Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

On the Descriptive Complexity of Satisfiability on

Quantified Boolean Formulas

A thesis presented in partial fulfilment of

the requirements for the degree of

Master
Of

Information Sciences
At Massey University,
Wellington,

New Zealand

Wei Ren (02103176)

Mar 2011

Thesis Supervisor: Dr. Jose Maria Turull-Torres

Wei Ren (02103176)

Abstract

In the present thesis, we deal with the construction of non trivial formulas in higher

order logic languages. In particular, we focus on using SO (Second-Order logic) and

TO (Third-Order logic) to express SATQBF, , and SATQBF respectively. First of all,

we explain the relationship between logic languages and complexity classes. Then we

give formal definitions and examples for FO (First-Order), SO and

HO' (i > 2) (Higher-Order logic). It is known that, for everyk >1, SATQBF,is a
complete problem for the level =7 of PH (Polynomial-time hierarchy), and

that SATQBF is a complete problem for PSPACE. As the expressibility of SO is

known to equal the class PH, then we know that there must be an SO formula which

can express SATQBF, . On the other hand, PSPACE is known to be equal in

expressive power to SO with the addition of a second order transitive closure
quantifier, which is widely conjectured to be strictly more expressive than SO alone.

As TO includes PSPACE, this means that there must be a TO formula that can

express SATQBF . Here we give first a top down explanation on the use of SO to
express SATQBF, . A detailed SO formula is presented. We then give a top down

presentation of the sketch of a TO formula for SATQBF .

Wei Ren (02103176)

Acknowledgments

| am deeply grateful to my supervisor, Dr. Jose Maria Turull-Torres. Since the
beginning, he has been teaching and sharing his knowledge with me, and always
supported and encouraged me. | have to thank my lovely wife Xue as well, who has
always supported me. Also big thanks to my former teacher and friend Dr. Keri Logan,
who did the proofreading. One more person that | have to say thanks is my company
manager Jeremy, who has given me great support and suggestions when | have had
difficulty handling work and study at the same time. | am also very grateful to the two
reviewers of my thesis, Dr. C. McCartin and Dr. F. Ferrarotti, for their careful reading
and their comments and suggestions. Without all their help and supports, | would not

have been able to complete my master thesis on time.

Wei Ren (02103176)

Contents

1 INTRODUCTION. ..ottt s
2 BACKGROUNDoiiiiiii s

2.1 FINITE MODEL THEORY, RELATIONAL DATABASE AND QUERIEScccvvvererenrnrnnrnnens
2.2 RELATIONSHIP WITH COMPLEXITY CLASSES ..c.vvviiiveseresessreessssssssssssssssesesessssssssssssns
2.3 USING LOGIC TO EXPRESS DATABASE QUERIES.......cvcveveterereeennsssessssesssssesesesssssssssssses
2.3.1 IS O] = s W e] [(O) S
2.3.11 EXAMPLES ...v.vvcveteteteieresesesss sttt se s se sttt bttt e ettt bbbttt ettt
2.3.2 SECOND-ORDER LOGIC (SO) ittt sie sttt snessa e sse e s
2.3.2.1 EXAMPLES. ...t
233 THIRD ORDER LOGIC (TO)i,

2.3.31 EXAMPLES IN THIRD-ORDER LOGIC (TO) .cooiviiriieinieisieeserieeens

3 SUB-FORMULAS AND RULES USED THROUGHOUT THE THESIS....................
4 QUANTIFIED BOOLEAN FORMULAS ...t

41 DEFINTTIONS ..o s
5 EXPRESSING SATQBF, ANDSATQBF IN LOGIC.......ccccoooiiiiiiiinciincccicceene,
5.1 COMPLEXITY OF THE PROBLEMS........cccoiiiiii

51.1 SATQBF, CAN BE EXPRESSED IN SECOND-ORDER LOGIC.........ccccccovruinrrinnens

5.1.2 SATQBF CAN BE EXPRESSED IN THIRD-ORDER LOGICccccceoveeviriiernnnn.

5.2 EXPRESSING SATQBF, IN SECOND-ORDER LOGICcccccovcuniiiniiniincinninne.

5.2.1 INFORMAL EXPRESSION.......ccoiiiiiiiiiiii e e

5.2.1.1 EXPRESSING (2.1): ENCODING EACH LEAF VALUATION FOR THE INPUT

FORMULA @, USING THE GRAPH G,cccoiiiiiiiiiiiiiiiiseeeieeesseeeses s

5.2.1.2 EXPRESSING (2.2) .eiteiteiittieeeite ittt sttt b b nn e anennenea

52121 EXPRESSING (2.2A)1 ooooioooeeeeeeeeeeeeeoseseeeeeeeeeseeeseeeeeeseeseeseeeeseeeseseesseeeseeessee e

52122 EXPRESSING (2.2B): “... SUCH THAT THE FORMULA ¢ IS TRUE”

EVALUATING THE FORMULA @ . ..ottt ssnsnsns

....50

Wei Ren (02103176)

5.2.1.3 COMPLETE EXPRESSION FOR SATQBF,ccocooiiiiiiiiiissses 59
5.3 EXPRESSING SATQBF IN THIRD-ORDER LOGICcccoooiiiiiiiinieiisisieisiesis 73
6 CONCLUSION AND FUTURE WORK ... 77
7 REFERENCES ... e 79

Wei Ren (02103176)

1 Introduction

For many years there has been a lot of interest in query languages for relational
databases. As we know query languages are specialized languages for asking
questions, or queries, which involve the data in a database [RGO03]. There are two
major types of relational query languages, logical and algebraic. Logical languages,
such as the language of relational calculus contain formulas which when evaluated on
a database return as an answer the set of all tuples that satisfy them. These types of
languages are non-procedural in nature. Algebraic languages, which contain relational
algebra, consist of programs whose basic operations are algebraic ones like join and

projection. These types of languages are procedural in nature [\Var82].

Between these two types of query languages, strong relationships exist. Many
researchers have been working on this subject. Therefore, how to distinguish these
two types of query languages, and what the differences are, are important questions
that we have to face. There are different ways to measure the complexity of evaluating
queries in a specific language. One of the ways is to compare the expressive power of
these languages. Computational complexity theory is brought into this field; it
measures the amount of computational resources, such as time and space that are
needed, as a function of the size of the input, to compute a query [Imm99]. It helps us
to compare the expressibility of different query languages by looking at their

corresponding complexity classes.

Regarding relational database theory, there is a lot of information that is related.
Following Codd’s pioneering work [Cod72] on relational calculus and relational
algebra, a lot of work has been done studying and comparing the expressive power of
these query languages. A central topic in Database Theory in recent years is to study
the expressive power of different logics which are built as different sorts of extensions

to first-order logic (FO), or equivalently, relational calculus or relational algebra, used

Wei Ren (02103176)

as computation models for the expression of queries to relational databases, which can

be sketched in the following graph (See Figure 1).

Rising the order
A

Hol

Order of the Iogic%

TO

SO

_Adding
ot 1 " quantifiers
TC LFP TC2

FO=RC=RA

Infinitary Logics

Figure 1: Expressibility of different logic languages

Looking at the graph above, in a more pure logic setting, the problem is regarded as
the expressibility of different logics in finite model theory [EF99]. Finite model
theory studies, among other subjects, the expressive power of logics on finite models,
in contrast to classical model theory, on the other hand, which concentrates on infinite
structures, given that most subjects of interest in mathematics deal with infinite
structures. There are many interesting research areas in finite model theory. One is
interested in the expressiveness of logics over finite graphs, finite strings, or other

finite relational structures.

However it seems that not much attention has been devoted in the literature to the
actual use of higher order logics to express non trivial properties of structures. With
our work in [RTO08] and in this thesis we aim to start a line of research in that

direction.

In the present work by QBF (Quantified Boolean Formulas) we mean the formulas of

Wei Ren (02103176)

the form F =Q,xQ,X,..Q.x,(E), where E is a Boolean expression involving the
variables x;, X,,...,X, and each Q, is either"3" or"v". Fork >1, by QBF, we mean
the QBF formulas which have k alternated blocks of quantifiers, starting with an
existential block. SATQBF, and SATQBF denote respectively, the problems of

deciding whether aQBF, formula or aQBF formula is satisfiable. As we know, for

NP

every k>1, SATQBF, isX; complete, where =7 = NPY" . We also know
that SATQBF is a complete problem for PSPACE. As according to computational
complexity theory, the expressibility of SO (Second-Order logic) equals the class PH
(Polynomial-time hierarchy), then we know that, for everyk >1, SATQBF, can be
expressed in SO. On the other hand, PSPACE is known to be equal in expressive
power to SO with the addition of a second order transitive closure operator, which is

widely conjectured to be strictly more expressive than SO alone. As TO

includes PSPACE , this means that there must be a TO formula that can
express SATQBF . However, it seems that how to express these problems in SO and
TO, respectively, is far from well known. In this thesis, we give in full detail an SO

formula to express SATQBF, and then we give a sketch of a TO formula to

express SATQBF .

In Section 2, we will give examples of graph properties expressed in different logics.
We will mainly focus on FO, SO, TO and the expressive power that each of them have
through a few examples of queries. Once we have a basic picture about what they are,

we will focus in the following sections on the expressibility of second order logic,

using this logic to express SATQBF, . And then we will give in Subsection 5.3 a top

down presentation of the sketch of a TO formula for SATQBF .

Wei Ren (02103176)

2 Background

2.1 Finite Model Theory, Relational Database and Queries

Finite Model Theory and Relational Database Theory are two disciplines
intimately connected. While Finite Model Theory provides a solid theoretical
foundation to databases, databases provide one of the main concrete scenarios for
Finite Model Theory within computer science. And most of the overlaps between
Finite Model Theory and Relational Database Theory occur in the theory of query
languages. Chandra and Harel [CH80] formalized the notion of computable queries
for relational databases in 1980, and since then intensive studies have been done along
this direction. There is much research which has focused on the completeness of
different query languages and their expressive powers or computational complexities.
From a theoretical perspective, it is desirable for a model of computation of queries to
be representation independent, which means queries to databases that represent the
same reality should evaluate to the same result. In mathematical terms, Chandra and
Harel [CH80] partially captured the previous concept by asking queries to isomorphic
databases to evaluate to the same result. Therefore, the subject of query languages has
become the most important bridge between Finite Model theory and relational

databases, since logic languages are one of the ways to express queries.

2.2 Relationship with Complexity classes

Computational complexity theory and logic languages are two fundamental areas in
computer science. In computational complexity theory there are several basic notions
and ongoing questions of which we have to be aware. Such as different computational
models, some classic complexity classes, the relationship between different
complexity classes, how to classify them, and then, what relationships between these

complexity classes have been discovered, and what have not. And why we need to

Wei Ren (02103176)

define these complexity classes. Let us look at the different perspectives.

Before we go any further, let us look at an overall picture of the relationship between

different classic complexity classes and logics: (Figure 2)

PSPACE = FO+ < +PHP

) P=FO+<+LFP
=SO+TC

NLOGSPACE = FO+ < +TC 0 =NTIME(2")"

Figure 2: Relationship between different classic complexity classes and logics

From the graph above, we can clearly see the relationship among these complexity
classes. Most researchers believe it looks like the graph above, i.e., that all inclusions
are proper. The known relationships are, however, as follows, where C means strict

inclusion, and < means inclusion.

NLOGSPACE cPc NP cPHcPSPACECDTIME (2“0“’) —NTIME (2nou))

—C—

For instance, we know that NLOGSPACE is included in P (PTIME), but we still do
not know if there are any problems in P, which are not in NLOGSPACE. This means
that it could be the case that P = NLOGSPACE. The following are known

relationships:

Wei Ren (02103176)

NLOGSPACE C PSPACE

o(1)

P C EXPTIME =DTIME(2")

2.3 Using Logic to Express Database Queries

2.3.1 First-Order logic (FO)

Following [TT03], a First Order language L (o) is the set of formulas built up from

the relation symbols of o and the relation symbols: =, < using logical connectives:

V,A,— variables: x, y, z, ..., and quantifiers: V,3. The relation symbol < refersto a

total ordering on the domain of the structure, and the quantifiers range over this
domain (Universal quantifier ¥ for All, Existential quantifier 3 for Exists). A term is

either a variable or a constant symbol in the schema.

A schema or vocabulary is as follows: o= <R,,...,R, >, where for 1<i<s, R is

a relation symbol of arity r, >1.

Let obe a schema, we define the set of atomic formulae on the schema o as

follows:

1. If R is a relation symbol in o of arity r, for some r>1, and t,,...,t, _;are

variables, then R(t,,...,t. ;) isan atomic formula.

2. If t, and t arevariables, then t,=t, isan atomic formula.

3. Nothing else is an atomic formula.

10

Wei Ren (02103176)

We define the set of well formed formulae as follows:

1. An atomic formula is a well formed formula.

2. If ¢, are well formed formulae, then the following are also well formed

formulae: (), (e Aw), (v), (¢ >)

3. If ¢@isawell formed formulae, and x is an individual variable, then the following

are also well formed formulae: Ix(¢), Vx(¢)

4. Nothing else is a well formed formula.

The variable x is said to be bound in the formulae 3x(¢)and Vx(¢). If a variable is
not bound in a formula, then it is said to be free in that formula. By ¢(x,, ..., X,) we

denote a formula of First-Order logic whose free variables are exactly{x,...,x.}. A

sentence is a formula with no free variables.

How to use FO in a particular context, such as relational databases, becomes an
important issue. Here we need to define the semantics for relational calculus, which is
also considered to have the same expressive power as First-Order Logic. There are

two basic concepts.

A structure (or database instance) of schema o is as follows:

A=<D* RA,..,R* > where D"is a finite set, for1<i<s,R"is a relation of arity r

on D” which interprets the relation symbol R in o.

Firstly, assume we have a relational schemao . A valuation v on a database A of

11

Wei Ren (02103176)

schemao, is a function which assigns to each individual variable x an element in

dom(A).

Let v,,v, be two valuations on a database A of schemao, and let x be a variable, we

say that v, and v, are x-equivalent if they coincide in every variable, with the

possible exception of variable x.
Secondly, considering the same database A of schemao, if we have a valuation v on
the database A, we can define inductively the notion of satisfaction, which is denoted

as |=.

A v I=R(X,,...,X,,) Where R is a relation symbol in o of arity r, for some r>1, and
Xq:- X, are individual variables, if and only if the r-tuple (v(x,), ..., v(X.;))

belongs to the relation R”*.

A v |= t,=t, where t,,t, are variables, if and only if v (t,) = v (t,).

A, Vv|= —¢ where ¢ isawell formed formula, if and only if it is not the case that A,

VIFp.

A, V=pAy wherep,y are well formed formulae, if and only if A, v|=¢ and A,

V= .

A, vI=ovy wherep,y are well formed formulae, if and only if A, v|=¢por A,

V=, or both hold.

12

Wei Ren (02103176)

A, v|= 3x(p) where x is an individual variable and ¢is a well formed formula, if

and only if there is at least one valuation v’, which is x-equivalent to v, such that A,

V’|[=¢@. That is, if and only if there is at least one element in the domain of the
database, such that A, v|=¢ when that element replaces the variable x in the

formulag.

A, V|=Vx(p) where x is an individual variable and ¢ is a well formed formula, if
and only if for every valuation v’, which is x-equivalent to v, A, v’|=¢. That is, A,

v|=¢ if we replace the variable x in the formula ¢ with any element in the domain

of the database.

Let o be a schema, let r>1, and let R be a relation symbol of arity r. A query of

arity r and schema ois a function q: B, — B, that preserves isomorphisms, and

(R)
such that for every database A of schema (o), dom (g (A)) & dom (A). That is, all
the elements which form the output to the query q when evaluated on a given database

A must belong to the domain of that database.

A Boolean query is a function q: B, ->{TRUE,FALSE} that preserves

isomorphisms.

