE transmitter and D2D receiver is denoted by ℎ𝑈𝐷𝑗
,𝑚.  

The channel gain ℎ is modelled by a Rayleigh fading channel. It is important to 

note that we encapsulate both distance-dependent attenuation (i.e. path loss) 

and shadowing effect into the channel model. Shadowing is defined by a 

Gaussian random variable with a zero mean and standard deviation, 𝜎  ( 𝜎 = 

8dB was considered in our simulation study presented in the next chapter).  
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As can be observed from Equation (14 -16), the sum capacity of a network 

depends on the accumulative SNRs of both CUEs and DUEs. Moreover, if we 

assume that the transmission power (of both eNB and DUE) and channel 

bandwidth are constant, then the SNR will significantly depend on the channel 

between the transmitter and the receiver, which is valid for both types of users. 

Nevertheless, it is worth mentioning that even with the varying transmission 

power, SNR will be influenced by the channel conditions. Therefore, the 

physical link between the transmitter and the receiver plays a vital role in 

determining achievable data rates. This is important in selecting the input 

features for training the classifier. 

The goal is to increase the capacity represented by Equation (14), utilizing the 

concept of user segregation, executed by ML algorithms. From a broader 

perspective, it is a binary classification problem where a user needs to be added 

to either of the two groups i.e. with eNB or with clusters. To perform this 

segregation, ML classifiers are utilized. The target for ML is based on 

maximizing the throughput of a particular node. It is mentioned in section 3.5 

that since we are considering a multicasting application, the maximum 

achievable rate of a cluster member depends on the worst physical link, to 

ensure that all the members receive the required data. The achievable rate of 

the cluster member is already defined by Equation (10). 

A user is selected for either of the two groups based on the achievable data rate 

being higher in that group (i.e. either with the eNB or the CH) as opposed to 

being part of the other group. This fact gives the user opportunity to not only 

reduce its energy consumptions but also increase the throughput fairness of the 

system. It should be mentioned here that the ML algorithm is trained offline 

before it is tested on a mobile network (or, as in our case tested with the 
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simulation environment). For the classification, we propose to utilize SVM, RF, 

and DNN. These are benchmarked against four widely used classification 

techniques and are found to be superior.  

Here we provide details about the data labelling process. ML training data was 

generated via simulations. We used the complex gaussian channel model that 

follows Rayleigh fading. All the simulation parameters are the same as used in 

Chapter 4 (listed in Table 4.1). It is observed in the previous chapter that the 

weights attached to distance and channel conditions were not the same, 

therefore, it was necessary to have a mechanism that learns the relationship of 

each node with respect to these parameters and classify the users into the two 

groups (i.e., with eNB or in clusters). Hence, we utilized ML algorithms. 

Uniformly random distributed users interested in content-sharing are clustered 

using the proposed clustering algorithm of Chapter 3. The throughput 

performance of the users and the system was evaluated. Then, the same set of 

users, sharing common interest, were communicated in a conventional cellular 

manner and their performance was noted as well. After these simulations, we 

have the data that clearly shows whether the node should be in a cluster or 

communicate directly to the eNB so it was labelled accordingly. An example of 

a learning set is provided in appendix A.  

5.4 The Proposed Machine Learning Approach 

The data generated for the training is obtained via the simulations, following 

the practice reported in the ML applications of wireless networks [196-198]. It 

is explained in [124], that the comparison of different ML algorithms can be 

made if we have common datasets. However, while this is true for computer 

vision, voice, and image processing, the wireless communication domain is 

unfortunately not having common datasets because it inherently deals with the 
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data that can be accurately generated by simulations. However, as discussed in 

Section 5.2, data is available to the COs, that could be potentially used to set up 

common benchmarks so the effectiveness of the simulation-based training can 

be evaluated. The overall learning algorithm is presented in Figure. 5.4. The 

algorithm is trained completely offline. However, data required (distance and 

channel conditions) for an online implementation, are the typical data required 

for forming clusters and can be obtained via the D2D discovery process which 

takes place before the communication starts. The details of such a relevant 

process can be found in the clustering literature, e.g. see [47, 182] that shows 

network latency is not impacted significantly.  

The selection of input features and data labelling took place keeping in view 

the target of throughput maximization. The details of the explored ML 

algorithms including the tuning of hyperparameters have been provided in 

subsequent subsections and Chapter 6. 
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Figure. 5.4 The Learning Algorithm flow chart. It should be noted that all the tasks are 

performed offline except the trained model implementation. 

5.4.1 The DNN Architecture 

The proposed architecture is shown in Figure. 5.5. Utilizing this architecture, 

user segregation is performed for the proposed scheme. The output of the DNN 

gives a probability value, which classifies a node that should be either serviced 

by the eNB or the CH. The DNN consist of three layers. The input layer is 

termed as 𝐿𝐼𝑁, whereas the hidden layers are termed as 𝐿𝐻1, 𝐿𝐻2 respectively. 

The selected features and dependent vector/label are presented in Table 5.1. 
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Table 5.1 Input Features and True Labels 

Feature (Mean Value) 

True 

Labels 

Labels 

Representation 

1. Distance of a user from 

eNB 

2. Distance of a user from 

other users 

3. Pathloss of a user with 

eNB 

4. Pathloss of a user with 

other users 

0 Users with eNB 

1 Users in Clusters 

 

The data generated for the training purpose is obtained via the simulations. It 

is in conformity with different research works presented in the field of wireless 

networks. Seventy percent of the total generated data is randomly selected data 

for training purposes and the rest thirty percent is used for validation/test.  

