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Abstract
Redundant features and outliers (noise) included in the data points for a machine learning
clustering model heavily influences the discovery of more distinguished features for cluster-
ing. To solve this issue, we propose a spectral new clustering method to consider the feature
selection with the L2,1-norm regularization as well as simultaneously learns orthogonal rep-
resentations for each sample to preserve the local structures of data points. Our model also
solves the issue of out-of-sample, where the training process does not output an explicit
model to predict unseen data points, along with providing an efficient optimization method
for the proposed objective function. Experimental results showed that our method on twelve
data sets achieves the best performance compared with other similar models.

Keywords Feature selection · Clustering · Graph matrix, dimensionality reduction,
subspace learning

1 Introduction

Clustering is one of a number of unsupervised learning techniques, and its major aim is to
group similar features from unlabelled data together and to explore the value information of
data [1]. The obtained information can be applied in various applications in the realworld, i.e.,
data predication [2], business intelligence [3], pattern recognition [4], medical diagnosis [5].
To cope with different kinds of clustering tasks, existing methods are usually classified into
these categories, non-graph-based methods [6], graph-based methods [7], and deep learning
based methods [8]. In recent years, we have witnessed a number of deep learning techniques
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successfully applied to various applications. These models are often incorporated with a
large number of labeled samples to avoid overfitting often associated with the use of a small
number of samples. However, the collection of thousands and millions of labelled samples
is often labor intensive and not realistic in many application domains (e.g., cybersecurity).
In contrast, many traditional learning methods are often better equipped to work well even if
an input sample size is small and provide a better interpretable insight concerning the model
as well as the interaction with the input sample.

K-means belongs to a class of non-graph-based method. It is relatively simple to imple-
ment and produces good clustering performance [9]. It randomly generates cluster centers at
initialization so that the results obtained are difficult to reproduce. Also, the selected clusters
by the k-means method are dependent on the average values of original data, which may be
highly influenced by outliers. Hence, the accuracy of k-means is greatly limited by the dis-
tance measurement and the distribution of original data. In order to address this problem, the
spectral clustering method, which is a part of a graph-based method, constructs the similar
graph representation for the original data points and then learns an algorithm to partition
the graph into several reasonable sub-clusters [10]. Specifically, it creates a similarity graph
structure between data points, and calculates the first k eigenvectors of the corresponding
Laplacian matrix to define a feature vector for each object, so several clusters are obtained by
using k-means method. Compared with the k-means method, spectral clustering method can
efficiently proceed with the dimensionality reduction on data points by Laplacian eigenmaps.
Besides, it is more adaptable to data distribution, and the calculation amount is much smaller
while the graph structure is not complex. By these reasons, it has been applied to various
tasks, such as classification [6] and segmentation [11].

Much literature [7,12–17] has worked on solving the problem of learning a graph repre-
sentation for spectral clustering. For example, Yan et al. [12] employed the graph embedding
framework to proceed with dimensionality reduction while the penalty graph constructs the
relation with marginal points. Peng et al. [14] proposed a subspace learning technique which
gives a L2-graph structure aiming to eliminate the effects of outliers and preserve the infor-
mation between data points in the same subspace. However, these methods only construct
the graph matrix on the original data without considering the robust graph embedding frame-
work so that both outliers and redundant features still affect the clustering performance.
Furthermore, many approaches focus on either resolving feature selection [18] or conducting
experimentwith out-of-sample extension [19]. That is, the generalization of the learnt embed-
ding with feature selection to new samples that are not considered. For example, Zhu et al.
[20] proposed a regularized self-representation (RSR) model for unsupervised feature selec-
tion, where each feature can be represented by the linear combination of relevant features.
Vural et al. [21] developed a semi-supervised method for building an interpolation function
that provides an out-of-sample extension [22–25]. Motivated by the above observation, one
can integrate feature selection into the graph embedding framework, to yield both the robust
performance and interpretation ability.

