Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Understanding the Holocene explosive eruption record of the Tongariro Volcanic Centre, New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Earth Science

at Massey University, Palmerston North New Zealand

Anja Moebis

2010

This thesis is dedicated to my partner and best friend Gert Lube

Ngauruhoe viewed from the west

Abstract

The Tongariro Volcanic Centre has experienced many VEI 1-4 eruptions over the last 12 000 cal. yrs. B.P., dominantly from Ruapehu, Ngauruhoe and Red Crater. The historic record of 150 years alone is insufficient to provide a robust understanding of future volcanic hazard, necessitating a quantification of eruption parameters from the geological record. The major obstacle to this is untangling a complex sequence of interdigitating, fine-grained and poorly distinguishable tephras from the three source volcanoes. With detailed mapping and using volcanic glass chemistry, tephras from the three sources were discriminated. This has led to a revision of the age of Ngauruhoe to be at least 6500 cal. yrs. B.P., around 4000 years earlier than previously thought. It also provides the most detailed explosive eruption frequency and magnitude record from the area since 12 000 cal. yrs. B.P. Ruapehu and Ngauruhoe tephras were characterised by initial phreatomagmatic explosions that transformed into dry magmatic (strombolian) phases. Magma-water interaction is shown by basal layers of pale-brownish-grey fine ash, containing blocky glass shards with small isolated spherical vesicles, and exhibiting surface conchoidal and step-like fractures. The magmatic phase ash is microlite-rich, with dark glass containing elongate vesicles with thin bubble walls and irregular surfaces. The largest eruption recognised from Ngauruhoe, produced a distinct dark purple tephra, with a well-constrained volume of 26.6 $\times 10^6$ m³, and a probable eruption column height of about 15 km. The total tephra volume from Ngauruhoe is estimated to be 952 x 10^6 m³, around 50% of the known lava volume. A climatic eruption period of Ngauruhoe occurred between ~ 2900 and 2700 cal. yrs. B.P., during which 64% of its known explosive eruptions occurred, including its largest known events. This phase, representing 3% of the volcano's lifespan, produced 57% of its pyroclastic output. Over the last 12 000 cal. yrs. B.P., the frequency of Ruapehu eruptions appears to have increased about 2000 yrs B.P., but this may reflect better preservation and exposure of the more recent tephras. Bursts in Ruapehu explosive activity have occurred out of phase with those from Ngauruhoe. The minor pyroclastic cone of Red Crater represents an eruption site that was active for at least ~ 4000 cal. yrs. B.P. and has mainly been characterised by effusive events. Since around 900 cal. yrs. B.P. minor explosive events have occurred from this location, increasing in magnitude from 400 cal. yrs. B.P.

Acknowledgements

This thesis would not have been possible without the help and encouragement of many wonderful and beautiful people whom I would like to thank here with all my heart.

I wish to thank my chief supervisor Prof. Shane J. Cronin (Massey University) for his guidance and encouragement through the research process and also for allowing me to fulfil all my ideas I had during these last few years writing my PhD. I would like to thank him for giving me the financial support for expensive analysis along with travel money for field work and international conferences, especially for the 2010 Tephra conference in Japan, where I had the chance to see my first eruption at Sakurajima volcano. He also helped me to secure funding from the New Zealand Earthquake commission to support my PhD-studies.

I also thank my co-supervisors Prof. Vince E. Neall (Massey University), Assoc Prof. Ian Smith (University of Auckland), Dr. Bob Stewart (Massey University) and Dr. Károly Németh (Massey University) for always answering all sorts of questions and for the useful discussions along the way as well as giving good advice on structuring my thesis. I would like to thank Vince for always finding the references I needed and for helping me to present my thesis in proper English and not in English with German grammar. Bob and Ian I would like to thank for the help in interpretations of chemical data and Ian I thank deeply for the special arrangements to use the electron microprobe in Auckland. Without this analysis, it would have not been possible to achieve the outcome of my study. And thank you Ian for always being so enthusiastic about my work. Károly, thanks for sharing his expertise in phreatomagmatic processes and particle shape analyses and for providing me with ash samples from Ambae and Yasur/Vanuatu.

I am very grateful to Prof. Richard Price (Waikato University) for analysing the strontium isotopes in my volcanic glasses from Ngauruhoe and for very useful discussions about the correlation of these data to strontium analysis on Ngauruhoe lavas.

Prof. Mark Bebbington (Massey University) I would like to thank for the age calculations (spline fit) of individual tephras in the sediment core of Lake Rangatauanui.

Over the course of my study I have cherished the friendship of my fellow students Deborah Crowley, Natalia Pardo, Marco Brenna, Susan E. Cole, Anke Zernack, Kat Holt and Jonathan Procter. Thanks for the thousands of fruitful discussions about volcanoes and about my research, the pub-nights and also for being there in the most difficult times throughout my PhD. Jon Procter and Matt Irwin I thank in particular for providing me with maps that included all my special wishes. The greatest thank you goes to my friend, flatmate and colleague Michael B. Turner. Thanks for the best BBQs, the Sunday soups, tea on the front wall, trips through the North Island, such as to Cape Palliser, and for introducing me to the scary cows on his parents farm. I am very glad to know you. Janine Krippner I would like to thank for her discussions about Ngauruhoe and especially for providing me with stunning photographs of Ngauruhoe eruptions from her grandfather John A. Krippner. Thanks also to Emma Phillips for assisting with running my samples through the Laser Particle Analyser.

A very special thanks goes to Ritchie Sims, at University of Auckland, who made the mostly monotonous and long hours on the microprobe a fun experience. He was always there when the smallest problem occurred, but mostly I thank him for just being a friend. His fantastic sense of humour and his interest in music from the 60s and 70s made the time in Auckland in his "office" very enjoyable.

Dr. Phil Shane (University of Auckland) I would like to thank for his expertise and all the discussions about analyses of volcanic glasses and also for providing me with useful papers in Tephrochronology.

Kate Arentsen, Moira Hubbard and also Liza Haarhoff, you are special. Thank you for all the help during all the administrative problems I had to face during my PhD and answering all sorts of questions regarding the University system, providing me with stationery and helping me to scan images and for helping me to format my thesis.

Thanks to the staff of the Soil and Earth Science Group in INR such as Alan Palmer, Bob Toes, Ian Furkert, Anne West, Glenys Wallace and Ross Wallace for their help in the laboratories, for explaining instruments, providing me with lots and lots of H_2O_2 and sample bags, and helping with general sample preparations and discussions. A special thanks goes to Mike Bretherton who helped me patiently through all my attacks of hysteria when my computer did not want to do what I wanted. And it was always a pleasure to discuss with him all sorts of food recipes and to exchange seeds and vegetable plants. Furthermore, I would like to thank Dr. Clel Wallace for his support throughout my study, especially in the lab on sample preparation along with long discussions about specific problems regarding the interpretation of data. Thanks to Doug Hopcroft, who taught me the beautiful technique of scanning electron microprobing.