Before the actual values of the weights can be found, the weights are randomly 

initialized from values between 0 and 1. Once the weights are initialized, we 

move to the first hidden layer where a dot product of the initialized weights 

and input vector is performed. It can be represented as the following equation: 

𝑋𝐿𝐻1
=  𝑉𝐿𝐼𝑁

 .  𝑊𝐿𝐼𝑁
+ 𝑏𝐿𝐼𝑁

 (17) 

  

𝑉𝐿𝐼𝑁
 represents the input vector (shown in Figure. 5.5), 𝑏𝐿𝐼𝑁

 is the bias and 

weights are represented by 𝑊𝐿𝐼𝑁
. Once the input passes through the first layer, 

it becomes a neuron to be processed by the other layers. 
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Figure. 5.5 The DNN architecture for proposed mixed-mode clustering. It consists of two 

hidden layers having twelve neurons each and a single neuron output layer. The number of 

hidden layers and the neurons they contain is obtained by the Random Search scheme. 

Now we use 𝑋𝐿𝐻1
 to pass through our first activation function i.e. Rectified 

Linear Unit (ReLU) [199], which creates the first hidden layer and its output 

becomes the input of the second hidden layer.  

The output layer of the proposed DNN architecture is composed of one neuron 

with the output given by Equation (18).  

 

𝑂𝑢𝑡𝐿3 =  𝑠𝑖𝑔(𝑂𝑢𝑡𝐿2 .  𝑊𝐿𝐻2 
+ 𝑏𝐿𝐻2 

) (18) 
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(𝑂𝑢𝑡𝐿2.  𝑊𝐿𝐻2 
) represents the dot product between the input vector 𝑉𝐿𝐻2

(i.e. the 

data vector from the second hidden layer) and the corresponding weights 𝑊𝐿𝐻2 
. 

The bias of the second hidden layer is represented by 𝑏𝐿𝐻2 
. 

𝑂𝑢𝑡𝐿3 is the output from the last layer. 𝑆𝑖𝑔 is the sigmoid function given by 

Equation (19). 

𝑠𝑖𝑔 (𝑥) =  
1

1 − 𝑒−𝑥
 (19) 

 

It computes the probabilities for the two classes. It can be mathematically 

represented as the following: 

𝑝𝑜𝑢𝑡 =  {
𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑝𝑒𝑁𝐵
     

𝑖𝑓 𝑂𝑢𝑡𝐿3 > 0.5; 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20) 

 

In Equation (20), 𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟 represent the nodes that should be in clusters whereas 

the nodes that should be served by the eNB are represented by 𝑝𝑒𝑁𝐵. Ideally, all 

the nodes with clusters should have a probability of 1, and others should have 

a probability of zero. 

The output is then evaluated for error. It is calculated using binary cross-

entropy. A loss function is defined to determine the misclassification between 

the target and the predicted one.  The loss function is evaluated after every 

training iteration. It is given by: 

 

𝐿𝐹(𝑝𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝑝𝑒𝑁𝐵  ) =  −
1

𝑁
∑ ቀ[𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙𝑐𝑙𝑢𝑠𝑡𝑒𝑟]𝑙𝑜𝑔(𝑝𝑜𝑢𝑡𝑖

) +𝑁
𝑖 =1

 [[𝑇𝑟𝑢𝑒 𝐿𝑎𝑏𝑒𝑙𝑒𝑁𝐵]]𝑙𝑜𝑔(1 −  𝑝𝑜𝑢𝑡𝑖
)ቁ                           (21) 
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The loss function is averaged over all the training samples 𝑁 at the end of each 

iteration. Once, the first iteration is complete, we backward propagate our 

gradient descent to update our weight parameters. Once the error is known, 

we want to minimize it as much as possible. The whole process is represented 

in the Figure. 5.6.  

Hidden Layers

Forward Propagation
Predicted Output = Ᾱ  

Input 

Hidden Layers

Error = |A -Ᾱ|Input 

Back Propagation For 
Weights and Bias 

Adjustment 
 

Figure. 5.6 The Forward and Back Propagation for Learning the Algorithm. 

5.4.2 Support Vector Machine 

The objective of the SVM is to find an optimal hyperplane that distinctly 

classifies the input vectors. An SVM represents an N-dimensional hyperplane, 

that optimally segregates the input data into two categories [128]. To classify the 

data points, there can be several options of hyperplanes, however, the aim is to 
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find a plane that can maximize the distance between the classes [128]. This 

maximization reinforces the confidence with which we can classify the future 

values. This concept is illustrated in Figure. 5.7. 

Class 1

Class 2

 

Figure. 5.7 The SVM Concept: A Hyperplane to Optimally Segregate the Data. 

 

In this study, the hyper plan segregates the users (e.g. whether a particular user 

should be in the cluster as opposed to being with eNB). The performance of the 

SVM is dependent on the Kernel functions. We empirically selected Sigmoid 

Kernel after comparing it with other functions such as Polynomial, Gaussian, 

and Radial Basis Function, etc. The Sigmoid Kernel provided the highest 

accuracy as compared to other functions (please see Table 5.2). 
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Table 5.2 Comparison of Accuracy for Different SVM Kernel Functions 

Kernel Function Explored Accuracy (%) 

Linear 82.33 

Gaussian 88 

Polynomial 93.33 

Radial Basis Function 94.5 

Sigmoid 96 

 

The overall schematic of SVM applied to the proposed study is shown in Figure. 