In this paper, we propose a new joint graph embedding subspace with feature selection
(JSCGFS) clustering method to address the above limitations. We first learn the indicator
matrix from the low-dimensional space, and employ L2,1-norm work [26] on both loss func-
tion and projection matrix for improving the effectiveness of indicator learning. We then
conduct Laplacian matrix on the indicator matrix for final clustering analysis. Furthermore,
we devise an alternative strategy to solve the proposed objective function. Experimental
results on twelve real-world benchmark data sets demonstrate that our method outperforms
the comparison clustering algorithms regarding three evaluation metrics, such as accuracy
(ACC), normalized mutual information (NMI), and Purity.
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The contributions of this paper are summarized as follows:

– We develop a new model to consider both clustering and feature selection. Feature selec-
tion can select more reliable features for describing samples for clustering analysis.
Meanwhile, the results obtained by clustering can be fed back for improvement in fea-
ture selection so that the two steps can mutually interact to achieve the best optimal
solutions.

– We propose a reasonable constraint to guarantee each sample is extremely relevant to
itself, and we provide a new method to optimize the proposed method. The employed
experiments on twelve public data sets demonstrated that the proposed clustering method
outperforms both spectral clustering method and k-means clustering.

The remainder of this paper is as follows. Section 2 reviews the studies of graph-based
methods and spectral feature selection methods. Section 3 introduces the details of the pro-
posed method and optimization process. Section 4 illustrates the results of the experiments,
followed by the conclusion.

2 RelatedWork

In this section, we introduce existing studies related to our method, notably in the area of
graph-based methods and spectral feature selection method. Table 1 provides a summary of
the related methods included in this section.

2.1 Graph BasedMethods

Graph-based methods [27] usually build a similarity matrix on training data to represent the
high-order relationship among samples or data points. The details of the inner structure of
the data set can be weighted by the graph. The new graph representation can be obtained
by the optimal solution of graph cutting [28]. For example, spectral clustering is a classical
algorithm of graph-based clustering and is adaptable to data distribution. Furthermore, many
researchers have worked on learning a graph structure, for example, Nie et al. [29] have
proven that a graph can be adjusted during the clustering procedure. The graph contains the k
clusters and generate two newgraph-based clustering objectives based upon the L1-norm [30]

Table 1 Overview of the existing studies related to our method

Graph based Clustering method

Ref. Application

[12] Image search Performing Markov random walk in an image graph

[29] Bioinformatics and image Constrained Laplacian Rank

[28] Jinsight trace Partitioning Heuristics

Spectral feature selection Clustering method

Ref. Application

[32] Multivariate data Diagonally rescaled gradient descent

[33] Image clustering A lowest-rank representation

[34] Face, object, handwritten Nonnegative sparse graph
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and L2-norm [31]. Yan et al. [12] defined a correlation graph to construct the relationships
between word and image, and using the complex graph clustering and spectral clustering to
cluster images into topics. However, current graph partitioning methods based on the original
data sets have not yet provided any generally satisfactory results.

2.2 Spectral Feature SelectionMethods

The goal of spectral feature selection is to explore the potential structure of features from the
original data set and remove both redundancy and noise. Currently, methods tend to conduct
feature selection that combines with graph embedding, such as PCA [35–38], Sparse coding
[34,39–42] and Low-rank [24,33,43–45]. These approaches are applied in different areas and
specific tasks including image retrieve, face recognition, and data mining. Specifically, PCA-
based methods based on the graph embedding usually learn an efficient PCA method against
the effect generated by the outliers and noise. For example, Feng et al. [37] designed a model
which integrating the PCA using the l p-norm for reducing outliers and noise. The low-rank
method based on the graph embedding [32] generally applies NMF on high-dimensional
space for computing the effective representation of the original data points. For example,
Yin et al. [33] proposed a hyper graph-Laplacian regularization which can be integrated with
a non-negative sparse hyper-Laplacian regularized model. Furthermore, the sparse coding
methods based on the graph embedding takes the data as a dictionary, and conducts sparse
coding to preserve feature characteristics. For example, Fang et al. [34] assumed that non-
negative sparse graph learning method which integrate the label prediction with projection
into the dictionary.