If @(x,...,x.) is aformula of schema o with free variable { x;,..., X, }, A is a database
of schemao, and a,...,a, are elements of the domain of A, with Al= @ (X,..., X,)
[a,...,a], we denote that ¢ is TRUE, when interpreted by A, under a valuation v

where for1 < i < kitisv(x)=a,. Now we consider the set of all such valuations

as follows:

13

Wei Ren (02103176)

0" ={(a,...a): a,..,a_ edom(A) A A= @(X,..%)[a,..a]}

That is, ¢”" is the relation defined by ¢ in the database A, and its arity is given by

the number of free variables ing. Formally, we say that a formula ¢ (x,...,x,) of
schema o, expresses a query g of schemao, if for every database A of schemaao, is

q(A) = ¢”. Similarly, a sentence ¢ expresses a Boolean query q if for every

database A of schemao, is q(A) = TRUE if and only if A|=¢ .

2.3.1.1 Examples

We will denote the input degree of a node in a directed graph as id and the output

degree as od.

We consider a database of schema o =< F >, where F has the following semantics:

Departure City (From) | Arrival City (To)

Query 1: “Get the cities from which there are flights to exactly one city” which means

that their output degree is 1.

To express this in FO logic: ¢(x) =3y(F(x, y) AVz(F(X,z) > (z=y)), which means

that there is one city y, such that there is a flight from x to y, and that for every city z,

if there is a flight from x to that city z, then z is equal to y. x in this formula is the only

free variable, because it does not have any quantifier which binds it. We use ¢(x) to

denote this formula. Consider a simple database instance as in (Figure 3); the result

14

Wei Ren (02103176)

for the query will be the unary relation {(PN)}.

Wellington

Auckland

P Result Figure 3

Query 2: “Get the cities from which there are flights to exactly 2 other cities ” (output

degree =2).

Suppose that a given database contains the name of cities and pairs (a, b) of such

cities such that a given airline offers services from A to B without stopover. Let

o =< F? > be the database schema, and let J1 be a database instance of o :

From To

A D J,={D* F*}where D*={A, B,C,D,E,F}, and
A B

S - F»={(A D), (A B),(B,C), (D,E), (B, F)}

D E ‘]1:

B F

This query in logic:

#(X)=32,2,(z, #2, AF(X, 2)) AF(X,2,) AVZ,(F (X, 2,) > (2, =2, v 2, =12,)))

Query 3: Get the cities with flights to all cities from which there is exactly one flight.

15

Wei Ren (02103176)

P#(X) =Vz,(32,(F(7,,2,) AVZ(F(z,25) > (2, = 2,)) = F(X,2))

— g
——

This part expresses that the output degree of z, is 1. It will

give us all the cities whose output degree is 1.

S— g
———

Once we have all the cities with output degree 1, we say that
for all those cities there is a flight from x to them.

Result

Figure 4

If we slightly change the query, as follows: Get the cities with flights to EXACTLY all

cities from which there is exactly one flight, and then the result will be different:

Not in the Result.

Because this city
has a flight to a
city whose output
degree is greater

than 1.
Figure 5

2.3.2 Second-Order logic

Second-Order Logic is an extension of First Order Logic, which allows quantifying

over relations.

16

Wei Ren (02103176)

Definition 1 (Second-order logic) ([Lib04], p113). The definition of second-order
logic, SO, extends the definition of FO with second-order variables, ranging over

subsets and relations on the universe, and quantification over such variables. We
assume that for every k > 0, there are infinitely many variables X/, X£,..., ranging
over k-ary relations. A formula of SO can have both first-order and second-order free

variables; we write @(X, X)to indicate that X are free first-order variables, and

X are free second-order variables.

Given a vocabulary or schema o that consists of relation and constant symbols, we

define SO terms and formulae, and their free variables, as follows:

1. Every first-order variable x, is a first-order term. The only free variable of a term x

is variable x.
2. There are three kinds of atomic formulae:
a) FO atomic formulae; that is, formulae of the form

i t=1’, where t, t’ are variables, and

ii. R(f),where t isatupleof variables, and Re o, and

b) X(t,....t), where t,...t arevariables, and X is a second-order variable of

arity k. The free first-order variables of this formula are free first-order

variables oft ,...,t, ; the free second-order variable is X.

3. The formulae of SO are closed under the Boolean connectives v,A,— and

first-order quantification, with the usual rules of free variables.

17

Wei Ren (02103176)

4. If o(%,Y,X) isaformula then 3Y o(X,Y,X)and VY o(X,Y,X) are formulae,

whose free variables are % and X .

The semantics is defined as follows. Suppose A is a database of schemao . For each

formulag(x, X) , we define the notion of satisfaction A|= ¢(b, B), where b is a tuple
of elements of D”*of the same length asX, and for X = (X,,..,X,), with each

X, being of arity n., B=(B,,...,B,), where each B, is subset of (D*)".

We give the semantics only for constructions that are different from those for FO:

1. If o(x,X) is X (t,..,t.), where X is k-ary and t,...,t _are terms, with free

variables among %, then A|= (b, B)if and only if the tuple (t(b),...,t'(b)) is in

B.

2. If o(%,X) is3Y ¢(%,Y,X), where Y is k-ary, then Al=¢(b,B) if for some

Cc (D), it is the case that A|= ¢(b,C, B) .

3. If (X, X) isVY o(X,Y,X), and Y is k-ary, then Al=¢(b,B) if for all

Cc (D*)*, we have A|=¢(b,C, B).

Definition 2 ([Lib04], p115) Existential SO logic, or3S0O, is defined as the restriction
of SO that consists of the formulae of the form 3X,..3X, ¢, where @ does not have
any second-order quantification. If, furthermore, all X;’s have arity 1, the resulting

restriction is called existential monadic SO, or AMSO. If the second-order quantifier
prefix consists only of universal quantifiers, we speak of the universal SO logic,

or VSO, and its further restriction to monadic quantifiers is referred to as VMSO .

18

Wei Ren (02103176)

2.3.2.1 Examples

We include below some examples from [FT04], among other sources.

Here is an example of how to use Second-Order Logic to express a query that

represents a well known problem, which is known in graph theory as “3—colorability”.

Let us consider a graph G with the schemao =< E? >. We have to check whether the

graph G is 3 colorable, which means that the nodes in G can be colored, using three
different colors, in such a way that each node has exactly one color and no two nodes

with the same color are connected by an edge. The query can be expressed by an
existential Second-Order formula of the form:3RYB(¢), where R, Y, B are unary
predicates (sets that represent the 3 colors, Red(R), Yellow(Y), and Blue(B)), and ¢ is

a First-Order formula.

Note that “3-colorability” can be used in the flights example. Here is the query: “Can
we split the set of cities in 3 groups, in such a way that no direct flight connects two

cities of the same group?”

Departure City (From) | Arrival City (To)

¢ =3RBY("all cities belong exactly to 1 set, R, B or Y, and whenever
we have a flight it connects two cities which belong to different sets"”)

¢ =3RBY (VX((R(X) v Y(x) v B(x)) "all nodes have a colour”
AR(X) = (=Y (X) A=B(X))
AY(X) = (—=R(X) A=B(X))
AB(X) = (=R(X) A=Y (X)) "1 single colour per node™

19

Wei Ren (02103176)

A VY(Flights(x,y) > —(R(X) AR(y)) ™"all edges link two nodes of
A=(YX)AY(Y)) different colors"
~—(B(xX) AB(¥)))))

Second-Order logic differs from First-Order logic in that it has variables and
quantifiers not only for individuals but also for n-ary relations. The expressive power
of Second-Order logic is higher than First-Order logic; for instance, the transitive
closure query and 3-colorability (an NP complete problem) are not expressible in

First-Order logic, but can be expressed in Second-Order logic.

Query: “Which pairs of cities are connected through flights, either with or without

stopovers?” This is the transitive closure or reachability query, and it uses binary

existential Second-Order logic (bin3SO).
#(v,w) = 3S'R?(""the graph(S,R) is a subgraph of Flights, and one of
its connected componets is linear, with root v and leaf w')
o(v,w) = 3S3FR(S(V) A S(w) "V,w e S"
A VXY(R(X,Y) — F(X,Y)) "R < Flights"
AVXY(R(XY) = S(X) AS(Y)) "R <=SxS"

AVX(S(X) = Ty(R(Xy) v R(Y.X)))
"there are no isolated nodes in the graph (S,R)"

A VX(S(X) —> x=w A =TY(R(X,Y))
\Y4
X =W A FY(R(X,¥) A VZ(R(X,2) = y=2)))
"w is a leaf, and all other nodes have od=1"

A VX(S(X) = X=v A =3y(R(Y,X))
\4
X #= V A AY(R(Y,X) A VZ(R(z,X) — y=2)))
"v is a root, and all other nodes have id=1"

20

Wei Ren (02103176)

2.3.3 Third Order logic (TO)

In the alphabet of third order logic besides the usual logical and punctuation symbols,
we have a countable infinite set of individual variables, for every arity, a countable
infinite set of second order relation variables, and for every arity and every type, a
countable infinite set of relation variables of third order. A type is a particular
combination of individual and SO relation variables. We use upper case letters like
Xand Y for relation variables, and lower case letters like x and y for individual

variables.

Let o be a schema or relational vocabulary. We define the set of atomic formulae on

the vocabulary o as follows:

(1) If R is a relation symbol in oof arity r, for somer>1, and x,,..X., are

individual variables, then R (X,, ...,X, ;) is an atomic formula.

(2) If x and y are individual variables, then x =y is an atomic formula.

(3) If X is a relation variable of order 2, and of arity r, for somer >1, and X,,X, ;

are individual variables, then X (X,, ...,X, ;) is an atomic formula.

(4) If X is a relation variable of order 3 and of arity r, for somer >0, and forO<i<r,

Y, is either an individual variable or a relation variable of order 2, then X (Y,,...,Y,,)

1
is an atomic formula, provided that at least one of the variables Y, is a relation

variable of order 2, The particular tuple of individual and relation variables must

agree with the type of the third order variable X.

(5) Nothing else is an atomic formula.

21

Wei Ren (02103176)

Letr >0. A second-order relation of arity r is a relation in the classical sense, i.e., a
set of r-tuples of elements of the domain of a given structure. A relation of order 3 of
arity r, or a third order relation of arity r, is a set of r-tuples where each component is
either a relation of order 2, or an element of the domain of a given structure,

according to the type of the third order relation.

Let o be a relational vocabulary. A valuation v on ao -structure A, is a function which

assigns to each individual variable x an element in dom(A), and to each relation
variable X of order j, for somel< j<4, and of arity r, for somer >0, a relation of
order j, arity r, and of the same type as X if j=3, on dom(A). Letv,,v,be two

valuations on ao -structure A, and let V be a variable of whichever kind, we say

thatv,andv, are V-equivalent if they coincide in every variable of whichever kind,

with the possible exception of variable V. We also use the notion of equivalence w.r.t.
sets of variables. Let A be ao -structure, and let v be a valuation on A. Next, we

define inductively the notion of satisfaction inTO .

(1) A,vl=R(%y,..., X, ;) , Where R is a relation symbol ino of arity r, for somer >1,

and X, ...,x, ,are individual variables, iff the r-tuple (v(x,),...,v(X,,))belongs to the

(second-order) relation R* .

(2) A, vI=X(Xy,..., X, ;), Wwhere X is a relation variable of order 2 and of arity r, for
some r>1 , and X, ..X are individual variables, iff the

R]

r-tuple (v(X,),...,v(X,_,)) belongs to the second-order relation v(X).

(3) A,vl= X(Y,,...,Y, ,), where X is a relation variable of order 3, and of arity r, for

somer >0,and for O0<i<r, Y. iseither an individual variable or a relation variable

22

Wei Ren (02103176)

of order 2, iff the r-tuple of elements and/or relations of order 2 (according to the type

of X), (v(Y,),...,v(Y, ,)) belongs to the relation of order 3 v(X).

(4) A, vl=x=y,where x, y are individual variables, iff v(x) = v(y).

(5) A,v|=—¢, where ¢ is a well-formed formula, iff it is not the case that A,v|=¢.

(6) A, V|=@ Ay, where g,y are well-formed formula, iff A,v|=¢ and AV|=w

(7) A,v|I=@ v, where g, are well-formed formula, iff either A,vi=p or Av|=y,

or both hold.

(8) A, vI|=3x(¢),where x is an individual variable and ¢ is a well-formed formula, iff

there a valuationv', which is x-equivalent to v, such that A, v'|= ¢

(9) A, v|=Vx(p), where x is an individual variable and ¢ is a well-formed formula, iff

for every valuationv', which is x-equivalentto v, A,v'|= ¢

(10) A, v|=3X(¢p),where X is a relation variable, and ¢ is a well-formed formula, iff

there is a valuationv', which is X-equivalent to v, such that A, v'|= ¢

(11) A, v|=VX (@), where X is a relation variable, and ¢ is a well-formed formula,

iff for every valuationv', which is X-equivalentto v, A,v'|= ¢

23

Wei Ren (02103176)

2.3.3.1 Examplesin Third-Order Logic (TO)

We include below some examples from [FTO4]. Let’s consider the schema

o =(Bought?) of the sales database together with its intuitive meaning. That is, if R is
a relation instance of relation schema Bought = (Customer, Article), a pair (x,y) € R iff

customer x bought article y. Here S*' is a relation variable of order 3 and arity 1,

and R*?is a relation variable of order 3 and arity 2.

¢ =35 (Vs (S*(s™") — Ix(Vy(Bought(x,y) <> S*(¥))))
"each set s in S is the set of articles bought by some customer”

AVX(ESTH(S* (5™ A Vy(Bought(x,y) <> S*'(y))))
"for each customer, the set of articles bought by him/her, is a set in S"

A..)

=3S*("S*" is the set of sets of articles bought by the different customers and...")

Then we can express properties of the sets of articles bought by different customers,
for example: “For exactly half of the possible subsets of articles, there is some
customer who bought those articles”. The existential Third-Order formula for this

query:

¢ =381 (VS™((S"(s*") — Vy(s*' (y) — 3x(Bought(x,))))
"S> is a set of subsets of articles”

A (S37(™) = Vy(s*(y) — Ix(Bought(x.y))))
"S3* is a set of subsets of articles”

A ((Vy(s**(y) — 3x(Bought(x,y)))) — (S (s*") v S3'(s*)))
"every subset of articles is either in S>or in S3*"

24

Wei Ren (02103176)

A(SPH(S*) <> =S (s*Y)) "no setis in both S>* and S3*"

A(S7H(8™") = IX(WY(s**(y) > (Bought(x.y))))
"every set in S3* is the set of articles bought by some customer"

A(S3H(8™) = —3X(YY(s*(y) <> (Bought(x,y))))
"no set in S3* is the set of articles bought by some customer"

ARSI (RY(5,8,) > S(5,) ASE(5,)) "R €8, xS,"

A(R*%(S,,8,) AR*?(5,,8,) > S, =S5) "function"
A(R*%(5,,5,) AR¥*(S,,8,) —> 5,=S,) "injectivity"
A(S3(S,) — 35,(R**(5,,5,))) "totality"
A(S3H(S,) — 35, (R**(5,,5,))))) "surjectivity"

Note that R*?is a bijection if and only if it is a function which is total, injective and

surjective, and that "there is a bijection between S}* and S3** = S |=|S3*].

3 Sub-formulas and rules used throughout the thesis

In what follows, we will use the following conventions.

1. Variables

a. Lowercase for first order variables, likev, .
b. Uppercase for second order variables, likeV, .

c. Large Uppercase for third order variables, likeV, .

25

5.

Wei Ren (02103176)

d. We will use super indices in variables. V** is a second order variable
with arity 1, E>® is a second order variable with arity 2. V*>* is a third

order variable with arity 1, E>* is a third order variable with arity 2, and

so on. When we use only one super-index, we mean an SO variable of that

arity.

Parenthesis: some parentheses are indexed for matching different levels.

We will usually index "("and "[" starting from O in the outermost level,

like (o (1(2)2)1)0 :

As disjunctions and conjunctions are associative, we do not use parenthesis

to enclose the two operations. That is, we write ¢ A@, Ag, instead

ofp, A, npy).

We write ¢, A—¢, instead of ¢ A (—@,).

Throughout this thesis by “graph” we mean “directed graph”.

The following sub-formulas are well known. They can be found in [RT08] among

other sources.

(For an edge relation E and total order <)

1.

2.

Successor: SUC_(X,y) = < (X, Y)AW[(EXVALV,Y) > (V=XxVvVv=Y)]

Predecessor: PRED_(y, x)

SUC_(x,Y)

26

Wei Ren (02103176)

3. Path: PATH.(v,w) = "(v,w) e TC(E)"; note that (v,v) eTC(E) (we will
also use PATH2*(x,, Y, %,,Y,) where E is a 2" order relation of arity 4,

meaning that there is a path in E from (x,, y;) to(x,, ¥,)).

