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Abstract: This article sets out to document and summarise the New Zealand epidemic and the
epidemiological research conducted on the epizootic of bovine anaemia associated with Theileria
orientalis Ikeda type infection, which began in New Zealand in August 2012. As New Zealand
has no other pathogenic tick-borne cattle haemoparasites, the effects of the T. orientalis Ikeda type
infection observed in affected herds and individual animals were not confounded by other concurrent
haemoparasite infections, as was possibly the case in other countries. This has resulted in an unbiased
perspective of a new disease. In addition, as both New Zealand’s beef and dairy cattle systems
are seasonally based, this has led to a different epidemiological presentation than that reported by
almost all other affected countries. Having verified the establishment of a new disease and identified
the associated pathogen, the remaining key requirements of an epidemiological investigation, for
a disease affecting production animals, are to describe how the disease spreads, describe the likely
impacts of that disease at the individual and herd level and explore methods of disease control
or mitigation.

Keywords: Theileria orientalis; Ikeda; New Zealand; Theileria associated bovine anaemia; bovine

1. The New Zealand Epidemic

The New Zealand Theileria orientalis Ikeda type epidemic began in 2012 with index
cases identified during the spring calving period on two dairy farms, in Kamo, Northland,
on the 22 August 2012 and in Reporoa, Waikato, on the 30 August 2012 [1].

Although initially identified on two dairy farms, the epidemic was at the beginning
largely restricted to mostly beef farms in Northland but by the autumn of 2013 had spread
to autumn calving dairy herds in the Waikato, probably when infected pregnant dairy
cows returned from summer grazing in Northland. By the following spring of 2013 the
outbreak had spread over most of the upper North Island [2], requiring the development
of rapid quantitative methods of diagnosis [3]. Theileria associated bovine anaemia (TABA)
remained notifiable in New Zealand until 30 November 2014, during which time the Min-
istry for Primary Industries (MPI) collected an almost unique data set, which has resourced
much of the New Zealand research conducted on T. orientalis Ikeda type since then.

The epidemic curve constructed using these data (Figure 1), showed a pattern of
seasonal peaks occurring in the spring and autumn; with the spring peak being the great-
est [4]. Descriptive data collected by MPI allowed the epidemic curve to be categorised
by age, (calf less than 6 months of age or adult), and by farm type, (dry stock, dairy, or
beef). Categorisation showed that dairy and adult were the most common classes of cattle
affected in the epidemic (Figure 1).
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Figure 1. Epidemic curve for confirmed cases (“Ikeda PCR positive”) for the period 1 August 2012–1 December 2014. (a) 
Shows the epidemic curve categorised by age, calf (less than 6 months of age) or adult. (b) Shows the epidemic curve 
categorised by farm type, dry stock, dairy, or beef. 

The rapid spread through the upper North Island during 2013 [2], was aided by the 
unique New Zealand policy whereby share milkers change contracts and dairy farms on 
the 1 June each year, colloquially known as “gypsy day” or “moving day” A share farmer 
is a contractor who manages a dairy farm with or without owning the animals, based on 
a share of the milk income. On “moving day”, each year, thousands of share farmers, their 
families, and their dairy herds move farms, often over several hundred kilometres. In June 

Figure 1. Epidemic curve for confirmed cases (“Ikeda PCR positive”) for the period 1 August 2012–1 December 2014.
(a) Shows the epidemic curve categorised by age, calf (less than 6 months of age) or adult. (b) Shows the epidemic curve
categorised by farm type, dry stock, dairy, or beef.

The rapid spread through the upper North Island during 2013 [2], was aided by the
unique New Zealand policy whereby share milkers change contracts and dairy farms on
the 1 June each year, colloquially known as “gypsy day” or “moving day” A share farmer
is a contractor who manages a dairy farm with or without owning the animals, based on a
share of the milk income. On “moving day”, each year, thousands of share farmers, their
families, and their dairy herds move farms, often over several hundred kilometres. In June
2013 this had the effect of translocating naïve herds into areas where infected ticks were
already present and moving infected herds into areas where ticks were still naïve. As a
result, there was a rapid acceleration in the spread of disease throughout the upper North
Island during spring 2013 (Figure 2). Confirmation of this rapid spread was provided by
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the PCR testing of stored bloods from pre-export sampling of dairy heifers, and bloods
taken as part of a voluntary bovine viral diarrhoea (BVD) control programme. These bloods
were collected between November 2012 and June 2013. The results clearly showed that
in less than 12 months from the index cases, the disease had spread to many regions of
New Zealand, with the highest prevalence of infected herds being in Northland (94%), and
Auckland and Waikato (33%) [5]. A small number of Ikeda positive herds was even found
in regions of the South Island where ticks are absent, likely as the result of the movement
of cattle previously exposed to infection in the North Island. “Moving day” 2014 achieved
a further rapid acceleration of case farms (Figure 2). However, during the whole period
that MPI records were kept (22 August 2012 to 20 November 2014) only one PCR positive
farm was identified in the South Island, and this was not until late 2014 [4]. Following this
initial case, TABA then became more common and was regularly diagnosed in the Golden
Bay area at the northern tip of the South Island by 2018 [6].