3 Approach

We now define the notations and discuss the details of our proposed algorithm JSCGFS. We
also describe the theory of spectral clustering combing feature selection on the new sparse
coding. We denote matrices, vectors, and scalars, respectively, as boldface uppercase letters,
boldface lowercase letters, and normal italic letters. We summarize other notations used in
this paper in Table 2.

Table 2 The used notations in this paper

X The feature matrix of the training data x A vector of X

xi The i-th row of X x j The j-th column of X

||X||F The Frobenius norm of X, ‖X‖F =
√∑

i, j x
2
i, j xi The i-th row of X

||X||2,1 The �2,1-norm of X , ‖X‖2,1 = ∑
i

√∑
j x

2
i, j tr(X) The trace of X

xi, j The element in i-th row and the j-th column of X XT The transpose of X
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3.1 Joint Spectral Clustering Preliminaries

3.1.1 K-means

Given the data X = {xi }, the set of n dimensional points is clustered into a set of k clusters,
denoted as ck, k = {1, . . . , K }. The algorithmmeasures the squared error and uses a partition
tominimize the distance. For example, let uk be themean of cluster ck . The distance in squared
error between uk and the points of ck is as follows:

J (ck) =
∑
xi∈ck

‖xi − uk‖2 (1)

To minimize the objective function, our model sums the squared error across all k clusters
as follows,

J (C) =
K∑

k=1

∑
xi∈ck

‖xi − uk‖2 (2)

Intuitively through observing the equation, we know that the uk is influenced by the xi ,
especially if there are outliers existed in the X.

3.1.2 Spectral Clustering

Spectral clustering connects the local relationship and constructs the similarity graph by per-
forming the dimensionality reduction before clustering. Specifically, given xn as the feature
matrix could be extracted by arbitrary objects, the relationship among data points could be
denoted by a similarity matrix, S = (si j ){i, j = 1, . . . , n}. The si j denoted as the similarity
between the corresponding data points xi and x j , their edge is weighted by the wi j . We
assume that S is undirected, and wi j is a weight, where wi j = w j i ≥ 0. Thus, the most
important object is the graph Laplacian matrix, which is defined as:

L = D − S (3)

whereL ∈ R
n×n is the symmetric and positive semi-definite.D is the dignonal matrix, where

the elements are defined by Dii = ∑
j A ji , the S ∈ R

n×n is the adjacency matrix of the
graph.

Assuming that Y is Y = yi , where yi ∈ {0, 1}n×1 is the cluster indicator vector for xi .
Following the discriminative regularization [46], the scaled cluster indicator matrix Z as:

Z = [z1, z2, . . . , zn] = Y(YTY)−
1
2 (4)

where zi is the scaled cluster indicator of x j . It can be derived to

ZTZ = (YTY)−
1
2 YTY(YTY)−

1
2 (5)

otherwise, since the L satisifies the following condition [47]:

ZTZ = Ic (6)

where In ∈ R
c×c is the identity matrix. Then we observe that the equation,ZTZ = In, where

the columns are orthonormal to each other. This standard form now can be generalized to
other kinds of spectral clustering.

123



262 J. Zhu et al.

3.2 JSCGFS

3.2.1 Clustering with Linear Structure

Wefirst introduce the clusteringmethod based on themanifold features. Several methods aim
to seek a locally linear representation in Euclidean space. For example, a random projection
matrix is widely used on projecting data point x into a random k-dimensional subspace which
can be formulated as follows:

∥∥∥XTW − Z
∥∥∥
2

F
(7)

where X ∈ R
d×n is n dimensional data points andW ∈ R

d×c is the projection matrix which
is used to evaluate the correlation between data points xi and manifold features zi . Whenw j ,
where w j denotes the j-th row of W, which shrinks to zero meaning that the j-th feature
is less correlated to the new representation of zi . Moreover, some characteristics of data
points will be discarded when projection matrix W projects manifold features Z on the low
dimensional space with other regularization on themselves, such as the L1-norm [48] or the
L2-norm [31]. This kind of clustering model is sensitive to the noise and outliers since they
only consider the linear representation [49]. Obviously, this kind of model is not able to select
more valuable features without considering the intrinsic data structures [50].