Thanks also to a special friend from Vanuatu: Douglas Takai Charley. Not only did he teach me how to prepare Kava, he also gave me one of the best volcanology lessons ever, when we climbed Ngauruhoe together.

I am grateful to the Department of Conservation, in particular to Harry Keys and Jimmy Johnson, for permission to work in this spectacular field area and to stay in the huts. I also would like to thank various hut wardens, especially Amy, who made me always feel welcome with a nice hot cup of tea. I also am grateful to the iwi of Ngati Rangi, who gave us permission to core their sacred Lake Rangatauanui, which delivered valuable pieces of information on the TgVC volcanoes and Mt Taranaki.

This PhD was supported by the Earthquake Commission (EQC) with a full doctoral scholarship and I also would like to thank Education New Zealand for a New Zealand Postgraduate Study Abroad Award, and INTAV for funding my travel to international conferences in Iceland and Japan. Additionally, I would like to thank the Tongariro Natural History Society and the Helen E. Akers Scholarship for funding my research.

Finally I want to thank my family. I am very grateful to Uwe Kratz and Edith Stein for their support throughout the entire process of my coming to New Zealand and also during the time of my study. They always made me feel very welcome at their home, especially the million times I was in Auckland for microprobing.

I want to thank my family back home in Germany, especially my parents Eckhard and Christiane Möbis, who supported me with their interest in my study, financially, with their love and also accepted my craziness in becoming a volcanologist on the other side of the world. You were, and are always, there for me when I needed you and listened to my German, which has got progressively worse over the last few years. Thank you.

I save my final thank you for Gert Lube. I can't really describe how thankful I am to know you, being allowed to love you and having you in my life. I think I could not have done any of this without you; your support, calmness, listening and your love. Thanks that you are a part of my life and for your patience during this rollercoaster PhD.

Table of Contents

Abstract		i
Acknowle	edgements	iii
Table of (Contents	vii
List of Ta	bles	xii
List of Fig	gures	xiv
List of Ab	obreviations	xxxi
Chapter 1	Introduction	1
1.1. Introduct	tion	1
1.2. Objectiv	es	3
1.3. Geologic	cal Setting	4
1.3.1.	The Taupo Volcanic Zone (TVZ)	4
1.3.2.	Tongariro Volcanic Centre (TgVC)	7
1.4. Geograp	hical Setting of the TgVC	
1.4.1.	Regional Setting	
1.4.2.	Flora and Fauna	
1.4.3.	Climate	14
1.4.4.	Soils	17
1.4.5.	Land-use	
1.5. Thesis O	Dutline	
Chapter 2	Methodology	
2.1. Field Stu	ıdies	23
2.1.1.	Study area and key sampling localities	23
2.1.2.	Sampling	
2.2. Laborato	ory work	
2.2.1.	Electron Microprobe Analysis (EMPA)	
2.2.2.	Scanning Electron Microscopy (SEM)	

2.2.3.	Laser Particle Analysis (LPA)	
2.2.4.	Point counting	
2.2.5.	Radiocarbon dating	34
2.2.6.	ICP-MS	35
Chapter 3	Tephrostratigraphy of the Tongariro Volcanic	c Centre
(TgVC)	••••••	37
3.1. TgVC A	ndesitic Tephrochronology	40
3.1.1.	Ngauruhoe Formation (NF)	42
3.1.2.	Tufa Trig Formation (TTF)	43
3.1.3.	Mangatawai Formation (MtF)	43
3.1.4.	Papakai Formation (PF)	44
3.1.5.	Mangamate Formation	46
3.1.6.	Pahoka Tephra	48
3.1.7.	Bullot Formation (BF)	49
3.2. Rhyolitie	c Tephras	50
3.2.1.	Rhyolitic Tephras sourced from Taupo Volcanic Centre	50
3.2.2.	Rhyolitic Tephras sourced from Okataina Volcanic Centre	54
Chapter 4	Identification of volcanic sources using geochem	ical and
mineralogic	al fingerprinting	57
4.1. Introduc	tion	57
4.1.1.	Ferromagnesian Mineral Assemblages	58
4.1.2.	Titanomagnetite	61
4.1.3.	Volcanic Glass	61
4.2. Geochen	nical Tephra Fingerprinting of TgVC	62
4.2.1.	Volcanic Glass	63
4.2.1	.1. Geochemistry of Ruapehu vs. Tongariro tephras	63
4.2.1	.2. Geochemistry of TgVC vs. Taranaki tephras	69
4.2.1	.3. Andesitic vs. rhyolitic tephra deposits	70
4.2.2.	Titanomagnetites	73
4.3. Conclusi	ions resulting from fingerprinting	76
Chapter 5	Late Holocene tephras of Mt. Tongariro	81
5.1. Mt. Nga	uruhoe	

5.1.1.	Introduction	
5.1.2.	Previous work	84
5.1.3.	Historic Eruptions	
5.1.4.	Tephrochronological Record of Ngauruhoe	93
5.1.4	I.1. Stage 1	94
5.1.4	I.2. Stage 2	97
5.1.4	I.3. Stage 3	
5.1.4	I.4. Stage 4	
5.1.5.	New ages for Ngauruhoe tephras	112
5.1.6.	Lithological componentry of Ngauruhoe tephras	115
5.1.7.	Geochemistry	119
5.1.7	7.1. Major element chemistry of volcanic glass	
5.1.7	7.2. ⁸⁷ Sr/ ⁸⁶ Sr-Isotopes	
5.2. Red Cra	ter	134
5.2.1.	Introduction	134
5.2.2.	Red Crater tephra sequence	
5.2.3.	Lithological componentry of Red Crater	
5.2.4.	Geochemistry	142
5.2.4	1.1. Major elements	142
5.3. Te Maar	i Craters	146
5.3.1.	Introduction	146
5.3.2.	Results of this study	149
5.3.2	2.2. Geochemistry	150
Chapter 6	Late Holocene tephras of Mt. Ruapehu	157
6.1. Introduc	tion	157
6.1.1.	Previous work	
6.1.2.	Historic eruptions	
6.2. Holocen	e tephrochronological record of Ruapehu	
6.2.1.	Tephrochronological record of Ruapehu on the ring plain	
6.2.1	.1. 12 000 to 3500 cal. yrs. B.P	170
6.2.1	.2. 3500 to 1717 cal. yrs. B.P	
6.2.1	.3. 1717 cal. yrs. B.P. to present	
6.2.2.	Tephra record of Lake Rangatauanui sediments	