PATH_ (v, w)
= JVE" (W VI(EN(V, V) = VI(V) AVE(VT) AE(V, V) AVVI(VI(VY) = (V)

AV (V) AV (W) A=TVI(E"(V, V) AVVIIV' (V) A(V" £ V) = AVI(E"(V',v™)]
"v is the only minimal node"

A=AV (E"(W, V) AV IVI(VT) A (V"= W) = 3VI(E"(V", V)]
"w is the only maximal node"

AVZ(V"(Z) A(z#V) > IVI(E"(V, 2) AWV (V'(V') AE"(V",Z) o> Vv"=V))
"all nodes except v have id=1"

AVZ(V"@) A (z#W) > AV'(E"(Z,v) AV (V'(V) AE"(Z, V") > v"'=V"))
"all nodes except w have od=1"

"(V",E") is a linear subgraph of the graph (V,E), with minimal node v and maximal node w"

4. Path in 3" order graph: PATH2?*(X,Y), where E is a 3" order relation of

arity 2, and X, Y are 2" order relations of arity 1, meaning that there is a path

in E from the set X to the set .

5. Linear graph: LINEAR(V,E) (we will also use LINEAR**(V,E), where V

is a 2" order relation of arity 2, and E is a 2" order relation of arity 4).

27

Wei Ren (02103176)

= [vv"w"((a) v (b))~ (c)

Formula (a) says " (PATH (v",w™))"

Formula (b) says " (PATH (w",v"))"

Formula (c) says " 3, , (v is the only minimal in (V, E), w is the only maximal in (V,E),
every node except v has id=1 and every node except w has od=1)"

@ @V'E"(YV,VU(E"(v, V) > VI(V) AV AE(V, VYY)
AVV'(V' (V) >V (V) AV (V™) AV(W™)
A—V(E"(V, V) AVVIIVI(V) A (VI E V™) = 3VI(E"(V,V™Y)]
A—=V(E"(W", V) AV VI (V) A (V"= W) = AVI(E" (v, V)]
AVZNV"@)A(z#V™) = AV(E"(V, 2) AVV'"V"(VYAE"(V", Z) 5> V" =V))
AVZV'(2) A (z#=W™) > IVI(E"(Z,V) AVV'(V'(V) AE"(Z,V") > V" =V"))

(b) VIV'E"(VV,VU(E"(V, V") > VI(V)AVI(VT) AE(V, V)
AVV'V'(V) >V (V) ANV (V™) AV (W™)
A=IVI(E" (VW) AVVIIVI(VTY A (VT E W) — V(B (v, v™Y))]
A=IVI(E" (VU V) AVVIIVI(V) A (VT V™) > AVI(EY(VI, V)]
AVIV'(@Z) A (z#W™) > IV(E"(V', Z) AVV'V'(V') AE"(V",2) > V" =V")
AVIV'(Z)A(z#V™) > AV'(E"(Z,v)AVV"V"(V)AE"(Z,v") > Vv"=V"))

© A(VV)AV(W)
A=AV (E(V, V) AV V(V) A (V" #V) = 3V(E(V', V)]
A=IV(E(W,VYAVV VIV AV 2 W) — 3V(ENV",V))]
AVINV (D) A(z#V) > AV(E(N,) AVW'VV)AENV",2) > V"'=V")
AVZV (D) A(z#W) = IV(E(Z,V)AVYW'"V (V) AE(Z, V") > V"'=V"))))

6. x="0" = —3Ay(y#xAy<x)

7. x="1" = Y(Y#EXAYSX)AVZ(Z<X—>(z2=XVvZ=Y))

4 Quantified Boolean Formulas

4.1 Definitions

28

Wei Ren (02103176)

1. Quantified Boolean Formulas: [GJ03, p107]

A quantified Boolean formula (QBF) is a formula of the

formF =Q,xQ,X,..Q,X,(E), where Eis a Boolean expression involving the

variables x;, X,, ..., X, and each Q, is either"3" or"v".

QBF, : Let X be an ordered set of propositional variables, let
Xy Xy, X5,.., X, be disjoint sub-sequences forming a partition of X , and
let X; ={X;, X5, % }- A quantified Boolean formula over X is inQBF, if it is
of the form ¢ =3X,VX,3X;..QX, (@' (Xyg- Xy s Xoge-Xap s Xagee:Xay oo Xyg e X))
where the quantifierQis3ifkis odd andV ifkis even.¢'is a quantifier-free
Boolean formula over the variables in X. X, denotes a sequence of different
variables from the set X, and IX. denotes

I IX A B VX denodegx VX, etc.

2. An alternating valuation is a finite structure a, =(V,E, B) such that:

1) (V,E)isadirected graph, which is an out-tree that has all the leaves at

the same depth d, for some natural d.

2) The output degree of any non leaf node is< 2.

3) Foreveryl<k<d, all the nodes at depth k have the same output

degree.

29

Wei Ren (02103176)

4) B:V —>{0,1} is a total function such that for every pair of nodes a, b

which are siblings, itis B(a) = B(b).

Let ¢ bea QBF, formula, for some naturalk >0, letl,...,I >0,
respectively, be the lengths of the alternating quantifier blocks of ¢, and let
a, =(V,E,B) be an alternating valuation. We say that a, is an alternating

valuation suitable for ¢, if the following holds:

a) The depth of the tree(V,E) is d=I+...+1 -1.

b) Foreveryl<i<l +..+l:
i)if 1<i<l or L +L+1<i<l+l,+1,,...0r
L+, +..+1., +1<i<| +1,+...+1., then all the nodes at depth i-1

in(V,E) have no siblings, where 1<k'<k is the index of the last

existential quantifier block in ¢ ;

i) if L+1<i<lL+L,or L+, +L+1<i<l +L+l,+1,,...or
L+ +. .+l +1<i <1 +1, +...+1., then all the nodes at depth i-1
in (V,E) have exactly one sibling, where 2<k"<k isthe index of

the last universal quantifier block in ¢ . Note that there might not be

such k" ing.

30

Wei Ren (02103176)

4. Let ¢ bea QBF, formula, for some naturalk >0, and let a, =(V,E,B)

7.

be an alternating valuation that is suitable for ¢ . A leaf valuationin a, isa
structure |, =(V'E',B") suchthat (V' E" isapathin (V,E) from the

root to one leaf, and B'=B}|,., i.e., B'={(v,b):veV 'A(v,b) € B}.

A leaf valuation |, in a, corresponds to a valuation v for ¢, where for
O0<i<d,ifthenode a hasdepth i in (V' E’),then v(x;)=B(a), where
0< j<k isthe greatest natural such that i+1>1 +I,+..+1,, and

h=i+1-(+1,+..+1.,).

That is, every depth 0<i<d in a, corresponds to one variable ing,
namely the variable that is quantified in the (i+1)—th place in the quantifier
prefix of ¢ . Correspondingly, every node in |, corresponds to one variable
ing,i.e.,the i—thnodein (V' E") corresponds to the variable that is

quantified in the (i+1)—th place in the quantifier prefix of .

Letp € QBF,, forsome k>1,and let a, be an alternating valuation suitable
for ¢.Wesaythat a, satisfies ¢ if for every leaf valuation I, in a,,itis
the case that |, satisfies ¢, i.e., the valuation v that correspondsto |,

according to the definition above, satisfies ¢ ; in symbols: v|=¢.

Let k>1. SATQBF, is the set of formulas¢ € QBF, , such that there is an

alternating valuation suitable for ¢ that satisfies¢g .

31

Wei Ren (02103176)

8. SATQBF is the set of formulas ¢ € QBF,, for some k >1, such that there

is an alternating valuation suitable for ¢ that satisfies ¢.

9. Note that with the definition in 3, we are building a tree to represent the
assignment of values to variables where each variable in an existentially
quantified block has only one value assigned to it, and each variable in a
universally quantified block gives rise to two paths in the tree and both of

these paths must be able to be given a valuation such that the quantifier free

part of ¢ is satisfied, in order for the alternating valuation to satisfy ¢ . (See

Figure 8)

5 Expressing SATQBF and SATQBF, in Logic

5.1 Complexity of the problems

We briefly show in this sub section that there are formulas in SO and TO that

express the queries SATQBF, and SATQBF , respectively. Note, however, that to

the best of our knowledge these formulas are not known.

5.1.1 SATQBF, can be expressed in Second-Order Logic

It is known that, fork >1, SATQBF, is complete for= , where =} is defined

as follows. ([Sto76])

Definition The polynomial-time hierarchy (PH)

is{=; 17, A :k >0}, where =} =T1] = A} =P;and fork >0,

32

Wei Ren (02103176)

NP

> =NP(Z})= NP (There is a stack of k+1 NP’s)

M7, =co—NP(Z}),
AI':’+l = P(ZE)

We also define PH = U T
k=0

Where, if C, D, are Turing Machine complexity classes, C°denotes the

class of queries computed by machines in C which have an oracle in the

class D.

In particular, note that =7 = NP and IT{ =co— NP . PH possesses the

following inclusion structure:
>PUIY c AL, <=F, NITE, forallk >0.

Corollary 7.22 ([Imm99]) A Boolean query is in PH, iff it is second-order
expressible, that is PH=SO.

Hence, we know that, for everyk >1 SATQBF, can be expressed in SO. In

fact, SATQBF, ..

5.1.2 SATQBF can be expressed in Third-Order Logic

SATQBFe3TO and hence €TO, because of the following 3 facts:

noM ne®

1. PSPACE c DTIME(2™") = NTIME(2™") [GJ03]

33

Wei Ren (02103176)

2. Theorem 4.4 ([Sto76], p19): SATQBF is PSPACE-complete.

NP

3. 3TO=NTIME(2"™) and TO=| JNTIME(2"")"™" (there is a stack
k

of k NP's). [HTO06]

Hence, we know that SATQBF can be expressed in TO.

5.2 Expressing SATQBF, in Second-Order Logic

In this subsection we present a detailed construction of an SO formula which

expresses SATQBF, .

To encode the input formula, we use the following vocabulary (following

[MP96] and [Fer08]):

o==<<,P,P,P,P,R,R,B,P,R>
Then: |=<D'.<'.P"'P"P"RR'R R R"R > represents

aQBF, formulag.

We assume that the input formula¢, except for the quantifier prefixQ, is

fully parenthesized, there is at least one pair of matching parentheses, and

every sub formula in ¢ 'which involves a unary or binary operator is enclosed

in parentheses. We further assume that there is at least one quantifier in¢,

and that there are no parentheses in the quantifier prefix.

34

Wei Ren (02103176)

@ =gy 3K VX1 IRy, Ty Ty Qe X (0" (X Xy X Xy s Xage - Xay seves Xige Xig,)

Example: let o = 3x,3X, VX, ((—X, v X)) A (=X, v X3))

As a linear graph, which is defined as the successor relation induced by <':

O—-O0- 00O ------- O—-O0-O--------- OO0

v X L e X Ly X))

N O T e T R R S R IR SR

O=O0-0-O0-O0-CO------ OO0 --------- O-O----O--0O
Figure 6

The o - structure that encodes ¢ is as follows:

I:<DI,SI,PﬁI,P\/I,P/\I,PHI,PVI,P(I,P)I,PXI,FTI >

where

D' ={0,1...,35}
<': total order in D'
P' ={14,25}

P' ={17,29}
P'={23}
P'={0,3}

P, ={7}

F’(I ={12,13,24}

R' ={22,34,35}
P,' ={1,4,8,15,18, 26,30}
P' ={2,5,6,9,10,11,16,19, 20, 21,27, 28,31,32,33}

35

Wei Ren (02103176)

5.2.1 Informal Expression
Letk >1. We can build an SO formula to express the problem SATQBF, in

four levels of abstraction.

1 Level:

“Falternating valuation a, suitable for ¢ which satisfies ¢ ”. This can be

expressed as “3a partial valuation on block 1, such thatV partial valuation

on block 2, 3 a partial valuation on block 3, ...” such that all of these

valuations satisfy the quantifier free parte'of¢. This is clearly equivalent

to the following:

2" Level:

(21) * 3 Partial valuation v, on {x,,.x,} , VvV partial

valuationv, on{Xy, ..., X, },...,3/ v partial valuationv, on{x,,..., X, } such

that ...”

(2.2) “... the valuationv =v, Uv, U...Uv, satisfies ¢'” Recall thate'is the

quantifier free part of ¢ .

Following our definitions in 4.1 above, we can think of an alternating

valuation as a binary tree, as in Figure 8. In that tree, that represents an

alternating valuation suitable for ¢, each leaf node determines a unique path
from the root to that node. We represent that path with the linear graph G,

which together with the function B, represents what we have defined as a

36

Wei Ren (02103176)

leaf valuation. Note that the alternating valuation satisfies the input

formula g, if and only if every leaf valuation satisfies ¢ '.

We will use linear graphs G, =(V,,E;) with functions B, :V, —{0,1} to
represent the partial valuations v, (See Figure 7). Correspondingly, we will

use a linear graph G, = (V,, E,) with a function B, :V, —{0,1}to represent the

leaf valuationv. So, each leaf valuation is represented by a corresponding

pair<G,,B, >.

3" | evel:

We give next a more detailed expression of the two abstract expressions of

level 2, labelled (2.1), (2.2).

5.2.1.1 Expressing (2.1): Encoding each leaf valuation for the input

formulag, using the graph G,

JLinear graphG, V Linear graphG, JLinear graphG, Q Linear graph G,
\J L P 4
G G G G
Kl .7\ 3 / k
O>O>O0+>0 O3O3O DO e > O>O>0->0
G =<V,E > G,=<V,,E, > G, =<V,,E >
Figure 7

37

Wei Ren (02103176)

X3 X 353X, VXt VX, WKV XKy, Ty T BTy, - Qg - QX (0 (XX, s XXy, s Xage Xy o0 K- Xig,))
! CZQ + 5 >B>O>G-->0
| V) |
| Qﬂ O O: |
! &CZO ! !
. @) | |
Oo>O>0---> : :
OZO ! !
N7 i i
e : ‘
D N FO ! !
BT e
- N)
Glz(\/l’El’Blé) GZZ(\/Z,EZ,IBz) Gs—(vstexngs) ------ Gk:(\/k’Ek’Bk)
({90>O- - >O0>O>O>0+---5>O0>0C>CG -->0 Graph G,
\‘ ~ ARG ~ A ~ /
o U U, U, U,
Figure 8

Let X, X,,..., X, bedisjoint sub-sequences of propositional variables.

If we consider the quantifier prefix of the input formula3X,vX,3X,..QX, as
k

a tree, then the depth of the tree isZ|Vi =V, [+, |+.+]V,.|. And ifx in
i=1

the quantifier-free formula ¢' is quantified in order j-th in¢, then its value

must be B (j-th node inG,).

Expression (2.1) can then be expressed as follows:

38

Wei Ren (02103176)

= Jset V, and binary relations E, and B;, Vset V, and binary relations E, and B,,
3...,Q, setV, and binary relations E, and B, (3V,}, EZ, B}

(["G,=<V,}, E’> is a linear graph"] o

A['The length of G, is equal to the number of variables
in the quantifier prefix of ¢"] (2)

A['G, =<V, E, > G, =<V,,E,; >,...,G,. =<V, ., E,. > are linear graphs"] (3)
(where k' is the index of the last 3 quantifier in the prefix)

A['B;:V, -»{0,1},B,:V, »{0,1},...,B,. :V,. > {0,1} are total functions"] (4)

A["the lengths of the linear graphs G, G;,...,G,. are equal to the lengths of
the corresponding quantifier blocks in ¢"] (5)

ALL (VL VL, VY, -V, are disjoint sets” (6)

A["G, =<V,,E, >,G, =<V,,E, >..G,. =<V,.,E,. > are linear graphs"] (7)
(where k" is the index of the last v quantifier in the prefix)

A["B,:V, -»{0,1},B,:V, -»{0,1},..., B,. :V,. > {0,1} are total functions"] (8)

A["the lengths of the linear graphs G,,G,,...,G,. are equal to the lengths of
the corresponding quantifier blocks in ¢"]) 9

AJUUZUZ("U, is a partial bijection: G, — 1st part of G, "
A"U, is a partial bijection: G, — 2nd part of G, "
Acee e A"U, is a partial bijection: G, - k_th partof G,") (10)

A"B,:V, =>{0,1} is a total function that coincides with B, B,,...,B, "
="B,=B,UB,U..UB,"], —» (11)

39

Wei Ren (02103176)

(Level 4)

(1) “The graph G, is a linear graph”: LINEAR(V,, E,)

(2)"The length of G, is equal to the number of variables in the quantifier prefix of ¢"

This statement is implied by the following statement:

"V, is a partial surjective injection from the quantifier prefix of ¢ to G,, which maps every

X to its corresponding node in G,, and which preserves <' and E,."