3.2.2 Spectral Clustering Based on the Optimal Graph

Different from the locally linear representation (LLR) [51] method, another well-known
relevant approach is to build the graph with Laplacian matrix. This method demonstrated
the ability to detect the cluster structure of data from non-linear manifolds and has attracted
lots of attention from researchers [46,52,53]. Optimizing the graph matrix using Laplacian
matrix can be defined as following,

min
Z,W,b

tr(ZTLZ) + α

∥∥∥XTW − Z
∥∥∥
2

F
+ λ f (W)

s.t . ZTZ = Ic

(8)

where f (W ) is the regularization term, and the orthogonal constraint,ZTZ,is adopted to avoid
trivial solutions. The optimal solution is obtained from the eigenvectors of L corresponding
to the smallest eigenvalues.

Generally, the regularization terms f (W ) is added into an objective function to keep the
sparsity or fit the data. Researchers employ the regularization terms, such as the L2-norm
[31] or the L1-norm [30], and these norms are widely used as regularization term of a cost
function in machine learning. However, the L2-norm in the subspace learning suffers from
the effect of outliers [54] which may increase training error. Hence, the model has to be
adjusted appropriately to minimize the errors for outliers than a model using the L1-norm.

3.2.3 The Objective Function

For the purpose of finding a new robust representation that can capture the characteristics
of locality and sparsity, we introduce the regularization term L2,1-norm to the clustering
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Algorithm 1 JSCGFS(Joint Spectral Clustering based on Optimal Graph and Feature Selec-
tion)

Input: Data set X ∈ Rd×n

Parameter: α and β

Output: Clustering result C

1: Build similarity graph and set up the n nearest neighbor
2: Construct the unnormalized Laplacian matrix L ∈ Rd×d

3: Initialize W,b,Z
4: while iteration do
5: Update b via Eq.(12);
6: Update W via Eq.(19);
7: Update Z with GPI [55];
8: end while
9: return learned feature Z={z1,…,zk}
10: Cluster the data points Z with k-means algorithm
Output: A partition of the data points into k disjoint clusters.

model based on the graph, which can be formulated as follows:

min
Z,W,b

Tr(ZTLZ) + α

∥∥∥XTW − Z
∥∥∥
2,1

+ β ‖W‖2,1
s.t . ZTZ = Ic

(9)

where Ic denotes the identity matrix of size c. The first term learns the pseudo class labels
with an orthogonal basis while the second term and third term try to learn a latent space with
the L2,1 norm through the regression model. It is worth noting that the second term penalizes
all regression coefficients corresponding to a single feature as a whole. Therefore, we obtain
a higher quality intrinsic space for manifold feature Z. The L2,1-norm has the effect on the
importance of the sample as the k eigenvectors are selected as the columns of Z. Finally, we
add the bias term eTb into the objective function to obtain the final function as follows:

min
Z,W,b

Tr(ZTLZ) + α

∥∥∥XTW + eTb − Z
∥∥∥
2,1

+ β ‖W‖2,1 s.t . ZTZ = Ic
(10)

where e ∈ R
1×d and b ∈ R

1×n , α and β are hyper-parameters. This objective function
considers the possible correlations among all data points and all the features while we employ
the L2,1-norm as the regularization term, not use the L1-norm because the L1-norm is easily
to derivative [56] and the solution L2-norm is generally non-sparse [57]. To directly solve
the L2,1-norm problem is difficult, thus we develop the optimization method described in
the next section. After obtaining a manifold feature Z, traditional clustering methods, such
as k-means, are implemented to obtain discrete cluster labels. The Fig. 1 demonstrates the
difference between these methods and our algorithm. Previous clustering methods often
suffer from the issue of out-of-sample where these proposed methods only partition all data
points into clusters but they do not output a model for predicting unseen data points. On the
contrary, our proposed method in Eq. (10) outputs the prediction model, i.e., the second term
in Eq. (10) to solve the issue of out-of-sample.
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Fig. 1 The structure chart of K-means, Spectral clustering and our algorithm

3.3 Optimization

Since the proposed objection function is not smooth but convex, we can optimize our model
to calculate the local minimal solution of the objective function.