6.3. New Age	es for Ruapehu tephras	
6.4. Litholog	ical componentry of tephras sourced from Ruapehu	
6.5. Geochen	nistry	196
Chapter 7	Explosive eruption styles of the Tongariro	Volcanic
Centre volc	anoes during the last 12 000 cal. yrs. B.P	205
7.1 Introduct	tion	
7.1.1.	Ferminology and definitions	
7.2 Eruption	styles of historical events from Ngauruhoe and Ruapehu volca	noes 209
7.2.1	Eruptive styles of historical Ngauruhoe eruptions	
7.2.2	Eruption styles of historic Ruapehu eruptions	
7.2.2	.1. Phreatomagmatic-magmatic eruption cycles	
7.2.2	.2. 2007 Ruapehu eruption – phreatic or phreatomagmatic?	
7.3. Eruption	style characteristics of the TgVC over the last \sim 5000 cal. yrs.	B.P 241
7.3.1.	Field observations	
7.3.2.	Tephra lithology/componentry	
7.3.3.	Grain-size analyses	
7.3.4.	Particle-shape analyses	
7.4. Summar	У	
Chapter 8	Frequency/volume/magnitude relationships and	physical
volcanology	of the Holocene explosive eruptions in the T	ongariro
Volcanic Ce	ntre	
8.1. Eruption	frequency	
8.1.1	Explosive eruption frequency for Ngauruhoe	
8.1.2	Explosive eruption frequency for Red Crater	
8.1.3	Explosive eruption frequency for Ruapehu	
8.1.4	Comparison of TgVC source eruption frequencies	
8.1.4.1.	Prehistoric eruptions	
8.1.4.2.	Historic eruptions	
8.2. Volume	calculations	
8.2.1.	Previous work	
8.2.2.	Volume calculations for tephras sourced from Ngauruhoe	
8.2.2	.1. Single tephra volume calculations	

8.2.2	2.2. Tephra package volume calculations	
8.2.2	2.3. Volume calculations for all Ngauruhoe-sourced tephras	
8.3. Calculat	ions of eruption column heights	
8.3.1.	The eruption column height of Ngauruhoe eruptions	
8.4. Volcanic	Explosivity Index (VEI)	
8.4.1.	VEI estimations for volcanoes of the TgVC	
8.5. Fragmen	tation and dispersal characteristics	
8.5.1.	Grain-size distributions	
Chapter 9	Discussion and conclusion	
9.1. Summar	y of key findings	
9.2. Conclusi	ions	
9.3. Future w	/ork	
Bibliograph	y List of Appendices	
Appendix 1		
Appendix 2		
Appendix 3		
Appendix 4		
Appendix 5		
Appendix 6		
Appendix 7		

List of Tables

Table.1.1:	Climate changes in the Tongariro region, after McGlone and Topping (1977)14
Table 1.2:	Measured rainfall normals for 5 stations around Mt. Ruapehu and calculated value for
	the Rangipo Desert; after Purves (1990)15
Table 2.1:	Locations of the main reference locations used in this study26
Table 2.2:	Detection limit of major oxides measured at the EMP (University of Auckland) including
	the deviation from a reference glass composition
Table 3.1:	Tephrostratigraphical record of tephra layers found within the Tongariro Volcanic
	Centre after Donoghue (1991; 1995) and new findings of this study. Italicised entries
	are sourced from rhyolitic centres outside TgVC
Table 3.2:	Classification of Tephra Formations derived from the TgVC into subgroups40
Table 3.3:	Radiocarbon ages for dated members of the Mangamate Formation48
Table 3.4:	Members of the Taupo-Subgroup, References: #Sparks et al. (1995); * Vucetisch and
	Pullar (1973); $ullet$ Froggatt and Lowe (1990); \circ Froggatt (1981b); $ullet$ Lowe and Hogg,
	1986); ^{&} Wilson (1993); [@] Turner (2008)50
Table 3.5:	Comparison of the rhyolitic TVC-sourced tephras preserved in the TgVC
Table 3.6:	Identified rhyolitic tephras sourced from the TVC (italic) and OVC (bold) within the core
	from Lake Rangatauanui; S = sediment which has been dated; ages of tephras in yrs
	B.P. and cal. yrs. B.P. from previous workers, for spline fit see Chapter 6
Table 3.7:	Comparison of the rhyolitic OVC-sourced tephras preserved in the TgVC, Donoghue's
	(1991) Kaharoa Tephras was in this study identified as the Taranaki sourced Burrell
	Lapilli (italic),
Tab. 4.1:	Definitive ferromagnesian assemblage groups for Late Quaternary rhyolitic tephra
	deposits in the Central North Island, New Zealand. hb = hornblende; hyp = hypersthene59
Table 5.1.1:	New C ¹⁴ -dates from within tephra sequences at Location 12 as well as two samples
	(407 22a and 407 3a) from a nearby site (Loc. 78) along the Waihohonu Track $^{\sim}$ 200 m
	west of the Desert Road. Dates in italics are not considered reliable, and those with tick
	marks in the last column represent the most likely stratigraphically consistent ages 113
Table 5.1.2:	⁸⁷ Sr/ ⁸⁶ Sr-analysis of selected samples through Ngauruhoe's tephrochronological record
	arranged in chronological order
Table 6.1.1:	Age in ka for Ruapehu cone-building formations
Table 6.2.1:	Tephras in the Rangatauanui core containing Taranaki-sourced titanomagnetite
	and/or glass of same origin with their correlation to known tephras of the Taranaki ring

	plain from Alloway et al. (1995); Turner et al. (2008a and b). Note: here all ages	
	obtained from the spline fit described in section 6.3.	188
Table 6.3.1:	New ¹⁴ C-dates for Ruapehu-sourced tephras	189
Table 6.3.2:	List of radiocarbon dates analysed from the core at Lake Rangatauanui. All dates were	
	obtained using the AMS method at Rafter Radiocarbon Laboratory (Wellington, NZ) on	
	bulk organic-rich sediment samples collected as 10 mm slices of the core	190
Table 6.3.3:	Dated tephras and radiocarbon dates used to create the spline fit	191
Table 7.2.1:	Summary of historic eruption record from Mt Ruapehu showing the range in its	
	eruption styles.	222
Table 7.2.2:	Tephra samples from the Ruapehu 1995/1996 eruption episode used in this study to	
	classify eruption types	225
Tab. 7.2.3:	Samples collected to characterise the 25 September 2007 Ruapehu eruption	235
Table 8.2.1:	Isopach data for the dark purple (DP) tephra	273
Table 8.2.2:	Isopach data for the pale purple tephra unit	276
Table 8.4.1: \	Volcanic Explosivity Index applied after Newhall and Self (1982)	289
Table 8.4.2:	Details of eruptions between 1995 and 1996 (modified after Cronin et al., 2003),	
	including VEI estimations depending on column height or eruption volume	291
Table 9.1:	Overview of the new tephrostratigraphical record found within the TgVC in comparison	
	to previous work of Topping (1973) and Donoghue (1991). italic: rhyolitic tephras from	
	the TVC and OVC	308

