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Abstract

A variationally optimised basis allows an accurate description of the quantum

behaviour of ultra-cold atoms, even in the strongly correlated regime. A rescal-

ing scheme corrects discrepancies caused by using a reduced Hilbert space. This

approach also allows the modelling of experimentally realizable double-well poten-

tials, which still reveals the maximally-entangled states seen in fixed basis models.

Time dynamics of these double-well systems show macroscopic tunnelling between

wells for bosons with a sufficient interaction strength.

The many-body problem of interacting bosons in the highly-correlated regime

is difficult. The number of basis states needed to describe this quantum system

accurately quickly grows beyond computational reach. Rescaling the interaction

strength proves a simple and effective method of calculating exact eigenvalues in a

reduced Hilbert space.

Bosonic systems in the double-well potential are investigated next. First, how

different eigen-states depend on the interaction strength is examined. The varia-

tionally optimised method has advantages over a standard fixed basis method with

the ability to model experimentally viable systems and explore more strongly-

correlated regimes. Secondly, tunnelling dynamics in the double well are studied,

specifically for a system where all particles initially occupy a single well. Oscil-

lations corresponding to collective tunnelling between wells are found in regimes

where there are zero interactions or bosons lie in a maximally-entangled state.

What governs the dynamics outside these two regimes is also considered.
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Chapter 1

Introduction

In 1995, seventy years after its theoretical prediction, a Bose-Einstein condensate

(BEC) was experimentally realised in a cloud of atoms [1, 2]. Here a gas of Ru-

bidium atoms cooled to 170 nanoKelvin was found to macroscopically occupy the

ground state. This sparked keen interest into the physics of ultra-cold atoms. Since

then experimental methods have improved and BEC life-times in the order of tens of

seconds have been reached [3]. BECs have been shown to be very useful in exhibit-

ing quantum behaviour on a macroscopic scale. For instance, when confined to the

double well they provide the means to observe quantum tunnelling [4]. Also, BECs

have been recognised for their contribution to practical applications, for example

in making precision measurements [5] and as a tool in quantum information [6].

This thesis is primarily concerned with one-dimensional (1D) systems. Restrict-

ing a BEC to one dimension can be realised experimentally [7] and holds interest

for several reasons. Perhaps most intriguing is that we find phenomena not en-

countered in 2D or 3D, that is the gas of impenetrable bosons, or Tonks gas [8].

Furthermore it has been shown by Girardeau [9] that this provides us with an

exactly soluble model for a 1D gas, useful for calibrating numerical results. Also,

1D systems make it possible to study larger numbers of atoms than is possible at

higher dimensions due to computing restrictions.

In this thesis we present the multi-configurational time-dependent Hartree (MCTDH)

approach to investigate the few-body spectrum and dynamics in the single- and

double-well trapping potentials. This allows us to study highly-interacting regimes

beyond the reach of mean field theory and extend work that has used a fixed basis

method.

1
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1.1 Indistinguishable Particles

In every day life we make use of the fact that particles (or objects) are distinguish-

able; for instance, you can distinguish your car from the Porsche over the fence. In

the quantum mechanical world we find indistinguishable particles, which have the

inherent property that they cannot be distinguished, even in principle. This makes

the quantum mechanical world more attractive if you want to drive a car that looks

like a Porsche. Unfortunately, examples of indistinguishable fundamental particles

only fall into two categories, bosons and fermions.

We can understand why bosons and fermions have this property by seeing what

makes particles distinguishable. The first way to distinguish classical particles

is by their physical attributes, for example colour, size and charge. However, all

electrons, for example, are electrons because they are particles which satisfy certain

physical characteristics like a mass me and charge e. Thus bosons and fermions

are indistinguishable on this score. If we were to monitor the position and velocity

of identical particles carefully we could track each trajectory and thus have the

means to distinguish between them, even in a collision. This monitoring, however,

is forbidden on a quantum scale by the Heisenberg uncertainty principle. That

quantum particles are indistinguishable has a profound influence on their physics.

Consider two indistinguishable particles initially positioned at r1 and r2. In

quantum mechanics the wave-function describing this system is

Ψ(r1, r2) , (1.1)

which is associated with a set of physical observables. Because the particles are

indistinguishable, we would expect that if the particles’ positions were switched

we would be left with the same set of observables. This is what we find, with the

‘switching’ operator Pij only adding a phase factor of ±1 because switching the

same two particles twice must result in the original system. A many-body system

may be described in one of two ways, the symmetric (+) or anti-symmetric (-)

wavefunction.

PrirjΨ(. . . , ri, . . . , rj, . . . ) = ±Ψ(. . . , ri, . . . , rj, . . . ) . (1.2)

Because bosons are particles with integer spin, then by the spin-statistics theorem

we know they are described by the symmetric wave-function. Bosons will share

quantum states which give rise to the phenomena of Bose-Einstein condensation
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and superfluidity. Fermions as particles with half-integer spin are described with

an anti-symmetric wave-function. It follows that the two-particle wave-function

vanishes for two fermions in the same state. This condition is known as the Pauli

exclusion principle and leads on to Fermi-Dirac statistics.

The statistics of particles with integer spin was first studied by Bose who derived

statistics for photons. Bose sent this to Einstein who was impressed and extended

Bose’s idea to include matter. The resultant statistics is called Bose-Einstein statis-

tics and was used to predict a phase change at very low temperatures known as

Bose-Einstein condensation.

1.2 BEC Theory

The BEC transition is a statistical effect involving a system of bosons. In this

section we summarise the main results discussed in detail in many statistical me-

chanics textbooks [10]. Consider N non-interacting bosons of mass m in thermal

equilibrium at a temperature T . The mean population of a quantum state with

energy ε is given by the Bose-Einstein distribution function

ni(εi, µ, T ) =
1

e(εi−µ)/kBT − 1
, (1.3)

where kB is Boltzmann’s constant and µ is the chemical potential, or the energy

required to add one more particle to the system. Given Eq. (1.3), we see that µ

must be smaller than the lowest energy state ε0 or we have a negative population

which is a non-physical solution. In an homogeneous system the ground state is

the state with zero momentum, thus ε0 = 0 and µ0 must be negative for physical

solutions. Furthermore as µ0 → 0− we approach a singularity in Eq. (1.3). We

will see this suggests that in this regime a large proportion of particles occupy the

ground state.

The number of allowed energy states in an energy range ε to ε+dε is given by

g(ε) dε. Here

g(ε) = Cεα−1 (1.4)

is the density of states. The constants C and α depend on the system parameters.

For a system of free particles in d dimensions, α = d/2. If instead, the particles are

confined to a d-dimensional harmonic trap, α = d. We consider a three dimensional

system confined to a volume Ω, in which case g(ε) = Ω
4π2

(
2m
~2

)3/2
ε1/2.

In a system with a large number of atoms the total density ρ can be written
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ρ = ρ0 + ρe, the addition of the ground state density (ρ0) with the density of all

other excited states,

ρe =

∫

g(ε)ni(εi, µ, T ) dε . (1.5)

Evaluating the integral in Eq. (1.5) the density of particles in the excited states is

found to be

ρe = ζ(3/2)(eµ/kBT )Ω

(
mkBT

2π~2

)3/2

, (1.6)

where ζ(3/2) is the Riemann zeta function. By Eq. (1.6) we see that the excited

states are maximally populated at any given temperature when µ = 0. We also see

that there will be some temperature Tc such that ρ0 ≈ ρ, that is, most particles

will occupy the ground state. Rearranging Eq. (1.6) this critical temperature is

found to be

Tc =
2π~2

kBm

(
ρ

ζ(3/2)

)2/3

. (1.7)

In a gas well above Tc few particles occupy the ground state, while the excited

states are heavily populated. As the gas cools the number of available excited

states decreases and continues to decrease through Tc. Below this temperature the

gas forms a condensate by macroscopically occupying the ground state, known as

a Bose-Einstein condensate.

Another, more intuitive way of understanding this concept is to consider the

de Broglie wavelength of a single boson given by λ =
√

2π~2

mkBT
. We have a BEC

when the wavelength of each particle becomes comparable to the inter-particle dis-

tance where quantum effects become important. This is formalised in the following

condition for a BEC,

λ3ρ ≥ ζ(3/2) ≈ 2.612 , (1.8)

1.3 BEC’s in Other Dimensions

In this section we consider what effect reducing the dimensionality of the system

has in the condensation of a non-interacting Bose gas in a harmonic trap. Conden-

sation in a three-dimensional harmonic trap occurs when T < T3D. The critical

temperature,

kBT3D = ~ω3D

[
N

ζ(3)

]1/3

≈ 0.94~ω3DN
1/3 , (1.9)

is found by evaluating Eq. (1.5) when µ = 0, T = T3D. Here ω3D ≡ (ωxωyωz)
1/3

and ~ωx, ~ωy, ~ωz are the oscillator energies for each respective dimension.
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In two dimensions, corresponding to α = 2 in Eq. (1.4), condensation is achieved

if the trapping frequency in the third dimension satisfies ~ω2D ≪ kBT2D < ~ωz

where ω2D ≡ (ωxωy)
1/2. The critical temperature for the 2D system is given by

kBT2D = ~ω2D

[
N

ζ(2)

]1/2

≈ 0.78~ω2DN
1/2 . (1.10)

In one dimension (α = 1) the integral in Eq. (1.5) diverges, thus a BEC does

not exist in the thermodynamic limit. However macroscopic occupation of the

groundstate is possible provided ω in the longitudinal direction is much smaller

than the trapping frequencies in the transverse directions, that is ωx ≪ ω⊥. The

temperature needed to achieve this state is approximately [11]

kBT1D ≃ ~ωx
N

ln(N)
. (1.11)

Thus when a Bose gas is confined to a harmonic potential with very large anisotropy

we may loosely talk of a BEC in one or two dimensions.