Pathogens 2021, 10, x FOR PEER REVIEW 3 of 15 
 

 

2013 this had the effect of translocating naïve herds into areas where infected ticks were 
already present and moving infected herds into areas where ticks were still naïve. As a 
result, there was a rapid acceleration in the spread of disease throughout the upper North 
Island during spring 2013 (Figure 2). Confirmation of this rapid spread was provided by 
the PCR testing of stored bloods from pre-export sampling of dairy heifers, and bloods 
taken as part of a voluntary bovine viral diarrhoea (BVD) control programme. These 
bloods were collected between November 2012 and June 2013. The results clearly showed 
that in less than 12 months from the index cases, the disease had spread to many regions 
of New Zealand, with the highest prevalence of infected herds being in Northland (94%), 
and Auckland and Waikato (33%) [5]. A small number of Ikeda positive herds was even 
found in regions of the South Island where ticks are absent, likely as the result of the 
movement of cattle previously exposed to infection in the North Island. “Moving day” 
2014 achieved a further rapid acceleration of case farms (Figure 2). However, during the 
whole period that MPI records were kept (22 August 2012 to 20 November 2014) only one 
PCR positive farm was identified in the South Island, and this was not until late 2014 [4]. 
Following this initial case, TABA then became more common and was regularly diag-
nosed in the Golden Bay area at the northern tip of the South Island by 2018 [6]. 

It became very evident, early in the epidemic, that many farms were becoming in-
fected without farmers reporting clinical disease outbreaks. A prevalence study con-
ducted by MPI in 2013 supported this assumption showing that on average 87% of cows 
were already infected T. orientalis Ikeda when the first clinical cases were reported in that 
herd [7]. At present in 2021 T. orientalis Ikeda remains endemic in all these original areas 
with veterinarians still reporting clinical cases but not the mass numbers seen with the 
original epidemic. 
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for 2013 and 2014.

It became very evident, early in the epidemic, that many farms were becoming infected
without farmers reporting clinical disease outbreaks. A prevalence study conducted
by MPI in 2013 supported this assumption showing that on average 87% of cows were
already infected T. orientalis Ikeda when the first clinical cases were reported in that
herd [7]. At present in 2021 T. orientalis Ikeda remains endemic in all these original areas
with veterinarians still reporting clinical cases but not the mass numbers seen with the
original epidemic.

2. Source of Infection

It is likely that the live importation of infected cattle from Australia, prior to 2012, was
responsible for the introduction of the Ikeda type into New Zealand. A previous outbreak
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of T. orientalis in the 1982–1986 was also attributed to live imports from Australia [8].
Retrospective testing of bloods collected annually from sentinel farms in Northland and
the Waikato since 2008, as part of a MPI arbovirus surveillance program, showed that
1/7 farms were T. orientalis Ikeda PCR positive in December 2011 and by December 2012,
6/7 farms were PCR positive (Figure 3). This indicates that T. orientalis Ikeda infected cattle
arrived in Northland prior to December 2011. Until August 2017 New Zealand did allow
live cattle imports from Australia and records reveal that approximately 90 live cattle were
imported into New Zealand from Australia in the 10 years prior to 2012 (MPI data on file).
Which particular importation was responsible is not clear and the possibility remains that
multiple disease incursions may have occurred.
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Figure 3. Results from PCR testing of stored bloods from seven sentinel herds in Northland and Waikato, sampled as part
of an arbovirus surveillance program, sampled from 2008 to 2012. Red dots show PCR negative farms and green dots show
PCR positive farms for Theileria orientalis Ikeda. The two-index case dairy farms in Reporoa and Kamo are shown (�). (Only
6 herds were tested in December 2008).