This statement is expressed in further detail in (1) in 5.2.1.2.1

(3) "G, =<V, E, > G, =<V,,E; >,...,G,. =<V, E,. > are linear graphs":
(where k' is the index of the last 3 quantifier in the prefix)

LINEAR(V,, E,) A LINEAR(V,, E;) A... A LINEAR(V, ., E,.)

4)"B,:V, >{0,3AB,:V, >{0,1} A...AB,.:V,. —{0,1} are total functions"
ALV p, p[B(t P)AB (L, p) = (p=p) "function™
A Vy(t) = 3p(By(t, p))) “total"
A(B(t, p) > (p="0"v p="1"))]

AV P, P'[Bs(t, P)ABs(t, p) > (p=p) "function”
A (V3() = 3p(B(t, P))) "total”
A(By(t, p) = (p="0"v p="1")]

ANTITY

AV P, PB.(t, pP)AB.(t, p) > (p=p) "function™

AWV, (8) > 3p(B,(t, p))) “total”
Bt P) > (p="0"v p="1)]]

40

Wei Ren (02103176)

(5) If k' =Kk, then (by ¢, we mean the formula template ¢, instantiated with i =k'):
A ALV VOV N Vs (G A y)

i=1,35,..k'

Ifk'=k, then (by «,._,, we mean the formula template ¢;, instantiated with i = k'-2):

(k'—2 is the previous to the last 3 block, and the subformulas £, ,, 5;

take care of the last quantifier block).

(A VN,V Vs (A1 A GG,)) ATLVVN, VY (B A By A SBy)

i=1,35,..k"'-2

v, S s' Via Vi
Q| X Q| X X Q Q ®
y y '
\
[/ \
] /7 \
/ 4 \
L'= _- -l) N .
/ ,-~ ~ “Next X in the same altarnating block” (Next,)
\
II I/ ‘\
) / \
& O S (V,E)
t t'
Figure 9

“for 1< j <i, v; is the first quantifier of the j-th alternating quantifier block:"
(when i is not the index of the last block)

@y = 6Py 4) A P(V) AP (V) A AP (V) AV, =707

“where P, is P, if (i+1) is odd, or P, if (i +1) is even”

A[PATH_(v;,V,) A PATH_(V,,V5) A... APATH_(V,,V, ;)]
A[=3V'(PATH_(v,, V) APATH_(V',V,) AV £V, AV' £V, AP, (V)]
A[=3V'(PATH_(v,, V) APATH_(V',V;) AV'#V, AV' £V, AP (V)]
A

A[FIVI(PATH_(v,, V) APATH_(V', V) AV' 2V AV 2 Vi, A RL(V))]),
"where F,. is P, if i is odd, or P, if i is even”

41

Wei Ren (02103176)

“for 1< j<i, v; is the first quantifier of the j-th alternating quantifier block:"
("for i =Kk, v, is the last element in the block i, which must be |")

Bi=((P(v) AP (V) AP (V) A PQ V) A FT(Ve) AV,="0"
"where P, is P, if k is odd, or P, if k is even"

A[PATH_(v;,v,) A PATH_(V,,V,) A... APATH_(v,,V,)]
A[=FV(PATH_ (v, V) APATH_(V',V,) AV' #V, AV %V, AR, (V)]
A[=3V'(PATH_(v,, V) APATH_(V',V;) AV £V, AV'#V, AP(V)]
Ay

A[=3V(PATH_ (v, V) APATH_(V', V) AV' £V, AV £V, AP, (V))]),
"where R,. is P, if k is odd, or P, if k is even"

"L" is a bijection from the X in the i-th alternating quantifier block to V,,
which preserves Next, and E; :"
(when i is not the index of the last block)

@iy = (VW I(PATH_(v;, V) A PATH_(V', Vi) AV £ Vi AP (V) <> Fy (L(V, y)]
"domainof L' "

AVY'(Vi(y)—>3v'(L'(v,y"))) "L'is surjective"
AVS, S UL (s, t) ALY(S t) ASs#S'APATH_(v,,S) APATH_(s',v,,,) APATH_(s,s")

A(—Fz'(PATH_(s,2) APATH_(z',s)AZ'#SAZ'#5'AP(2"))) = E,(t,t")]
"L' preseves Next, in the ith alternating block and E; (implies injectivity)"

AVVTY LV, Y) = Vi(y)]

AWW'Y'Z'([L'(v,y)AL'(V,2)] > (y'=2))]), "L'isafunction”

"L" is a bijection from the X in the i-th alternating quantifier block to V,,
which preserves Next, and E, :"
(when i =k)

42

Wei Ren (02103176)

B, = ((VV(PATH_ (v, v) APATH_(V',v,) AP, (V1)) < 3y (L'(v', y)]
"domainof L' "

AVY'(V, (y)—>3v'(L'(v',y")) "L"is surjective"
AVS S ETI(L'(s, t) AL'(S' t) AS = S'APATH_(v,,S) A PATH_(S",v,) APATH_(s,Ss")

A(—TFZ'(PATH_(S,2) APATH_(z',s)Az2'#sAz2'#S AP (2))) = E, (t, 1]
"L' preseves Next, in the k-th alternating block and E, (implies injectivity)"

AVVTYTL(V, YY) = Vi(y)]
AW'Y'Z'([L'(V,y)AL'(V,2)]—>(y'=2))]), "L'isa function”

"For i =K, v, is the last | for the last quantifier in the quantifier prefix":

By = (V' ((SUC(v,,v) A=R(V)) A R(V,)
AVV'(PATH_(v,,Vv") — (=P (v') A=P,(v")) "there are no quantifiers after v, "

A3z2'y' W'YV IPATH_(Y', V) A ([PATH_(V',v,) APATH_(y',v)] = R(V))
"w" is the last quantifier in the block k™
"z' is the X of the variable quantified”
"y' is the first | for that variable™

APy (W) AP (z') ASUC_(z',y) ASUC_(W',2)]),
"where P, is P; if k is odd, or R, is P, if k is even™
©) A "IV, NV, =) A (Vi Vs =) A A VNV, =)

A (V, ﬂV3 =P AN, NV, =) A ANV NV, =) A AV L, NV, =9)]"

where "V, (V; = ¢" is YX((V;(X) = =V, (X)) A (V;(X) = =V, (X))

(7) "G,=<V,,E, >G,=<V,,E, >..G,. =<V,.,E,. > are linear graphs":
(where k" is the index of the last v quantifier in the prefix)

LINEAR(V,, E,) A LINEAR(V,, E,) A... A LINEAR(V,., E,.)

43

Wei Ren (02103176)

(8)"B,:V, >{0,1}AB,:V, >{0,3A...AB,.:V,. > {0,1} are total functions"
ALVE p, P[B,(t, p)AB,(t,p) > (p=p) "function”
A (V,(t) > 3p(B,(t. p)) “total"
A (By(t, p) = (p="0"v p="1")]

AV P, p'[B,(t, p)AB,(t, p)—>(p=p) "function™
A (V4 (1) = 3p(B,(t, p))) “total”
A(B,(t, p) > (p="0"v p="1")]

AV P, P'[B.(t, P)AB,.(t, p) > (p=p) "function"

AV, () > 3p(B. (¢,) “total"
A(B(t p) = (p="0" p="1"))]]

(9) If k" =k, then (by «,., we mean the formula template ¢, instantiated with i =k "):

A VNV Vg Ve Vi (G A)

i=2,4,6,..k"

If k" =k, then (by «,._,, we mean the formula template ¢, instantiated with i =k "-2):
(k "—2 is the previous to the last v block, and the subformulas g, 3,, 5,
take care of the last quantifier block)

A ILVNV Vg Vg (o A 0,)) ATLVNVVL VNV (B A By A By)

i=2,4,6,..k"-2

where the subformulas «,, o;,, B, , and S, are the same as in (5) above.

(10) AJUZUZ..UZ("
U, :V, >V, —Total injection,

— preserves £, E,,

— includes first node in V, as U, (first node in E,),
U, :V, >V, —Total injection,

— preserves E,, E,,

— includes successor in E, of node U, (last node in E,) in'V, as U, (first node in E,),
U,:V, -V, —Total injection,

— preserves E;, E,,

— includes successor in E, of node U, (last node in E,) inV, as U,(first node in E,),
..., and
U, :V, =V, —Total injection,

— preserves E,, E,,

— includes successor in E, of node U, ,(last node in E, ;) in'V, as U, (first node in E,)")

44

Wei Ren (02103176)

= AJUAUZ.UZC.
AVX, Y, G Ul((U (X y) AU, (X)) > y=t) "function”
AU (X Y)AU, (u,y)) > x=u) "injection"
AV (X) > 3y (U, (x, 1)) “total"
AU Y) > VO AV(Y) UV, oV
AU, (X, y) AU, (u,t) AE, (X, u)) > E,(y,t)) "preserves E, "
AU (X y) AU, (u,t) AE (Y, 1)) = E (X,u)) "preserves E,"
AUy (% Y) A=TV(E, 4 (6 V) A E,(¥,1) A=IV(E, (V,U) AV, (u)))
—U, (u,0))])
"includes successor in E, of node U, ,(last node in E, ,)
inV, as U, (first node in E,)"

(11) "B, coincides with B,,B,,...,B,"
Vxytpp (B, (t, p) AU, (t, Y) AB(Y, p)) > p=p1]

7a\

Vxytpp (B, (t, p) AU, (t,) AB (Y, p)) > p=p1]

VAN

7AN

vxytpp [(B, (t, p) AU, (L, Y) AB. (Y, p)) > p=p]]

5.2.1.2 Expressing (2.2)

(2.2) is equivalent to the following informal expression, which we will

express in two parts:

45

Wei Ren (02103176)
.av,?,C% EZ, ST ES,M?,C2,C2,C%,C,CP,CELCo L Ho(
(2.2a) [,[”There is a formula ¢ on {0,} which corresponds to the

formula ¢ with the leaf valuation represented by <G,,B, >...”]A

(2.2b) ["..such that the formula ¢ is true")1,1,),

5.2.1.2.1 Expressing (2.2a):
Now we need to represent the relationships among the input graph,

the graph G, and the quantifier free part¢ of the input formula:

XXX QX -1 (" XL XA XLy XM-..1)

V, : Variable Occurrence

- -

input Graph ~ IAX | X || X ||| X [|II .- --- (v . K] A (X]| V-20)))
vy vy

Vp:VariabIe Position - ./ ,,,f' /!

/ / /

1 3 ’
Graph G, 6—»5—»5—»6 —————— O Hy /!
Sub Graph ¢ O—sO—+ - -»SB - == 30

0/1

0/1
¢: Aquantifier free formula on: {(,),A,v,—1,0}

~

Figure 10

46

Wei Ren (02103176)

V, : Variable Occurrence

o

X o] o)
RN AN
z Yo' Yi yi'
Figure 11

Yo

This expression is showed below based upon Figure 10.

["V, is a partial bijection from the quantifier prefix of ¢ (restricted to the X in the
quantifier prefix) to V,, which maps every X to its corresponding node in G,, and
which preserves <' and E,."] 1)

A["H, is a partial surjective injection from the quantifier free part of ¢ to the first
formulain (C, E.) (see Figures 12, 13), which maps every "X" in the quantifier free
part to the corresponding position in the first formula in (C, E.) which we denote

by ¢, which preserves A,v,(,),—, and <, and E., and which ignores "|"."] 2

A"V, that is a bijection from "|...|" in "QX |...|" to "|...]" in "(...X |...]...)",

linking the quantification of a variable with each occurrence of the variable in the
quantifier free part of ¢, where z, is the root in dom(V,), z, is the leaf in dom(V,),

Y, is the root in ran(V,), and y, is the leaf in ran(V,). The variable in ¢ which corresponds
to the function V, is replaced in ¢ by the value assigned to that variable by the leaf
valuation <G,, B,>. (See Figures 10, 11) Note that ¢ is represented in (C, E.) starting

in the node M (first node in (ST, E;)) and ending in the node E.*(M (second node

in (ST, Eg;))) and is equivalent to the formula ¢ without quantifier prefix, with the
variables replaced by 0 or 1 according to the leaf valuation in <G,,B,>."]

(More explanation is given in 5.2.1.2.2. See Figures 12 and 13) 3)

47

Wei Ren (02103176)

(Level 4)

DXy, z(V,(xy) AV, (x,2) = (y=2) "V, is a function”
AV, (X Y) AV, (2,Y) = X=2) "V, is injective™
A (P (x) A PRED, (x,2) A[Py(2) v P, (2)]) > By (Y, (¥) AV, (X, ¥)))
“"domain of V", "range of V "
"V, is a partial bijection: X in quantifier prefix of ¢ -V, in G"

AVSESSE([V, (5,8) AV, (tE) A B (S1)] — (PATH_(s,t)
AVZ'((2'#SAZ'#t APATH_(s,2) APATH_(Z',t)) > =P, (2"))))
"V, preserves <' restricted to the X in the quantifier prefix, and E,."

(2)VXYy, Yo, 2, 22(1(2(H¢(X:y11 Yo) A H¢(X1211 ,) > (Y, =2,7Y,=12,)
AIX(R(x) APATH_ (X, X)) AC(Y1, ¥2))),
"H, is a function: quantifier free part of ¢ — C"

AGH, (X Y Yo) AH (2 Y, Y,) = X=2), "H, is injective”
AVYL Y, LT VY,
(LGGST(v) A—3y(Es (y,v)) "v'istherootin <ST,Eg >"
ANEG (V) AMVYL YL Y,) AM(Y,, 2,2,) AEC (408,02, 2,)
APATHE (Y12 Y2 Y Y2) APATH (V1 Y2801))s = 3X(H, (X Y1, ¥,))),
"the range of H, is the first formula in <C, E.>"

AEX (R (X) APATH_ (X', X)) =3y, Y, (H, (% Y1, Y,)2,
“the domain of H, is the quantifier free part of ¢"

AVX X2, Y Yo, 2 I0(H (X Y1, V) AH (2,2, 2,) AEC (Y1 Y2, 20, 2,)) >
(SUC_(x,2) v (PATH_(X,z) AVX'((PATH_(X,X") A PATH_(X', 2)
AX"#XAX'#2) — B(x")))

AH (Y1 Y,) = (RO)AC (Y1 Y2)) v (B (X) AC (Y1 Y,))
V(P.()AC, (Y ¥2)) v (P.(X) AC, (Y1 Y2))
V(P O)AC_ (Y1 YD) v (P () A (Co (Y1 Y2) v Ci(Y1n YD)

"H, preserves <, (ignoring |) and E., {A,v,(,),—}, and maps X to 0/1"

)=V 320, Yo 21 Y0205 Yo i 2o Y L@ A (D) A (©)], — ()],

48

Wei Ren (02103176)

(@) LL GV, (200 Yo) A—=32" Yy (PRED (25, 2) AV, (2,)
AVo(Z¢,Y) ~=32', y' (SUC(z,,2) AV, (2',Y)

AVZ([PATH_(z,,2") APATH_(z',2,)] > 3y'(V,(z', y"))) total
AVY([PATH_(Yo,y) APATH_ (Y'Y)] = 32'(Vo(2',y)))); surjective

"z, is the root in dom(V,), z, is the leaf in dom(V,), y, is the root in ran(V,),
y, is the leaf in ran(V,)"

(b) A X, Y, v, W (Vo (X, y) = (R(X) A R(Y)))
AV, (X Y) AV, (X, V) > Yy =V) function

AV, (X% Y) AV, (W, Y)) > Xx=W) injective
AV (% Y) AV, (v, W) ASUC(x,v)) = SUC_(y, w))],

"V, is a bijection from "|...|" in "QX |...|" to "|...|" in "(..X|...]...)",
which also preserves <'"

(c)A(,PRED_(z,,2,) AP, (2,)

"z,'is the predecessor of the root in dom(V,), i.e., it is the X in the quantifier prefix"

APRED_(Y,, Yo) AP (Y,)
"y, is the predecessor of the root in ran(V,), i.e., it is the X in the quantifier free part™

ASUC_(z¢,2;) A—=R(z;) "z,"is the successor of the leaf in dom(V,)"

ASUC_(Yy,Y¢) A=R(Y))sl, "y, "is the successor of the leaf in ran(V,)"

()95 XLV, (2 %) A B (% X) > (322, 2,(H, (%', 2,2,)
ALl(x'="0"ACy(2,,2,)) v (X' ="1"AC\(z,, 2,))])].],
"BV, (25)) =H,(yo)"

49

Wei Ren (02103176)

5.2.1.2.2 Expressing (2.2b): “... such that the formulag is

true” Evaluating the formula¢ .