3.3.1 Update b with FixedW, Z

When fixing variablesW, Z, which can be considered as constants, the rewritten equation is
equivalent to:

min
b

∥∥∥XTW + eTb − Z
∥∥∥
2,1

(11)

where b can be solved iteratively [26] via the following problem:

min
b

tr(WTX + bTe − ZT)G(XTW + eTb − Z) (12)

where G is a diagonal matrix, and the elements are denoted as

Gii = 1

2
∥∥(XTW + eTb − Z)i

∥∥
2
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and then we make the differential with respect to b and have the result:

b = 1
n

((eGeT)−1(eG(Z − XTW))) (13)

We then substituting b into the Eq. (9), and obtain the new equation given by ZTZ = Ic, as
follows:

min
Z,W

Tr(ZTLY) + β ‖W‖2,1
+ α

∥∥∥XTW + eT(eGeT)−1eG(Z − XTW) − Z
∥∥∥
2,1

(14)

To simplify (14), we assume that

H = Ic − (eGe)−1eTeG (15)

and (eGe)−1 is constant, to obtain the following equation:

min
Z,W

Tr(ZTLZ) + α

∥∥∥HXTW − HY)

∥∥∥
2,1

+
β ‖W‖2,1 s.t .ZTZ = Ic

(16)

We further convert the Eq. (9) into the following form [26],

min
Z,W

Tr(ZTLZ) + α

∥∥∥HXTW − HZ
∥∥∥
2,1

+βtr(WTDW) s.t . ZTZ = Ic
(17)

where D is a diagonal matrix and i th element [26] denoted as Dii = 1
2‖Wi‖2

.

3.3.2 Update Wwith fixed Z and b

Fixing Z,b, which can be regarded as the constant, we have the following problem:

min
W

α

∥∥∥HXTW − HY
∥∥∥
2,1

+ β(WTDW) (18)

To solve the problem, we transform it into the following problem:

min
W

Tr [α(WTXHT − HTZT)Q(HXTW − HZ)

+ β(WTDW)]
(19)

After taking the derivative with respect to W and then setting the corresponding result as
zero, we have:

W = (XHTQHXT + β

α
D)−1XHTQZ (20)

where Q is diagonal matrix, and elements are denoted as Qii = 1
2‖HXTW−HZ)i‖2

.
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3.3.3 Update Z with FixedW and b

With the other coefficients updated, and we have the following equation with respect to Z:

min
Z

Tr(ZTLZ) + α

∥∥∥HXTW − HZ
∥∥∥
2,1

s.t . ZTZ = Ic
(21)

which is converted into the following problem:

min
Y

Tr [α(WTXHT − HTZT)Q(HXTW − HZ)

+ β(ZTLZ)] s.t . ZTZ = Ic
(22)

By solving the quadratic problem on the Stiefel manifold (QPSM) [55] applied to solve the
formula and we can obtain:

min
Z

Tr [(ZTLZ) − 2αZT(HTQHXTW − HTQHZ)]
s.t . ZTZ = Ic

(23)

This quadratic problemon themanifold can be solved byQPSMuntil it achieves convergence.

3.3.4 Convergence Analysis

In this section, we use Theorem 1 to prove the convergence of our proposed method.