3. Tick Distribution

Haemaphysalis longicornis is the only known competent vector for T. orientalis in New
Zealand [9]. This tick species was introduced into New Zealand possibly in the late 19th
or early 20th century [9] and is now considered to have a stable distribution which is
widespread in the North Island, occurring as far south as Waikanae in the west and the
Wairarapa in the east, it is also established in the top of the South Island [9]. In New Zealand
the H. longicornis life cycle is usually completed within 12 months, with over-wintering
nymphs mainly engorging from July to September, adults from November to December
and larvae from February to April [9]. Suitable hosts include cattle, deer, goats, horses,
hares, sheep, dogs, kiwis, and even humans [9,10]. Figure 4 represents the most recent
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distribution map for H. longicornis in New Zealand and was based on the results of a
comprehensive telephone survey, field observation and tick surveillance on deer [4,9].
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4. Spread of Disease

The main method of disease dissemination in the 2012 New Zealand TABA epidemic
was the movement of parasitaemic cattle into naïve herds, and the consequences of those
movements on the epidemiology of the disease are summarized in Figure 5. Infected farms
were 2 times more likely to have had cattle movements onto their farms than uninfected
farms [2] and the ramifications of that movement depended on the tick density of the
area in which the naïve farm was situated. In high tick density areas, endemic stability
rapidly established with the disease more often seen in young cattle rather than older cattle.
In Northland, which was probably the first region in New Zealand to achieve endemic
stability, beef or dairy calves were 26 times more likely to be diseased than calves from
elsewhere in the North Island [2].

Local spread of infection to neighbouring farms from recently infected herds is also
highly likely in high tick density areas. The epidemic curve described a propagating
epidemic in the early stages in Northland and strong temporal-spatial clustering of case
farms was also seen [2]. New infections were reported on farms 20–30 days after infection
was reported on a nearby farm, situated 5–20 km away [2]. Both findings support the
importance of local spread in the early stages of Theileria epidemic.
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Figure 5. Mechanisms and consequences of Theileria orientalis (Ikeda) spread by parasitaemic cattle.

The severity of disease and the age group affected, also depends on the tick density.
The environmental suitability of tick habitats falls as the locations move further south in the
North Island [11]. Consequently, the further south that infection occurs then the more likely
disease will be seen in adult cattle rather than calves [12] often with a more severe clinical
disease outcome. Figure 6 shows that as latitude south increases, the proportion of TABA
cases in calves decreases to almost zero in the lower North Island. In areas outside of known
tick areas, where ticks are absent, there is still a low probability of non-tick associated
disease transmission [13]. However, with no reports of TABA in nine years from these
tick-free areas it is unlikely that acute clinical disease occurs after mechanical or iatrogenic
spread. It is also unlikely that the distribution of tick habitats in New Zealand will be
greatly affected by global warming, although some increase in TABA disease frequency
may be expected on the West Coast of the South Island [11]. Trans-placental infection is not
shown in Figure 5 as trans-placental infection occurs at a very low level, if at all, in infected
cattle and has a very minor role in the epidemiology of TABA [14].
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The black dots show the locations of all Theileria orientalis Ikeda cases from 22 August 2012 to 1
December 2014.

5. Impact of Disease

Before the emergence of T. orientalis Ikeda type in 2012 it was believed that New
Zealand cattle were only parasitised by the more benign T. orientalis types, Chitose and Buf-
feli, with just sporadic disease outbreaks reported [8,15,16]. Despite the higher pathogenic-
ity of T. orientalis Ikeda type [17,18] most New Zealand farms affected in the 2012 Ikeda
epidemic recorded relatively low mortality and morbidity rates, the medians being 0.23%
and 0.97%, respectively [19]. These disease estimates were based on survey data from
196 dairy and beef farms and remain the only published estimates of morbidity and
mortality rates for T. orientalis Ikeda type outside of Japan.

Infection with T. orientalis Ikeda is lifelong and peak infection levels are usually
reached at 4 to 6 weeks after infected ticks have fed (Figure 7). Following the peak, the
infection levels drop considerably, and the animal enters an asymptomatic carrier state,
probably for the rest of its life. In the following text, peak infection will be referred to as
the “acute infection or acute phase” and the carrier stage will be referred to as the “chronic
infection or chronic phase”.
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endemic stable region of New Zealand. Calves were blood sampled in the spring (•), summer (N) and autumn (�), the
broken horizontal line is the limits of detection for this molecular PCR method [20]. A Loess line with 95% confidence
interval is fitted to the data using a span = 0.25.

