
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

On the Descriptive Complexity of Satisfiability on

Quantified Boolean Formulas

A thesis presented in partial fulfilment of

the requirements for the degree of

Master

Of

Information Sciences

At Massey University,

Wellington,

New Zealand

Wei Ren (02103176)

Mar 2011

Thesis Supervisor: Dr. Jose Maria Turull-Torres

 Wei Ren (02103176)

 1

Abstract

In the present thesis, we deal with the construction of non trivial formulas in higher

order logic languages. In particular, we focus on using SO (Second-Order logic) and

TO (Third-Order logic) to express kSATQBF , and SATQBF respectively. First of all,

we explain the relationship between logic languages and complexity classes. Then we

give formal definitions and examples for FO (First-Order), SO and

HO (2)i i  (Higher-Order logic). It is known that, for every 1k  ,
kSATQBF is a

complete problem for the level P

k of PH (Polynomial-time hierarchy), and

that SATQBF is a complete problem for PSPACE. As the expressibility of SO is

known to equal the class PH, then we know that there must be an SO formula which

can express kSATQBF . On the other hand, PSPACE is known to be equal in

expressive power to SO with the addition of a second order transitive closure

quantifier, which is widely conjectured to be strictly more expressive than SO alone.

As TO includes PSPACE , this means that there must be a TO formula that can

express SATQBF . Here we give first a top down explanation on the use of SO to

express kSATQBF . A detailed SO formula is presented. We then give a top down

presentation of the sketch of a TO formula for SATQBF .

 Wei Ren (02103176)

 2

Acknowledgments

I am deeply grateful to my supervisor, Dr. Jose Maria Turull-Torres. Since the

beginning, he has been teaching and sharing his knowledge with me, and always

supported and encouraged me. I have to thank my lovely wife Xue as well, who has

always supported me. Also big thanks to my former teacher and friend Dr. Keri Logan,

who did the proofreading. One more person that I have to say thanks is my company

manager Jeremy, who has given me great support and suggestions when I have had

difficulty handling work and study at the same time. I am also very grateful to the two

reviewers of my thesis, Dr. C. McCartin and Dr. F. Ferrarotti, for their careful reading

and their comments and suggestions. Without all their help and supports, I would not

have been able to complete my master thesis on time.

 Wei Ren (02103176)

 3

Contents

1 INTRODUCTION.. 5

2 BACKGROUND .. 8

2.1 FINITE MODEL THEORY, RELATIONAL DATABASE AND QUERIES ... 8

2.2 RELATIONSHIP WITH COMPLEXITY CLASSES ... 8

2.3 USING LOGIC TO EXPRESS DATABASE QUERIES .. 10

2.3.1 FIRST-ORDER LOGIC (FO) .. 10

2.3.1.1 EXAMPLES ... 14

2.3.2 SECOND-ORDER LOGIC (SO) .. 16

2.3.2.1 EXAMPLES ... 19

2.3.3 THIRD ORDER LOGIC (TO)... 21

2.3.3.1 EXAMPLES IN THIRD-ORDER LOGIC (TO) .. 24

3 SUB-FORMULAS AND RULES USED THROUGHOUT THE THESIS 25

4 QUANTIFIED BOOLEAN FORMULAS ... 28

4.1 DEFINITIONS ... 28

5 EXPRESSING kSATQBF ANDSATQBF IN LOGIC ... 32

5.1 COMPLEXITY OF THE PROBLEMS ... 32

5.1.1 kSATQBF CAN BE EXPRESSED IN SECOND-ORDER LOGIC 32

5.1.2 SATQBF CAN BE EXPRESSED IN THIRD-ORDER LOGIC 33

5.2 EXPRESSING kSATQBF IN SECOND-ORDER LOGIC ... 34

5.2.1 INFORMAL EXPRESSION ... 36

5.2.1.1 EXPRESSING (2.1): ENCODING EACH LEAF VALUATION FOR THE INPUT

FORMULA , USING THE GRAPH tG .. 37

5.2.1.2 EXPRESSING (2.2) ... 45

5.2.1.2.1 EXPRESSING (2.2A)： .. 46

5.2.1.2.2 EXPRESSING (2.2B): “… SUCH THAT THE FORMULA IS TRUE”

EVALUATING THE FORMULA 50

 Wei Ren (02103176)

 4

5.2.1.3 COMPLETE EXPRESSION FOR kSATQBF .. 59

5.3 EXPRESSING SATQBF IN THIRD-ORDER LOGIC .. 73

6 CONCLUSION AND FUTURE WORK .. 77

7 REFERENCES ... 79

 Wei Ren (02103176)

 5

1 Introduction

For many years there has been a lot of interest in query languages for relational

databases. As we know query languages are specialized languages for asking

questions, or queries, which involve the data in a database [RG03]. There are two

major types of relational query languages, logical and algebraic. Logical languages,

such as the language of relational calculus contain formulas which when evaluated on

a database return as an answer the set of all tuples that satisfy them. These types of

languages are non-procedural in nature. Algebraic languages, which contain relational

algebra, consist of programs whose basic operations are algebraic ones like join and

projection. These types of languages are procedural in nature [Var82].