5.8. 

 

Figure. 5.8 SVM architecture implemented with Sigmoid Kernel, for the proposed mixed-mode 

clustering. 
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Each input instance of an SVM, denoted by 𝐼𝑆𝑉𝑀, represents a pair (𝑎𝑖, 𝑏𝑖), where 

𝑎𝑖 ∊  ℝ𝑛 is the data instance (shown in Figure. 5.8), and 𝑏𝑖 represents the binary 

class label (given in Equation (23)). A class can be characterized as either 

positive or negative. Therefore, in this setting, ‘nodes with clusters’ belong to 

the positive class while ‘nodes with eNB’ belong to the negative class. Given 

this information, we may write the hyperplane as; 

𝑤. 𝐼𝑆𝑉𝑀 + 𝐶 =  0 (22) 

Where the classifier can be defined as; 

𝑓(𝐼𝑆𝑉𝑀) =  {
+1, 𝑖𝑓 𝑤. 𝐼𝑆𝑉𝑀 + 𝐶 ≥ 0 
−1, 𝑖𝑓 𝑤. 𝐼𝑆𝑉𝑀 + 𝐶 < 0

 

 
(23) 

In the above-given equation, 𝑤 represents attached weights and 𝐶 is a constant. 

+1 and -1 are binary class labels (𝑏𝑖).  

5.4.3 Random Forest 

Random Forest belongs to the class of ensemble algorithms (e.g. bagging and 

boosting) that utilizes the combination of trees to increase the accuracy and 

make stable predictions. RF can be used for both classification and regression 

problems. In this study, we use RF for the proposed binary classification 

problem [200]. The tree ensemble created by RF is trained on bootstrapped 

training data. The majority vote of the trees decides the classifier output [201]. 

The classification decision is dependent on the attribute/feature selection 

approach. In this work, Gini Index (GI) has been utilized, which evaluates the 

impurity of a feature with respect to the class. GI can be written as given in 

Equation (24) [202]; 

∑ ∑((𝑓(𝑁𝑆𝑎, 𝑇𝑆)/|𝑇𝑆|)

𝑎≠𝑏

((𝑓(𝑁𝑆𝑏, 𝑇𝑆)/|𝑇𝑆|) (24) 
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Where 𝑁𝑆𝑎 is the node selection class ‘𝑎’ (node belonging to cluster in this case),  

𝑇𝑆 is the training set. The probability of the selected node is defined by 

(𝑓(𝑁𝑆𝑎, 𝑇𝑆)/|𝑇𝑆|). 

Once the RF is trained on ′𝑁′ trees, each new dataset is passed down the trees, 

and the forest chooses a class based on the majority vote of trees. As described 

earlier, we utilize RF to classify the nodes that should be with eNB as opposed 

to being in the clusters. The concept of RF as applied to the user segregation 

problem is illustrated in Figure. 5.9. 

 

Figure. 5.9 The Random Forest concept as applied to the User Segregation problem. 
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5.5 Related Publication 

The work presented in this chapter has been published in the following 

research article: 

S. Aslam, F. Alam, S. F. Hasan and M. A. Rashid, "A Machine Learning Approach to Enhance the Performance of D2D-

Enabled Clustered Networks," in IEEE Access, vol. 9, pp. 16114-16132, 2021, doi: 10.1109/ACCESS.2021.3053045. 

URL: https://ieeexplore.ieee.org/document/9328769 

License: CC BY 4.0. 
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CHAPTER 6 

PERFORMANCE EVALUATION OF  

THE USER SEGREGATION SCHEME 

The user segregation scheme, proposed in the previous chapter, is evaluated in 

this chapter. 

We generated 340,000 learning sets (with input features mentioned in Table 

5.1), 70% were used to train the model (i.e., training set) while the remainder 

30% is equally partitioned for testing & validation. The dataset used for training 

can be accessed at GitHub (https://github.com/Saad7861004/Machine-

Learning-For-Wireless-Cellular-Networks.git).  

A standard technique used in the literature to define training and testing sets 

for validating the learning model is cross-validation [203]. Therefore, k-fold 

cross-validation was applied in this study with k=10, a commonly used value 

[204]. Other common values of k such as k = 3, 5 were explored showing similar 

trends. 

The ML related results such as accuracy, loss, and Receiver Operating 

Characteristic (ROC) curves are obtained from the validation set whereas the 

test data is used to evaluate the system’s performance. It should be noted that 

we are testing the proposed scheme for a multimedia application in a multicast 

scenario. Users are interested in the content of size 100kB similar to the 

previous section. Various user densities have been considered to demonstrate 

the performance and effect of increasing density on different parameters. 

Moreover, these users are interested in sharing a common interest. Hence, it 

does not represent the total users of a cell. As discussed earlier in Chapter 5, as 

a result of classification, all the users are not in clusters. Rather, based on the 

https://github.com/Saad7861004/Machine-Learning-For-Wireless-Cellular-Networks.git
https://github.com/Saad7861004/Machine-Learning-For-Wireless-Cellular-Networks.git
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classification results, some users will be in clusters whereas the remainders are 

going to be communicating directly with the eNB. Users in clusters will be 

communicating in D2D mode since the CH fetches the requested content and 

deliver it to its cluster members whereas the rest will download the content 

directly from the eNB. All the simulation parameters are similar to the previous 

section, summarized in Table 4.1.  