List of Figures

Figure 1.1:	Topographic map showing the Tonga-Kermadec-New Zealand subduction zone. The
	subduction rate describe the present day convergence (DeMets et al., 1994; Bibby et
	al., 1995; Parson and Wright, 1996). Map from Google Earth 2009 (Data SIO, NOAA,
	U.S. Navy, NGA, GEBCO). The red dot represent the study area of the Tongariro
	Volcanic Centre5
Figure 1.2:	DEM of the Central North Island showing the boundary of the Taupo Volcanic Zone
	(TVZ), the volcanoes Ruapehu, Ngauruhoe, Taranaki and Taupo and its relationship to
	the subduction zone
Figure 1.3:	Satellite map of the Tongariro Volcanic Centre illustrating the main volcanoes, towns
	and main roads
Figure 1.4:	DEM showing the volcanic edifices of the Tongariro Volcanic Centre (TgVC)9
Figure 1.5:	Fault system of the southern TVZ at the TgVC, from Villamor and Berryman (2006), PV
	= Pihanga, TV = Tongariro, NV = Ngauruhoe, HV = Hauhangatahi, RV = Ruapehu, Oh =
	Ohakune, Wa = Waiouru10
Figure 1.6:	Spatial and temporal evolution of the Taupo Fault Belt modified after Villamor and
	Berryman (2006). Gray arrows indicate the opening of the rift- system towards the
	north-east
Figure 1.7:	An example of a small dust storm within the Rangipo Desert, a process that occurs
	semi-continuously throughout the summer months (photographer: Daniel Farley)16
Figure 1.8:	Tephra sheets in the eastern Ruapehu area, eroded by wind and water into "islands"
	that, if covered by vegetation, may be capped by dunes of Makahikatoa Sands,
	preserving late Holocene tephras (photographer: Gert Lube)16
Figure 1.9:	Ash deposited covering snow during the 2007 eruption from Mt. Ruapehu17
Figure 1.10:	Satellite map of the major land-use areas within the TgVC and surroundings21
Figure 2.1:	Field locations analysed in the course of this study. Detailed descriptions of individual
	locations are listed in Appendix 125
Figure 2.2:	Main reference Locations used in this study to describe the most complete
	tephrostratigraphical record of Mt. Ngauruhoe, Mt. Ruapehu and Red Crater27
Figure 3.1:	Typical exposure on the eastern ring plain (Desert Road), showing the main TgVC-
	sourced tephra formations (Tufa Trig, Ngauruhoe, Mangatawai, Papakai and
	Mangamate Formations), combining tephras from both volcanoes: Ruapehu and
	Tongariro over the last ~12 000 cal. yrs. B.P. Two rhyolitic marker-horizons: Taupo
	Pumice and Stent tephra,-sourced from the TVC, are also illustrated
Figure 3.2:	Map showing the active volcanic vents of the TgVC (red) and older dormant eruption
	vents (black), modified after Nairn et al. (1998)47

- *Figure 4.9:* Unknown rhyolitic tephras sampled and analysed in this study (orange and purple symbols) plotted together with the known glass chemistry for rhyolitic tephras in the

same stratigraphic interval from Taupo and Okataina Volcanic Centres (Froggatt, 1981a; Lowe, 1986; Lowe, 1988; Froggatt and Rogers, 1990; Stokes et al., 1992; Alloway et al., 1994; Carter et al., 1995;Eden and Froggatt, 1996; Shane, 2000; Shane and Hoverd, 2002; Smith et al., 2005; Shane et al., 2007 and Lowe et al., 2008)......72 Figure 4.10: Back-scattered images of titanomagnetites in: A-C) Ngauruhoe-sourced glass shards (Loc. 12); D) Ruapehu-sourced glass shard (Lake Rangatauanui core); E) Taranakiderived tephra (Lake Rangatauanui core); F) TVC-sourced rhyolitic tephra (Lake Rangatauanui core). The size of the titanomagnetites crystals range between 1-6 μm at Ruapehu and Ngauruhoe samples, between 50 and 100 μm for Taranaki samples and between 80 and 120 μm for TVC-sourced tephras......74 Figure 4.11: Major element composition of titanomagnetites of a core taken at Lake Rangatauanui, comparing (A) Ruapehu- and Taranaki-sourced tephras; (B) OVC vs. TVC derived tephras; and (C) andesitic vs. rhyolitic tephras.75 Figure 4.12: Major element composition of titanomagnetites from EMP analyses of this study, comparing Ruapehu vs. Ngauruhoe-derived tephras......76 Figure 4.13: Stratigraphic profiles with tephras correlated to source from key reference sections: left, Loc. 12, Desert Road, south of Waihohonu Stream; Right, Loc. 63, northern slope Figure 4.14: Right: Stratigraphic profile of Location 6, car park Mangatepopo Valley. Left: Stratigraphic profile of Location 12, Desert Road, south of Waihohonu Stream. Both columns show the source for each tephra layer based on glass chemistry. The locations are 15.5 km apart......79 Figure 5.1b: Northern part of Tongariro volcanic complex, viewed from Ngauruhoe towards the Figure 5.1.2: Known historic eruption record and their VEI of Ngauruhoe since 1839. Columns represent observed ash eruptions (black), lava flows (red) and pyroclastic flows (blue), summarised after Gregg (1960b) and Hobden et al. (2002). Figure 5.1.3: Ngauruhoe eruption in 1928 observed from the western side. Image: with permission Figure 5.1.4: Ngauruhoe eruption of 1948 viewed from the west, showing ash clouds moving to the Figure 5.1.5: Ngauruhoe in eruption in 1949 observed from the Desert Road, south-east of the volcano (image: with permission from the Alexander Turnbull Library, ref.: 35mm-00709-D-F, photographer: Bruce Valentine Davis)......88 Figure 5.1.6: Ngauruhoe eruption in 1954 viewed from the west, with the eruption cloud moving

- **Figure 5.1.17:** Location 67, showing Ngauruhoe- and Ruapehu-sourced tephras beneath the Taupo Pumice. The autobrecciated lava flow beneath the tephras is also Ngauruhoe-sourced. The thickness of the this location from the lava flow (large block) to top is~ 2.6 m........ 103

Figure 5.1.33	Major element composition of the distal profile at Location 12 in the time range from	
	2910 – 2760 cal yrs B.P. representing the upper part of stage 2 and lower part of stage	
	3	9
Figure 5.1.34	* ⁸⁷ Sr/ ⁸⁶ Sr-isotope analyses of selected Ngauruhoe-sourced tephras over time.	
	Continuous lines represent possible cycles in crustal involvement of the magmatic	

- **Figure 5.2.7:** Modal proportions of light versus black glass in Red Crater-sourced tephras. Samples RC1 and 2 are from the crater rim of Red Crater while samples 208 28 – 95 were collected at Location 63and are in stratigraphic order from the oldest to the youngest. . 141