Chapter 2

Theory

So far we have presented some of the concepts that make ultra-cold atoms of so

much interest. This thesis, in particular, is concerned with studying 1D systems of

interacting bosons. Thus after a brief introduction into the Fock space formalism

in Sec. 2.1, we outline how such a system may be created from a 3D ultra-cold gas

(Sec. 2.2). In this chapter we also present some key aspects of the theory which

underlies the results in this thesis. Sections 2.3 and 2.4 contain details of two

exactly soluble models which we can use to calibrate our numerical calculations.

All numerical calculations in this thesis are made using the MCTDH approach, so

in Sec. 2.5 we outline the basic theory of MCTDH and discuss two other methods

that provide a valuable theoretical background. Finally in Sections 2.6 and 2.7 we

review two papers that contain work which will be discussed in chapters 4 and 5

respectively.

2.1 Fock Space

Because we are dealing with a system of indistinguishable particles, keeping track

of individual particles is no longer important (or possible). Rather, we are inter-

ested in what states are occupied. For this reason we introduce the Fock space,

summarised here but found in many quantum mechanics textbooks such as [12].

The Fock space is defined as the direct sum of tensor products which are all copies

of a single particle Hilbert space H .

F (H) =
∞⊕

n=0

S+H
⊗n = C ⊕H ⊕ (S+(H ⊗H))⊕ (S+(H ⊗H ⊗H))⊕ . . . , (2.1)

7
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where C is the zero body Hilbert space and S+ is the operator that symmetries the

space. A particularly useful basis called the occupation number basis counts the

number of particles (nk) occupying the state φk. This information is contained in

the number state |n〉, which reads

|n〉 = |n1, n2, . . . , nk, . . . 〉. (2.2)

The creation (a†) and annihilation (a) operators,

a†i | . . . , ni, . . . 〉 =
√
ni + 1 | . . . , ni + 1, . . . 〉 (2.3)

ai| . . . , ni, . . . 〉 =

{ √
ni | . . . , ni − 1, . . . 〉 for ni ≥ 1,

0 for ni = 0
,

add or remove one particle in the ith state respectively. They obey the following

commutation relations:

[ai, aj ] = [a†i , a
†
j] = 0 (2.4)

[ai, a
†
j ] = δij .

We also define the number operator n̂i := a†iai, such that n̂i|n〉 = ni|n〉. This

allows us to rewrite Eq. (2.2) and create any member of the occupation number

basis via

|n〉 =
(
∏

k

1√
nk!

(a†k)
nk

)

|vac〉 , (2.5)

where ai|vac〉 = 0.

2.2 Modelling a One-Dimensional System

We consider N interacting bosons of mass m confined to a tight waveguide. A

typical waveguide potential is the cigar shaped trap studied by Olshanii [13] which

has an axially-symmetric 2D harmonic potential of frequency ω⊥. Dynamics in

these transverse directions are essentially frozen out by cooling the system below

~ω⊥ thus leaving atomic motion purely along the longitudinal axis. The many-body

Hamiltonian describing this system may be written

H =

N∑

i=1

h(pi, xi) +
∑

i<j

V (xi, xj) , (2.6)
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where h(p, x) is the single-particle Hamiltonian which includes kinetic energy and

an external trapping potential and V (xi, xj) is the effective interaction between

particles. Because we assume that the system is dilute only two-body collisions are

considered. We may approximate ultra-cold atoms to interact via a one-dimensional

delta potential [13] and so the interaction potential becomes

V (xi, xj) = g1Dδ(xi − xj) , (2.7)

where the coupling strength is written entirely in terms of the system parameters

g1D =
2~2a

ma⊥
(a⊥ − Ca)−1 , C = 1.0326 . . . (2.8)

Here a⊥ =
√

~/mω⊥ is the transverse harmonic oscillator length and a is the

s-wave scattering length. For negative values of a the interaction is attractive

while positive values of a indicate repulsive interactions and are the subject of this

thesis. From here on in we will only be considering a 1D system so g1D can lose

the subscript.

Two boundary cases immediately present themselves, g = 0 and g → ∞. The

former is the trivial ideal gas while in the limit of the latter we find the realisation

of a model unique to 1D systems, fermionization of bosons.

2.3 Tonks-Girardeau

In 1960 Girardeau showed that there is a one-to-one correspondence between the

system of one-dimensional impenetrable bosons and spinless fermions [9]. This

system of bosons, the so-called Tonks-Girardeau gas, amounts to taking g → ∞ in

the interaction term of Eq. (2.6). More formally it imposes the following hardcore

boundary condition on the bosonic wave-function,

ΨB(. . . xi . . . xj . . . ) = 0 if |xi − xj | = 0 , (2.9)

which is equivalent to the Pauli exclusion principle which governs fermions. Gi-

rardeau proved that this many-body wave-function may be described as

ΨB = AΨF , (2.10)
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Figure 2.1: Sketch depicting the fermionization of bosons.

where

A =
∏

j>i

sgn(xj − xi) (2.11)

is the unit antisymmetric function [9] which only takes the values ±1 and ΨF is

the wave-function of N non-interacting fermions governed by the single-particle

Hamiltonian h(p, x) of the previous section.

We can make a few deductions from the result above. In the ground-state

Eq. (2.10) reduces to ΨB = |ΨF |, from which we can conclude that in the Tonks-

Girardeau regime bosons become fermionized (Fig 2.1). Also because |A| = 1 it

follows that ρB(x) = ρF (x) where ρ(x) is the single particle density, that is the

probability of finding a particle at x.

2.4 Two Bosons in a Harmonic Trap

Few soluble models exist that describe correlated systems with more than two

particles. However, the simple model of two particles in a harmonic trap already

exhibits the interplay between two-body interactions and the external potential.

Two bosons of mass m confined to a one-dimensional harmonic potential of fre-

quency ω is described by the Hamiltonian

H = − ~
2

2m

(
∂2

∂x21
+

∂2

∂x22

)

+
mω2

2

(
x21 + x22

)
+ gδ(x2 − x1) , (2.12)

where a point-like interaction is assumed, modelled by the Dirac delta function. We

move from a position to a relative coordinate system with R =
√

1/2(x1+x2), the
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centre of mass (com) coordinate and r =
√

1/2(x2 − x1), the relative coordinate1.

With a few lines of algebra we find H = HR +Hr, where

HR = − ~
2

2m

d2

dR2
+
mω2

2
R2 = Hosc(R) (2.13a)

Hr = − ~
2

2m

d2

dr2
+
mω2

2
r2 + gδ(r) = Hosc(r) + gδ(r) . (2.13b)

Eq. (2.13a) is simply the well understood Hamiltonian for a harmonic oscillator

(denoted Hosc). It is left to solve the following Schrodinger equation,

(Hosc(r) + gδ(r))Ψ(r) = EΨ(r) . (2.14)

The eigen-states of Eq. (2.14) are discussed at length in [14] and further details

may be found in [15]. For consistency with these papers we rescale all lengths in

units of r0 =
√

~/mω and energies in terms of E0 = ~ω. This leads to a new scaled

length r̃ = r/r0, rescaled interaction strength g̃ = (~ωr0)
−1g, and rescaled energy

Ẽn = En/E0. The odd eigen-functions of Eq. (2.14) are

Ψ̃n(r̃) = NnHn(r̃)e
− r̃2

2 , n = 1, 3, 5, . . . , (2.15)

where Hn(r̃) are the Hermite polynomials and Nn is the associated normalisation

constant. This of course is just the odd eigen-functions of the harmonic oscillator

with well known eigen-values. On the other hand the even eigen-functions depend

on g̃ and are found to be

Ψ̃n(r̃) = Nne
− r̃2

2 U

(

1

4
− Ẽn

2
,
1

2
, r̃2

)

, n = 0, 2, 4, . . . , (2.16)

where U(a, b, z) is the Kummer function [16]. The corresponding eigen-values are

given implicitly by

g̃ = 2
√
2
Γ
(

− Ẽn

2
+ 3

4

)

Γ
(

− Ẽn

2
+ 1

4

) . (2.17)

The energy of each even eigen-state increases with g̃ and, as an example of fermion-

ization, converges to the next higher lying odd eigen-value as g̃ → ∞.