6.1 Hyperparameters Optimization 

The objective is to find the optimal solution for each of the employed ML 

algorithms. To achieve this goal, we explored various values of the 

hyperparameters, mentioned in Table 6.1, for each of the classification 

techniques. Literature suggested that we can exploit the following search 

strategies to find the optimal solution. These strategies include; Random 

Search, Grid Search, Heuristic, and Exhaustive Search [205]. 

An extensive study on hyperparameter optimization [206] suggests that 

Random Search is a significantly better technique for various types of data sets 

as compared to Search Space, Grid Search, etc. It should be noted that many 

other related articles targeting wireless network applications are using the 

Random Search method for hyperparameters optimization as well [207]. We, 

therefore, applied Random Search to optimize the hyperparameters for all the 

ML algorithms. We train the learning model using the training data and use 

Random Search on k-fold cross-validation to tune the hyperparameters. All the 

values of hyperparameters are detailed in Table 6.1. 

6.2 Complexity of the Trained Algorithms 

It is mentioned earlier that the proposed study takes advantage of offline 

training. Only the trained classifier/algorithm will be implemented in a live 

network. Therefore, the proposed algorithm training does not affect network 
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latency significantly. The total execution time for training the algorithms is 

detailed in Table 6.2. 

The experiments were performed on a 64-bit Intel 4600 GPU, Core i7-4790 CPU 

@ 3.60 - 4 GHz processor. The system had 12 GB of RAM. MATLAB was used 

for the training purpose. SVM, RF, and DNN are standard classifiers. Therefore, 

the complexity of these algorithms in terms of hardware requirements and Big- 

O notations can be found in the literature [208-210] and are quoted in Table 6.2. 

6.3 Comparison of Classification Techniques 

It has been reported in the literature that SVM, RF, and DNN are useful for 

classification purposes especially for applications targeting wireless networks 

[211]. However, other classification techniques (e.g. Decision Trees, k-Nearest 

Neighbor, etc.) are available and investigated as well. The accuracy of each 

technique is detailed in Table 6.3. SVM, RF, and DNN give the best accuracy 

among all the classification techniques. In this context, accuracy is defined as 

the percentage of correctly classified users. As discussed in Chapter 5, the target 

was to select a user for one of the two groups based on the throughput 

maximization, and hence the output of three algorithms was compared with 

true labels to determine the accuracy of the classification. The results given in 

Table 6.3 show that we achieved better accuracy for SVM as compared to RF 

and DNN. Moreover, it is suggested in the literature that SVM and RF have a 

lower execution time as compared to DNN (supported by our findings shown 

in Table 6.2), therefore it presents a lower computational burden on the learning 

servers as well [210, 212]. 
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Table 6.1 Hyperparameters Explored for Various Machine Learning Algorithms 

Algorithm Hyperparameters Explored Optimized 

Solution/Hyperparameters 

DNN 

Ƞ 

(Learning Rate for 

Stochastic 

Gradient Descent) 

10−4, 10−3, 10−2, 10−1,1 

Hidden Layer: 2 

Number of Neurons:12, 

Gradient Descent: 10−3 

 

 

Epochs 150 

Batch Size 256 

Hidden Layers 1,2,3,4,5 

Activation 

Function 

ReLU, Sigmoid 

Weight and Bias 

Initiation 

Random 

Number of 

Neurons/Nodes in 

First & Second 

Hidden Layer 

First Hidden Layer: 5 to 40 

(step of 2) 

Second Hidden Layer: 0 to 

40 (step of 2) 

SVM 

Kernel Linear, Gaussian, 

Polynomial, RBF, Sigmoid. Kernel: Sigmoid 

C = 1 
ϒ = 10−1 

C 0.03, 0.1, 0.2, 0.3, 0.4. 

1,2,3,4,5,10,100. 

ϒ 10−5, 10−4, 10−3, 10−2, 10−1 

Random 

Forest 

Number of 

Trees/Estimators 

10, 50, 100, 200, 300 

Number of 

Tress/Estimators: 200 

Criterion: Gini 

Max_Depth: 5 

Max Depth 2, 5, 10, 20 

Function/Criterion 

to evaluate each 

split 

Gini, Entropy 

Bootstrap True, False 

Min, samples leaf [1,20] 

Min. samples split [2,20] 

Decision 

Trees 

Learning Rates 0.0001, 0.001, 0.01, 0.1, 0.2, 

0.3 Learning Rate = 0.01, 

Decision Tress = 300, 

Splitter = Random. 

