Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

N-Linked Glycopeptide Mimetics as Tools in Kinetic, Mechanistic and Structural Studies of Peptide N:Glycanase F

A thesis

presented in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy in Biochemistry

at

Massey University

by

Dirk Henning Lenz

Palmerston North New Zealand 2003

Institute of Molecular BioSciences Private Bag 11 222, Palmerston North, New Zealand Telephone: 64 6 356 9099 Facsimile: 64 6 350 5688 Email: IMBS@massey.ac.nz

CERTIFICATE OF REGULATORY COMPLIANCE

This is to certify that the research carried out in the Doctoral Thesis entitled "N-linked Glycopeptide Mimetics as Tools in Kinetic, Mechanistic and Structural Studies of Peptide N:Glycanase F" in the Institute of Molecular BioSciences at Massey University, New Zealand, and at IRL, Lower Hutt (with the approval of the Head of Institute of IMBS):

- (a) is the original work of the candidate, except as indicated by appropriate attribution in the text and/or in the acknowledgements;
- (b) that the text, excluding appendices/annexes, does not exceed 100,000 words;
- (c) all the ethical requirements applicable to this study have been complied with as required by Massey University, other organizations and/or committees which had a particular association with this study, and relevant legislation.

Please insert Ethical Authorisation code(s) here (if applicable): GMO 00/MU/22

Candidate's Name: ,Dirk H. Kenz Signature:

Date: 22 March 2004

Supervisor's Name: Gillian E. Norris

Signature:

lenon

Date: 22 March 2004

Institute of Molecular BioSciences Private Bag 11 222, Palmerston North, New Zealand Telephone: 64 6 356 9099 Facsimile: 64 6 350 5688 Email: IMBS@massey.ac.nz

CANDIDATE'S DECLARATION

This is to state that the research carried out for my Doctoral thesis entitled "Nlinked Glycopeptide Mimetics as Tools in Kinetic, Mechanistic and Structural Studies of Peptide N:Glycanase F" under the auspices of IMBS at IRL with the approval of the Head of Institute and in the Institute of Molecular BioSciences at Massey University, Palmerston North, New Zealand is all my own work. This is also to certify that thesis material has not been used for any other degree.

Candidate's Name: Dirk H_Lenz Signature:

Date: 22 March 2004

Institute of Molecular **BioSciences** Private Bag 11 222, Palmerston North, New Zealand Telephone: 64 6 356 9099 Facsimile: 64 6 350 5688 Email: IMBS@massey.ac.nz

SUPERVISOR'S DECLARATION

This is to state that the research carried out for the Doctoral thesis entitled "N-linked Glycopeptide Mimetics as Tools in Kinetic, Mechanistic and Structural Studies of Peptide N:Glycanase F" was done by Mr Dirk Henning Lenz in the Institute of Molecular BioSciences at Massey University, Palmerston North, New Zealand and at IRL, Lower Hutt (with the approval of the Head of Institute, IMBS). This thesis material has not been used in part or in whole for any other gualification, and I confirm that the candidate has pursued the course of study in accordance with the requirements of the Massey University regulations.

Supervisor's Name: Gillian E. Norris

Signature: Senom.

Date: 22 March 2004

Te Kunenga ki Pūrehuroa

ABSTRACT

PNGases (Peptide- N^4 -(*N*-acetyl- β -glucosaminyl)asparagine amidases (E.C. 3.5.1.52) cleave the carbohydrate chains from the asparagine side chains of glycoproteins. They are widely used to deglycosylate *N*-linked glycoproteins and glycopeptides for analytical purposes. PNGase F from *Flavobacterium meningosepticum* is the best characterised of this class of enzymes but little is known so far about the biological significance or the catalytic mechanism of these intriguing enzymes.

The substrate binding and cleavage mechanism of PNGase F has now been investigated.