1Of course the true center-of-mass coordinate is given by R/
√
2 = 1/2(x1 + x2) and

√
2r =

(x2 − x1) yields the true postion of atom 2 relative to atom 1. However, the factors of
√
2 were

added so that the effective masses for the centre-of-mass motion and the relative motion are the
same [14].
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2.5 Methods

This thesis seeks to solve the time-dependent Schrödinger equation for a few ultra-

cold atoms,

i~
∂Ψ

∂t
= H(t)Ψ , (2.18)

which is a non-trivial problem. Results in this thesis have been obtained using the

multi-configurational time-dependent Hartree (MCTDH) ansatz for the wavefunc-

tion which will be discussed in section 2.5.3. This section will also discuss other

many-body methods, both to understand previous work on this problem and to

compare the MCTDH approach. A nice discussion of these methods may be found

in [17].

2.5.1 Gross-Pitaevskii

By far the most basic many-body method assumes that all particles occupy the

ground-state. In the zero temperature limit then we may assume that the N -

particle wave-function is the product of N ground-state single-particle orbitals,

that is

ΨGP (x1, x2, . . . , xN ) =
N∏

i=1

φ(xi) . (2.19)

The Gross-Pitaevskii energy functional is found by taking the expectation value of

the Hamiltonian (Eq. (2.6)),

E[φ, φ∗] = 〈ΨGP |H|ΨGP 〉

=

∫

dx

[
~
2

2m
|∇φ|2 + Vext(x)|φ|2 +

g(N − 1)

2
|φ|4
]

. (2.20)

With E[φ, φ∗] it is now possible to find an upper bound for the groundstate en-

ergy [18]. This is done by looking for an extremum of ∂(E − µ〈ψGP |ψGP 〉) = 0,

where µ is the chemical potential, the energy required to add one particle to the

system. This yields the time-independent Gross-Pitaevskii equation,

µφ =
(
h + (N − 1)g|φ|2

)
φ . (2.21)

We may also include time-dependence by introducing the action

A[φ, φ∗] = −~

∫

dx dt

[

φ∗ ∂

∂t
φ

]

+ E[φ, φ∗] . (2.22)
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We find [19]

i~
∂φ

∂t
=
(
h+ (N − 1)g|φ|2

)
φ . (2.23)

2.5.2 Standard Method

The most straightforward approach to solving the time-dependent Schrödinger

equation is by first expanding the p-dimensional wave-function into a direct product

basis,

Ψ(Q1, . . . , Qp, t) =

n1∑

j1=1

· · ·
np∑

jp=1

Cj1...jp(t)

p
∏

κ=1

ϕκ
jκ(Qκ) , (2.24)

where nκ is the number of stationary basis functions associated with the κth degree

of freedom (DOF), and the vector C indexes each configuration. Then by applying

the Dirac-Frenkel variational principle we find the following equations of motion,

iĊj1,...,jp =
∑

l1,...,lp

〈ϕ(1)
j1
, . . . , ϕ

(p)
jp
|H|ϕ(1)

j1
, . . . , ϕ

(p)
jp
〉Cl1,...,lp . (2.25)

This method works well but struggles due to computing restrictions when the

number of DOFs becomes larger than six.

2.5.3 MCTDH

The underlying idea behind the MCTDH approach is to introduce time depen-

dence into the the single-particle functions of the standard model. The MCTDH

method has been discussed at length in two review articles [20, 21]. Here we only

give an overview, which is also found in [17]. We use the following ansatz to

solve Eq. (2.18) for a physical system with p degrees of freedom described by the

coordinates Q1, . . . , Qp,

Ψ(Q1, . . . , Qp, t) =

n1∑

j1=1

· · ·
np∑

jp=1

Aj1...jp(t)

p
∏

κ=1

ϕκ
jκ(Qκ, t)

=
∑

J

AJΦJ , (2.26)

where the vector A indexes the configuration and nκ is the number of single-particle

functions (ϕκ
jκ) associated with the κth DOF. Thus Eq. (2.26) is the Hartree product

expansion of p sets of orthonormal basis functions ϕκ. In Eq. (2.26) we use the

collective index J = j1, . . . , jp and Hartree product Φ to tidy the notation.
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The Dirac-Frenkel principle is applied to the ansatz above and we arrive at the

following equations of motion [20],

iȦ = KA (2.27a)

iϕ̇(κ) =
(
1− P (κ)

) (
ρ(κ)
)−1H(κ)ϕ(κ) , (2.27b)

where the coefficients A are now in matrix form, ϕ(κ) = (ϕ
(κ)
1 , · · · , ϕ(κ)

nκ )
T is a vector,

and the matrix

KJL = 〈ΦJ |H|ΦL〉 (2.28)

is the Hamiltonian operator in terms of Hartree products. We have also introduced

three new entities, P , ρ, and H, which are described as follows. The projector P

projects into the space spanned by the single particle functions (SPFs) and so has

the form

P (κ) =
∑

j

|ϕ(κ)
j 〉〈ϕ(κ)

j | (2.29)

The operator
(
1− P (κ)

)
ensures that the time derivative of the SPFs are orthogonal

to the space spanned by the SPFs. This means that if the basis is spanned by the

given SPFs then the SPFs become independent of time. If not then the variational

principle will find the SPFs that best describes the wave-packet. For the other two

entities we introduce the single hole function Ψ
(κ)
a .

The single-hole function (Ψ
(κ)
a ) is found by integrating out the κth degree of

freedom from the Hartree product, that is

Ψ =
∑

a

|ϕ(κ)
a 〉〈ϕ(κ)

a |Ψ〉 =
∑

a

ϕ(κ)
a Ψ(κ)

a , (2.30)

and is described by the expression

Ψ(κ)
a =

∑

j1

· · ·
∑

jκ−1

∑

jκ+1

· · ·
∑

jp

Aj1···jκ−1ajκ+1···jpϕ
(1)
j1

· · ·ϕ(κ−1)
jκ−1

ϕ
(κ+1)
jκ+1

· · ·ϕ(p)
jp

=
∑

Jκ

A
J
(
aκ)

ΦJκ , (2.31)

where the single-hole index J
(κ)
a takes every value aside from jκ, which it replaces

with the constant a. The index Jκ is similar to J but removes the κth entry. The

mean field operator matrix H(κ), analogous to the mean fields seen in Hartree-Fock

theory, is written

H(κ)
ab = 〈Ψ(κ)

a |H|Ψ(κ)
b 〉 . (2.32)
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The density matrix ρ(κ) may also be written in terms of Ψ
(κ)
a ,

ρ
(κ)
ab = 〈Ψ(κ)

a |Ψ(κ)
b 〉

=
∑

Jκ

A∗
Jκ
a
AJκ

b
. (2.33)

2.6 Ultra-Cold Bosons in a Double-Well Poten-

tial

In this section we will review a paper by Carr et. al. [22] which is very much related

to the content of this thesis. This section begins by introducing the two-level Bose-

Hubbard model, a standard fixed basis model. It closes by discussing two results

which will be tested in chapter 4.

The general quantised Hamiltonian for N bosons of mass m interacting via the

Dirac delta function in an external potential V (x) is

H =

∫

dx Ψ̂†(x)

(

− ~
2

2m

d2

dx2
+ V (x)

)

Ψ̂(x) +
g

2

∫

dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) ,

(2.34)

where Ψ̂†(x) and Ψ̂(x) are the creation and annihilation field operators respectively.

In [22], Carr et. al. consider such a system, where

V (x) = V0

(
16

a4
x4 − 8

a2
x2 + 1

)

(2.35)

is a Duffing double-well potential which has two minima at x = ±a/2 equal to

zero and a maximum at x = 0 equal to V0. We now expand the field opera-

tors into the basis of on-well localised wave-functions ψl(x − xj), composed from

appropriate superpositions of eigen-functions of the single-particle Hamiltonian

HSP = − ~
2

2m
d2

dx2 + V (x).

Ψ̂(x) =
∑

j,l

b̂ljψ
l(x− xj) , (2.36)

where the subscript j ∈ R,L is the site index, xj ∈ a/2,−a/2 are the positions of

the minima in the left and right well, the superscript l ∈ 0, 1 is the energy level

index, and

[b̂lj , b̂
l′†
j′ ] = δjj′δll′

[b̂l†j , b̂
l′†
j′ ] = [b̂lj , b̂

l′

j′] = 0 . (2.37)
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Generally ψl is computed numerically but can be approximated by the eigen-

functions of the harmonic oscillator for a sufficiently high barrier V0.

Substituting Eq. 2.36 into 2.34 yields the following two-level Hamiltonian,

H = H0 +H1 +H01 , (2.38)

where

H l = −J l
∑

j 6=j′

b̂l†j b̂
l
j′ + U l

∑

j

n̂l
j(n̂

l
j − 1) + El(n̂l

R + n̂l
L) (2.39)

describes particles on the lth energy level and

H01 = U01
∑

j,l 6=l′

(2n̂l
jn̂

l′

j + b̂l†j b̂
l†
j b̂

l′

j b̂
l′

j ) (2.40)

couples the energy levels. Here n̂l
j = b̂l†j b̂

l
j is the number of particles in the jth

site and lth energy level, El is the energy of the lth excited state, J l and U l are

the tunnelling and interaction energies determined by the overlap integrals of the

single-particle wave-functions. In the following we set E0 = 0 and the energy

between level spacings is defined to be E1 −E0 = ~ω.