 

Number of 

Decision Trees/ 

Estimators 

100, 200, 300, 400, 500 

Splitter Best, Random 
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Table 6.2 Comparison of Complexity for Different Machine Learning Algorithms 

Algorithm Multipliers Adders Complexity in General 

(Worst Case Running Time) 

Total 

Execution 

Time (sec) 

DNN 
∑ 𝑁𝑘−1

𝐾

𝑘=2

𝑁𝑘 ∑(𝑁𝑘−1

𝐾

𝑘=2

𝑁𝑘)𝑁𝑘 
O(𝐿4) 

 

3401.5 

SVM 𝑁𝑆𝑉 ∗ 𝑀 2𝑁𝑆𝑉 ∗ 𝑀 O(𝑁𝑆𝑉𝐷) 2307.1 

RF 0 
(𝑠𝑖𝑛𝑐𝑒 𝑖𝑡 𝑖𝑠 𝑎 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚) 

𝑁𝑡𝑟𝑒𝑒𝑠

− 1 
O(𝑀𝑁𝑡𝑟𝑒𝑒𝑠) 1874 

 

𝑁𝑆𝑉 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠, 

𝑀 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠,  

𝐿 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 𝑜𝑓 𝐷𝑁𝑁,  

𝑁𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑙𝑎𝑦𝑒𝑟,  

𝐷 = 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑁𝑡𝑟𝑒𝑒𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠. 

 

Table 6.3 Comparison of Accuracy for Different Classification Techniques 

 

6.4 Comparison of Accuracy and Loss of Trained Algorithms 

It is important to note that the number of epochs cannot be pre-selected for a 

particular machine learning implementation. The number of epochs depend on 

the type of application and data. Overfitting is one of the critical issues of 

training the ML. To avoid overfitting and to increase the generalization of the 

trained model, the model should be trained for number of epochs that achieve 

this. Since the problem is a binary classification problem, the loss is calculated 

using binary cross-entropy. The number of epochs was selected to be 150 based 

on the satisfactory error rate and flattening of the curves. As the accuracy 

Classification Techniques Accuracy (%)  

Decision 

Trees 

Discriminant 

Analysis 

k-Nearest Neighbor      

(k = 5) 

Ensemble Classifier 

DNN RF SVM Medium Tree Linear 

Quadratic 

Weighted KNN Boosted 

Trees 

Bagged 

Trees 

73.3 76.3 61.4 74.3 73.6 85.8 93.33 96 



   

99 | P a g e  
 

increases the misclassifications are reduced which show up as loss decreasing 

in Figure. 6.1 and Figure 6.2. 

Figure. 6.1 presents the results of the three algorithms for testing data against 

different epochs. It can be observed that the accuracy of all three algorithms 

keeps on increasing with the increasing number of epochs. On the other hand, 

it can be seen in Figure. 6.2 that the loss values keep on decreasing with the 

increase in the number of epochs suggesting no overfitting. It is further 

elaborated in the next sub-section.  

 

Figure. 6.1 Accuracy of the Trained Algorithms V/S Epochs. 
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Figure. 6.2 Loss of the Trained Algorithms V/S Epochs. 

6.5 ROC Curves 

ROC curve as shown in Figure. 6.3 demonstrates that the model is not 

overfitting as the curves are not all into the left corner. Since the curves are 

closer to the true positive axis, therefore, it shows the false positive rate is well 

within limits. Moreover, it can be seen from Figure. 6.3 that the area under the 

SVM curve is greater than that of RF and DNN which is another indication of 

SVM being more accurate subject to the user segregation problem. 
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Figure. 6.3 The ROC Curves for the Trained Algorithm. 

6.6 Analysis of the Performance Parameters 

In this section, we explore the impact of the proposed mixed-mode scheme on 

the performance of the system. All the results shown in this section are based 

on the SVM classification since it is shown in the previous section that it 

produces the best classification results. 

To demonstrate the performance, we have applied the user segregation scheme 

and segregated the users for the proposed clustering algorithm (presented in 

Chapter 3) and three other popular clustering algorithms. The clustering 

algorithm proposed in Chapter 3 is termed; “Multi-Factor”[182]. The rest of the 

three algorithms represent state-of-the-art and classical clustering techniques. 

The classical algorithm, K-Medoids and Density-Based Spatial Clustering of 

Applications With Noise (DBSCAN) [213]  can be widely found in the literature 

whereas the work presented in [86], is termed as “EBC”, described earlier in 

section 4.3. We deliberately selected these algorithms since they consider the 

social interest and it has been shown in the literature that it improves the 

performance of the network. Therefore, the proposed segregation concept is 
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compared with the best performing algorithms (e.g. the proposed ‘Multi-

Factor’ clustering algorithm is performing the best as shown in Chapter 4). The 

performance of the proposed scheme is benchmarked against that of the 

corresponding standard clustering scheme that keeps all the users within the 

clusters. Our results highlight that irrespective of the clustering algorithm, the 

proposed scheme significantly enhances the system’s performance.  

It should be noted that since we are considering different densities of socially 

aware nodes, so the number of clusters formed are once again following the 

Cal-Har criteria, described in section 4.4. 