In the early part of the 2012 epidemic, diagnosis by veterinarians in the field was based
on clinical signs, measuring the packed cell volume (PCV) and submitting blood smears to
the private regional veterinary laboratories for Giemsa staining. Later, Giemsa staining was
mostly replaced by PCR testing. The most common clinical signs recorded for cattle with
acute infection in New Zealand are jaundice, lethargy, pale mucous membranes, anaemia,
and reduced milk production [21]. In the chronic phase, infection is asymptomatic except
for the hypothesised syndrome of ill thrift, diarrhoea, and death reported in weaned beef
calves [21]. In the earlier 1982–1986 T. orientalis epidemic the two most common presenting
signs from 101 cases, were ill-thrift (29/101) and diarrhoea (23/101) [22]; it is noteworthy
that anaemia and jaundice were not commonly reported in that epidemic [22]. Although
never proven conclusively, the 1982–1986 New Zealand epidemic was likely associated
with the Chitose type and the agreement between two different T. orientalis types, Ikeda
and Chitose, may lend some support to the supposition that the pathological effects of
T. orientalis infection are not just limited to extravascular haemolytic anaemia, and in the
absence of anaemia, the Ikeda and Chitose types can potentially both produce similar
disease syndromes of ill-thrift and diarrhoea. The actual prevalence of the Chitose type
prior to the Ikeda epidemic is unknown as no specific New Zealand studies or population
surveys were undertaken.

The most common haematological and biochemical changes seen in the acute phase
of infection were similar in both adult cattle and young calves [23]. These were noted as a
regenerative extravascular haemolytic macrocytic anaemia, resulting in reduced haemat-
ocrit and RBC counts, and associated biochemistry changes of elevated GGT and bilirubin
levels [23]. However, calves were less likely to develop severe anaemia and adult cattle
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were more likely to show anoxic liver damage at low HCT, with increased levels of AST and
GLDH and an inflammatory response [23]. At the individual cow level, anaemic animals
took approximately 53 days to recover [24] and at the herd level it took about 80 days for
the herd prevalence of anaemia to return to zero, following diagnosis [7].

The potential outcomes of Theileria orientalis Ikeda infection in naïve animals are
shown in Figure 8. The concepts conveyed in Figure 8 are that T. orientalis Ikeda type
infection is a necessary but not sufficient cause of disease (anaemia, reduced milk pro-
duction and reduced liveweight gain) and that other contributory causes, such as stress
(physiological and nutritional), and concurrent disease (e.g., BVD), have a strong influence
on the outcome of infection, at both the individual and the herd level. Sex was also found
to influence the infection intensity with female beef calves developing a higher infection
than male calves [20]. Breed and age are also likely to impact the infection intensity and
thus the clinical outcome, purebred Friesians showed a higher prevalence of clinical theile-
riosis than crossbred dairy cattle (predominantly Jersey crossed with Friesian in different
proportions) [25].
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Very few chronically infected cows appeared to recrudesce into acute illness despite
nutritional stress or severe concurrent disease [26]. To emphasise this, broken grey lines
and arrows were used in Figure 8 to show a weak association in the direction of the
arrow. Instead, it is likely that the role of T. orientalis Ikeda type in disease presentation
changes from the acute to the chronic phase of infection. In the acute phase the effects
of the contributory causes influence the pathophysiological response to T. orientalis Ikeda
infection leading to higher infection intensities and more severe disease outcomes, i.e., the
contributory causes help set the conditions under which we see acute TABA. Whereas in the
chronic phase T. orientalis Ikeda type infection now interacts with these contributory causes,
leading to potentially more severe effects resulting from stress (physiological or nutritional)
or concurrent disease, on milk production and liveweight gain than would be seen in
uninfected cattle, i.e., the chronic T. orientalis Ikeda infection decreases the fitness of the
animal to tolerate other endemic diseases and deficiencies. This reduction in fitness brought
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on by chronic infection is the likely explanation for the hypothesised syndrome of ill thrift,
chronic diarrhoea and death reported in weaned beef calves [21]. These calves present
with quite vague illnesses which are likely related to parasitism, concurrent infections
such as BVD or Yersinia pseudotuberculosis and poor nutrition exacerbated by the chronic
Theileria infection.