Once we have built the quantifier-free formulag on {0, 1}, we must

evaluate . We do so by evaluating one connective at a time, and

one pair of matching parenthesis at a time, until the final result

becomes 1.

Before we write the informal expression, let us look at an example
of an evaluation process first. In this example, we can see that there
are 10 evaluation steps, which correspond to 10 “operators” (i.e.,
either connectives or pairs of matching parenthesis) that are

evaluated during the whole process. If there are at most n symbols

ing, that means that we need at most n evaluation steps to get the
result of the formula ¢ . That is why the nodes of the

graph (C, E.) are pairs, and its edges are quadruples. In this way we

allow the whole evaluation process to take up to n steps (where n is

the length of the input formulag), where in each step we have a
propositional formula on {0, 1} with up to n symbols. Each node in
the graph (ST, Eg;) represents one such formula, and the function M
(for Marker) is a pointer which tells us in which node in(C, E;)

that formula begins (Figure 12). Note that in each evaluation step
either one or two symbols are removed from the formula at the

previous step.

50

Marker (in Red)

1
2.
3
4.
5.
6
7
8
9.

10.
11.

a
[
!
[
l
1
!
1
1

S n Symbols

A

Wei Ren (02103176)

(A) (STHES

-y-s-

 [(0vI) A(=0)) A(Lv0))

“((Ov)A@)A@VO)
((OVvD) A A@VO))
(DA AQV0)
(WA AD)

(AAD) A Q)
(LAD AD
(M) A1)
(IAD)

@)

1 (TRUE)

—~

)

Includes

iricludes

Figure 12

... > <

__} An evaluation step

>£ N steps '\<

N

Ve

(Q @y

(B) (C*E)

(1,2)
SNCE)

n)

(2, 1)
(2,2)
(2,3)

RON 02000 O S

<n?
@n,)

(s,1)
(s, 2)
(s, 3)

O OQ L

sn) | s<n

We redraw below the graphs (A) and (B) of Figure 12 with a horizontal

orientation (Figure 13). Each evaluation step is called a stage. And the first

symbol in each stage is given by the marker function M.

Computation (k) | - " &) o AN - o S U
Marker
Stages @ S Ve U e »O (g n)
(STl, ESZT

J, E
- W

Figure 13

Based upon Figures 12 and 13, we show below the steps we need to follow

to express (2.2b).

51

Wei Ren (02103176)

['(C,E.) is alinear graph"]
A"(ST, Eg;) is a linear graph"]

A["M :ST' — C? is an injective and total function that preserves
PATH in Eg; and E."]

A['CZ,CZ,C%,CE,C/,C,Cy are pairwise disjoint,

and C’UC2UcC? UC(2 UC)2 UCZUCZ=C"]

A["For every stage x, from stage x to stage x+1, we need to follow the
rules of evaluation (See Figure 12 Part A). The formula in <C, E.>
at stage x+1 is the same as the formula at stage x, except for one of

three possible sorts of changes, which correspond to the cases (a),
(b) and (c) of Figure 14"]

(Level 4) The respective formal expressions are showed below:

Q)= LINEAR“(C, EC)
(2) = LINEAR(ST, E;)
(3)(OVS, S"tl’tZ’ kl’ k2(1(2(3M (Svtl’tz) AM (S’ kl’ kz))3
— (Gt =k At, =K,) AST(S) AC(1,,1,)),),
"M is a function, M:ST* - C*"
AGIM(s.k, k) AM(t K, k,))] = s=t), "M is injective"

AGST(s) =3t (M(s, 1,)).)5 "M is total"

AGLM(s,t,t,) AM (s k K,) APATH; (s,59],
— PATHE (4,1, K1, K,))a),)o
"M preserves PATH in E; and E."

52

1)

(2)

3)

(4)

(5)

Wei Ren (02103176)

(A A5, 8,((C.(s1,8,) > —C(51,85,)) A (C, (S, 8,) <> =C_(s1,8,))
A(C (s 8,) © _'C((Sp $;) A (C,(8,,8,) < _'C)(Sl’ $,))
A(C, (s1,8,) > =C.(5,,8,)) A (C. (81, 8,) > —Cy (51, 8,)) A--2)
"C?,C2,C?,C{,C},CE,Cy are pairwise disjoint”

AVS;,8,(C(sy,8,) = (C,(s,,8,) vC,(5,,8,) VC_(s,,8,) vC (5,,8,) v C, (s, 8,)
v Cy(s1,8,) v Ci(sy,8,))

A5, 8,((C, (81,5,) = C(s1,8,)) A (C(51,8,) > C(5,,8,)) A (C_(51,8,) > C(5,,5,))
A (C((Sy s,) > C(s,,s,)) /\(C)(Sv $,) > C(8,,5,)) A(Cy (s, ;) = C(s1,8,))
A(Cy(sy,8,) > C(s,5,)))

"(C?UC?UC? UCEUC? UCEUC) =C”

(5) =XST(x) >3E], f,, f,, L1, f," £, L L T v @) v [0)A(@) v () v (©)]]]

The function E, maps the formula at stage X to the formula at stage x+1.

The sub formula (d) corresponds to the last transition, i.e. the transition to the
last formula in <C,E. >(“0” or “1”). The sub formula (e) corresponds to
the last formula in<C, E. >. The three sub formulas (a), (b), (c) correspond

to the three possible cases (a), (b), (c) as in Figure 14, according to which

sort of operation is the one involved in the transition from the formula in

stage x to the next formula in<C, E; >. Note that the transition to the last

formula (d) is necessarily an instance of case (c) in Figure 14. For case (c) in

Figure 14, E, is not total in its domain, since (v,,v,) (() and
(w;,w,) ()) are not mapped. For the last formula, E, is not injective,

since (f,, f,)"="(I,,1,) (ie, f, =1 andf, =1,) (see Figure 16).

53

Wei Ren (02103176)

Function: E,

ulbr @ b

G B S P

(W, W) (v v W, W,) v
%p“, Pi2)(Pars P22)(Pfs Psz) %pw P)(Pass P22) /)]
v (b3 (p ki
V5V,)P s P YW W,) (Vlllvz bl Pu's P ')(Wl',WZ) . 12
Casea((pZIYPZZ)(p31'p32) VOid) Case b ((p21'p22) VOid) Casec((vl’v2)(wl’w2) VOid)
Figure 14
Where 6 e{a,v}andb,b,,b, €{0,1}.
(le’ ZlZ) (221' ZZZ)
(fuf,) (v,
I.1,)
C----O—»O----O----0O
E,
I TR ST RS
(f,\ 1) (S
Left side of the window
(f. 1) VirV,) (w,w,) (.1,) (f. 1) (VV,) (W, w) (1)
E E
T T T |
(£, 1, 5V, whw,) (.1, (£, 1, (P P2 41,
Casesa, b Case ¢

E, Preserves E.

Figure 15

54

Wei Ren (02103176)

(p11Y plZ)

(f, f,) (1,1,
C b:L D (b:L) by <C, EC >
(fl’ fZ) (pll’ plz) (Il’ IZ) I‘pll I' plZ I)
/
EV M 3 ? ,/
|
I

s —O——0 <sTE, >
[] x y

(p11'v P12 '):(f1" fz l):(I1I'I2')

Figure 16

0) (G GV Yi(Esr (X, Y) AEs (Y, Y1)
"x is not the leaf in Eg; and is not the predecessor of the leaf "

A VS, 85,0, 0, KK (0 GGE, (5185, 4, 1) AE(Sy, 85, Ky ,K,)),
- (2(t1 = kl AL = kz) /\C(Sl' 52) /\C(t1't2))2)1
"E, is a function, E,;C ->C "

AGIE, (81, 8,.Ki ko) AE, (4, 1K K)T = (8, =4 A8, =1,)),)0)0)e)
"E, is injective, E,C—>C "

"Jpartial injection E;' mapping the formula in <C, E_ > in stage x

to the formula in <C, E; > in stage E; (x))"

AGM (X, T,) A"M (B (%), Ec (1, L) "A"Ec (1, 1,) = (. F,)")
A"E (M[Egr (Bt ()L L 1,)")
"[(f,, 1,), (1, 1,)] and [(f, ", f, 7). (l, "1,)] are the delimiters of the two formulas as in Figure 15"

AVYL Yo 2 (B (Vi Y2, 24, 2,)) — [((PATHEYCA(f., £, Y1, ¥,) A PATH é’f(yp Ya:11,11)))
A (PATH éf(f,' £, 2,2,) APATH I§:‘(zl, 2,1, 1,1

AE (L f £) AE (L 1L)))6

"E, maps nodes from the subgraph [(f,, f,),(l,,1,)] to the subgraph [(f,", f,), (, 1,)]"

(8) (L3V3 Vo W, Wy, V'V, S WS W 'y Doy Pras Pogs Pazs Pags Pazs Puy s Py
® PATHé:‘(fl, f,,v,V,) A PATHé’C“(Wl,WZ,Il,IZ)/\ Ec(Piys Pios Pogs Py)
AEc(Parr Pa2s Pats Piz) A B (Vi Vi, Py Pio) A Ec (g Py Wi W)
AC (v, V,) AC, (W, W,) APATHE (1 £, v,) APATHE (W', wy L)

A Ec (V3 V' Py PR) A Ec (P P s W W,) AE, (Puys Pros Py P)
AE, (Vi Vo, V5V, YA E, (W, Wy, W, W) /\C((Vl WV,) /\C)(W1 W,)

"[(v,,v,), (W, w,)] and [(v, ", v,), (w, ', w,)] define the windows of change (Figure 15 a, b)"

55

Wei Ren (02103176)

A2, 251 201y Zops 2y ' 23y ' 2oy 29y [(, (G, PATH é'c“(f,f,,2,,2,) APATH ;j(zu, 2,V V,)
ANEc(214,205, 250, 2,)) NE(240 205, 2, 2, YA E (250, 2050 25, ', 25, 1)) 5
— (,PATH é*c“(£ 02, 2,) A PATHé‘C“(z21 N2y VWV,) AEC (2 2 20y 200))s),
A (s PATHé‘C“(Wl, W,,2,,,2,) A PATH é’c“(zﬂ, Zyy |, 1) AEc(Zy1s 251 25y, 2,y)
~NE(24,2,,2, 2, Y ANE (251,255, 2,5, ", 25,)4
— (,PATH é*c“ (w'\w,', 2,2, A PATH;:‘(Z21 Y2, L) AEL (2 2, 20y s 200))s) o),

"E, preserves E. outside of the windows, and preserves left and right side of the windows (Figure 15)"

AV, 20,2y, 2, T, GPATHE (), 5,201, 2,) APATHE (2,4, 25,1, V,) AE, (244,215, 2,1, 21,),
= (, PATHE;‘(f V2, 2,) A PATH I§'C“(z11 Y2,V Y,)
NE (C((zll, Z,) A C((zll V2,"))V (C) (2, 2,) A C) (2, 2,,")
v(C. (214, 2,) nC, (21, 21,) v (C (241, 2,,) AC (214, 21, 7))
Vv (Co(z,4,2,) ACy(Zy1 ' 20,) v(Ci(244, 2,) AC(Z11 1 2, 1))

v(C (244, 2,,) AC (2,21,)]s),)
"E, preserves symbols in left side of the window"

AVZy, 25,7, 2, T, G PATHE (W, Wy, 2y, 2,) APATHE (2,4, 245,13, 1,)
ANE (211,215,212,), = GPATHE (W W, ' 2, 2,) APATHE (7,2, 10 1,)
NE (C((Zy,2,) A C((2, 2,") v (C) (Z, 2,) A C) (z,2,")

V(C, (214, 2,) AC (21,2, ")) v (C (211, 2,) AC (2, 2, 7))

v (Co(z1,2,) ACy(2,, ' 2., ")) v (Ci (7)1, 2,) ACL(2, ', 2, 1))

V(C (2,4, 2,,) AC (2,21,)]s).)
"E, preserves symbols in right side of the window"

AL(Co (P Pi2) ACo(Pyrs Pi2) AC, (Pays P22) ACo (P P,)
V(Co(Puss Pi2) ACo(Pars Pi) AC, (Pa1 P22) ACo (P P,)
V(Co(Puss Pi2) AC(Py1s P32) AC, (Pays P22) AC(Py ' P2)
V(Co(Puys Pro) A Ci(Pays Pep) AC, (Pags P22) AC (P s Pr2)
V(Ci(Puss Pi2) A Co(Pars Pa) A C,(Pars P2o) A Co(Puy s Pra)
vV (Ci(Pus Pi2) A Co(Pars Po) A CL(Pars P2o) ACL(Py ' Py,)
V(Ci(Puys Pi2) A Ci(Pays Po) AC, (Pt P22) ACL(Py ' Pr2)
VA(Cy(Puss Pi2) ACL(Payy P32) AC, (Pars P22) AC (P P2 Do)
"In (py, s P, ") We get the result of applying the operator & in (p,,, p,,) to the
Boolean values b, in (p,;, p,,), and b,, in (p,,, p,) (Figure 14a)"

56

Wei Ren (02103176)

(b) (Ly3Ves vy, Wi, Wy, Vi '3V, S WS Wy 'y Puyy Pras Pags Pos Puy s Pr”
(o PATH;’;(fi £, v,) A PATHE‘:(Wl,Wz, |, 1,) A Ec (Pugs Pias Pt Pz)
ANE (Vi Vo, Pugs Pia) A Ec (g Popy Wi, W)
AC (Vi V) AC) (W, Wy) APATHE (£ £, v, v,) A PATHZ (W, ' wy 1 1,)
ANEC(V VS Py P) A EC (P s P v W W,) AE, (Puys Pray Pty Pr)
AE (Vi Vo,V 'V,) A E, (W, Wy, W', W,) /\C((V1 W,) /\C)(W1 LW,)
"[(v,,v,), (W, w,)] and [(v,",v,), (W, ', w,)] define the windows of change (Figure 15 a, b)"

AV, 2050 2500 250, Ty ' 1y ' 2 2y TLGGPATHE (B, f,, 2,1, 2,) APATHE (2,4, 2,V V,)
ANE(200,2,5,2,,2,,) NE (201,205, 21, 2, YA E (2010209, 25, ', 25,)5
— GPATHZ (' 1,20, 2,) APATHE (2,4, 2, v, WV, Y A Ec (221, 200, 2,))s),
A(,(;PATH é‘c“ (W, W,,2,,,2,,) A PATH éf (Zy, 259, 1, 1,) NEc (24,2051 251, 25)
ANE (201,205,272, YANE (20,20, 25, 25,)5
= (GPATHZ (W '\ W, ", 2, ', 2,) APATHZ (2, 2, 1,) AE (2,21, ', 2,1, 25,)5),)
"E, preserves E. outside of the windows, and preserves left and
right side of the windows (Figure 15)"

AV, 20,2, 2, L GPATHEN (), .2, 2,) APATHZ (2,2, v, V)
ANE (2,2, 2,,,2,)), & GPATHE (£ 1, 2., 2,) APATHZ (7,2, V)
A(C (2, 2,) AC (2, 2,,")) v (C) (2, 2,) ACY (2, ', 2, 1))
v(C (z,,2,)AC, (2, 2,,") v(C, (2,1, 2,,) AC (2., 2, 1))
v (Cy(zy,,2,) ACy(zy, ', 21,) v (Ci(2yy, 2,,) ACL(2Z1 1 21, 1))

v (C_(2,4,2,) AC (211, 2, D).k
"E, preserves symbols in left side of the window"