1. Throughput 

The throughput performance is demonstrated in Figure. 6.4. The solid line 

represents ‘all in clusters’ scenario whereas the dotted line in each case 

demonstrates the impact of the proposed scheme. It should be noted that dotted 

lines represent the same clustering approach as solid lines, the only difference 

is that some users (based on classification) are serviced by eNB. At the user 

density of one thousand, the user segregation scheme improves the throughput 

of the proposed Multi-Factor algorithm by 30%. In the case of classical schemes, 

the percentage increase in the throughput is approximately 42% and 34% for 

K-Medoids and DBSCAN respectively whereas for the EBC scheme the 

increase is approximately 30%. It is a significant improvement in all cases. The 

proposed scheme was able to achieve the best improvement for K-Medoids 

since it only considers distance for clustering users and distance only may not 

be the best metric for clustering since users in proximity may not have the best 

channel conditions due to various factors such as shadowing. However, in the 

proposed user segregation scheme, shadowing was considered for training the 

algorithms.  
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The throughput result is further elaborated in Figure. 6.5. It represents the 

Cumulative Distribution Function (CDF) of throughput for the Multi-Factor 

scheme. The two curves represent CDFs of the same algorithm but for ‘all in 

clusters’ against the proposed ‘user segregation’. We are presenting the result 

for the Multi-Factor scheme only since it produces the best throughput as 

compared to the other three cases. It can be seen that the proposed scheme is 

performing better. A clear difference in the performance of the users can be 

seen at the 90th percentile. Similar trends were observed for all clustering 

schemes and other user densities. 

 

 

Figure. 6.4 Throughput Performance: A Comparison. 
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Figure. 6.5 Throughput CDF (100 Users). Similar trends were observed at other user densities 

with performance gap more pronounced.       

Figure. 6.6 Energy Consumption: A Comparison. 
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2. Energy Consumption 

The result for the energy consumption of the users is demonstrated by Figure. 

6.6. Downlink energy consumption is considered in this study. We have 

utilized the same model that was presented in Section 3.5.2 and used for 

evaluating the energy consumption of the proposed clustering algorithm in 

Section 4.3.  

Since the result shown in Figure. 6.4 demonstrated that user segregation 

improves the aggregate throughput, therefore energy consumption will be 

reduced as well. The reduction in energy consumptions at a user density of one 

thousand is approximately 13.66% for the proposed Multi-Factor algorithm, 

whereas, for other schemes, the reduction is 17.67% for K-Medoids, 16.5% for 

DBSCAN, and  14.77% for EBC. The CDF of energy consumption of the 

proposed scheme against that of the Multi-Factor algorithm is shown in Figure. 

6.7. The performance of the proposed scheme is better in most of the quartiles.  

 

Figure. 6.7 Energy Consumption CDF (100 Users). Similar trends were observed at other user 

densities with performance gap more pronounced. 

3. Throughput Fairness 

Similar to Section 4.5, Jain’s Fairness model (given in Equation (13)) was used 

to evaluate fairness performance. The result for throughput fairness is shown 
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in Figure. 6.8. At the user density of one thousand, the proposed Multi-Factor 

algorithm shows an improvement of 20%. The improvement in fairness for 

other schemes is around 26% for both K-Medoids and DBSCAN, and 13.5% for 

EBC. Since we have already shown earlier that as compared to the ‘all in 

clusters’ scenario, user segregation improves achievable rates for a 

considerable percentage of users (precisely 20-30% users on average), as a 

result, distribution of throughput among the users is significantly improved 

therefore the system is fairer to the users. The result presented in Figure. 6.9 

shows the CDF achieved with user segregation compared to standard 

clustering. It is clear that after the 10th percentile, fairness for the user 

segregation scenario is better in all percentiles. Therefore, better fairness is not 

achieved by only favoring a few users while neglecting a large number of users.    

 

Figure. 6.8 Throughput Fairness: A Comparison. 
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Figure. 6.9 Throughput Fairness CDF (100 Users). Similar trends were observed at other user 

densities with performance gap more pronounced. 

6.7 Trade-Off Between Performance Parameters and eNB Loading 

Our simulations suggest that the performance parameters are getting 

significantly improved at the expense of eNB loading. Hence, it becomes 

necessary to select an appropriate loading factor depending on the spare 

capacity of the eNB. To present this trade-off, we randomly selected various 

percentages of users from the total number of users for which the performance 

was improved as a result of applying user segregation. We considered one 

hundred different random combinations, calculated the performance 

parameters for each combination, and then averaged the results. Figure. 6.10 

shows two performance bounds; an upper bound of performance improvement 

(topmost curve, user segregation with 100% loading) meaning all users who 

have been identified to be better off with the eNB are being serviced by the eNB, 

and the lower bound (not segregated, all users in clusters). However, we may 

select a certain percentage of users according to the spare capacity of the eNB. 

The three middle curves represent three different loading factors, 10%, 50%, 

and 80% (bottom to top: low loading, average loading, and high loading) of the 

total users for which the performance was improved.  
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Greater the loading factor, greater is the performance improvement. Therefore, 

it presents an opportunity for the cellular network to select a particular loading 

factor and trade it off with an improvement in the performance.  

It should be noted that the result shown in Figure. 6.10 considers randomly 

selected users so it might disadvantage some users that are having the best 

performance. Therefore, to investigate this, we selected the same percentage of 

best users (i.e. the users that have the best improvement of all the users) and 

compared the performance with the random selection. Table 6.4 shows 

performance improvement is not significant, as we change the selection criteria 

from random to best users. Moreover, this percentage increase in performance 

is reported at a user density of one thousand. Therefore, this improvement will 

be even less at other user densities considered in this study. Similar marginal 

benefits (shown in Table 6.4) were observed for the other performance 

parameters i.e. energy consumption and throughput fairness. Therefore, we 

can conclude that a binary classifier is adequate, and training a multiclass 

classifier is not warranted.  