Figure 5.3.1:	Lower and upper Te Maari Craters view to the north-east toward Lake Rotoaira and
	beyond to Lake Taupo
Figure 5.3.2:	The lower Te Maari Crater in foreground left, viewed from the north. The upper Te
	Maari Crater is arrowed and spatter-fed lava flows from this have draped the surface
	into the lower crater
Figure 5.3.3:	Ash eruption of the upper Te Maari Crater probably during the 1890's (image: with
	permission from Museum of New Zealand Te Papa Tongarewa, Patrick Marshall
	Collection Reference: LS.004557)
Figure 5.3.4:	View down to the explosion pits, north of the lower Te Maari Crater (facing
	northward)
Figure 5.3.5:	Upper Te Maari Crater seen from the north-east. Arrows represent the locations
	sampled
Figure 5.3.6:	Pyroclastic deposits surrounding the upper Te Maari Crater, (A and B) show alternating
	deposits of coarse clast-supported lapilli and laminated compact, matrix-supported
	fine ash: (C) weathered poorly sorted, fine-medium ash, faintly laminated on a fine
	scale and containing bomb/block bedding sags; (D) dune-like bedding of a fine-
	medium ash, pyroclastic-surge deposit
Figure 5.3.7:	Total alkali silica discrimination diagram (after Le Maitre et al., 1989) of analysed
	volcanic glasses showing rhyolite composition of the upper Te Maari Crater in
	comparison to the basaltic andesite to andesite composition of Red Crater, andesite
	for Ngauruhoe and andesite to dacite for Ruapehu
Figure 5.3.8:	Volcanic glass chemistry of major elements from the four andesitic volcanoes Taranaki
	(yellow), Ruapehu (blue), Ngauruhoe (red) and Red Crater (green) in comparison to
	new and published data (see references in body text) from two rhyolitic centres TVC
	and OVC (black). The light green diamonds represent new results from Te Maari Crater
	illustrating the similarity to Mt. Taranaki-derived tephras
Figure 5.3.9:	A-H: Average (Chapter 2) of major element composition vs. SiO_2 of volcanic glass
	comparing upper Te Maari with Ruapehu, Ngauruhoe and Red Crater but also to
	Taranaki and the TVC
Figure 6.1.1:	Ruapehu as seen from the north, with Tama Lakes in the foreground
Figure 6.1.2:	Magmatic/phreatomagmatic (black) and phreatic eruptions (blue) extrusive events
	(red),and addition crater lake steaming events (green) at Ruapehu between 1961 and
	2007. References: Gregg (1960b); Barberi et al. (1992); Christenson and Wood (1993);
	Werner et al. (2006)Werner et al., 2006 and GVP (www.volcano.si.edu)
Figure 6.1.3:	Ruapehu eruption 1945, A) lava dome within the crater in August 1945 with
	permission from " $^{\odot}$ Institute of Geological and Nuclear Sciences Limited [1945]" B)
	eruption cloud spreading over central North Island Image: with permission from the

	Alexander Turnbull Library, reference: 708-35mm-F, photographed by Bruce Valentine
	Davis
Figure 6.1.4:	A) The lahar-destroyed bridge at Tangiwai on the 24 th of December 1953 and Ruapehu
	in the background (image: Fairfax Sunday Newspapers New Zealand Limited) and B)
	the remains of the Wellington-Auckland express and the railway track on the 25 th of
	December downstream of Tangiwai (with permission from the Alexander Turnbull
	Library, Morrie Peacock Collection (PAColl-4875), reference:MP-0059-10, photograph
	by Morrie Ronald Peacock)163
Figure 6.1.5:	"Cockscomb or Cockstails"-like phreatomagmatic eruption of Mt Ruapehu on
	23.11.1995, (photographer: Megan Smith)165
Figure 6.1.6:	Ruapehu crater area the end of November 1995, in the foreground the outlet from the
	Crater Lake into the Whangaehu River, (Photo curtsey of Eckhard Möbis, private
	collection)
Figure 6.1.7:	Strombolian eruption of Mt. Ruapehu on 17 June 1996 (images: NZ Herald (A) and
	eruption of Mt. Ruapehu as seen on the 19 June 1996 (B) with permission from " ${\mathbb G}$
	Institute of Geological and Nuclear Sciences Limited [2010]", (photographer Lloyd
	Homer)
Figures 6.1.8	(A) View from the bridge at the Round the Mountain Track (6.9 km downstream of
	Crater Lake) immediately following the 18 March 2007 Ruapehu lahar. (B) The lahar at
	Colliers Bridge 82.6 km along the Whangaehu River. (C) The site shown in (B) post-
	lahar. (D) Another view of the lahar at Colliers Bridge, compared to the post event
	view in (E)
Figure 6.1.9:	Phreatomagmatic eruption of Mt Ruapehu in 2007, showing the distribution of the
	surge deposit and the lahars generated through the eruption onto the Whangaehu
	Glacier (right) and the Whangaehu River catchment (left), (photographer: Károly
	Németh)
Figure 6.2.1:	DEM of the TgVC showing the main locations representing Ruapehu's most complete
	tephra record over the last 12 000 cal. yrs. B.P
Figure 6.2.2:	Ruapehu-sourced tephras within the Papakai Formation at Location 12, Desert Road 171
Figure 6.2.3:	Ruapehu-sourced tephras at Loc. 6 within the upper part of the Papakai Formation
	with A) the second oldest and purely Ruapehu-sourced tephra unit and B) a probably
	individual Ruapehu-sourced tephra deposited above unit shown in photo A
Figure 6.2.4:	Ruapehu-sourced tephras at Location 12: (A) Ruapehu sourced tephras at the base and
	at the top of the MtF at Loc 12. B) five layers interbedded within the base of the
	Mangatawai Formation, and C) a single Ruapehu-sourced tephra interbedded within