It is likely that adverse production effects result from the combined effects of both
anaemia and anorexia. The Northland index case had approximately 20 cows die during
the calving season, had a six-week in-calf rate of only 44% (target 78%) during the mating
season and the per-cow milk season production was just 230 kg milk solids, well down on
the regional average of 315 kg [27]. In another outbreak where naïve cattle were moved
to an endemic area, costs of more than $NZ 1 million were incurred by a single herd [28].
However, on many farms the effects were less dramatic. Nevertheless, modelling carried
out by veterinarians at MPI in May 2013 showed that the average farm impact of T. orientalis
Ikeda infection was estimated at $14,000, but the range was $4000–$29,000 [27]. The full cost
of the 2012 epidemic in New Zealand is unlikely to ever be accurately estimated, since herds
were often almost 100% infected, over a very short period [7]. This meant that uninfected
controls for matching to and contrasting with infected animals were seldom available for
herd-based production studies. The loss in milk production, for non-clinical incidence
cases, has been estimated at around 20 kg milk solids per cow [26], and for live weight
gain at 2 kg/week for 2 years old Friesian bulls [29] and at 900 g/week for beef calves [20].
A negative effect of acute infection on reproduction was also found, infected cows had
a higher empty (non-pregnant) rate and a lower conception rate than uninfected cows,
with losses estimated at $196/cow [25]. There was no effect of infection on male fertility
observed, with semen quality in ten 2-year-old Friesian bulls, experimentally infected with
T. orientalis Ikeda, remaining unchanged [30]. However, during the acute phase of infection,
when the infection intensity was rapidly increasing, the infected bulls took a longer time to
repeatedly mount females and were less dominant in the herd social hierarchy compared
to uninfected controls [30].

6. Modelling to Describe the Distribution of the Tick Haemaphysalis longicornis and
the Likely Extent of the TABA Epidemic

Two models were constructed to explain the spatial distribution of ticks and disease
transmission in New Zealand. The first model was a simple climate model to determine
the spatial extent of habitat suitability for H. longicornis in New Zealand [11]. The model
was developed using a rule-based climate envelope model based on the environmental
requirements for off-host tick survival [31,32]. The model predicted that 75% of cattle farms
in the North Island, 3% of cattle farms in the South Island and 54% of cattle farms in New
Zealand overall had habitats potentially suitable for the establishment of H. longicornis
(Figure 9a).

The second model used the Maxent (maximum entropy) modelling program [33,34]
to predict the relative environmental suitability for T. orientalis transmission throughout
New Zealand [13]. The Maxent model predicted that 99% of North Island cattle farms, 64%
South Island cattle farms and 89% of New Zealand cattle farms overall could potentially be
suitable for T. orientalis transmission (Figure 9b). The areas of Figure 9b identified as having
high suitability for disease transmission are likely to achieve endemic stability, whereas in
the low suitability areas, endemic stability will not be achieved, and disease will continue
to be sporadic and potentially severe when it does occur.
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7. Managing the New Zealand Epidemic

Several resources were developed for veterinarians and farmers to manage outbreaks
by different national bodies collaborating, including MPI together with the New Zealand
Veterinary Association and DairyNZ. These resources included the FANI card [35], the
Theileria veterinary handbook [36] and the Theileria veterinary handbook 2 [28].

The FANI (Field Anaemia Nearest Indicator) card (Figures 10 and 11), was developed
by MPI in 2013, in which colour charts were used to assess the level of anaemia in individual
animals, based on examining the mucous membrane of the vulva [35]. The FANI card has
four colour categories, which span the range from healthy to severely anaemic animals,
and a fifth category differentiating anaemia due to blood loss. This system was designed
to provide enough representation of the full range of disease signs but be simple enough
to facilitate meaningful clinical classification. It enabled a rapid cow-side interpretation
and treatment decision to be made for each individual cow [35]. Cattle identified as having
a PCV < 10% to 14% using the FANI card, often had a confirmatory PCV carried out by
veterinary clinicians or regional laboratories. Those cattle with a PCV below 0.12 would
likely have died without a blood transfusion and during the New Zealand TABA epidemic
thousands of blood transfusions were given by veterinarians [35,37]. Anecdotal reports
indicate that dairy practitioners are still required to transfuse severely ill cattle from time
to time but not in the same numbers as during the epidemic.