The tunnelling term J l allows particles to move between wells to the same level.

Particles in the same well interact with energy U0 if they are on the same level

and U01 if they occupy different levels. Interactions between particles in different

wells are negligible and have been neglected. Although single-particle tunnelling

between levels in a well is forbidden, two particles can hop between energy levels

together as described in the ‘coupling’ Hamiltonian H01.

By inspection of Eq. (2.38) we see that in the high barrier limit, J0 ≪ |U0|,
the rate at which energy increases as a function of the interaction energy is largely

due to how the particles are distributed in each well. The first eigen-value crossing

occurs at a particular value of U0 when the maximum of the eigen-values for the first

N + 1 states with no occupation in the excited states coincides with the minimum

eigen-value of the states with one particle in the excited level. For a system with

an odd number of particles this is calculated to be

U0 [N(N − 1)] = ~ω + U0

[

2

(
N − 1

2

)(
N − 3

2

)]

+ 4U01

[(
N − 1

2

)]

U0 =
2 (~ω + 2U01(N − 1))

N2 + 2N − 3
. (2.41)
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As expected the same result is found for a system with an even number of particles.

Note the divergence at N = 1 indicating that there is no eigen-value crossing for a

system with a single particle.

In the presence of a high barrier the eigen-states appear as pairs of nearly

degenerate antisymmetric (-) and symmetric (+) states,

|Ψ±; ν〉 =
1√
2
(|N − ν, ν〉 ± |ν,N − ν〉) , (2.42)

where 0 ≤ ν ≤ N
2
. The energy difference between a pair of states is [22]

∆Eν =
4U0

(
J0

2U0

)N−2ν

(N − ν)!

ν![(N − 2ν − 1)!]2
. (2.43)

2.7 Quantum Sloshing

In chapter 5 we will be investigating quantum sloshing. Quantum sloshing is the

tunnelling dynamics of a system of particles in a double well initially localised in

either well. In particular we will partially reproduce and extend the work of Carr

et. al. using the MCTDH method. To keep this thesis self-contained we summarise

the relevant results from [23] below.

The two-mode Hamiltonian for N interacting bosons in a symmetric double well

is

Ĥ = −J
∑

j 6=j′

b̂†j b̂j′ + U
∑

j

n̂j(n̂j − 1) (2.44)

where the subscripts j,j′ ∈ {R,L} are the indices for the right and left wells, J is

the tunnelling energy, U is the interaction energy, n̂j = b̂†j b̂j , and both b̂†j and b̂j

obey the normal creation and annihilation commutation relations.

An arbitrary state vector in Fock space is given by

|Ψ〉 =
N∑

nL=0

cnL
|nL, N − nL〉 =

N∑

nL

cnR
(a†L)

nL(a†R)
N−nL |vac〉 , (2.45)

where nL is the number of particles in the left well and ai, i ∈ {R,L} are the

creation operators for a particle in the right or left well. For the purposes of

the discussion below we consider all particles prepared in the left well, that is

|Ψ(t = 0)〉 = |N, 0〉. The dynamics of the system at a later time, t, are described

by |Ψ(t)〉 = e−iHt|Ψ〉 and the probability of finding nL particles in the left well at
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some time t > 0 is PnL
(t) = |〈nL, N − nL|Ψ(t)〉|2.

2.7.1 Uncorrelated Regime

We first consider N non-interacting bosons (U = 0).The lowest lying spectrum of N

bosons is found by distributing all atoms over the symmetric and anti-symmetric

single-particle orbital of the lowest doublet. These N + 1 states

|φk〉 =
(

a†L + a†R

)N−k (

a†L − a†R

)k

|vac〉 (2.46)

satisfy H|φk〉 = Ek|φk〉 where

Ek = Nε0 + k∆E . (2.47)

Here ∆E = ε1 − ε0 is the energy difference between these two orbitals. The eigen-

values of the single particle Hamiltonian

HS =

(

εL J

J εR

)

, where εL = εR = ε (2.48)

are explicitly ε0 = ε− J and ε1 = ε+ J . Thus we find a relationship between ∆E

and J , that is J = ∆E/2.

We consider the dynamics of the system where initially all particles occupy the

left well, that is |Ψ(t = 0)〉 = (a†L)
N |vac〉. To see how the initial state evolves

in time we look at the time-dependent single-particle creation operator a†(t) =

a†Lf(t) + a†Rg(t) in the Heisenberg picture,

ida†

dt
= −[H, a†(t)]

= J
[

(a†LaR + a†RaL)a
†(t)− a†(t)(a†LaR + a†RaL)

]

= J
[

a†Rf(t) + a†Lg(t)
]

. (2.49)

We are left to solve the coupled differential equations

f ′(t) = −i∆E
2

g(t)

g′(t) = −i∆E
2

f(t) , (2.50)
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with initial conditions f(0) = 1 and g(0) = 0. The general solutions are given by

f(t) = A cos(Jt) + iB sin(Jt)

g(t) = C cos(Jt) + iD sin(Jt) . (2.51)

Upon use of the initial conditions and
√

|A|2 + |B|2 =
√

|C|2 + |D|2 = 1, due to

having a single particle, we find

f(t) = cos(Jt)

g(t) = eiθ sin(Jt) , (2.52)

where eiθ = −1 is a phase factor determined by Eq. (2.50). The time evolved ket

is rewritten

|Ψ(t)〉 = (a†(t))N |vac〉 =
1√

N !2N/2

[

a†L cos(Jt)− a†R sin(Jt)
]N

|vac〉 . (2.53)

With this result we study some of the characteristics of the system. The prob-

ability of finding all particles in the left well is

P0(t) =
∣
∣
∣〈N, 0|Ψ(t)〉

∣
∣
∣

2

=
∣
∣
∣

1

2N/2
√
N !

〈N, 0|
[

a†L cos(Jt)− a†R sin(Jt)
]N

|vac〉
∣
∣
∣

2

= cos2N(Jt) , (2.54)

which agrees with [23] (for the alternative method used by [24] see appendix).

Thus we find that the particles travel sinusoidally between wells with a period of

T = π/J which does not depend on N. By a similar, but longer argument (see

appendix) we find that the number of particles occupying the left well at any time

t is

nL(t) = 〈Ψ(t)|a†LaL|Ψ(t)〉 = N cos2(Jt) . (2.55)

2.7.2 Interacting Bosons

We now look at interacting bosons meeting the condition J ≪ |U | which is neces-

sary for the creation of MS states. The two highest excited states are symmetric

and antisymmetric NOON states, written |±〉 = 1√
2
(|N, 0〉± |0, N〉) and associated

with the eigen-values ε and ε+∆E. The energy difference ∆E between these two
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states was given in the last section

∆E =
4U
(

J
2U

)N
N !

[(N − 1)!]2
(2.56)

The initial state, |Ψ(0)〉 = 1√
2
(|+〉−|−〉), is a superposition of the (anti-)symmetric

eigen-states and thus evolves in time as follows,

e−iHt|0, N〉 =
1√
2

(
e−iεt|+〉 − e−i(ε+∆E)t|−〉

)
(2.57)

= −e−i(ε+∆E)t
2

(

cos(
∆Et

2
)|0, N〉 − i sin(

∆Et

2
)|N, 0〉

)

,

where −e−i(ε+∆E)t/2 is the global phase and can be ignored. The tunnelling period

is T = 4π/∆E, because ∆E is small, T is large, and by Eq. (2.56) becomes larger

with increasing U .



Chapter 3

Setup and Rescaling

The purpose of this thesis is to study the few-body dynamics of interacting one-

dimensional Bose gases. We have already seen in the limit where g → ∞ the system

of bosons may be mapped to an ideal Fermi gas. In this chapter we will explore

this further and in particular investigate how to reproduce the exact eigen-values

in this regime in a truncated Hilbert space.

3.1 Setup

Before we begin calculations with MCTDH we briefly discuss how it solves the

Hamiltonian and decide what parameters should be used to minimise numerical

inaccuracies. Also a scaling scheme is introduced to do away with dimensionful

parameters.

3.1.1 Choosing Parameters

We have already seen that the Hamiltonian describing N non-interacting bosons

of mass m in a quasi-1D trap may be written as

H =
N∑

i=1

h(pi, xi) +
∑

i<j

V (xi − xj) , (3.1)

where h(p, x) = 1
2m
p2 + U(x) is the single-particle Hamiltonian and V (xi − xj) =

gδ(x) is the effective two-body interaction potential. To solve this MCTDH dis-

cretizes space using discrete variable representation [20]. However, implementing

21
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the delta function is problematic because it introduces discontinuities. For this

reason δ(x) is replaced with a Gaussian

δσ(x) =
1√
2πσ

e−x2/2σ2

, (3.2)

which converges to δ(x) if σ is smaller than the 1D scattering length. To limit

numerical inaccuracies incurred by making this approximation we impose the fol-

lowing constraints on σ. We require it to be short-ranged compared to the average

inter-particle distance, that is σ ≪ L/N , where L is the systems spatial extension

- in our case L = 2×5 (i.e. −5 ≤ x ≤ 5). Also σ must be chosen to be on the same

order as the grid spacing ∆g in order that the potential V be properly sampled.