Figure 6.2.5:	Location 67. (A) Ruapehu-sourced tephras (1-4) and deposits containing volcanic
	glasses from several sources (5) at the base of the exposure, and (B) Ruapehu-sourced
	tephras towards the top of the exposure at the same location
Figure 6.2.6:	Stratigraphic column of the Tufa Trig Formation at Loc. 56 (Ref. Sect 2 (Donoghue et
	al. 1997)) illustrating the positions of the marker horizons Tf2, Tf5, Tf8 and Tf14 and
	also showing the new informally named tephra units Tf4a, Tf6a, Tf7a, Tf9a, Tf10a and
	Tf14a
Figure 6.2.7:	Individual tephras sourced from Ruapehu within the Tufa Trig Formation at Location
	56 with (A) the distinctive pumiceous Tf2, (B) pale grey unit Tf3, (C) Tf4 and an
	additional unnamed tephra above (informally named Tf4a), (D) the distinctive member
	Tf5 including the pale grey base, (E) the prominent marker unit Tf8 including the
	probable Tf6 and Tf7 below, as well as Tf9 above and (F) the TF 14(darker grey) and an
	unnamed beige tephra above (informally named Tf14a)
Figure 6.2.8:	Two distinct Ruapehu-sourced tephras above the Burrell lapilli (Taranaki) at Location
	63
Figure 6.2.9:	Exposures of the Tufa Trig Formation within the TgVC at (A) Location 12 at the Desert
	Road, (B) Location 63 at the northern slope at Pukekaikiore and (C) at Location 73 on
	Paradise Road, NZ Army Training Area
Figure 6.2.10	Stratigraphic profiles of Locations 63 and 56 representing and correlating members of
	the Tufa Trig Formation. Most ages are based on calculations of soil accumulation
	rates (Appendix 5), except Burrell lapilli and Tf5 at Location 56
Figure 6.2.11	Lake Rangatauanui south-west of Mt. Ruapehu
Figure 6.2.12	Lake Rangatauanui south-west of Ohakune (upper right hand corner), image from:
	Google Earth 2008.The smaller images shows the position of Lake Rangatauanui to
	Ruapehu
Figure 6.2.13	Major oxides of volcanic glasses as measured by electron microprobe on samples from:
	Lake Rangatauanui, compared to tephras from known sources. Note, the Rotoaira
	Lapilli was probably sourced from North Crater, Tongariro volcano (Griffin, 2007) 183
Figure 6.2.14	:Major oxide analysis vs. TiO $_2$ of titanomagnetites sourced from Mt. Ruapehu (blue)
	and Mt. Taranaki (yellow)
Figure 6.3.1:	Depth-age curve of dated organic rich sediment sub-samples and the identified
	rhyolitic and andesitic tephras described above
Figure 6.3.2:	Depth age curve as spline fit of the Rangatauanui core (red) with associated errors
	(black) in yrs. B.P. for dated tephras in Table 6.3.3
Figure 6.3.3:	Depth-age spline-fit curve (in cal. yrs. B.P.) for the Rangatauanui core, showing the (A)
	ages of all tephra units within it; (B) showing the different sources of individual
	tephras
Figure 6.4.1:	The ratio of the major modal minerals in tephras sourced from Mt. Ruapehu

- Figure 6.4.2: Discrimination plot of glass, lithic and crystal modal fractions for three different size ranges. Note the clear distinction of two groups of tephras that are either glass or lithic-dominant.
 Figure 6.5.1: Microlites within volcanic glass from Ruapehu-sourced tephras.

- Figure 6.5.7: Major oxide glass chemistry of Mt Ruapehu tephras over the last ~2000 cal. yrs. B.P. 203

Figure 7.2.6:	A) Lithics/crystal/groundmass percentage of 1975 deposits from Ngauruhoe's crater
	facies Units E-G, B) Mineral components experssed as percentage of crystal fraction.
	Data from Krippner (2009). Samples names correspond with Units
Figure 7.2.7:	Ternary diagrams of main lithological components of the Ngauruhoe 1954/55
	eruptions in comparison to the Ngauruhoe February 1975 eruptions, Data from
	Krippner (2009)
Figure 7.2.8:	Grain size histograms of Unit D (1955 eruption), and three stratigraphic levels within
	Unit F (1975 eruption) in stratigraphic sequence
Figure 7.2.9:	SEM-images of Ngauruhoe sourced glass shards of Unit B and D from the 1955
	strombolian eruption, with A to D) irregular and C+D) drop-like, E) blocky, F) platy
	shapes and G+K) step-like fractures, H) broken edges, I) elongate vesicles with thin
	bubble walls, J) moss-like structures and L) round vesicles with thicker bubble walls
	and smooth surfaces
Figure 7.2.10	SEM-images of Ngauruhoe-sourced glass shards of fall deposits from the vulcanian
	Ngauruhoe eruption in February 1975 represented by A+ D-F) irregular and B+C)
	blocky shapes and G) step-like fractures, H) chipped edges, I) round vesicles with thick
	bubble walls, J) moss-like structures, K) smooth surfaces and vesicles with thin bubble
	walls and L) vesicle fillings (adhering dust). The blocky particles have fewer and round
	vesicles, while the irregular particles have tubular vesicles
Figure 7.2.11	Ruapehu Crater Lake A) view to the north and with outlet to the Whangaehu River on
	the south-eastern rim in the foreground (photographer: Shane Cronin) and B) view to
	the south (photographer: Marco Brenna)
Figure 7.2.12	Eruptions from Mt Ruapehu during the 1995 to 1996 eruption episode ranging from A-
	C) phreatomagmatic eruptions with explosive jets to D-F) strombolian to sub-plinan
	eruptions including lava fountaining (photographer: Shane Cronin)
Figure 7.2.13	Deposits of the October 1995 eruptions (A and B, 11/10/95; C and D, 14/10/95) which:
	both started with phreatomagmatic phases (light grey base) that later changed to dry
	magmatic eruption styles (photographer: Shane Cronin)
Figure 7.2.14	Componentry of phreatomagmatic and magmatic eruptions from the 1995-1996
	eruption episode
Figure 7.2.15	A. Sideromelane (light glass) vs. tachylite (black glass), and B. selected crystals and
	sulphur modal content over a range of different eruption styles throughout the 1995-
	96 eruption episode
Figure 7.2.16	Grain size analyses of the 1995 (A-D) and 1996 (E-F) eruption episodes
Figure 7.2.17	SEM-images of glass shards from phreatomagmatic eruptions from Ruapehu 1995
	with A, B+D+F blocky and C+E) irregular shaped particles along with G) clay minerals,
	small round vesicles and thick bubble walls, I) vesicle fillings, J) chipped edges, K)
	conchoidal- and L) step-like fractures

- **Figure 7.2.24**:Grain-size histograms from samples of the 25 September 2007 Ruapehu eruption from A) deposits of the surge from the central crater, B) a fall out deposit from Whakapapa ski-field and C) in comparison, the distal end of the Whakapapa snow slurry lahar.........237

- Figure 7.3.2: Distinctive thin white ash layers at the base of thicker dark grey black ash deposits sourced from (A) Ruapehu, at Location 12 at the base of the Mangatawai Formation, (B) Location 19 and (C) at Location 56; both within the TF, (D) from Red Crater at the Loc. 63 within the Ngauruhoe Formation and (E+F) from Ngauruhoe at Location 12 within Stage 2 (MtF).