The first part of this work describes the synthesis of various novel *N*-linked glycopeptide mimetics which were then used in kinetic investigations with PNGase F. To facilitate kinetic studies at low substrate concentrations, a discontinuous HPLC based assay using a fluorescently labelled ovalbumin glycopeptide had to be developed. These experiments led to a better understanding of the structural requirements for substrate binding which will aid the future development of potent PNGase F inhibitors.

In the second part of the thesis, a virtual *N*-linked glycopeptide from human lactoferrin was modelled into the active site region of PNGase F using molecular modelling techniques. This model has resulted in the proposal of a mechanism for catalysis that predicts an important role for Arginine 248, a residue that had previously not been considered part of the catalytic machinery. The model also provides a basis for explaining the substrate specificity of the enzyme. The mechanism is supported by kinetic studies with targeted PNGase F mutants. As a result of this study, new PNGase F mutants have been designed to test the current findings.

To my Family

To be consistent [...]: no penicillin, no lightning rods, no eyeglasses, no DDT, no radar and so on. We live technologically, with man as the master of nature, man as the engineer, and let anyone who raises his voice against it stop using bridges not built by nature. To be consistent, they would have to reject any kind of operation; that would mean people dying every time they had appendicitis. What an outlook! No electric-light bulbs, no engines, no atomic energy, no adding machines, no anesthetics-back to jungle!

From "Homo Faber", A Report by Max Frisch (1959)

ACKNOWLEDGEMENTS

This investigation would not have been possible without the valuable input from many people:

Natalie for her support and understanding during a truly difficult and exciting phase of my life. I wish you all the best for the final phase of your own PhD. Thumbs up.

My parents for their support of my scientific spirit.

i

2

Prof. Dr. Joachim Thiem for introducing me into the world of carbohydrates.

Gill Norris for truly passionate supervision as well as **her husband Robert** for a great lesson in Kiwi hospitality at the "Norris Hilton".

George Slim for his witty spirit, exquisite taste in music and enthusiasm for classic cars. I fully agree that a car (in its conceptual context) is a piece of art and not designed to simply get from A to B.

Carol Taylor for excellent supervision on the chemistry side.

Trevor Loo for being such a helpful scientific wizard at Massey's biochemistry lab.

Bryan Anderson for his great support with the 3D modelling work.

Richard Furneaux and his team for incorporating the GET-away German into their group.

Herbert Wong for excellent NMR service.

Posthumous André Citroën, Pierre Boulanger, André Lefèbvre, Paul Mages and Flaminio Bertoni the names of which are inseparably connected with a pinnacle of automobile engineering, "la déesse (DS)" (the goddess) [1].

The **DAAD** (Deutscher Akademischer Austauschdienst) for granting a PhD scholarship over the period of 3 years (DAAD Doktorandenstipendium im Rahmen des gemeinsamen Hochschulsonderprogramms III von Bund und Ländern).

TABLE OF CONTENTS

Table of Contents	i
List of Abbreviations	iv

Chapter 1	l	Introduction	1
1.1		Peptide N:Glycanases	2
1.2		In vivo Functions of PNGases	3
1.3		PNGases: Sources and Properties	13
1.4		Assays for the Determination of PNGase Activity	18
1.5		PNGase A from Almonds (Prunus amygdalus)	20
1.6		PNGase F from Flavobacterium meningosepticum	22
1.7		Concepts of Inhibitors Towards PNGases	25
	1.7.1	N-Linked Glycopeptide Mimetics	26
	1.7.2	N-Glycosyl Phosphonamidates	30
1.8		Aims of the Thesis	33

Chapter 2	Development of a New Assay for PNGases	35
2.1	Introduction	36
2.2	Labelling with Fluorescamine	36
2.3	Labelling with Fluoresceine Isothiocyanate	38