AYZ,,2,,2, 2, [,(,PATH é’c“ (W, W,,z,,,2,,) A PATH Ii“(zﬂ, 25,0, 1)
ANE (24,215, 2,,, 7)), & GPATHE (W '\ W, ', 2, ', 2,) APATHZ (7,2, 1,)
A(C(zy,2,) AC (2,2, ")) v (Cy (24, 2,) AC (2, 23,))
v(C, (z;,2,)~AC (2" 2,,") v(C (2,1, 2,,) AC (2, 2., "))
v(Co(z,,,2,) ACy(z, ', 2,,")) v (Ci(2,1, 2,) AC(Z), ', 21, 7))

v(C_(z,4,2,) AC (2,1, 2,")]s).)
"E, preserves symbols in right side of the window"

AL(Co(Pyys P22) AC_(Prys P) AC(RL ' P)

VA(C(Pars P22) AC (Piys Pi) ACo (P s P Do) s
"In (p,", P, ') We get the result of applying —, in (p;, p,,), to the

Boolean value b, in (p,,, p,,) (Figure 14b)"

57

Wei Ren (02103176)

(C) (—13V1’V2’W1’W2’ pll’ plZ’ pll " plZI
(o PATHZ* (f,, f,,v;,v,) A PATHZ (W, Wiy, 1y, 1,) A E (Vi V0 Prys Prp) A Eg (Pygs i W, W)
/\C((Vl,VZ) AC, (W, w,) A PATH é:l(fl CE L PL PR) A PATHé:‘(pn VP L)

AE,(Pis Py Pia 'y P)
"IV, V), (W, w,)] and [(py, ' Py,), (Py s Py,)] define the windows of change (Figure 15c¢)"

AV 020,200 1y 3 Ty ' 2 ' 2y T GGPATHER (£, 2,5, 2,) APATHE (2,4, 2,,,V,,V,)
ANEc(214,205, 2,0, 2,,) NE(201, 205,24, 2, YAE (251,200, 25, ', 20,)5
— (PATHZ (f,', £,,2,,, 2, Y A B (2, 2, 2, 20) APATHE (2,4, 2,, ', Py s P))a)2
A(,(,PATH éf (W, W,, 2,,,2,,) A PATH éé“(zﬂ, 2y 1) AEc (24 2100 25, 25)
ANEN201,2,,20, 2, YV AE (251,259,251 25,)5
- (4 PATH,?C“(Z21 V2, LY AE(Zy ' 2, 2,2,) A PATH I§’C“(p11 S Pn 22,))s).)
"E, preserves E. outside of the windows, and preserves left and
right side of the windows (Figure 15)"

AYZ,,2,5,2, 2, [, (,PATH é‘:“(f,f,,2,,2,) APATH é;“ (2,,,2,,,V,,V,)
NE(21,255,2,,1,2,,), > GPATHEN () £, 2,2,) APATHZ (2, 2, ', Py Py,)
AL(C (234, 212) AC (21, 2,,")) v (Cy (244, 21,) ACy (21,20, 1))
v(C, (2,4, 2,) AC, (21, 2,,)) v (C (214, 2,,) A C (21,121,)
V(Cy(zy,2,,) ACy(2y, ' 21,)) v (Cy (244, 2,) ACy (7,1 2, 1))

V(C_(zy4,2,) AC_(2,, ', 23, D),),
"E, preserves symbols in left side of the window"

A2y, 25,2, 2, T (, PATH é:t (W, Wy, 2,4, 2,) A PATH é’: (211,25, 11,15)
ANE (211,215, 2,,', 2,), = (, PATH é':(P’y P’ 23 2) A PATHE?(ZM V2,00 ,)
A [3(C((2111 Z) A C((Zn V2,")) v (C) (21, 2,) A C) (21',2,"))
V(C,(z2,1,2,) AC, (21", 2,")) v (C (214, 2,,) A C (2111, 2, 1))
V(Co(214,2,) ACo(211 ', 21, ")) v (Ci(214, 2,,) A Ci(211 ', 21,)
V(C (214, 2,) AC (211,25, N]).)
"E, preserves symbols in right side of the window"

AL(Co(Pus Pi2) ACo (P s P D) v (Co(Puss Pr2) AC (P s P Do)
"In (p, ", P, ") We get a copy of the Boolean value b,, in (p,;, p,,) (Figure 14c)"

58

Wei Ren (02103176)

(d) (oY Esr (%, y) A—=F2(Egr (Y, 2))
AP, Pigy Py P GM (X, B £) AMCY, Py P) AEC (L) Pus PL)
AEc(Prs Pior b L) AEc (L0 Py 'y Py)
A=TPy " Py (Ec(Pis s Pr's Por s P2))
A C((fi, f,) /\C) (I 1) AL(C (Pus P2) AC(PY ' P2)
V(Co(Pur Pi2) ACo(Ps's P2 Na)2)1)o

"X is the predecessor of the leaf in E;, so that this is the last transition” (See Figure 16)
Note that the last transition is necessarily an instance of case ¢ in Figure 14.

() (o Y (Esr (x,Y)) "x is the leaf in Eg;
A E|pl I’ p2 I(I\/I (X’ pl I’ p2 l) N _'Hyl '7 y2 I(Ec(pl " p2 '1 yl I1 y2 l)) "(p]_ I; p2 ') IS a Ieaf In EC "

AC(RS P Mo
"the last formula in <C,E.>is"1" "

5.2.1.3 Complete expression for SATQBF,

We get the complete expression by combining the three parts together (that is
taking (2.1) from 5.2.1.1, (2.2a) from 5.2.1.2.1, and (2.2b) from 5.2.1.2.2,

together with the quantification in 5.2.1.2).

=3V} E?, B2, WV}, E2, B,
3..QVY, EZ, B:, 3V, E2, B2, V2,3C2 EL, ST ES MY,
2 2 2 2 2 2 2 3
C?,C%,C?,C?,C2,CC H?

(,["G,=<V}, E?>is a linear graph"] (1)
A['The length of G, is equal to the number of variables in the quantifier prefix of ¢"] (2)

AI'G, =<V,,E, > ,G, =<V,,E; >,...,G,. =<V,., E,. > are linear graphs"] (3)
(where k' is the index of the last 3 quantifier in the prefix)

59

Wei Ren (02103176)

AI'B, :V, »{0,1},B,:V, »>{0,1},...,B,. :V,. —{0,1} are total functions"] 4)

A["the lengths of the linear graphs G,,G,,...,G,. are equal to the lengths of
the corresponding quantifier blocks in ¢"] (5)

A"V, is a partial bijection from the quantifier prefix of ¢ (restricted to the X
in the quantifier prefix) to V,, which maps every X to its corresponding node in G,,

and which preserves <' and E,."] (6)
A["(C,E;) is a linear graph”] (7)
A"(ST, Eg;) is a linear graph"] (8)

A["M :ST* — C? is an injective and total function that preserves PATH in E¢; and E."] (9)

A['C?,CZ,C2,C¢,C},C/,Cy are pairwise disjoint sets,

and C2UC2UC2Uc?UCUC?UC¢ =C" (10)

A["H, is a partial surjective injection from the quantifier free part of ¢ to the first

formula in (C, E..), which maps every "X" in the quantifier free part to the
corresponding position in the first formula in (C, E,) which we denote by ¢,

which preserves A,v,(,),—, and <, and E., and which ignores "|". "] (12)
Al

L("V,V,,V;,...V, are disjoint sets"] (12)

AI"G, =<V, ,E, >,G, =<V,,E, >..G,. =<V,., E,. > are linear graphs"] (13)

(where k" is the index of the last V quantifier in the prefix)
AI"B,:V, »{0,13},B,:V, »{0,1},..., B,.:V,. > {0,1} are total functions"] (14)

A["the lengths of the linear graphs G,,G,,...,.G,. are equal to the lengths of
the corresponding quantifier blocks in ¢"]) (15)

AJUZ U2 UZ(["Y, is a partial bijection: G, — Ist part of G, "]

A["U, is a partial bijection: G, — 2nd part of G, "]
Aver o A["U, is a partial bijection: G, — k —th part of G, "]) (16)

60

Wei Ren (02103176)

A["B,:V, = {0,1} is a total function that coincides with B, B,,...,B, "
="B,=B,UB,U..UB.T, 17)

- [ZVVOZEIZO’ yO’ Zf ! yf ! Z0 I’ yO I’ Zf I’ yf |[3(4
["z, is the root in dom(V,), z, is the leaf in dom(V,),

Y, isthe root in ran(V,), y, is the leaf in ran(V,)"]; (18)
ALs"V, is a partial bijection from "|...|" in "QX |...|" to "|...|" in "(..X | ...]...)",
which preserves <, "], (19)

Als"z," is predecessor of root in dom (V,)"
A"y, is predecessor of root in ran (V,)"
A"z,"is successor of leaf in dom (V,)"

A"y, "is successor of leaf inran (V,)"];), (20)
= (["B.(V,(2,)) = H,(¥:)" Dl (21)
A["The truth value of ¢ on the valuation B, is 1"]],],), (22)

(1) “The graph G, is a linear graph”: LINEAR(V,, E,)

(2) "The length of G, is equal to the number of variables in the quantifier prefix of ¢

This statement is implied by the following statement:

"V, is a partial bijection from the quantifier prefix of ¢ (restricted to the X

in the quantifier prefix) to V,, which maps every X to its corresponding node in G,,
and which preserves <' and E,." (See (6) below)

(3) "G, =<V, E > G, =<V,,E,; >,..,G, =<V, E,. > are linear graphs":
(where k' is the index of the last 3 quantifier in the prefix)

LINEAR(V,, E,) A LINEAR(V,, E,) A... A LINEAR(, ., E,.)

61

Wei Ren (02103176)
4)"B,:V, >{0,3AB,:V, >{0,1}A...AB,.:V,. »{0,1} are total functions"
ALVE p, P'[B (L, P) AB(t, p) > (p=p) “function”

A (Vi(t) > 3p(By(t, p))) “total”
A(B(t, p) > (p="0"v p="1"))]

AV P, P'[Bs(t P)ABs(t, p) > (p=p) "function”
A (V3(t) = 3p(Bs(t, p))) “total”
A (By(t, p) > (p="0"v p="1"))]

AV P, P[B.(t, P)AB.(t,p) > (p=p) "function”

AV, (t) > 3p(B,.(t, p)) “total”
A(B(t, p) = (p="0" p="1"))]]

(5) If k' =k, then (by «,, we mean the formula template ¢, instantiated with i =k):

‘2
_ 1/3} 3 ViV, VooV Vo (0 A)
i=1,3,5,...,k"

Ifk'=k, then (by «,._,, we mean the formula template ¢;, instantiated with i = k'-2):
(k'—2 is the previous to the last 3 block, and the subformulas 3, 5,, 5,
take care of the last quantifier block)

(A VY V3o Ve (o0 A 0p)) A ILVNNG NV (B A By A o)

i=1,3,5,..k'-2

"for 1< j <i, v, is the first quantifier of the j-th alternating quantifier block:"
(when i is not the index of the last block)
Ay = (o Ps(V)) AP (V) AP (Ve) A APy (Vi) AV, ="0"

“where P, is P, if (i +1) is odd, or P, if (i +1) is even”

A[PATH_(v;,v,) APATH_(v,,V;) A... APATH_(v;, v, ;)]
A[=3AV(PATH_(v;, V) APATH_(V',V,) AV'#V, AV £V, AR, (V"))]
A[=3V(PATH_(v,, V) APATH_(V',V;) AV £V, AV'#V, AP (V)]
AT
A[=3V(PATH_(V;, V) APATH_(V',V, ;) AV'# V, AV £V, 3 A Py (V))]),
"where P,. is P, if i is odd, or P, if i is even”

62

Wei Ren (02103176)

"for 1< j <i, v; is the first quantifier of the j-th alternating quantifier block:"
("fori=Kk, v, is the last element in the block i, which must be |")
Li=(RV)AR M) AR (V)AL A R V) A P|(Ve) AV, ="0"

"where R, is P, if k is odd, or P, if k is even"

A[PATH_(v;,V,) APATH_(v,,V;) A... APATH_(v,,V,)]
A[=3V(PATH_ (v, V) APATH_(V,V,) AV' £V, AV £V, AR, (V)]
A[=FV(PATH_(v,, V) APATH_(V',V;) AV' £V, AV' £V, AP (V)]
AN
A[=3V(PATH_(v,, V) APATH_(V', V) AV' 2V, AV £V, AR, (V))]),
“"where P,. is P, if k is odd, or P, if k is even"

"L" is a bijection from the X in the i-th alternating quantifier block to V,,

which preserves Next, and E, :" when i is not the index of the last block

iy = (o WV [(PATH. (v, V) A PATH (V') AV' %V AP (V) > Ty (L', Y)]
"domainof L' "

AVY'(V.(y)—3v'(L'(v',y"))) "L"issurjective"

AVS LS EUTI(L'(s, t) AL'(S', t) AS = S'APATH_(v,,S) APATH_(s",v, ;) APATH_(s,s")
A(=TFZ'(PATH_(S,2) APATH_(2',s)AZ'#sAz'#S'AP,(2"))) = E, (t,t9]
"L' preseves Next, in the ith alternating block and E; (implies injectivity)"

AVVTY LV, YY) > Vi(y)]
AW'Y'Z'([L'(v,y)AL'(v,2)]—>(y'=2))]), "L'isafunction"

"L" is a bijection from the X in the i-th alternating quantifier block to V,,
which preserves Next, and E, :"
(wheni=k)

B =, VV'T(PATH_(v,, V) APATH_(V',v,) AP, (V) <> 3y'(L'(v',y"))] "domainofL"' "
AVY'(V, (y)—>3v'(L'(v',y"))) "L"is surjective”
AVS, S ETI(L'(s,) AL'(S t)As =S APATH_(v,,S) APATH_(s',v,) APATH_(s,s")
A(—3Z'(PATH_(S,) APATH_(z',s)AZ'#sAz2'#S'AP, (2"))) — E (L, t")]
"L' preseves Next, in the k-th alternating block and E, (implies injectivity)"

AVVYTL(V, YY) = V(Y]
AW'Y'Z'([L'(V, y)AL'(V,2)] > (y'=2))]), "L'isafunction”

63

Wei Ren (02103176)
"Fori=Kk, v, is the last | for the last quantifier in the quantifier prefix":

By = (VV((SUC, (v, V) A=R(v)) A R(V,)
AVV'(PATH_(v,,Vv") = (=P, (v") A—P,(v")) "there are no quantifiers after v,"

ATz y WV TPATH_ (Y, V) A ([PATH_(V',v,) A PATH_(y',v)] = R(VY)
"w" is the last quantifier in the block k, z' is the X of the variable quantified"
"y"is the first | for that variable"

APy (W) AP (2)ASUC_(z',y) ASUC_(W', 2)]),
"where P, is P, if k is odd, or R, is P, if k is even™

(6) A (VXY 2(V, (X.y) AV, (X,2) = (y=2) "V, is a function”

AV, (X Y) AV (2, Y) = x=2) "V, is injective”

A (P (X) APRED_ (%, 2) A [Py (2) v P, (2)]) > 3y(V,(y) AV, (X, Y)))

“domain of V", "range of V"

"V, is partial bijection:X in quantifier prefix of ¢ —V, in G
AVS LSV, (s,8) AV, (tE) A E (s 1)] - (PATH_(s, 1)

AVZ'(2'#SAZ"#tAPATH_(s,2') APATH_(Z',1)) > =P, (2)))
"V, preserves <' restricted to the X in the quantifier prefix, and E,."