The Theileria veterinary handbook [36] and the Theileria veterinary handbook 2 [28]
collected material that had previously been printed in VetScript [35,38–41] and was de-
signed as a ‘ready-to-use’ reference for veterinarians and the agricultural sector, which
provided up to date information at the time of publication.
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8. Control of Disease

Despite widespread promotion and uptake, the use of pour-on acaricides proved
largely ineffective at preventing oriental theileriosis in the 2012 epidemic [42]. This was not
surprising given that on average 87% of cows were already infected when the first cases
of TABA are reported in that herd [7]. Currently those New Zealand cattle farms in the
low-tick density areas which fail to reach or maintain endemic stability are the farms that
continue to experience acute clinical theileriosis in older cattle [26]. The most important
control method that can be implemented on these farms is the deliberate exposure of young
cattle to infection, to force the herd into endemic stability. Executing this program should
not result in increased clinical cases of TABA, since in the acute phase young cattle appear
to be less severely affected than older cattle [23], although some effect on growth rate of
young stock might be expected [20]. However, once the young cattle reach the chronic
infection phase, recrudescence into acute disease is rarely seen [26].
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There is still an ongoing requirement in New Zealand for an effective chemothera-
peutic agent to treat oriental theileriosis, with reports of continued high mortality rates in
beef calves in Northland (L. Bawden, pers comm.). Despite favourable anecdotal reports,
toltrazuril proved ineffective in a clinical trial [43] and although buparvaquone has shown
some reported efficacy in the field [44] the results are often variable. In one New Zealand
trial, although with small numbers of treated animals (n = 45), there was an 80% reduction
in case fatality rates and a 40% reduction in milk loss in treated cattle compared to untreated
controls [26]. However, the long legal withhold periods for meat (18-month) and milk
(43-day) currently enforced in New Zealand for this drug, severely restrict its usage on
most farms [45].

9. Future Research

As endemic stability is reached in many regions the incentive for further research
has dropped, however there are two pieces of work that would complement that already
completed. The first would be to investigate whether latent carriers, such as sheep, deer,
dogs, or horses, played a significant role in the rapid spread of TABA through the North Is-
land, by providing additional sources of infection for naïve ticks. Although this knowledge
would have little bearing on the current New Zealand epidemic it would help explain how
the epidemic spread so quickly and may aid disease control in new outbreaks, possibly
overseas. A recent study has examined the role of sheep in the spread of T. orientalis [46].
In this study it was found that some sampled sheep in endemic areas had low levels of
T. orientalis Ikeda type DNA and that naïve tick larvae which fed on these sheep could be-
come infected, possibly through co-feeding with other tick stages. Further work will need
to explore whether these infected ticks can spread active infection to naïve cattle and close
the loop, before the impact of sheep on the epidemiology of theileriosis can be assessed.
The second would be to identify alternate chemotherapeutic agents to buparvaquone, ones
with a shorter, more reasonable, withholding period. There is still a significant burden
of clinical disease in the unstable endemic areas of New Zealand and in naïve heavily
pregnant dairy cows moving from disease free areas to infected areas, as has been seen post
“moving day”. An effective chemotherapeutic agent would dramatically reduce animal
suffering and lost production if it were available.

Eradication of the Ikeda type would be extremely difficult due to the widespread
distribution, involvement of other ruminants as peripheral hosts and the absence of an
effective treatment. The only likely option would be test and slaughter and that is clearly
untenable given the number of animals involved.

Until now there has been no interest in developing a vaccine against T. orientalis Ikeda
type in New Zealand, however, this may change since a recent Australian study found that
prior infection with T. orientalis Buffeli may be protective [47]. If this is the case, then it is
possible that the widespread infection of cattle in the upper North Island with the Buffeli
and Chitose types, that was presumed to exist prior to the 2012, may have resulted in a less
severe epidemic than other countries have experienced.

Important lessons that other countries can learn from the New Zealand epidemic are
that if you have a competent vector such as H. longicornis, and if you import infected cattle,
the disease will quickly become established and spread rapidly. The current situation in
the USA is slightly different in that they had small, isolated pockets of infected cattle but
no competent vector, so no disease was seen until the introduction of H. longicornis in
2017 [48,49].
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