Table 6.4  Random to Best Selection: Performance Improvement for Different Parameters 

Clustering 

Scheme 

Aggregate Throughput 

(% Increase) 

Energy Consumption 

(% Decrease) 

Throughput Fairness 

(% Increase) 

Low 

Loading 

Average 

Loading 

High 

Loading 

Low 

Loading 

Average 

Loading 

High 

Loading 

Low 

Loading 

Average 

Loading 

High 

Loading 

K-Medoid 2.74 3.03 3.59 1.11 1.66 2.18 1.88 2.11 2.67 

DBSCAN 1.75 3.13 3.46 1.29 1.78 2.28 1.76 2.07 2.49 

EBC 1.81 3.31 3.22 0.96 1.21 1.77 1.01 1.67 2.11 

Multi-Factor 

(proposed)  

0.83 2.79 2.86 0.67 0.98 1.27 1.56 1.97 2.32 
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Figure. 6.10 Improvement in Aggregate Throughput for Different Loading Factors. 

6.8 Summary of Results 

The results demonstrated the impact of the proposed user segregation scheme 

on various performance parameters such as throughput, energy consumption, 

and fairness. Specifically, at a node density of one thousand, throughput gets 

improved by 30% for the proposed Multi-Factor clustering algorithm. The 

throughput of other clustering schemes improved as well, 42% for K-Medoids, 

34% for DBSCAN, and approximately 30% for EBC. Energy consumption of the 

Multi-Factor clustering algorithm was reduced by 13.66% whereas the 

reduction for other algorithms was: 17.67% for K-Medoids, 16.5% for DBSCAN, 

and 14.77% for EBC. Throughput fairness showed improvement by 20% for the 

proposed Multi-Factor clustering algorithm, approximately 26% for both K-

Medoids and DBSCAN, and 13.5% for EBC. All these results demonstrate that 
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the user segregation scheme improves the performance irrespective of the 

clustering algorithm. 

As a result of segregation, some users communicate directly to the eNB, 

therefore we presented a trade-off in performance improvement for various 

loading factors. The margin of improvement can be selected based on eNB’s 

loading capability and spare capacity. This study also demonstrated that as 

compared to DNN and RF, SVM performs better with relatively smaller 

training samples subject to classification scenarios. 

6.9 Related Publication 

The work presented in this chapter has been published in the following 

research article: 

S. Aslam, F. Alam, S. F. Hasan and M. A. Rashid, "A Machine Learning Approach to Enhance the Performance of D2D-

Enabled Clustered Networks," in IEEE Access, vol. 9, pp. 16114-16132, 2021, doi: 10.1109/ACCESS.2021.3053045. 

URL: https://ieeexplore.ieee.org/document/9328769 

License: CC BY 4.0. 

 

 

https://ieeexplore.ieee.org/document/9328769
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      CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

The exponential increase in the demand for multimedia traffic poses a 

significant challenge for current cellular networks and is one of the main 

drivers for the next generation of cellular networks. There are many solutions 

proposed for next generation cellular networks that either try to increase the 

efficiency of the available resources or aim at providing new radio resources or 

infrastructures. D2D communication is a good example of such proposed 

solutions, by which a user communicates directly to its receiver bypassing eNB. 

There are different ways to integrate D2D communications in a network. In this 

thesis, clustering was employed to integrate D2D with the cellular network. We 

designed as well as optimized the clustering algorithm that showed significant 

performance gains for the D2D network.  

The thesis presented a content-sharing framework for D2D communication in 

a multicasting scenario. Content-Centric Networking and Network 

Virtualization were utilized to propose a distributive architecture. A novel 

weighted clustering algorithm was incorporated into the proposed 

architecture. Various performance parameters (such as Throughput, Energy 

Consumption, ASE, and Throughput Fairness) have been considered to 

evaluate the performance of the proposed algorithm for a content-sharing 

scenario. To the best of the author’s knowledge, all these performance 

parameters have not been targeted by any single research work. This study 

showed the significance of considering spatial distribution and social ties on 

different parameters and established that both are vital for enhancing the 

performance of the Content-Centric Network.  
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To further enhance the performance of the clustered network, a mixed-mode 

clustering scheme was proposed based on user segregation. The concept relies 

on the fact that all users should not be part of a cluster as there are always some 

users that are better served by the eNB. We applied ML algorithms to perform 

this classification and compared the accuracy of different classification 

techniques. SVM, RF, and DNN were found to be the most promising 

classifiers. The results shown for accuracy, loss, and ROC demonstrate the 

effectiveness of the trained algorithm for the proposed scheme. The trained 

model was tested on a D2D-enabled content-sharing multicasting scenario. As 

per the classification outcome, a portion of the users were directly fetching the 

required content from the eNB. 

7.1 Contribution 

The contributions of this thesis are in two major parts: (i) decentralized network 

architecture & clustering algorithm, (ii)  optimization of the clustering process. 

Specifically:  

1) Development of a Novel Clustering Algorithm 

A novel multi-factor weighted clustering has been proposed. The performance 

of the proposed algorithm is shown to be superior compared to the five 

benchmarked algorithms. The designed clustering algorithm consists of 

various clustering metrics attached to their respective weights. These weights 

can be adjusted to suit the system’s requirements. This flexibility in trading off 

the performance with respect to various parameters is not available for existing 

algorithms. The benchmarked algorithms are tested for throughput fairness 

which has not been reported in the literature on clustering. Moreover, different 

from the existing works, the impact of the number of clusters on energy 

consumption and area spectral efficiency is also demonstrated.  
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2) Distributed Architecture 

A distributed architecture is proposed that is effectively supported by hash 

functions to identify the socially connected users. It also supports the designed 

clustering algorithm. 