(7) A LINEAR?*(C, E,)
(8) A LINEAR(ST, E;)

(9 A (s, 81,1k, K (L GM (8,4, 1) AM (S, Ky, Ky)
— (4t =k, At, =k,) AST(S) AC(t,1,));), "M isa function, M:ST* — C*

AGIM (sk, k) AM(t k , k,)]— s=t), "M is injective”
AST(S) =3t '((M(s,t,t,)),), "M istotal”

AGLM(8,1,5) AM(s' ki k) A PATH (5,89, = PATHE (1,15, k1, k,))3)1),
"M preserves PATH in Eg; and E. "

64

Wei Ren (02103176)

(10) A Vs, 5,((C, (81,8,) > =C,(51,8,)) A(C, (s1,8,) > —C_(8,8,))
A(C (s 8,) © _'C((Sp $;) A (C,(8,,8,) < _'C)(Sl’ S,))
A(C, (s1,8,) > =C.(5,,8,)) A (C. (81, 8,) > —Cy (51, 8,)) A--2)
"C?,C2,C?,C¢,C},CE,Cy are pairwise disjoint”

AVS;,8,(C(sy,8,) = (C,(s,,8,) vC,(5,,8,) VC_(s,,8,) vC (5,,8,) v C, (s, 8,)
v Cy(s1,8,) v Ci(sy,8,))

A5, 8,((C, (81,5,) = C(s,8,)) A (C(51:8,) > C(5,,8,)) A (C_(s1,8,) > C(5y,5,))
A(C((Sl7 s,) > C(s,,5,)) /\(C)(Sl’ $,) = C(s,,8,)) A(Cy(s1,8,) > C(s1,8,))
A(Cyi(s1,8,) > C(s1,8,)))

"(C2UC?UC? UCEUC? UCEUC) =C”
(11) AYX Y1 Y0 2y, 22(1(2(H¢(X’y11 yz) A H¢(X121’ 22)) - ((yl =SLAY,= Zz)

ATX(R(x) A PATH_(X', X)) AC(Y1, ¥,))),
"H, is a function, H :quantifier free part of ¢ — C"

AGH X Y Yo) AH (2 Yy, Y,) > X=2), "H, is injective”

AVYL Y, S22, VY,
(,(ST(V) A—3y(Eg (y,VY)) "v'isthe rootin <ST,Eg >"

AEG (V' V) AMWNVL YL Y,) AM(Y,, 2,2,) AEL (Y, 2,2,)
APATHE (Y1) Y,' Y1 ¥2) APATH Ec (Yo Yor 1y 31) = 3 (H (X Y1, Y,))),
“the range of H, is the first formula in <C, E. >"

AEX(R(X) APATH (X', X)) = 3y, ¥, (H, (% 1 Y,)2
“the domain of H, is the quantifier free part of ¢"

AYX XY Z, Y10 Y50 2, 22[((H¢(X, Vi Ya) A H¢(Z’ 2,2,) NE (V11 Y5021, 2,)) >
(SUC_(X,2) v (PATH_(X, Z) AVX'((PATH_(X,X) A PATH_(x", 2)
AX'#XAX"#2) — B(x")))
AH (X Y1 Y,) = (B AC (Y1, Y2)) v (B (X) AC) (Y1 Y,))
V(P.)AC (Y1 YD)V (R, (X)AC, (Y1, Y,))

vV (P.()AC_(Y5, ¥2)) v (P (X) A(Co (Y1) Vo) v C (Y Y
"H, preserves <, (ignoring |) and E., {A,v,(,),—}, and maps X to 0/1"

65

Wei Ren (02103176)

(A2) A "IV, NV, = @) ANV NV =) A A (VY = ¢)
ANV V=) AV, NV, =) A A (Vo NV, = 9)

ANV NV, =9)]"

where "V, NV, = ¢" is VX((V; (X) = =V, (X)) A (Y, (X) = =V, (X))

(13) "G, =<V,,E, >,G, =<V,,E, >..G,. =<V,., E,. > are linear graphs":
(where k" is the index of the last v quantifier in the prefix)

LINEAR(V,, E,) A LINEAR(V,, E,) A...A LINEAR(V,., E,.)

(14)'B,:V, »>{0,3AB,:V, >{0,1}A...AB,.:V,. »>{0,1} are total functions"
ALVE p, P[B,(t, p)AB,(t,p) > (p=p) "function”
A (Vz(t) - EIp(Bz (t, p))) "total"
A(By(t, p) > (p="0"v p="1"))]

AV P, p'[B,(t, p)AB,(t, Pp)—>(p=p) "function”
AV, () = 3p(B, (L p))) “total"
A(B,(t, p) > (p="0"v p="1"))]

AV P, P'[B.(t, P)AB,.(t, p) > (p=p) "“function”

AV, () > 3p(B. (¢,) “total
A(B(t p) = (p="0" p="1"))]]

(15) If k" =k, then (by «,., we mean the formula template «, instantiated with i =k"):
A VNV Vg Ve Vi (G A)

i=2,4,6,..k"

If k" =k, then (by «,._,, we mean the formula template ¢, instantiated with i =k "-2):

(k "—2 is the previous to the last v block, and the subformulas g, 3,, 5,

take care of the last quantifier block)

(A ALV Vg Ve g (g AG,)) ALV, VY, (B A By A)

i=2,4,6,..k"-2

where the subformulas «,,, &;,, B, §, and S, are the same as in (5) above.

66

Wei Ren (02103176)

(16) ATUZUZ..UZ("
U, :V, >V, —Total injection,

— preserves E,, E,,

— includes first node in V, as U, (first node in E,),
U,:V, >V, —Total injection,

— preserves E,, E,,

— includes successor in E, of node U, (last node in E,) in V, as U, (first node in E,),
U, :V, >V, —Total injection,

— preserves E;, E,,

— includes successor in E, of node U, (last node in E,) in'V, as U, (first node in E,),
..., and
U, :V, =V, —Total injection,

— preserves E, , E,,

— includes successor in E, of node U, ,(last node in E, ;) inV, as U, (first node in E,)")

= AJUUZ.UZ(..

AVX, Y, tul(U, (X, y) AU (X,1)) > y=t) "function”
AU (X, y) AU, (u,y)) > x=u) "injection”
AV (X) = 3yU, (x,) "total"”
AUGY) >V (OAV(Y) U, oV
AU (X, y) AU, (u,t) AE (X,u)) > E(y,t)) "preservesE,"
AU, (X% y) AU, (u,t) AE (Y, 1)) = E (X,u)) "preserves E, "
AU (% Y) A=3V(E (X, V) A B (¥,1) A=TV(E, (V,U) AV, (u)))

—U, ut))
"includes successor in E, of node U, ,(last node in E, ;) inV, as U, (first node in E,)"

(17) "B, coincides with B,,B,,...,.B,"
Vxytpp [(B(t, p) AU (L, Y) AB (Y, p) > p=p1

AN

Vxytpp [(B, (t, p) AU, (L, Y) AB (Y,) > p=p]T]

7a\

7a\

vxytpp I(B, (t, p) AU, (t, Y) AB (Y, p)) = p=p]

67

Wei Ren (02103176)

(18) > [VVo 320, ¥o. 24, Y1020\ Yo s 2 VY
[:(ulsVs (2o, Yo) A—37", y'(PRED_ (25, 2°) AV, (Z', Y))
AV (2, Y) A=32', Y (SUC(z,2) AV, (2" YY)
AVZ([PATH_(z,,2") APATH_(z',2,)] = 3y '(V,(Z\Y)))
AVY([PATH_(Y5,y") A PATH_(y"y)] = 32' (Vo (2, YD)
"z, 1s the root in dom(V,), z, is the leaf in dom(V,), y, is the root in ran(V,),
y, is the leaf in ran(V,)"

(19 A X, Y, v, W5 (Vo (X, y) = (R(X) A R(Y)))

AV, (% Y) AV, (%, 1)) = y =V)

AV, (X, Y) AV, (W, y)) = X = W)

AV, (X ¥) AV, (v, W) A SUC (X, V) —> SUC.(y, W))]s
"V, is a partial bijection from "|...|" in "QX |...|" to "|...|"in "(..X|...]...)",
which also preserves <, "

(20) A[sPRED_(z,,2,) AP (2,)
"z,"is the predecessor of the root in dom(V,), i.e., itis the X in the quantifier prefix"

APRED._ (Yo, Yo) AP (o)
"y, is the predecessor of the root in ran(V,), i.e., it is the X in the quantifier free part"

ASUC_(z;,2;)A—R(z,") "z,'is the successor of the leaf in dom(V,)"

ASUC_(Y¢, ¥)A=R(Y;)s)a "y, " is the successor of the leaf in ran(V,)"

(21) > VX, x'(,(V, (2, X) A B (X, X)) = (32, 2,(H (Y, ', 21, 2,)
Al(x'="0"ACy(2,,2,)) v (X' ="1"AC\(2,, 2,))D)). 15
BV, () = H,(36)

(22) = "vx (the formula in <C, E. > at stage X +1 is the same as the formula at stage x,
except for one subformula as in Figure 14)"

=Vx[,ST(x) > 3E}, f,, f,, 1,1, £, £, 1L, L) v B) v 0) A (1) v(2) v ()]s LLLL),

68

Wei Ren (02103176)

The sub formula (4) corresponds to the last transition, i.e. the transition to the

last formula in <C,E. >(“0” or “1”). The three sub formulas (1), (2), (3)

correspond to the three possible cases (a), (b), (c) as in Figure 14, according

to which sort of operation is the one involved in the transition from the

formula in stage x to the next formulain<C, E. >.

0) (G GV Yu(Esr (X, Y) AEs (V. ¥1))g
"x is not the leaf in E¢; and is not the predecessor of the leaf "

AV, S, bt KK (GG GE, (S0 S5, 1, 1) A B (S, 8,0 ki K,))
= (Lt =k AL, =K,) AC(s,8,) AC(1,1,)),),
"E, is a function, E;.C ->C "

AGLE, (51, 85:Ky K,) A B, (4, 1,k K)] = (8, =1 AS,=1,)),)0)6),
"E, is injective, E,;,C—>C"

"Jpartial injection E;' mapping the formula in <C, E. > in stage x
to the formula in <C, E. > in stage E; (x))"

AGIM (X, Ty,) A"M (Egr (%), Ec (I, 1) "A"Ec (I, 1) = (., £,)")
AMES (M[Eg (Er (0)] 15 1,)")
"[(f, £5). (1, 1)T and [(F, £, (L1,)]
are the delimiters of the two formulas as in Figure 15"

AYY1L Y 20 2, (B, (Vi Va0 21, 2,)) = [(PATHEA (£, £, ¥4, ¥,) APATHZA(y,, 5,11, 1,)))
APATHZ (', 1,",2,2,) APATHZ* (2,, 2,1, 1,)]

AE,(f, T, £ L)YAE (L L, L1, 7),)6
"E, maps nodes from the subgraph [(f,, f,),(l,,1,)] to the subgraph [(f, ", f,",(, 1,)]"

(1) (—1EIV1’V2’W1’ WZ’Vl I’\/2 I’ Wl I’ W2 I’ pll' plZ’ p21’ pZZ’ p3l’ p32’ pll I’ p12‘
(o PATHZ*(f,, f,,v,,V,) APATHZ (W, Wy, 1, 1,) A Ec (Pugs Pras Poss Paz) A Ec(Poss Pazs Py Pay)
AEc(ViyVy, Puys Pi2) A Ec (Pags Pags W, W,)
AC (v, V) AC, (W, W,) APATHZ (£ £, v,) APATHEZ (W ' w1 1,)
AE(V WV, Py P) A B (P P s W s W,) A B, (Pygs Pras P’ P) A B (Vi Vo, VY,)
AE, (W, Wy, W W,) AC (v, 5V,) ACH (W, W,)
"T(vy,v,), (W, w,)] and [(v,',v, "), (W, ', w,)] define the windows of change (Figure 15 a, b)"

69

Wei Ren (02103176)

A2, 251 201y Zops 2y ' 23y ' 2oy 29y [(, (G, PATH é'c“(f,f,,2,,2,) APATH ;j(zu, 2,V V,)
ANEc(214,205, 250, 2,)) NE(240 205, 2, 2, YA E (250, 2050 25, ', 25, 1)) 5
— (,PATH é*c“(£ 02, 2,) A PATHé‘C“(z21 N2y VWV,) AEC (2 2 20y 200))s),
A (s PATHé‘C“(Wl, W,,2,,,2,) A PATH é’c“(zﬂ, Zyy |, 1) AEc(Zy1s 251 25y, 2,y)
~NE(24,2,,2, 2, Y ANE (251,255, 2,5, ", 25,)4
— (,PATH é*c“ (w'\w,', 2,2, A PATH;:‘(Z21 Y2, L) AEL (2 2, 20y s 200))s) o),

"E, preserves E. outside of the windows, and preserves left and right side of the windows (Figure 15)"

AV, 20,2y, 2, T, GPATHE (), 5,201, 2,) APATHE (2,4, 25,1, V,) AE, (244,215, 2,1, 21,),
-, PATHES‘(f V1,2, 2,) APATH 5;4(211 V2,V Y,)
NE (C((zn, Z,) A C((zll V2,"))V (C) (21, 2,) A C) (z,'2,,")
v(C (z,,2,)AC (z,,",2,,")) v(C (2,1, 2,) AC (23, 23, 1))
Vv (Co(z4,2,) ACy (211 20, ") v (Ci(244, 2,,) AC(Z11 1 2, 1))

v(C (2,4,2,,) ANC (2,21,)]),)
"E, preserves symbols in left side of the window"

AVZy, 235, 2, ' 2, T.(; PATH E': (W, Wy, 2,4, 2;,) A PATH Ef (210,205, L L) NE (214,205, 21412,),
— (,PATH éf (W' w, "2, 2,,) A\PATH 2;4(211 2,000 ,)
Al (C((Zw Z,) A C((Zu Y2,")) Vv (C) (z 1) A C) (2,',2,,")
V(C,(z,2,) AC, (2", 2,")) v (C (214, 2,,) AC (211, 2,)
v(Co(z,1,2,) ACy(z,, ' 2, ") v (Ci(2y1, 2,) ACL (2, 1 2, 1))
V(C (21, 2,) AC (211,21,)]).]
"E, preserves symbols in right side of the window"

AL(Co (P Pi2) ACo(Pyrs Pi2) AC, (Pays P22) ACo (P P2)
V(Co(Puss Pi2) ACo(Pars Pi) AC, (Pa1 P22) ACo (P P,)
V(Co(Puss Pi2) AC(Py1s P32) AC, (Pays P22) AC(Py ' P2)
vV (Co(Puss Pro) A Ci(Pa1s Pp) AC, (Pags Po2) ACH(Py s Pr)
V(Ci(Puss Pi2) A Co(Pars Pa) A C,(Pars P2o) A Co(Puy s Pra)
vV (Ci(Pus Pi2) A Co(Pars Po) A CL(Pars P2o) ACL(Py ' Py,)
V(Ci(Puys Pi2) A Ci(Pays Ps) AC, (Pars P22) A Ci(Puy ' Pra)
VA(Cy(Puss Pi2) ACL(Payy P32) AC, (Pars P22) AC (P P2 Do)
"In (py, '\ P, ") We get the result of applying the operator & in (p,,, p,,) to the
Boolean values b, in (p;, p,,), and b,, in (p,,, p,,) (Figure 14a)"

70

Wei Ren (02103176)

(2) (L13V3 Vo Wi W, V'V, S WS W Py, Prgs P Py Py s P
(,PATH é:t(fl’ fov V) A PATHE:(Wl’WZ'Il’IZ)/\ Ec (P Pizy Pty P22)
A E (Vi Vo, Py Pio) A Ec (Do, Py Wi, W)
AC (v, V,) AC (W, W) A PATHES (£ £, v,) A PATHZ (W, w1,)
AEC(V\V, ' Py P YA B (P s P v W s Wy) A E, (Do Pray Pu s P)
AE, (Vi Vo,V 5V, YA E, (W, Wy, W W, Y AC (v Y,) ACH (W, Wy,)

"T(v,,v,), (W, w,)] and [(v, v, "), (w, ', w,)] define the windows of change (Figure 15 a, b)"

A2, 291 2oy 2oy 24 5 20 s 20y s 2 [(o (, PATH é;‘(f,f,2,,2,) APATH é’c“(zzl, 25V, V,)
ANE(21, 215,25, 7)) NE(211, 205, 2, 2, YA E (251, 2,55, 2, ', 2,5, 1))
— (,PATH é'c“(f' 1,2, 2,) APATH Ii“(z21 N2y VWV) AE(Zy 2, 2 20)5)
A GGPATHE (W, Wy, 2,;, 2,,) APATHE (2,1, 2,5, 1, 1,) A B (211, 245, 241, 2,)
ANEN(Z4,205,20, 2, YAE (250,250,201 1 255)5
— (GPATHZ (W '\ W, 2, ', 2,) APATHE (2, 2, 1,) A B (2,21, 201, 25,))5) 1