Figure 7.3.4:	Componentry of tephras from TgVC analysed in this study with A) the main lithology
	groupings, while B) shows the dominant mineralogy 244
Figure 7.3.5:	Propotions of sideromeline versus tachylite glass from individual tephras of prehistoric
	eruptions from the TgVC. Ng=Ngauruhoe, RC=Red Crater and Rua=Ruapehu. The
	samples are collected from Locations 12, 56, 63 and 67 (Appendix 1)
Figure 7.3.6:	Componentry (total) of prehistoric eruptions representing a wet-dry eruption cycle
	from Ruapehu (blue), Ngauruhoe (red) and Red Crater (green) in comparison to
	historic eruptions from Ngauruhoe 1954/55 (pink shading) and 1975 (purple shading)
	and Ruapehu 1995/96 (dark blue) and 2007 (light blue). Left side: main components
	glass vs. lithics vs. crystals and right side; plg vs. opx vs. cpx
Figure 7.3.7:	Point counts of sideromelane (light glass) and tachylite (black glass) from four sets of
	Ruapehu (Rua)-sourced tephras, one set from Ngauruhoe (Ng) and one set derived
	from Red Crater (RC). The set comprises a minimum of 2 tephras where the basal layer
	is very thin (mm), lighter and finer grained than the darker, thicker and coarser top
	layer. Samples were taken from Locations 12, 56 and 63 (Appendix 1)
Figure 7.3.8:	Ratio of sideromelane (light glass) vs. tachylite (black glass) A) Analyses of from four
	successive tephras sourced from Red Crater. Samples are in the order from the oldest
	(left) to the youngest (right). B) Analyses from the 1995-96 eruption episode
Figure 7.3.9:	Examples of grain size histograms at half $\pmb{\phi}$ intervals from Red Crater and Ruapehu
	(Tf5 and Tf8) tephras. The lower diagrams represent the pale, thin and very fine basal
	ash layer, while the upper diagrams represent the darker, thicker and coarser upper
	portion
Figure 7.3.10	D:SEM-images of light brown glasses (sideromelane) from Ruapehu and Ngauruhoe
	tephras. Images show sideromelane particles from various individual tephras, with
	irregular (A-F) and partly drop-like (A+C+J) shape. The sideromelanes have often
	smooth surfaces (G+1), round vesicles with thin bubble walls (H+K) and rare vesicle
	fillings (L)
Figure 7.3.11	I:SEM-images of tachylites from Ruapehu and Ngauruhoe tephras with A-F) blocky
	shaped particles and sharp edges. Characteristic surface features of tachylites
	including glass coated microlites (G-I), large vesicles (E-H), chemical pitting (J+K),
	brittle fractures (F) and adhering dust (L)
Figure 7.3.12	2:SEM-images of particles from individual prehistoric tephras from Ruapehu and
	Ngauruhoe and Red Crater with A+F) block particles with large vesicles, B) chemical
	pitting, C) Pele's hair, D) blocky particle with numerous small spherical vesicles and
	thick bubble walls, E+F) irregular shaped particle, G-H) conchoidal fractures, I) chipped
	surfaces, J) hydration cracks, K) hollow glass sphers, L) possible clay mineralisation 251
Figuro 7 2 13	PSEM images of the basel white tenbras sourced from prehistoric equations from

Figure 7.3.13:SEM-images of the basal white tephras sourced from prehistoric eruptions from Ruapehu, Ngauruhoe and Red Crater. Characteristic features are A-F+I) blocky

	particles with few large round vesicles, G+O) chipped edges, H) moss-like structures,
	J+N) step-like- and K) conchoidal fractures, L) irregular shaped, drop-like particles and
	M) hydration cracks
Figure 7.3.14	SEM-images of the darker and thicker top layer of tephras derived from prehistoric
	eruptions from Ruapehu, Ngauruhoe and Red Crater. Characteristic features are A-I)
	irregular shape particles, C) Pele's hair, I) drop-like shape, H+J) high vesicularity,
	K+L+O) smooth surfaces, M) conchoidal fractures, and N) chipped edges
Figure 8.1.1:	Cumulative frequency curve for known distinct explosive eruptions (VE 2) from Mt.
	Ngauruhoe since 4700 cal. yrs. B.P
Figure 8.1.2:	Eruption frequency for Ngauruhoe over the last 1000 years (latter part of Stage 4). Red
	bars represent eruptions of discrete tephras while pink bars represent tephras
	containing traces of Ngauruhoe-source pyroclasts
Figure 8.1.3:	Eruption frequency of Red Crater over the last 1000 years. Green bars represent
	eruptions of discrete tephras while pale green bars represent tephras containing traces
	of Red Crater eruptions
Figure 8.1.4:	Cumulative frequency curve for descrete (VEI \geq 2) known explosive eruptions from Mt.
	Ruapehu since 26 000 cal. yrs. B.P262
Figure 8.1.5:	Frequency of explosive eruptions from Ruapehu post 1717 cal. yrs. B.P. in 100 yr
	intervals, representing tephras of the Tufa Trig Formation. Blue bars represent discrete
	tephras, while pale blue bars represent tephras containing traces of Ruapehu
	pyroclasts
Figure 8.1.6:	Cumulative explosive eruption frequency from Ruapehu (blue), Ngauruhoe (red), Red
	Crater (green), Tongariro Mangamate Formation (brown) and Tongariro, Rotoaira
	lapilli (yellow) over the last 26 000 cal. yrs. B.P. The ages for the Mangamate tephra
	are from Nairn et al., (1998) and ages from the two younger Rotoaira lapilli are from
	Shane et al. (2008). The age of the oldest Rotoaira lapilli is stratigraphically positioned
	between the Rerewhakaaitu Tephra (OVC at 17625 \pm 425 cal. yrs. B.P.) and Kawakawa
	Tephra (TVC, 27 097 \pm 957 cal. yrs. B.P.), and is here estimated at c. 20 000 ca. yrs. B.P. 263
Figure 8.1.7:	Cumulative explosive eruption frequency from Ruapehu (blue), Ngauruhoe (red) and
	Red Crater (green) over the last ~6000 cal. yrs. B.P
Figure 8.1.8:	Cumulative explosive eruption frequency from all known explosive eruptions of the
	TgVC over the last 26 000 cal. yrs B.P. The shaded grey area illustrates that tephras in
	this area are of a VE⊵ 4 (New studies in this area (person comm. Pardo) reveal also
	eruptions < VEI 4 occurred between 26 000 and 12 0000 cal. yrs. B.P.)
Figure 8.1.9:	Eruption frequency from Ngauruhoe, Red Crater and Ruapehu over the last 1700 cal.