3) Development of User Segregation Scheme using ML classifiers 

A user segregation scheme targeting D2D clustering has not been reported in 

the literature. Our work clearly shows that substantial improvement in terms 

of throughput, energy consumption, and fairness can be achieved as a result of 

applying user segregation. It should be noted that we applied this concept to 

the proposed clustering scheme as well as three other algorithms, and it 

improves the performance of every algorithm.  

A binary classification model has been designed and trained to identify the 

users that should be in clusters while the rest communicate directly to eNB. 

This model is trained completely offline and therefore does not increase the 

workload of the central controller. Moreover, owing to the offline training, 

explicit network measurements of the live network are not required and hence 

network latency is not substantially affected. Moreover, our results also show 

that binary classification is adequate, and training a multiclass classifier is not 

warranted.  

Multiple machine learning algorithms namely, Support Vector Machines 

(SVM), Deep Neural Network (DNN), and Random Forest (RF) are 

investigated to ascertain their suitability as classifiers for user segregation.  
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4) Identification of Data Collection Opportunities in a Cellular Network 

We have explored and identified various data collection opportunities in a 

cellular network for constructing the machine learning training corpus. These 

opportunities are outlined with respect to the user segregation problem as well. 

5) Trade-off Between eNB loading and Performance Improvement 

This work also demonstrates the trade-off between eNB loading and 

performance improvement. It provides an opportunity for the cellular network 

to select an improvement factor based on the serving capacity of the eNB.  

7.2 Future Research Directions 

Based on the assumptions, results, and analysis presented in this thesis, we 

provide several directions for future research as listed below: 

• We empirically selected weights of the proposed Multi-factor clustering 

algorithm. Future research should explore developing algorithms to 

select optimum weights. ML based regressors can be used for such 

weight selection.  

• The performance of the proposed clustering algorithm needs to be 

evaluated for multiple multimedia applications.  

• Additionally, the comparative study of the signaling overhead required 

for implementing the proposed algorithm needs to be explored as well.  

• Moreover, while this study provided an approach to finding the number 

of clusters, one of the future directions could be a comprehensive study 

of optimal selection of the number of clusters. This optimal selection 

should consider the geographical distribution of users, target 

performance parameters, etc.  
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• We trained the ML algorithms on simulated data. It would be interesting 

to compare the results obtained from ML algorithms trained on live 

network data. Common data sets/training corpus from live networks 

need to be available to perform benchmarking and evaluate the 

effectiveness of the trained algorithms.  

• Moreover, ML can predict multimedia traffic demand, especially for 

social events. Therefore, having information on the anticipated traffic 

load would make the user segregation process even more optimized. The 

resource allocation would be more effective as well. 

• Finally, going further, the proposed user segregation method should be 

explored for other applications as well. For instance, segregating a group 

of users that act as relays for coverage extension or in case of 

infrastructure failure, segregating users that can provide emergency 

services for public safety. 
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APPENDIX A 

 

 
 

An Example of a Trainig Dataset 

   Features    

S.# 
Coordinates Average Path Loss (dB)  Average Channel Gains (ABS) Throughput (kbps) 

Labels  

XX YY BS Cluster 1 Cluster 2 Cluster 3 BS 
Cluster 

1 
Cluster 

2 Cluster 3 BS Cluster 
 

1 0.882515017 0.52656658 110.572 0 0 105.0235 
3.89E-

06 0 0 9.32E-06 
5.48E+00 9.20E+00 Cluster  

2 0.388909111 0.50115413 89.05234 0 0 111.3595 
4.63E-

05 0 0 4.50E-06 13.214 6.10E+00 BS 
 

3 0.299822438 0.81032638 109.9189 91.94101 0 0 
4.19E-

06 
3.26E-

05 0 0 5.89E+00 15.74 Cluster 
 

4 0.752914143 0.8048382 111.1363 0 0 111.3999 
3.64E-

06 0 0 4.47E-06 5.68E+00 6.08E+00 Cluster 
 

5 0.265169501 0.11782083 113.2971 0 104.1214 0 
2.84E-

06 0 
1.30E-

05 0 3.55E+00 13.49 Cluster 
 

6 0.525548325 0.61835023 90.54664 0 0 106.1517 
3.90E-

05 0 0 8.19E-06 16.81 8.88E+00 BS 
 

7 0.229234718 0.77272752 110.6115 79.93622 0 0 
3.87E-

06 
1.30E-

04 0 0 5.51E+00 21.04 Cluster 
 

8 0.056385551 0.28483845 114.9395 0 98.53031 0 
2.35E-

06 0 
2.47E-

05 0.00E+00 3.16E+00 16.44 Cluster 
 

9 0.827781052 0.26912024 111.3471 0 0 109.6269 
3.55E-

06 0 0 5.49E-06 4.14E+00 5.21E+00 Cluster 
 

10 0.115814114 0.46611625 110.6732 0 107.1901 0 
3.84E-

06 0 
9.11E-

06 0.00E+00 5.46E+00 9.11E+00 Cluster 
 