"E, preserves E. outside of the windows, and preserves left and right side of the windows (Figure 15)"

AVZy, 25,2, 2, TG PATHER (f,, £, 201, 2,,) APATHE (24, 205, %4,V,) A B, (24, 215, 21, 24,),
— (PATHZA (", £, 2, 2, Y APATHE (2, , 2, v, v,)
A(C (2, 2,) AC (2, 2,) v (Cy (24, 2,,) ACY (25, 21, 1))
v(C (z,;,2,) AC (2, 2,,")) v(C (2,1, 2,,) AC (21, 21, "))
v (Cy(z2y,2,) ACy (2, ', 20,)) v (Ci (2, 2,,) ACL(2y, ', 20,))

V(C_(z,1,2,) AC (2, 2,))]s),)
"E, preserves symbols in left side of the window"

AVZy, 25,2, 2, [, G PATHE (W, Wy, 2,1, 2,,) APATHZ (24, 2,5, 00, ,) AE (24,20, 2,, 23,)),
— (,PATHZ (W, W, ", 2, ", 2,) APATHZ (2, ', 2, 1,1,)
Als (C((z,2,) A C((z,"z2,")) v (C) (z,2,) A C) (2, 2,")
v(C (z;,2,)AC (2, 2,,")) v(C, (2,1, 2,,) AC (21, 23, "))
v(Co(z,1,2,) ACy(z), ', 2,,")) v (Ci (211, 2,,) AC(2), ', 21, 1))

V(C (24, 2,,) AC (2,1, 25,)]e),)
"E, preserves symbols in right side of the window"

AL(Co(Pars P22) AC (Puyy Pi) AC (P P)
V(Cy(Par P22) AC_(Piss P1) ACo(Piy's P Do) 4
"In (p,, ', P, ') We get the result of applying —, in (p,;, p,,), to the
Boolean value b, in (p,, p,,) (Figure 14b)"

71

Wei Ren (02103176)

(3) (Li3Vy, Vo, Wy, Wy, Py, Pray Poy ' P

(o PATHEZ*(f,, f,,v,,v,) A PATHZ (W, Wi, |y, 1,) A B (Vi) V) Puys Pro) A Ec (Pugs Prgy Wi, W)
AC (v, V,) ACy (W, W,) A PATH ég‘(£, Py P,) APATH é’c“(Py P, kL)
ANE, (Pus Py Pty Pr2)

[(v;,v,), (W, w,)] and [(p, s P,), (Py; s Py,)] define the windows of change (Figure 15¢)"

AVZ1, 2000 201y Zops 2y 5 20 5 2y 5 20 [(L (G PATH é‘c“(f,f,,2,,2,) APATH i2;“(221, Z,,,V;,V,)
NEc (211,215,250, 25) NE (204,25, 21 20 YN E (250, 2550 251, 25,)5
— (,PATH é‘c“(£t 2,2, YV AE(2, 2, 2y, ', 2,) APATH 5;4(221 20" Py P))s)s
A PATHE’C“(Wl, W,,7,,,2,) A PATH é’c“(zﬂ, Zyy |, 1) AE (2311 21y 2011 Z5)
ANE(20,2,,,2, 2, YAE (201,209, 25, ', 20,)5
— (,PATH ii‘c“(z21 N2, L LY AEL (2, 2,2, 2,,) APATH é’c“(Py P Ziy 2 Na)o ks
"E, preserves E. outside of the windows, and preserves left and right side of the windows (Figure 15)"

ALy, 2,2y 2, T (; PATH é:i(fi, f,.2,,,2,) APATH éj(zn’ 2, V) ANE (2440205, 24,1, 21,),
— (,PATH éf(fi'\ f, 2, 2,) APATH 5;4(221 Y2y Py Pr)
N [3 (C((Zn' z12) A C((Zn V2, D) v (C) (2111 Z12) A C)(Zn L2,)
V(C, (214, 2,) AC, (211,20,) v (C (241, 23,) AC (21, 23,))
V(Cy(zy,21,) ACo(2y, ', 2, ")) vV (Ci(zyy, 21,) ACy(Z11 ', 21,)
V(C_ (24, 2,) AC_ (2, 21, D).),
"E, preserves symbols in left side of the window"

AVZy,205, 2, 2, T,(; PATH éj (W, W,,2,,,2,,) APATH E’CA (211,205, 1) NE (244,205, 2,1, 21,),
— (,PATH é;(Pu' Pp ' 2 2,) APATH é:l(zn V2 L)
N [3 (C((le, le) A C((Zn V2, v (C) (2111 212) A C) (211 V2,)
V(C, (2,1, 2,,) AC, (211 2,,) vV (C (21, 2,,) AC (211 21, 7))
V(Co(z1,215) ACo(2y1 ', 2, ")) v (Ci(zyy, 21) ACy(Z11 ', 21,)
V(C_ (24, 2,) AC_ (2, 21,)]s,);
"E, preserves symbols in right side of the window"

AL(Co(Pyy Po) AC(Py s P D) v (Co(Pras) AC (R s P Do) 4
"In (p, ", p,, ") We get a copy of the Boolean value b, in (p,,, p,,) (Figure 14c)"

4 GIYGEs (X, ¥) A—32(Es (Y, 2))
AP, Pigy Pty P GM (X, 1 £) AM(Y, P P) A Ec (1 fo) Py Pro)
AEc (P P b L) AEC (L, Py Py,)
A=TPy " Po (Ec(Pia’s Pra’s Pty P22)
AC(f, 1) AC (L 1) AL(C (P PR) AC (P P)
V(Co Py Pi2) AC (P Pi2 D) 2)1)o

72

Wei Ren (02103176)

"X is the predecessor of the leaf in Eg;, so that this is the last transition” (See Figure 16)
Note that the last transition is necessarily an instance of case ¢ in Figure 14.

) =3y (Esr (X, Y)) "x is the leaf in E; "
AP P (MO P P) A=Y Y, (Be (RS Ry Ve Y,) (P, p,) isaleaf in B

ACR P2 Mo
"the last formula in <C,E.>is "1" "

5.3 Expressing SATQBF in Third-Order Logic

In this section we give a top down presentation of the sketch of the TO formula

for SATQBF . We do not include the details of the sub-formulas whose expression

in TO is straightforward, taking into account the detailed exposition of the SO

formula for SATQBF, in section 5.2.

Roughly, we first express the existence of an alternating valuation suitable for a

given QBF formulag . And then we proceed to evaluate that alternating
valuation by evaluating each leaf valuation on a propositional formula ¢ on {0, 1}
which we build from g and the leaf valuation. For this last part we use the sub

formulas that we have built for SATQBF, .

Input formula g :
@ =31 TXy Vo1 VX I gy QN QX (@' (X Xy s Xoge Xy, s Xage Xy s oves Xigen:Xig,)
Where k is arbitrary, and the formula ¢' is the quantifier free part ofp. We

use the same encoding as in SATQBF, .

73

Wei Ren (02103176)

G-
-

—»() (Nosibling) (Sibling)

Figure 17

As before, we will also use four levels of abstraction to build a sketch fora TO

formula to express SATQBF.

1% Level:

“There is an alternating valuation a, suitable for ¢ , which satisfies ¢ ”

2" | evel:
V3L E32 B2V, g e

(2.1) (“G, =(V,,E))is a linear graph which represents the sequence of quantified

variables ing”
AN

(2.2) “(V7,E7)is a binary tree with all its leaves at the same depth, which is in

turn equal to the length of (V,, E,)”
AN

(2.3) “(V;,E;,B;)is an alternating valuationa, suitable fore, i.e., all the

nodes in (\/T , ET)Whose depth correspond to a universally quantified variable in

74

Wei Ren (02103176)

the quantifier prefix of ¢ have exactly 1 sibling, and its value under BT is

different than that of the given node, and all the nodes whose depth correspond to
an existentially quantified variable in the quantifier prefix of ¢ are either the root

or have no siblings” (See Figure 17)

AN

(2.4) “Every leaf valuation in (V, E; , B;) satisfies ')
3" Level:
Elv_l?),l’ E_IC'},Z’ B_:l_;,z’vtz,l, Etz'z,sz'Z (0

Expressing (2.1):

[,"G,=<V}!,E?>is alinear graph" = LINEAR(V,,E,) (1)
A"The length of G, is equal to the number of variables in the quantifier prefix of ¢"

=[,"V, is a partial bijection from the quantifier prefix of ¢ (restricted to the X
in the quantifier prefix) to V,, which maps every X in ¢ to its corresponding node in G,,
and which preserves E, and <' in G,, ¢ (restricted to the X in the quantifier prefix).",], (2)

In 4th level (subformula 2): See (1) in 5.2.1.2.1 in SATQBF,.

Expressing (2.2):

/\[1"(V-|- , ET) is a connected graph that has one root and one or more leaves." (D)
A"in (V7 , E;) except for the root, all nodes have id=1")
A"in V7, E;) except for the leaves, all nodes have od=1 or 2" 3)

75

Wei Ren (02103176)

AN (\/T , ET) all leaves have the same depth, which is in turn equal to the length of (V,, E,)"

=[,"VX ' (,(X isaleafin (V7 , E;)) - (,3S3* <V}, 3 bijection D 2 (4)
'V, to S, which preserves E, and ET o "

ASp(X) 5)

A"D'H(X) is the leaf in G, = (V,, E,)" (6)

A"Sp includes the root of V1, E+)™),):1,1,)

In 4th level (subformulas 1, 2, 3):
IR[VZ V5 (Z) - PATHE (R,2)) A—3S{(E; (S,,R))
A3S!(-3S3(E; (S,,S,))
AVZHNVT (Z)AZ #R) - 3S{(E; (S, 2) AVS;(E (S,.2) > S, =5,)))]

A ‘v’Zl(VT (Z) > —35,S;55(S, #S,AS, #S, AS, # S, A ET (Z,S) A~ ET (Z,S,)n ET (Z,S,)))
Expressing (2.3):
See Figures 8, 10 in SATQBF, for G, V.

A" By is atotal function from V. to {0,1}" (1)

AL"Vx eV, VS[S)'l Vs st (Sp. Er |SD) is a linear graph which includes
the root of (V;, E;) (2)

v bijection D32 from the initial subgraph of G, up to x, to Sp s:t. D preserves E, and E; |SD "

76

Wei Ren (02103176)

(s, (;"the predecessor of V;*(x) in E' is "v" "), ‘)
— (" D(x) has exactly one sibling in (V;, E;),

and B, of that sibling is = than B, (D(x))"),1, 4)
AL, (s"the predecessor of V_*(x) in E' is "3" "), (5)

— (5" D(x) has no sibling in (V5 , E;), or D(x) is the root in (V5 , E+)")s1,);1,1; (6)
Expressing (2.4):

A[l"VS\?’l cV; st (S, E; |,) is alinear graph which includes the root

and a leaf of (V;, E;)" (1)
n HH H 3 2 . H n

(,"3bijection D* V, > SV which preserves E, and ET |5v 2

(;"3B, :V, »{0,13}, which coincides with B; (S,) w.r.t. D" (3)

A"the leaf valuation represented by (V,, E,, B,) satisfies the quantifier free subformula
¢’ of (/7")3)2]1)0 4)

In 4th level (subformula 4): See 5.2.1.2.2 in SATQBF,.

Conclusion and Future Work

In this thesis, we have given a very brief introduction to Finite Model Theory and

relational databases, the relationship between logic languages and complexity classes,

the basic notions of First-Order logic, Second-Order logic, Third-Order logic and a

few related examples. It gives us an overall picture on what logic languages are, how

they relate to complexity classes and why they are so important.

77

Wei Ren (02103176)

The major purposes of this thesis are the following two points. Firstly, a non trivial

Second-Order logic formula is built to express a non trivial property, namely the
problem known as SATQBF,, which is defined, for some k>0 as the class of
quantified propositional formulas with k alternated blocks of quantifiers, starting

with an existential block, which are true. As we know that the expressibility of SO

(Second-Order logic) equals the class PH (Polynomial-time hierarchy), and that for

everyk >0, SATQBF, is a complete problem for the level = of the PH, there must be
a formula in SO which expresses SATQBF, . We give a detailed explanation on the use

of SO to express SATQBF, . Secondly, using the knowledge gained from the first point,

we give a top down presentation of the sketch of a Third Order Logic formula
for SATQBF , which is defined similarly but where the number of blocks, k, is
arbitrary. This is a problem known to be complete for PSPACE, which means that the

existence of a Second-Order logic formula is very unlikely, since it would imply that

PSPACE = PH.

Tentatively, 1 will continue my research on the theoretical parts of Higher Order
logics. Maybe | will bring some application perspectives into it such as the
construction of a query language for relational databases based on Higher-Order

Logics. Also, and following my master thesis, it is also worth investigating, as a part
of my PHD work, how the strategy used here to define SATQBF, can be adapted to
define AUTOSAT ([MP96], [Fer08]) for different fragments of Higher-Order logics.

We know that for everyk there is a reduction from SATQBF, to AUTOSAT (X)) .

AUTOSAT (20)is the class of first order formulas with up tok alternations of blocks
of quantifiers which represented as finite structures satisfy themselves. In fact, same
as SATQBF, , AUTOSAT (X)) is complete for the level XP of the PH (Polynomial

Hierarchy). It could be the case that this approach leads to tighter upper bounds than

those in the work reported in those articles.

78

Wei Ren (02103176)

7 References

[CH80] Chandra A., Harel D.. Computable Queries for Relational Data Bases.
Journal of Computer and System Sciences 21(2), pp. 156-178, 1980.

[Cod72] Codd E. F. (1972). Relational completeness of database sublanguage. In Data
Base Systems (Rustin, Ed.). Prentice Hall. Pp. 65-98, 1972.

[EF99] Heinz-Dieter Ebbinghaus and J'org Flum. Finite Model Theory. Perspectives
in Mathematical Logic. Springer, Berlin Heidelberg New York, 2nd

edition, 1999.

[Fer08] Ferrarotti, F. A., Expressibility of Higher-Order Logics on Relational
Databases: Proper Hierarchies, PhD thesis, Massey University, 2008.

[FTO4] Ferrarotti, F.A., Turull-Torres, J.M., Using Higher Order Quantification in
Logical Query languages. Proceedings of 3™ Chilean Database Workshops,

Avrica, Chile, 2004.

[GJO3] Garey, M.R., Johnson, D.S., Computers and Intractability: A Guide to the

Theory of NP-Completeness, Bell Laboratories, New Jersey, 2003.

[HTO6] Hella, L., Turull-Torres, J.M., Computing queries with higher order logics.
Theor. Comput. Sci.355, 197-214 (2006).

[Imm99] Immerman, N., Descriptive complexity, Springer-Verlag, New York, 1999.

[Lib04] Libkin, L., Elements of Finite Model Theory, Springer-Verlag, Berlin, 2004.

79

Wei Ren (02103176)

[MP96] Johann A. Makowsky and Yachin B. Pnueli. Arity and alternation in
second-order logic. Ann. Pure Appl. Logic, 78(1-3):189-202, 1996.

[RG03] Ramakrishnan R. & Gehrke J.. (2003). Database Management Systems (3

Edition). New York: McGraw-Hill Companies, Inc.

[RTO8] Ren, W., Turull-Torres, J.M., Cubic graph in Second Order Logic. Massey
University 2008.

[Sto76] Stockmeyer, L.J., The polynomial-time hierarchy. Theor. Comput. Sci.,
3(1):1-22, 1976.

[Sto87] Stockmeyer, L.J., Classifying the Computational Complexity of Problems.
Journal of Symbolic Logic, Volume 52, Issue 1 (Mar., 1987), 1-43.

[TTO3] Turull-Torres J. M. (2003). Notes on Relational Calculus. Information Science

Research Centre, Massey University.

[Var82] Vardi M. Y. (1982). The Complexity of Relational Query Languages.

Association for Computing Machinery. 5: 137-146.

80