Between these two types of query languages, strong relationships exist. Many

researchers have been working on this subject. Therefore, how to distinguish these

two types of query languages, and what the differences are, are important questions

that we have to face. There are different ways to measure the complexity of evaluating

queries in a specific language. One of the ways is to compare the expressive power of

these languages. Computational complexity theory is brought into this field; it

measures the amount of computational resources, such as time and space that are

needed, as a function of the size of the input, to compute a query [Imm99]. It helps us

to compare the expressibility of different query languages by looking at their

corresponding complexity classes.

Regarding relational database theory, there is a lot of information that is related.

Following Codd’s pioneering work [Cod72] on relational calculus and relational

algebra, a lot of work has been done studying and comparing the expressive power of

these query languages. A central topic in Database Theory in recent years is to study

the expressive power of different logics which are built as different sorts of extensions

to first-order logic (FO), or equivalently, relational calculus or relational algebra, used

 Wei Ren (02103176)

 6

as computation models for the expression of queries to relational databases, which can

be sketched in the following graph (See Figure 1).

Figure 1: Expressibility of different logic languages

Looking at the graph above, in a more pure logic setting, the problem is regarded as

the expressibility of different logics in finite model theory [EF99]. Finite model

theory studies, among other subjects, the expressive power of logics on finite models,

in contrast to classical model theory, on the other hand, which concentrates on infinite

structures, given that most subjects of interest in mathematics deal with infinite

structures. There are many interesting research areas in finite model theory. One is

interested in the expressiveness of logics over finite graphs, finite strings, or other

finite relational structures.

However it seems that not much attention has been devoted in the literature to the

actual use of higher order logics to express non trivial properties of structures. With

our work in [RT08] and in this thesis we aim to start a line of research in that

direction.

In the present work by QBF (Quantified Boolean Formulas) we mean the formulas of

Rising the order

Infinitary Logics

Adding

quantifiers
FO = RC =RA

SO

TO

HOi

Order of the logic

TC LFP TC2

 Wei Ren (02103176)

 7

the form 1 1 2 2... ()n nF Q x Q x Q x E , where E is a Boolean expression involving the

variables 1 2, ,..., nx x x and each iQ is either " " or " " . For 1k  , by kQBF we mean

the QBF formulas which have k alternated blocks of quantifiers, starting with an

existential block. kSATQBF and SATQBF denote respectively, the problems of

deciding whether a kQBF formula or a QBF formula is satisfiable. As we know, for

every 1k  , is P

k kSATQBF  complete, where

...

NP

NPP NP

k NP  . We also know

that SATQBF is a complete problem for PSPACE. As according to computational

complexity theory, the expressibility of SO (Second-Order logic) equals the class PH

(Polynomial-time hierarchy), then we know that, for every 1k  , kSATQBF can be

expressed in SO. On the other hand, PSPACE is known to be equal in expressive

power to SO with the addition of a second order transitive closure operator, which is

widely conjectured to be strictly more expressive than SO alone. As TO

includes PSPACE , this means that there must be a TO formula that can

express SATQBF . However, it seems that how to express these problems in SO and

TO, respectively, is far from well known. In this thesis, we give in full detail an SO

formula to express kSATQBF and then we give a sketch of a TO formula to

express SATQBF .

In Section 2, we will give examples of graph properties expressed in different logics.

We will mainly focus on FO, SO, TO and the expressive power that each of them have

through a few examples of queries. Once we have a basic picture about what they are,

we will focus in the following sections on the expressibility of second order logic,

using this logic to express kSATQBF . And then we will give in Subsection 5.3 a top

down presentation of the sketch of a TO formula for SATQBF .

 Wei Ren (02103176)

 8

2 Background

2.1 Finite Model Theory, Relational Database and Queries

Finite Model Theory and Relational Database Theory are two disciplines

intimately connected. While Finite Model Theory provides a solid theoretical

foundation to databases, databases provide one of the main concrete scenarios for

Finite Model Theory within computer science. And most of the overlaps between

Finite Model Theory and Relational Database Theory occur in the theory of query

languages. Chandra and Harel [CH80] formalized the notion of computable queries

for relational databases in 1980, and since then intensive studies have been done along

this direction. There is much research which has focused on the completeness of

different query languages and their expressive powers or computational complexities.