Chapter 3	Synthesis of N-linked Glycopeptides and	
	Glycopeptide Mimetics	41

42

3.1 Introduction

3.2		Synthesis of C-Glycopeptides	42
	3.2.1	Preparation of the C-Glycosyl Building Blocks	43
	3.2.2	Preparation of the Peptide Building Blocks	52
	3.2.3	Coupling of Carbohydrate and Peptide Fragments	53
3.3		Synthesis of α -Linked N-Glycopeptides and their	
		β -Linked Analogues	56
3.4		Preparation of an N-Linked Glycopeptide with a	
		Modified Core-Region	62
Chapte	r 4	Kinetic Investigations using PNGase F	66
4.1		Introduction	67
4.2		Fluorescently Labelled Ovalbumin-Glycopeptide	68
4.3		Synthetic N-Glycopeptides	70
4.4		Inhibition Trials with N-Linked Glycopeptide Mimetics	76
	4.4.1	C-Glycopeptides	76
	4.4.2	α -Linked N-Glycopeptides	83
4.5		Non-Specific Inhibition	87
	4.5.1	Chitobiose, Specific or Non-Specific Inhibition?	88
	4.5.2	PEG	92
	4.5.3	Variation of PNGase F Activity in Different	
		Buffer Systems	93
Chapte	r 5	Kinetic Investigations using Two PNGase F Mutants	96
5 1		Introduction	07
J.1			71
5.2		H 193 A	99
5.3		R 248 A	101

1

Chapter 6	Molecular Modelling Studies	104

6.1	Introduction	105
6.2	Structural Investigations into Non-Specific Inhibition	105
6.3	Structural Investigations into Substrate Binding	108
Chapter 7	Summary	116
Chapter 7 Chapter 8	Summary Materials and Methods	116 119

L

i

İ

Í

Chapter 9

8.2		General Procedures	122
8.3		Synthesis of the Glycoside Building Blocks	125
8.4		Peptide Synthesis	153
8.5		Synthesis of N-Linked Glycopeptides and Glycopeptide	
		Mimetics	161
	8.5.1	C-Glycopeptides	161
	8.5.2	N-Glycopeptides	166
8.6		Synthesis of FITC-Labelled Ovalbumin Glycopeptide	
		Substrate	173

Appendices		193
Appendix I	Experimental Data Sheets	194
Appendix II	Reproduction of a Paper Published in Tetrahedron	
	Letters Journal	208

Literature

175

LIST OF ABBREVIATIONS

Boc	t-butyl oxycarbonyl
BTP	(1,3-bis[tris(hydroxymethyl)-methylamino]propane)
CNBr	cyanogen bromide
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	dicyclohexylcarbodiimide
DDQ	2,3-dichloro-5,6-dicyano-p-benzoquinone
DMF	dimethylformamide
DMSO	dimethylsulfoxide
DTPA	diethylenetriamine pentaacetate
EA	ethylacetate
eq.	equivalent
ER	endoplasmatic reticulum
ES-MS	Electrospray Mass Spectrometry
Eu	europium
FITC	fluoresceine isothiocyanate
Fmoc	9-fluorenyl methoxycarbonyl
FPLC	Fast Performance Liquid Chromatography
Fuc	fucose
Glc	glucose
GlcNAc	N-acetyl glucosamine
HBTU	2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
HOBt	l-hydroxybenzotriazole
HPLC	High Pressure/Performance Liquid Chromatography
Man	mannose
NMR	Nuclear Magnetic Resonance
PE	petroleum ether
Phth	phthalimido
РМВ	p-methoxybenzyl
PTSA	<i>p</i> -toluenesulphonic acid
r.t.	room temperature
RP-HPLC	Reverse Phase-HPLC

T

ī

sat.	saturated
SDS	sodium dodecyl sulfate
SDS/PAGE	sodium dodecyl sulfate/Polyacrylamide Gel Electrophoresis
SPPS	Solid Phase Peptide Synthesis
TBDMS	tert-butyl dimethylsilyl
TFA	trifluoroacetic acid
TLC	Thin Layer Chromatography
TMSCN	trimethylsilyl cyanide
TMSOTf	trimethylsilyl trifluoromethanesulfonate
Tol	toluene

|