yrs. B.P. in 100 yr. intervals......266

Figure 8.2.1:	Isopach map extrapolated for the distinctive Ngauruhoe-sourced dark purple (DP)	
	tephra, dots indicate locations of measured thicknesses. Thickness in mm	274
Figure 8.2.2.:	: LogT vs. A ^{1/2} for isopachs mapped of the dark purple (DP) layer	275
Figure 8.2.3:	The power law fit method of Bonadonna and Houghton (2005) applied to the mapped	
	isopachs of the dark purple (DP) tephra	275
Figure 8.2.4:	Isopach map of the Ngauruhoe-sourced pale purple (PP) tephra unit	277
Figure 8.2.5:	$LogT$ vs. $A^{1/2}$ plot for isopach data of pale purple layer (filled diamonds). Open	
	diamonds show average number of tephra layers that make up the pale purple (PP)	
	layer in each isopach vs. A ^{1/2}	278
Figure 8.2.6:	Thickness versus A ^{1/2} of mapped isopachs of the pale purple (PP) layer	278
Figure 8.2.7:	LogT vs. $A^{1/2}$ of one individual tephra within the pale purple (PP) unit. The black curve	
	represents a best-fit Power-law regression to the data, while the two blue lines	
	represent exponential fits to segments 1 and 2.	279
Figure 8.2.8:	Isopach map of the eruption from Ngauruhoe on 28–29 March 1974. The thickness is	
	in mm. (after Self, 1975)	280
Figure 8.2.9:	Cumulative curve of volume proportion (red) of pyroclastic tephra deposits from	
	Ngauruhoe in comparison to the explosive eruption frequency (black)	282
Figure 8.2.10	Volume of individual tephras over time (blue bars) in comparison to the cumulative	
	volume in % (red line) for Ngauruhoe volcano	282
Figure 8.3.1:	Column height vs. median grain size for dispersal index (D) of 500 km ²	
	plinian/subplinian boundary from Walker's (1973) classification (from Sparks et al.	
	(1992))	284
Figure 8.3.2:	The eruption-column height (observed or estimated) vs. position of the break in slope	
	with distance from source (A_{ip}) . Column height is estimated within 20% error bars,	
	after Bonadonna et al. (1998)	285
Figure 8.3.3:	Eruption column height in contrast to eruption styles (after Cas and Wright (1988))	286
Figure 8.3.4:	Column height vs. volume of selected eruptions from Ruapehu (Cronin et al. 2003) and	
	Ngauruhoe (Sparks (1975); Nairn and Self (1978)	287
Figure 8.3.5:	Column height vs. volume of Ruapehu and Ngauruhoe eruptions compared with	
	selected examples from Hekla, Vesuvius, Mayon and Mt St. Helens. References: Hekla:	
	Sulpizio (2005); Mt St Helens: Carey et al. (1990); Sulpizio (2005); Mayon: (Global	
	Volcanism Program); Vesuvius: Arrighi et al. (2001)	288
Figure 8.3.6:	A) Ngauruhoe eruption in 1974 showing a weak plume being blown towards the north	
	and B) eruption column from Ngauruhoe on the 19 February 1975 (images: private	
	collection John A. Krippner)	288
Figure 8.5.1:	Grain-size histograms showing half phi vs. wt% of tephras from Ngauruhoe at different	
	distances from source	293

Figure 8.5.2:	Grain-size histograms showing half phi vs. wt% of tephras from Ruapehu at different	
	distances from source) 4
Figure 8.5.3:	Grain-size histograms showing phi vs. wt% of tephras from Ngauruhoe at Location 12	
	and Ruapehu at Location 56) 5
Figure 8.5.4:	Medium diameter vs. sorting of Ruapehu, Ngauruhoe and Red Crater in comparison to	
	fields for pyroclastic flow and fall deposits from Walker (1971)	7 6
Figure 8.5.5:	Medium diameter vs. sorting of TgVC-sourced tephras in comparison to White Island	
	tephras (green), Vesuvius (red) and Paricutin (yellow), darker green and red represent	
	phreatomagmatic eruptions while lighter green and red are strombolian eruptions.	
	The yellow Paricutin elipses represent a violent strombolian style. References:	
	Houghton and Nairn (1991), Rolandi et al. (1993), Pioli et al. (2008)	<i>}7</i>
Figure 8.5.6:	Isopleth map of the dark purple tephra. The isopleths are shown in μ m) 8
Figure 8.5.7:	Isopleth map of the pale purple tephra package. The isopleths are shown in μm) 9
Figure 8.5.8:	Grain-size distributions for the dark purple (DP) tephra (left) and the pale purple (PP)	
	(right) unit with distance from source)0
Figure 8.5.9:	Median diameter vs. sorting for the dark purple (DP) tephra and pale purple (PP) unit	
	in comparison to other Ngauruhoe-sourced tephras)1
Figure 8.5.10	Median diameter (A) and sorting (B) vs. distance from source)1
Figure 8.5.11	Fragmentation vs. dispersal after Walker (1973), where three of the analysed tephras:	
	from Ngauruhoe fall due to the high grade of fine ash falsely into the phreatoplinian	
	filed)2
Figure 8.5.12	LogT vs. A ^{1/2} plot of the DP, one unit from within PP, as well as Ngauruhoe 1974 and	
	Ruapehu 1996 tephras, defining here a new field (red) for "vulcanian" eruptions that	
	contrasts to areas defined for plinian, subplinian, hawaiian and strombolian eruptions	
	by Houghton et al. (2000) and Wehrmann (2005))3
Figure 9.1:	The cone of Red Crater in contrast to the larger cone of Ngauruhoe to the south.	
	(photographer: Hans Aeschilmann)	12

cpx	Clinopyroxene
DP	dark purple
EMPA	Electron microprobe analyses
F. or Form.	Formation
hb	Hornblende
hyp	Hypersthene
LPA	Laser Particle Analysis
MtF	Mangatawai Formation
MF	Mangamate Formation
NF	Ngauruhoe Formation
Ng	Ngauruhoe
ol	olivine
opx	orthopyroxene
OVC	Okataina Volcanic Centre
Ox	oxides
PF	Papakai Formation
PP	pale purple
plg	plagioclase
plg px	plagioclase pyroxene
plg px Rua	plagioclase pyroxene Ruapehu
plg px Rua RC	plagioclase pyroxene Ruapehu Red Crater
plg px Rua RC SEM	plagioclase pyroxene Ruapehu Red Crater Scanning electron microscope
plg px Rua RC SEM TgVC	plagioclase pyroxene Ruapehu Red Crater Scanning electron microscope Tongariro Volcanic Centre
plg px Rua RC SEM TgVC tm	plagioclase pyroxene Ruapehu Red Crater Scanning electron microscope Tongariro Volcanic Centre Titanomagnetite
plg px Rua RC SEM TgVC tm TNP	plagioclase pyroxene Ruapehu Red Crater Scanning electron microscope Tongariro Volcanic Centre Titanomagnetite Tongarioro National Park
plg px Rua RC SEM TgVC tm TNP TTF	plagioclase pyroxene Ruapehu Red Crater Scanning electron microscope Tongariro Volcanic Centre Titanomagnetite Tongarioro National Park Tufa Trig Formation
plg px Rua RC SEM TgVC tm TNP TTF TVC	plagioclase pyroxene Ruapehu Red Crater Scanning electron microscope Tongariro Volcanic Centre Titanomagnetite Tongarioro National Park Tufa Trig Formation Taupo Volcanic Centre