After setting the number of grid-points Ng = L/∆g to 128, we find σ = 0.05 a

suitable choice for use in all subsequent work.

3.2 External Potentials

In this chapter we begin with benchmarking calculations by considering N inter-

acting bosons confined to a well-understood potential - the harmonic oscillator.

U(x) =
1

2
x2 (3.3)

In chapters 4 and 5 we move on and consider the somewhat more interesting double-

well potential. A lot of work has already been done on understanding properties

of few-body systems in the double well using approximate techniques such as the

Bose-Hubbard model [23]. Furthermore in his thesis [25] Zöllner uses the MCTDH

approach to study atoms in a double well modelled by U(x) = 1/2x2 + hδw(x),

a harmonic oscillator plus Gaussian potential. This thesis seeks to reproduce and

extend this work by considering N bosons in the Duffing double-well potential

U(x) = h(x2 − x20)
2 . (3.4)

Here is a double well with a barrier height of U(0) = hx40, which separates the left

and right wells whose minima lie at ∓x0 respectively. The height of the barrier

controls tunnelling between wells, where in the limit h → ∞ we are left with two

isolated wells.
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3.2.1 Scaling

For the sake of generality the Hamiltonian is rescaled to the length of the 1D

longitudinal system (a‖ =
√

~/Mω‖) or half the distance between the minima of

the left and right wells (a‖ = x0). This depends on whether the system is confined

to a single- or double-well potential respectively. The energy scale ~ω‖ in the case

of the harmonic potential depends on the trapping frequency ω‖. The double well

~ω‖ is defined quite differently as discussed in Sec. 4.1. We rescale then by applying

a global coordinate transformation X′ := X/a‖ with X ≡ (x1, . . . xN )
T such that

H becomes

H ′(X′) =
N∑

i=1

(

−1

2
∂′2i + U ′(x′i)

)

+
∑

i<j

V ′(x′i − x′j) . (3.5)

Thus we are left with a Hamiltonian devoid of physical units. Each quantity is

related to the corresponding dimensionless quantity via the following transforma-

tions,

x̃ :=
x

a‖

Ũ :=
U

~ω‖

g̃ :=
g

~ω‖a‖

t̃ := ω‖t (3.6)

In the interest of clarity the primes and ‖ subscripts are omitted from here on.

3.3 MCTDH and High Correlations

Solving the many-body problem is difficult, and in the case of strong interactions

the only method is numerical diagonilization of the many-body Hamiltonian [26].

We have already seen that g = 0 and g → ∞ provide two soluble regimes which

may be used for calibrating MCTDH. With this in mind we will follow three atoms

as they move from the non-interacting regime through to a Tonks-Girardeau gas.
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Figure 3.1: Fermionization of bosons in the harmonic potential: The density profile
of three bosons at several interactions (g). Note that for g > 27.4, MCTDH no
longer produces a physical result seen by the density profile falling below the exact
solution. (15 SPFs)

3.3.1 Density Profile

We consider the characteristics of this crossover by looking at the density profile

ρB(x) (Fig. 3.1), which is the probability of finding a boson at x. At g near 0 all par-

ticles reside in the groundstate of the harmonic potential, |ΨB〉 = 1/
√
N ![a†0]

N |vac〉.
As g increases we see that the density profile changes significantly by broadening

and developing into three peaks. This makes sense intuitively, for three highly inter-

acting bosons will distribute themselves in a manner that pays the least interaction

energy.

The ground-state fermionic wave-function is the product of single particle or-

bitals, that is |ΨF 〉 =
∏N−1

i=0 a†i |vac〉. For N fermions this means

ρF (x) = 〈ΨF |Ψ̂†Ψ̂|ΨF 〉

=
N−1∑

j=0

nj |φj|2〈vac|
N−1∏

i=0

aia
†
i |vac〉

=

N−1∑

j=0

|φj|2 , (3.7)
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Figure 3.2: Three bosons in a harmonic trap: (a) The ground-state energy E(g) as a
function of the coupling strength (g) using different numbers of SPFs. (b) Coupling
strength where simulations reach the T-G limit as a function of nspf . Theoretically
we only approach the fermionic limit as g → ∞. However, we see that this is only
the case when nspf → ∞.

where

Ψ̂(x) =
∑

j

ajφj(x) (3.8)

is the field operator which annihilates a particle at coordinate x, φi(x) is the ith

single particle function of the harmonic potential, and Eq. (3.7) holds because

ni = 1 ∀ i. In the Tonks-Girardeau regime ρB(x) = ρF (x). However, we find that

at g = 27.4, far before expected, we already have the density profile of an ideal

Fermi gas. This of course results from truncating the Hilbert space. The next

couple of sections look at how this can be improved.

3.3.2 Single-Particle Functions

The first and most obvious way of improving results is by enlarging the Hilbert

space, that is increasing the number of single-particle functions (nspf). For weak

interactions three bosons can be described very well with only one SPF as noted

in the previous section. This means that results agree closely in this range inde-

pendent of the number of SPFs used (Fig. 3.2a).

We can clearly see that in the strongly correlated regime the systems energy

reaches the Tonks-Girardeau limit at some gTG far below the theoretical predic-

tion. By increasing nspf we can improve numerical results. By how much they are
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Figure 3.3: Comparing MCTDH with exact two particle model: Plots show energy
E(g) of the first nine eigen-states for two bosons in a harmonic trap as a function
of the coupling strength. (a) Compares numerical results with the exact results.
(b) Compares the rescaled numerical results with exact results. (15 SPFs)

improved is shown in Fig. 3.2b. Although initially the number of SPFs has a large

effect on gTG we find that for nspf & 25 merely adding more SPFs is ineffectual and

in fact paralysing because it becomes more and more computationally expensive.

The desire for numerical accuracy at reasonable numbers of SPFs necessitates the

use of rescaling introduced in the next section.

3.4 Rescaling

The problem of describing atoms in highly-correlated regimes is a difficult one

and, as we saw above, simply increasing the Hilbert space does not offer a true

solution. The Lee-Suzuki method [27] solves this problem by obtaining effective

operators within a reduced basis space. This has been applied to harmonically-

confined bosons with good results [28]. Here we present a method which is simpler

and only requires knowledge of gTG.

As a test bed for our scheme we return to the system of two interacting bosons,

for which an analytical solution exists (see chapter 2). The analytical (a) eigen-

values of the two-particle Hamiltonian H = HR + Hr are Ea
k(g) = ER

i + Er
2j(g).

Here only the even eigen-states of Hr are considered because we are dealing with

bosons. We plot the numerical (n) eigen-values En
k from g = 0 through to a highly

correlated regime for the first nine eigen-states and compare with the analytical
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results (Fig. 3.3a). Consider for a moment the numerical ground-state energy

En
0 (g). Energy higher than En

0 (gTG) is physically impossible, which clearly shows

that there is a discrepancy between the numerical and analytical results. Hallwood

et. al. [29] has developed an effective Hamiltonian by rescaling g to recover the

exact eigen-values for two bosons in a ring. Inspired by its success we implement

the following rescaling scheme,

g̃ =
g

1− g/gTG
, (3.9)

which essentially disregards energy values larger than En
0 (gTG) and introduces g̃.

This is done such that En
0 → En

0 (gTG) only as g̃ → ∞. In fact, because all eigen-

states reach the Tonks-Girardeau limit at gTG calculated for the ground-state, we

can recycle Eq. (3.9) for use in any of the first nine eigen-states (Fig. 3.3b). This

property becomes important when dealing with dynamics.

3.5 Summary

As soon as interactions are added to a system of particles the problem of describ-

ing it becomes harder. To test MCTDH’s capabilities we ran calculations in the

harmonic potential. What we found was that merely using more SPFs is not a

practical solution to improving numerical inaccuracies, which are seen especially

in the highly-correlated regimes. However, by rescaling g we obtain an effective

Hamiltonian inside the truncated Hilbert space which recovers the exact eigen-

values. Results from recycling this rescaling scheme to higher eigen-states suggest

useful application of this effective Hamiltonian to dynamical systems. In the next

two chapters we study few-body systems in the double-well, but because we are

only interested in effects well below the fermionic limit this rescaling is not used in

subsequent work.





Chapter 4

MCTDH and the Eigen-Value

Crossings

So far we have seen MCTDH in action but have only applied it to a simple and

well-understood system. We will now study the features of interacting bosons in a

double well. This chapter concerns itself with the interplay between the coupling

strength and the barrier separating the two wells. In particular we are interested

to see if MCTDH has any advantages over the 4-mode Bose-Hubbard model.

