Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ULTRA-COLD BOSONS IN ONE-DIMENSIONAL SINGLE- AND DOUBLE-WELL POTENTIALS

Jake Steven Gulliksen

A thesis submitted in partial fulfilment of the requirements for the degree of Masterate of Science at Massey University

Centre for Theorectical Chemistry and Physics Massey University August 2010

Ultra-Cold Bosons in One-Dimensional Single- and Double-Well Potentials

Jake Steven Gulliksen.

Thesis submitted for the degree of Masterate of Science in Mathematical Physics at Massey University, September 2010.

Abstract

A variationally optimised basis allows an accurate description of the quantum behaviour of ultra-cold atoms, even in the strongly correlated regime. A rescaling scheme corrects discrepancies caused by using a reduced Hilbert space. This approach also allows the modelling of experimentally realizable double-well potentials, which still reveals the maximally-entangled states seen in fixed basis models. Time dynamics of these double-well systems show macroscopic tunnelling between wells for bosons with a sufficient interaction strength.

The many-body problem of interacting bosons in the highly-correlated regime is difficult. The number of basis states needed to describe this quantum system accurately quickly grows beyond computational reach. Rescaling the interaction strength proves a simple and effective method of calculating exact eigenvalues in a reduced Hilbert space.

Bosonic systems in the double-well potential are investigated next. First, how different eigen-states depend on the interaction strength is examined. The variationally optimised method has advantages over a standard fixed basis method with the ability to model experimentally viable systems and explore more stronglycorrelated regimes. Secondly, tunnelling dynamics in the double well are studied, specifically for a system where all particles initially occupy a single well. Oscillations corresponding to collective tunnelling between wells are found in regimes where there are zero interactions or bosons lie in a maximally-entangled state. What governs the dynamics outside these two regimes is also considered.

ACKNOWLEDGEMENTS

First and foremost, I want to express my deep thanks to my supervisor, Prof. Joachim Brand. His insight, ideas, and attention to detail have been extremely valuable to me. With his guidance I have been able to get this thesis into its present form. I am also very thankful for the financial support he offered me, which made this project possible.

I am also indebted to Dr. David Hallwood, who has shown great patience despite my many questions. He has always been willing to sit down and assist with my research. Thanks also for the great discussions we have had and maybe one of these days I'll beat you at tennis!

I have really enjoyed studying here at Massey University. This is in no small part due to the people I work with, Thomas, Andy, Susan, and Renyuan. Thanks to Thomas, who first introduced me to the workings of the MCTDH software and answered any random physics questions I had. To Andy who has helped me with numerous computer problems and is always keen to debate an issue. To Susan and Renyuan who have both been great company.

Finally, I thank my wonderful wife Beccy. On many a night during my write up, she would bring dinner and keep me company. Also to my family and family-in-law, especially those who pretended to be interested in what I was doing.

People travel to wonder at the height of the mountains, at the huge waves of the seas, at the long course of the rivers, at the vast compass of the ocean, at the circular motion of the stars, and yet they pass by themselves without wondering. -Augustine of Hippo

CONTENTS

1	INTRODUCTION 1				
	1.1	Indistinguishable Particles	2		
	1.2	BEC Theory	3		
	1.3	BEC's in Other Dimensions	4		
2	The	EORY	7		
	2.1	Fock Space	7		
	2.2	Modelling a One-Dimensional System	8		
	2.3	Tonks-Girardeau	9		
	2.4	Two Bosons in a Harmonic Trap	10		
	2.5	Methods	12		
		2.5.1 Gross-Pitaevskii	12		
		2.5.2 Standard Method	13		
		2.5.3 MCTDH	13		
	2.6	Ultra-Cold Bosons in a Double-Well Potential	15		
	2.7	Quantum Sloshing	17		
		2.7.1 Uncorrelated Regime	18		
		2.7.2 Interacting Bosons	19		
3	Set	UP AND RESCALING	21		
	3.1	Setup	21		
		3.1.1 Choosing Parameters	21		
	3.2	External Potentials	22		
		3.2.1 Scaling	23		
	3.3	MCTDH and High Correlations	23		
		3.3.1 Density Profile	24		
		3.3.2 Single-Particle Functions	25		
	3.4	Rescaling	26		
	3.5	Summary	27		
4	MC	TDH and the Eigen-Value Crossings	29		
	4.1	Single-Particle Spectrum	29		
	4.2	Energy Spectrum	29		

	4.3	Energy Difference between NOON States	31
	4.4	Eigen-Value Crossing	33
	4.5	Summary	34
5	Qua	NTUM SLOSHING	35
	5.1	Overview	35
	5.2	Results	36
	5.3	Multi-Mode Analysis	38
	5.4	Analysis of Results	40
		5.4.1 Non-Interacting Regime	40
		5.4.2 NOON State Regime	41
		5.4.3 Intermediate Interaction Regime	42
	5.5	Summary	43
6	Con	CLUSIONS	45
\mathbf{A}	Two	-Mode Analysis of Dynamics in the Double-Well	47
	A.1	Probability	47
	A.2	Time Dependent Number Operator (Heisenberg Picture)	48