Theorem 1 By denoting b(t), W(t), and Z(t), respectively, as the t-th iterations of b,W and
Z, we denote the objective function value of Eq.(10) in the t-th iteration as L( b(t),W(t), and
Z(t)). According to Eq.(12) in Sect. 3.3.1, b(t)has a closed-form solution, thus we have the
following inequality:

L(W(t),Z(t),b(t+1)) ≤ L(W(t),Z(t),b(t)) (24)

According to Eq.(19) in Sect. 3.3.2, W (t) has a closed-form solution, thus we have the fol-
lowing inequality

L(W(t+1),Z(t),b(t+1)) ≤ L(W(t),Z(t),b(t+1)) (25)

According to Eq.(23) in Sect. 3.3.3 , Z (t) has a closed-form solution, thus we have the
following inequality:

L(W(t+1),Z(t+1),b(t+1)) ≤ L(W(t+1),Z(t),b(t+1)) (26)

Finally, we have the inequality by integrating the above three inequalities,

L(W(t+1),Z(t+1),b(t+1)) ≤ L(W(t),Z(t),b(t)) (27)

Hence, the objective function value in Eq.(10) is monotonously decreased via iterating Algo-
rithm 1.
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Table 3 The details of the used data sets

Data sets Samples Dimensions Classes Data sets Samples Dimensions Classes

Bina 1404 320 36 Crx 690 15 2

Card 2126 41 3 Diab 1151 19 2

Wine 1599 118 6 Park 1040 2 2

Uspst 2007 256 10 Segment 2310 19 7

Wf-21 2746 54 3 Wf 5000 21 3

Bank 1372 4 2 Yeast 1484 8 10

Table 4 The ACC performance
of all algorithms on twelve
benchmark datasets

ACC

Data sets JSCGFS K-means SSC LRR ULGE

Bina 0.48 0.41 0.21 0.41 0.42

Card 0.64 0.45 0.46 0.72 0.50

Wine 0.38 0.27 0.31 0.30 0.29

Uspst 0.78 0.64 0.57 0.54 0.68

Wf-21 0.62 0.51 0.50 0.47 0.52

Bank 0.68 0.61 0.72 0.65 0.89

Crx 0.60 0.55 0.53 0.56 0.57

Diab 0.55 0.51 0.54 0.51 0.52

Park 0.57 0.52 0.53 0.51 0.54

Segment 0.62 0.51 0.71 0.56 0.55

Wf 0.54 0.50 0.51 0.49 0.51

Yeast 0.34 0.36 0.31 0.31 0.36

4 Experiment

4.1 Data Sets

We used twelve data sets in our experiments from the UCI website. 1 We summarized them
in Table 2. We operate all algorithm 50 times and averaged the results. The dimension of
feature s is from 8 to 320, and the number of samples varies from 690 to 5000. The number
of features of all data sets is less than the number of samples (Table 3).

4.2 ComparisonMethods

We employ four comparison methods and the details were given as follows:
K-means [9] selects the centroids randomly, which are treated as the initialization point

for each cluster, and calculate the positions of the centroids iteratively according to the means
of data points.

SSC [58] classifies data points that scatter in low-dimensional subspace so that the original
data points obtain sparse representation in subspace that can deal with data noise and outliers.

1 http://www.escience.cn/people/chenxiaojun/index.html.
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Table 5 The NMI performance
of all algorithms on twelve
benchmark datasets