4.1 Single-Particle Spectrum

To understand some key features of the double well we turn to the single-particle

spectrum. The first thing noticed in Fig. 4.1 is that the single-particle spectrum

has a doublet structure. Being well separated by the barrier the lowest lying

doublets, i = 0, 1, . . . , k (k dependent on h), are anti-symmetric (-) and symmetric

(+) orbitals of the form φ±
i (x) = 1/

√
2[wi(x+ x0)± wi(x− x0)], where wi is some

localised function and H|φ±
i (x)〉 = ε±i |φ±

i (x)〉. A doublet is separated in energy

by the tunnel splitting ∆εi = ε−i − ε+i , which is much smaller than the inter-level

spacing ∆Ei = ε+i+1 − ε−i . We define ~ω = ∆E0 = ε+1 − ε−0 .

4.2 Energy Spectrum

In this section we discuss how the energy of a 1D Bose gas is expected to change

in its crossover from the uncorrelated regime to the Tonks-Girardeau limit. In

29
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Figure 4.1: Single particle spectrum {εi} in a duffing double well with barrier height
(a) h = 1.67~ω, (b) h = 2.09~ω, and (c) h = 2.97~ω.

the uncorrelated regime, g = 0, all N particles are simply distributed over the

single-particle states. Finding the total energy involves adding the corresponding

eigen-values

E =
∑

s=±

∑

i

As
iε

s
i , (4.1)

where A±
i ∈ {0, 1, . . . , N} and

∑

s=±
∑

iA
s
i = N . In the Tonks-Girardeau limit,

g → ∞, the bosonic system undergoes fermionization and

E =
∑

s=±

∑

i

Bs
i ε

s
i , (4.2)

where B±
i ∈ {0, 1} and

∑

s=±
∑

iB
s
i = N .

Between these two regimes we make some observations. An arbitrary vector in

Fock space is given by

|Ψ〉 =
∑

n

C
n
|n〉

|n〉 ≡ |nL0 , nR0 , nL1, nR1 , . . . , nLf
, nRf

〉 (4.3)

=
1

√
nL0 !nR0 ! · · ·nLf

!nRf
!
[aL0 ]

nL0 [aR0 ]
nR0 · · · [aLf

]nLf [aRf
]nRf |vac〉 ,

where nLi
and nRi

are the number of particles in the ith excited level of the left and

right well respectively, and
∑f

i=0(nLi
+ nRi

) = N . Consider the lowest cluster of

eigen-states. In the non-interacting regime these N + 1 states are the set of states

with no occupation in the excited levels, that is |Ψ〉 =∑nL0
CnL0

|nL0, N−nL0〉. Of

these the highest lying states are quickly characterised by |Ψ±〉 = |N, 0〉 ± |0, N〉,
whose energy increases rapidly with increasing g because all particles are localised
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Figure 4.2: Energy spectrum of 3 bosons in a double well of height h = 2.75~ω as
they crossover from the non-interacting regime into the highly correlated regime.
Note that the lowest two lines are both nearly degenerate pairs of lines. (20 SPFs
for g ≤ 20, 30 SPFs for g > 20, ~ω = 18.22)

to one well. On the other hand the lowest lying states are well characterised by

|Ψ±〉 = |N+1
2
, N−1

2
〉 ± |N−1

2
, N+1

2
〉 (odd N) or |Ψ〉 = |N

2
, N

2
〉 (even N), whose energy

only increases steadily because the particles have a more even distribution. As the

system moves into a highly-correlated regime the bosons try to isolate each other

so as to pay less interaction energy. Initially this is done with all atoms sharing the

same level. However, with sufficient repulsive interactions the bosons redistribute

themselves in the manner of spinless fermions. Similar features can be found for

any given band of eigen-states.

4.3 Energy Difference between NOON States

In chapter 2 we reviewed two results of the Bose-Hubbard model, eigen-value cross-

ings and tunnel splitting between anti-symmetric/symmetric pairs. For the remain-

der of this chapter we will reproduce and compare these results with the MCTDH

approach in the case N = 3. We are particularly interested in the energy spectrum

about the eigen-value crossings. Section 4.2 provides a useful overview of the gen-

eral behaviour but to fill in some of the gaps we lower the barrier and restrict the
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Figure 4.3: MCTDH vs. two-level Bose-Hubbard: Eigen-values of a 3 boson system
in a double-well of height h = 2.09~ω as a function of (a) The coupling strength
(g), and (b) The interaction energy (U0). By rescaling g to U0 we can make
a direct comparison between MCTDH and Bose-Hubbard. (c) Energy difference
between the symmetric and anti-symmetric NOON states as calculated by each
method, over U0. We see that MCTDH only agrees with Bose-Hubbard in the
weakly-correlated regime. (40 SPFs, ~ω = 11.92)
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range of g (Fig. 4.3a). Apart from exhibiting the general characteristics of a double-

well system, immediately apparent is the avoided crossing at g ≈ 7. This suggests

coupling between the |N, 0〉 ± |0, N〉 and |2, 0, 0, 1〉 ± |0, 2, 1, 0〉 states.
The effect of this coupling is demonstrated by considering the energy difference

between the anti-symmetric and symmetric NOON states, which for the two-level

Bose-Hubbard model is given by Eq. (2.43)

∆ε =
3(J0)3

8(U0)2
(4.4)

However, to make a meaningful comparison with MCTDH the interaction strength

g must be rescaled into units of U0/~ω. A relationship between g and U0/~ω is

found by using graphing software to fit a second order polynomial (ag2 + bg + c)

to the (N + 1)th state in Fig. 4.3a. The gradient of the corresponding state in the

Bose-Hubbard model is N(N − 1)U0 = 6U0. Thus we find U0 ≈ (ag2 + bg + c)/6

which upon setting a = −0.17, b = 0.34, and c = 0 produces Fig. 4.3b.

For very weak interactions we see in Fig. 4.3c that the energy difference found

using the MCTDH approach (∆εMCTDH) agrees well with Eq. (4.4). However, as

U0 increases, ∆εMCTDH diverges from ∆ε and is soon characterised by two peaks

which centre at the eigen-value crossings, that is, this coupling to higher eigenstates

effectively pulls the symmetric and anti-symmetric NOON states apart.

4.4 Eigen-Value Crossing

Recall that in the high barrier limit J0 ≪ U0 of the two level Bose-Hubbard model

the first eigen-value crossing occurs at some critical value of U0 (U0
crit), where

U0
crit =

2 (~ω + 2U01(N − 1))

N2 + 2N − 3
. (4.5)

The derivation of Eq. (4.5) assumes there is no tunnelling between wells, that

is J0 = 0. What we expect then for N = 3 bosons with the approximation

U01 = (1/2)U0 [22] is U0
crit = 0.25~ω. We cannot check this prediction with the

MCTDH approach in the extreme case above (which is equivalent to h → ∞) but

find the effect of raising and lowering the barrier.

We have already seen that values of h & 2~ω are necessary to maintain a NOON

state at the first crossing. Fig. 4.4 shows that as the barrier is raised the amount of

interaction energy needed to reach U0
crit increases and begins to converge to a value
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Figure 4.4: Interaction energy needed to reach the first eigen-value crossing (U0
crit)

as a function of the barrier height h. As h increases U0
crit begins to converge to

0.25~ω, the value predicted by the Bose-Hubbard model.

near 0.25~ω. Thus we observe the first crossing earlier by lowering the barrier and

find that the two-level prediction agrees well with MCTDH for large h.

4.5 Summary

We have seen in chapter 2 that the two-level Bose-Hubbard model can be effectively

used to predict characteristics of particles confined to a double-well potential. Here,

we have proposed a way to rescale MCTDH’s interaction strength (g) to the inter-

action energy (U0) of the Bose-Hubbard model. This allows us to directly compare

results between the two methods. We have found two results in particular. When

looking at the energy difference (∆ε) between NOON states we found that although

MCTDH agrees with Bose-Hubbard for small interactions, results differ wildly for

U0 around the eigen-value crossings. MCTDH marks the coupling between crossed

states by sharp peaks in ∆ε. We also saw that by raising the barrier (h), the

first eigen-value crossing found by MCTDH comes into closer agreement with the

two-level Bose-Hubbard model. Thus far we have only studied static systems, but

we will see that this puts us in good stead to investigate dynamical systems in the

double well.



Chapter 5

Quantum Sloshing

So far we have studied the influence of correlations in a one-dimensional bosonic

system. In this chapter we see the physics from the last chapter in the dynamics

of N bosons confined to the double well. A particularly interesting quantum phe-

nomenon observed in the double well is tunnelling and ultra-cold atoms provide

the means to study it with a high degree of accuracy. By initially preparing all

atoms in one well we find for which regimes all atoms tunnel coherently between

wells, an effect known as quantum sloshing.

5.1 Overview

We will be investigating the time dynamics of three bosons in a symmetric double

well as we pass from the uncorrelated regime (g = 0) into the weakly correlated

regime. The double well (U(x) = h(x2 − 1)2 + lx) is the quartic plus cubic from

the last chapter but generalized to include a linear term. The barrier height (h =

1.67~ω) is carefully chosen. While U(x) must be able to support MS states (h > E0)

up to the required interaction strength, the barrier height h should be set low

enough to achieve oscillations with a period that is numerically feasible (Fig. 5.1).

Depicted in Fig. 5.2 is the strategy for creating the initial state Ψ(0), which in

our case means loading all atoms in the left well. Adding a sufficiently large linear

term (depending on N and g) to U(x) introduces a tilt in the double well. When

we let this system relax into the ground state all atoms are localised into a single

35
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Figure 5.1: (left) Single-particle spectrum of a double well with h = 1.67~ω.
(right) Corresponding energy spectrum for three bosons. (40 SPFs, ~ω = 6)
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Figure 5.2: Sketch of the setup: At t = 0 the system is relaxed into the ground
state of a tilted double well (left). The asymmetry is then removed adiabatically
leaving all particles initially localised in the left well (right).

well. Before a propagation run the asymmetry is reduced non-adiabatically until

we are left with all particles confined into the left well of a symmetric double well.

5.2 Results

We consider a system of three bosons initially confined to the left well. Tunnelling

between wells is monitored by counting the number of atoms in the left well,

nL(t) =

∫ 0

−∞
ρ(x, t) dx , (5.1)
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Figure 5.3: Three boson dynamics in the double well of height h = 1.67~ω: Shown
is the number of atoms in the left well over time. The ‘wobbling’ is caused by not
adjusting the minimum of the left well in the asymmetric trap to align with the
minimum of the left well in the symmetric trap. (20 SPFs)

where ρ(x, t) is the one body density, the probability density for finding a single

particle at x. In this way the effect of increasing interactions can be investigated.

Although the non-interacting atoms in Fig. 5.3 exhibit quantum sloshing, the

behaviour is far from coherent due to the ‘wobbling’ which is seen particularly when

all atoms are localised in the same well. This ‘wobbling’ is actually oscillations due

to the minimum of the left well of the asymmetric potential being shifted to the left

of x = −1 (seen in Fig. 5.2). It follows that this effect becomes pronounced when

all atoms occupy the same well. This is corrected by choosing a suitable value for

d such that of the minima found by solving

U ′(x) = x(x2 − d2) +
l

4h
= 0 , (5.2)

the minimum corresponding to the left well is at x = −1. For l = 4 this is achieved

by setting d = 0.949. Once corrected we see the expected coherent oscillations

(Fig. 5.4a).

When interactions are turned on the dynamics undergo severe changes. For very

weak interactions we observe what appears to be very erratic behaviour (Fig. 5.4b).

The dynamics here no longer have just one frequency contribution but many of

similar amplitude which compete with each other. Higher interactions are charac-

terised by one frequency modulated by higher frequencies with small amplitude. As
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Figure 5.4: Three-boson dynamics in a double well of height h = 1.67~ω: Shown
is population in the left well over time, (nL(t)), for (a) g = 0, (b) g = 0.05, (c)
g = 0.1, and (d) g = 0.25. (20 SPFs)

g continues to increase we see that, somewhat surprisingly, the higher frequencies

are all but dampened out and the dynamics again resemble coherent oscillations.

The time required for complete population transfer has increased significantly com-

pared with g = 0, but because h = 1.67~ω was carefully chosen we find that the

period T < 900.

5.3 Multi-Mode Analysis

The stark difference in time scales for the coherent oscillations of g = 0 and g = 0.25

is explained by looking to the evolution of the energy spectrum as it varies over

g. Here too we can see what causes the seemingly erratic behaviour on the range

0 < g . 0.25. The initial many-body wavefunction for N atoms prepared into

the left well of the symmetric double well may be written as a superposition of
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eigenstates.

|Ψ(0)〉 =
∑

j

Cj |ψj〉 , (5.3)

where H|ψj〉 = Ej |ψj〉. Here the many-body eigenstate |ψj〉 is the linear combina-

tion of all possible configurations, that is,

|ψj〉 =
∑

n

D
n
|n〉

|n〉 ≡ |n1, n2, . . . , nM〉
=

1√
n1!n2! · · ·nM !

[a†1]
n1[a†2]

n2 · · · [a†M ]nM |vac〉 . (5.4)

The occupation numbers nk count the number of particles in the kth single particle

function (φk(x)) and satisfy conservation of particle number,
∑M

k=1 nk = N . The

initial wavefunction evolves in time as

|Ψ(t)〉 =
∑

j

Cje
−iEjt|ψj〉 . (5.5)

We make use of Eq. (5.1) to make a direct comparison with results

nL(t) =

∫ 0

−∞
dx ρ(x, t)

=
∑

j,k

C∗
jCke

−i(Ek−Ej)t

∫ 0

−∞
dx 〈ψj |Ψ̂†(x)Ψ̂(x)|ψk〉

=
∑

j

[

∣
∣Cj

∣
∣
2
∑

l

〈ψj |â†l âl|ψj〉
∫ 0

−∞
dx
∣
∣φl(x)

∣
∣
2

]

+
∑

j>k

[
(

C∗
jCke

−i∆Ejkt

+ CjC
∗
ke

i∆Ejkt
)∑

l,m

∫ 0

−∞
dxφ∗

l (x)φm(x)〈ψj |â†l âm|ψk〉
]

=
∑

j

[

α
]

+
∑

j>k

[

(β)
∑

l,m

γ
]

(5.6)

where

Ψ̂(x) =
∑

l

alφl(x) , (5.7)

found in the second line, is the field operator which annihilates a particle at co-

ordinate x and ∆Ejk = Ej − Ek. We can simplify Eq. (5.6) with the following

observations. Since φk(x) are the single particle functions of the symmetric double

well they are either symmetric or antisymmetric. As a result the |φk(x)|2 term in α
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is symmetric. It follows that the integral
∫ 0

−∞ dx |φk(x)|2 = 1/2 ∀ k and therefore
∑

j[α] = 1/2
∑

j

∣
∣Cj

∣
∣2
∑

l〈ψj |â†l âl|ψj〉 = N/2.

We can prove that the coefficients Cj are real using the following substitutions,

C∗
n
C

m
= A+ iB , C

n
C∗

m
= A− iB . (5.8)

With these identities we find β = 2
(

A cos(∆Ejkt)−B sin(∆Ejkt)
)

. Essentially the

effect of adding sin(∆Ejkt) is to add a phase to cos(∆Ejkt). However, because all

atoms are initially in the left well, cos(∆Ejkt) finds maximum amplitude at t = 0

which implies that B = 0.

The dynamics of the system are governed by the N(N + 1) off diagonal terms.

However, many of these terms fail to contribute for the following reason. Because

âk is a single particle operator then 〈ψj|â†l âm|ψk〉 only couples |ψj〉 with those

‘neighbouring’ states |ψk〉 = |ψj+1〉, where just one particle occupies a different

single particle state. With these considerations Eq. (5.6) may now be written as

nL(t) =
N

2
+ 2

∑

j

(

Aj,j+1 cos(∆Ej+1,jt)
)∑

l,m

∫ 0

−∞
dxφ∗

l (x)φm(x)〈ψj |â†l âm|ψj+1〉 .

(5.9)

5.4 Analysis of Results

In the analysis that follows we assume that because our system has been carefully

prepared the N = 3 atoms are restricted to the lowest two modes. We can only

solve the integral in Eq. (5.9) analytically for two specific cases, g = 0 and the

NOON state regime. However this provides us with the tools necessary to explain

the behaviour through the range of g.

5.4.1 Non-Interacting Regime

In the case g = 0 the N + 1 = 4 states are simply the distribution of the particles

over the lowest-lying symmetric and antisymmetric single particle orbitals.

|ψj〉 = [a†1]
3−j [a†2]

j |vac〉, j = 0 . . . 3 (5.10)

The corresponding eigen-values are Ej = E0 + j∆E, where ∆E = ε1 − ε0 is the

energy difference between these two orbitals. Thus in the non-interacting regime
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Eq. (5.9) becomes

nL(t) =
3

2
+ cos(∆Et)

2∑

j=0

2Aj(j+1)

∑

l,m

∫ 0

−∞
dxφ∗

l (x)φm(x)〈ψj |â†l âm|ψj+1〉
︸ ︷︷ ︸

≡ξ

=
3

2
+

3

2
cos(∆Et) , (5.11)

where we have made use of the fact that nL(0) = 3 to find ξ = 3/2. From this

we can conclude that the equidistance of the levels guarantees simple coherent

oscillations with a period of 2π/∆E.