NMI

Data sets JSCGFS K-means SSC LRR ULGE

Bina 0.63 0.575 0.351 0.581 0.572

Card 0.045 0.026 0.044 0.144 0.022

Wine 0.044 0.039 0.034 0.085 0.038

Uspst 0.793 0.610 0.672 0.675 0.730

Wf-21 0.330 0.363 0.359 0.186 0.370

Bank 0.253 0.030 0.151 0.076 0.573

Crx 0.043 0.005 0.009 0.002 0.042

Diab 0.008 0.003 0.004 0.021 0.003

Park 0.092 0.004 0.043 0.004 0.013

Segment 0.330 0.363 0.621 0.507 0.567

Wf 0.097 0.362 0.363 0.260 0.370

Yeast 0.263 0.234 0.211 0.107 0.263

Table 6 The Purity performance
of all algorithms on twelve
benchmark datasets

Purity

Data sets JSCGFS K-means SSC LRR ULGE

Bina 0.510 0.442 0.231 0.460 0.446

Card 0.778 0.780 0.779 0.810 0.779

Wine 0.456 0.483 0.482 0.530 0.486

Uspst 0.840 0.711 0.705 0.708 0.768

Wf-21 0.622 0.534 0.516 0.487 0.518

Bank 0.685 0.612 0.723 0.656 0.887

Crx 0.598 0.556 0.555 0.558 0.585

Diab 0.554 0.531 0.540 0.531 0.531

Park 0.566 0.711 0.532 0.510 0.544

Segment 0.622 0.516 0.711 0.604 0.565

Wf 0.540 0.531 0.506 0.487 0.508

Yeast 0.547 0.514 0.455 0.378 0.524

LRR [59] learns a combination of various subspace through finding the lowest rank of
candidate features which can be treated as the new representation of linear combinations. It
also groups the similar samples into corresponding basket and may separate the outliers as
soon as possible.

ULGE [60] constructs similarity matrix and conducts the analysis for the spectral clus-
tering so that it has an obvious improvement on speed.

4.3 EvaluationMeasures

To compare our proposed JSCGFS method with other similar methods, we employed three
evaluation metrics that include accuracy (ACC), normalized mutual information (NMI), and
Purity respectively. ACC measures how many samples are correctly allocated to the corre-
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Fig. 2 Accuracy result of all methods on all data sets at different number of selected features

sponding class. NMI is for measuring the similarity between the ground label and predicted
label and scales the results between 0 and 1. Purity is used for measuring the rate of sam-
ples which are correctly allocated into the corresponding cluster. The definitions of the ACC
evaluation metrics are as follows:

ACC = Ncorrect/N (28)

where Ncorrect denotes how many samples are correctly allocated into the corresponding
cluster,and N denotes that the total sample. The definition of NMI is:

NMI (A, B) =
∑CA

i=1

∑CB
j=1 log(ni j n/nA

i n
B
j )√∑CA

i=1 n
A
i log(n

A
i /n)

∑CB
j=1 n

B
j log(n

B
j /n)

(29)

where A,B represents two partitions of n samples into CA and CB clusters respectively.

Purity =
k∑

i=1

(Si/n)Pi (30)
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Fig. 3 Objective function value of our proposed method at different number of ranks

where k denotes that the number of clusters and n represents total samples. Si is the number
of samples in the i th cluster. Pi is denoted that the distribution of samples which are allocated
correctly.

5 Parameter Sensitivity

From Fig. 2 we see the performance of our method depends on the setting of parameters α

and β. In the dataset Wine, our method is sensitive to α and β in this range like the situation
in the dataset Uspst. But in the Bank, our method is insensitive to parameter α in the range
[0, 2], and it is insensitive to parameter α in the range [−2,−1] in Diab. Ourmethod is neither
sensitive to α nor to the β in Wf-21. Therefore, we find our method is partially sensitive to
the setting of parameters α and β. This also reveals that our algorithm has efficiently deals
with features in different data sets.

6 Convergence

To optimize our proposed objective function Eq. (10) and theoretically prove its convergence,
we reported the results on 12 datasets in Tables 4,5 and 6, while setting the stop criteria
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of our algorithm as
‖obj(t+1)−obj(t)‖22

obj(t) ≤ 10−5, where obj(t) represents the t-th iteration
objective function value of Eq. (10). Figure 3 shows that the trend of objective function
values monotonously decreased with respect to the number of iterations and it is obvious that
our proposed objective function in Eq. (9) becomes convergent in the first 50 iterations.

7 Conclusion

This paper presents a new spectral feature selectionmethod for clustering analysis.We embed
the graph into the subspace and consider joint graph embedding subspace into the united
framework. Experimental results demonstrated the proposed method over other methods on
three evaluation metrics. Moreover, through the experiment analysis, we recognized that our
model could be sensitive to particular characteristics of samples from different application
areas. Therefore in future work, we will explore further tuning of our model by taking into
considerations of different application settings such as industrial applications and business
intelligence.
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