5.4.2 NOON State Regime

Whereas the eigen-states at g = 0 are non-localised, for higher interactions they

evolve into the superpositions of functions localised in the left and right wells. That

is

|ψj〉′ =
∑

n

D′
n
|n〉′

|n〉′ ≡ 1
√

nL!(3− nL)!
[b†1]

nL[b†2]
3−nL |vac〉 , (5.12)

where nL refers to the number of particles in the left well, b†1 = 1/
√
2(a†1 + a†2) and

b†2 = 1/
√
2(a†1 − a†2). We have already seen in chapter 2 that at some g = g

NOON

the initial state |3, 0〉′ may be written as the superposition of |ψ2〉′ = |3, 0〉′+ |0, 3〉′
and |ψ3〉′ = |3, 0〉′ − |0, 3〉′, that is the 3rd and 4th eigen-states. As a result the

dynamics will consist of the population shuffling between |3, 0〉′ and |0, 3〉′. This is
further demonstrated by simplifying Eq. (5.9).

nL(t) =
3

2
+

3

2
cos(∆E32t) . (5.13)

Thus when g ≥ g
NOON

we are said to be in the NOON state regime. We will see

coherent oscillations with a period of 2π/∆E32.
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Figure 5.5: Frequency components of nL(t) seen in Fig. (a) 5.4b, (b) 5.4c, and (c)
5.4d calculated using the Fourier transform. Sampling times used in the transform
are equal to the times reported in the above mentioned figures.
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Figure 5.6: Comparison of the frequency components of nL(t) calculated from
the time dynamics and energy spectrum in the double-well potential: Shown are
frequencies corresponding to the (a) ground and 1st excited states, (b) 1st and
2nd excited states, and (c) symmetric and anti-symmetric NOON states. Finite
sampling time t introduces errors into the analysis equal to 1/t.

5.4.3 Intermediate Interaction Regime

Given Eqs. (5.11) and (5.13), it would not be unreasonable to assume that on the

range 0 < g < g
NOON

Eq. (5.9) simplifies to

nL(t) =
3

2
+

3

2

∑

j

Aj,j+1 cos(∆Ej,j+1t) . (5.14)

It is difficult to prove this analytically but we may test it numerically by separating

the contributing frequencies using the Fourier transform (Fig. 5.5). We note that at

small interactions the amplitudes Ajk for each of the frequencies are approximately

the same. However, as interactions move toward g
NOON

the amplitude correspond-
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ing to the symmetric and anti-symmetric NOON states (A23) begins to dominate.

This suggests there is only one contributing frequency in the NOON regime. The

frequencies recovered by the Fourier transform, perhaps unsurprisingly, correspond

to the energy difference between neighbouring states (Fig. 5.6). Although this

means Eq. (5.14) describes the dynamics for any interaction strength, we are left

to solve the amplitudes numerically in the range 0 < g < g
NOON

.

5.5 Summary

In this chapter we see the relationship between dynamical systems and the time-

independent calculations of chapter 4. We find that the dynamics caused by initially

preparing all atoms into the left well is described by the energy difference between

neighbouring states. This means we find coherent oscillations in the uncorrelated

regime because the states are equidistant. Coherent oscillations are also found

in the NOON state but this is because only the energy difference between the

symmetric and anti-symmetric NOON states contribute.





Chapter 6

Conclusions

We have studied few-body systems of ultra-cold interacting bosons confined to

one-dimensional single- and double-well potentials. We investigated these systems

in both weakly- and strongly-correlated regimes. This was done using the multi-

configurational time-dependent Hartree (MCTDH) approach.

The problem of accurately describing interacting particles is a difficult one,

especially in the highly-correlated regime. In chapter 2 we found that merely en-

larging the Hilbert space does not offer a practical solution to improving numerical

inaccuracies. For example, in our study of three bosons in the harmonic potential it

was found that if more than twenty single-particle functions were used, calculations

just become more and more computationally demanding with little improvement

in accuracy. In section 3.4 we introduced a rescaling scheme that obtains an ef-

fective Hamiltonian inside the truncated Hilbert space which recovers the exact

eigen-values. This was applied with good results to the system of two particles in

the harmonic trap, for which an exact solution exists. Also we are able to apply

the rescaling found for the ground state to higher-lying states. This suggests the

method to be of service when considering dynamical systems.

The two-level Bose-Hubbard model has been used effectively in describing the

features of bosons in the double-well potential. However, it is only a two-level

approximation and so we compare some of its predictions with MCTDH. To make

direct comparison we proposed a way to rescale MCTDH’s coupling strength (g) to

the interaction energy (U0) of the Bose-Hubbard model. Thus when looking at the

energy difference (∆ε) between the symetric and anti-symetric NOON states we

find that Bose-Hubbard only agrees with MCTDH in the weakly-correlated regime.
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We notice that MCTDH goes beyond Bose-Hubbard by picking out coupling be-

tween crossed states shown by sharp peaks in ∆ε at the corresponding values of

U0. Also, it is found that by raising the barrier height the first eigen-value crossing

calculated with Bose-Hubbard converges to the MCTDH result.

We find in chapter 5 that knowledge of the low-lying eigenstates is crucial to

understanding tunnelling dynamics in the double well. By initially preparing all

particles to a single well we observe the effect known as quantum sloshing. We have

demonstrated that oscillations corresponding to collective tunnelling between wells

are found in the uncorrelated regime and again in the NOON regime with a much

longer period, whereas tunnelling dynamics between these regimes are governed by

several frequencies. This behaviour is explained by considering the contributions

of the low-lying eigen-states.

As for thoughts of future work, first and foremost we would like to push for

higher particle numbers. Computational time for N particles scales as N3 so we

are restricted to systems where N ≈ 5. In this thesis we have used at most three

particles and while this is useful for understanding the physics it is hard to achieve

experimentally. In this regard a generalisation of the rescaling scheme found in

chapter 3 may assist MCTDH in reaching particle numbers greater than five. In

further work it would be interesting to study what effect tilting the double well

has on tunnelling dynamics. Our discussion only considered tilting the potential

to prepare the system. However, asymmetry exists in experiment and may be used

to find tunnelling resonances, where tunnelling is much faster and NOON states

are protected from fluctuations of the systems potential [23].



Appendix A

Two-Mode Analysis of Dynamics

in the Double-Well

In chapter 2.7 we considered quantum sloshing in the double well. Here we present

further calculations omitted from the text.

A.1 Probability

In this section we summarise a result found in the appendix of [24] to calculate the

probability of finding all particles in the right well at some time t. The initial state

can be expanded into the energy eigen-basis

|Ψ(0)〉 = |0, N〉 =

N∑

k=0

ck0|φk
0〉 , (A.1)

where |φk〉 =
∑N

nL=0 c
k
nL
|nL, N − nL〉 are the eigen-states of Ĥ = −J∑j 6=j′ b̂

†
j b̂j′

with associated eigen-values εk = −J(N − 2k). The coefficients cknL
are obtained

via [24]

cknL
= 〈nL, N − nL|φk

nL
〉 = AkHk〈nL|N〉

√

P1/2〈nL|N〉 , (A.2)

where

P1/2〈nL|N〉 =
1

2N
N !

nL!(N − nL)!
,

Ak =

√

(N − k)!

k!N !
, (A.3)
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and Hk〈nL|N〉 are the discrete Hermite polynomials satisfying

H0〈nL|N〉 = 1

H1〈nL|N〉 = 2(N/2− nL)H
0〈nL|N〉

Hk+1〈nL|N〉 = 2(N/2− nL)H
k〈nL|N〉 − k(N − k + 1)Hk−1〈nL|N〉 . (A.4)

Therefore we can write

Hk〈0|N〉 = N !

(N − k)!
. (A.5)

Eq. (A.1) becomes

|0, N〉 =
N∑

k=0

√

P1/2〈k|N〉|φk
0〉 . (A.6)

The probability of finding all particles in the right well is

PnL
(t) =

∣
∣
∣〈0, N |e−iHt|Ψ(0)〉

∣
∣
∣

2

=
∣
∣
∣
1

2N

N∑

k=0

N !

k!(N − k)!
eiJ(N−2k)t

∣
∣
∣

2

=
∣
∣
∣
1

2N

N∑

k=0

N !

k!(N − k)!
(e−iJt)k(eiJt)(N−k)

∣
∣
∣

2

. (A.7)

Making use of the binomial theorem and Euler’s formula we find

PnL
(t) =

∣
∣
∣
1

2N
(e−iJt + eiJt)N

∣
∣
∣

2

= cos2N (Jt) . (A.8)

A.2 Time Dependent Number Operator (Heisen-

berg Picture)

We can find the number of atoms in the left well at any time t with

nL = 〈Ψ(t)|a†L
︸ ︷︷ ︸

A

aL|Ψ(t)〉
︸ ︷︷ ︸

B

. (A.9)
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To simplify this equation we first expand B.

B =
1

2N/2
√
N !

aL

[

a†L cos(Jt) + a†R sin(Jt)
]N

|vac〉

=
1

2N/2
√
N !

[

cos(Jt) +
(

a†L cos(Jt) + a†R sin(Jt)
)

aL

(

a†L cos(Jt) + a†R sin(Jt)
)N−1

]

|vac〉

=
1

2N/2
√
N !

N−1∑

q=0

(

a†L cos(Jt) + a†R sin(Jt)
)q

cos(Jt) |vac〉 . (A.10)

A similar expression is found for A and Eq. (A.9) becomes

n =
1

2NN !

N−1∑

p,q=0

〈vac|
(

aL cos(Jt) + aR sin(Jt)
)p (

a†L cos(Jt) + a†R sin(Jt)
)q

|vac〉 cos2(Jt)

= N cos2(Jt) . (A.11)
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