From a theoretical perspective, it is desirable for a model of computation of queries to

be representation independent, which means queries to databases that represent the

same reality should evaluate to the same result. In mathematical terms, Chandra and

Harel [CH80] partially captured the previous concept by asking queries to isomorphic

databases to evaluate to the same result. Therefore, the subject of query languages has

become the most important bridge between Finite Model theory and relational

databases, since logic languages are one of the ways to express queries.

2.2 Relationship with Complexity classes

Computational complexity theory and logic languages are two fundamental areas in

computer science. In computational complexity theory there are several basic notions

and ongoing questions of which we have to be aware. Such as different computational

models, some classic complexity classes, the relationship between different

complexity classes, how to classify them, and then, what relationships between these

complexity classes have been discovered, and what have not. And why we need to

 Wei Ren (02103176)

 9

define these complexity classes. Let us look at the different perspectives.

Before we go any further, let us look at an overall picture of the relationship between

different classic complexity classes and logics: (Figure 2)

Figure 2: Relationship between different classic complexity classes and logics

From the graph above, we can clearly see the relationship among these complexity

classes. Most researchers believe it looks like the graph above, i.e., that all inclusions

are proper. The known relationships are, however, as follows, where  means strict

inclusion, and  means inclusion.

NLOGSPACEPNPPHPSPACEDTIME
(1)

(2)
On NTIME

(1)

(2)
On



For instance, we know that NLOGSPACE is included in P (PTIME), but we still do

not know if there are any problems in P, which are not in NLOGSPACE. This means

that it could be the case that P = NLOGSPACE. The following are known

relationships:

...

(2)

NP

NPn NPTO NTIME

SATQBF

2

PSPACE FO PFP

SO TC

   

 

PH SO

kSATQBF

NP SO 

 NPC

P FO LFP   

NLOGSPACE FO TC   

 Wei Ren (02103176)

 10

NLOGSPACE  PSPACE

P  EXPTIME = DTIME
(1)

(2)
On

2.3 Using Logic to Express Database Queries

2.3.1 First-Order logic (FO)

Following [TT03], a First Order language L () is the set of formulas built up from

the relation symbols of  and the relation symbols: =,  using logical connectives:

, ,   variables: x, y, z, …, and quantifiers: ,  . The relation symbol  refers to a

total ordering on the domain of the structure, and the quantifiers range over this

domain (Universal quantifier  for All, Existential quantifier  for Exists). A term is

either a variable or a constant symbol in the schema.

A schema or vocabulary is as follows: 1 ,..., sR R    , where for 1 i s  ， iR is

a relation symbol of arity 1ir  .

Let  be a schema, we define the set of atomic formulae on the schema  as

follows:

1. If R is a relation symbol in  of arity r, for some r  1, and 0 1,..., rt t  are

variables, then 0 1(,...,)rR t t  is an atomic formula.

2. If 0t and 1t are variables, then 0t = 1t is an atomic formula.

3. Nothing else is an atomic formula.

 Wei Ren (02103176)

 11

We define the set of well formed formulae as follows:

1. An atomic formula is a well formed formula.

2. If ,  are well formed formulae, then the following are also well formed

formulae: (),(),(),()         

3. If  is a well formed formulae, and x is an individual variable, then the following

are also well formed formulae: (), ()x x  

4. Nothing else is a well formed formula.

The variable x is said to be bound in the formulae ()x  and ()x  . If a variable is

not bound in a formula, then it is said to be free in that formula. By 1(,...,)rx x we

denote a formula of First-Order logic whose free variables are exactly 1{ ,..., }rx x . A

sentence is a formula with no free variables.

How to use FO in a particular context, such as relational databases, becomes an

important issue. Here we need to define the semantics for relational calculus, which is

also considered to have the same expressive power as First-Order Logic. There are

two basic concepts.

A structure (or database instance) of schema  is as follows:

A A A

1A=<D , ,..., sR R  ,where AD is a finite set, for1 i s  , A

iR is a relation of arity ir

on AD which interprets the relation symbol iR in  .

Firstly, assume we have a relational schema . A valuation v on a database A of

 Wei Ren (02103176)

 12

schema , is a function which assigns to each individual variable x an element in

dom(A).

Let 0 1,v v be two valuations on a database A of schema , and let x be a variable, we

say that 0v and 1v are x-equivalent if they coincide in every variable, with the

possible exception of variable x.

Secondly, considering the same database A of schema , if we have a valuation v on

the database A, we can define inductively the notion of satisfaction, which is denoted

as |= .

A, v |= R (0 r-1x ,..., x) where R is a relation symbol in  of arity r, for some r 1, and

0 r-1x ,..., x are individual variables, if and only if the r-tuple (v(0x), …, v(r-1x))

belongs to the relation AR .

A, v |= 0t = 1t where 0t , 1t are variables, if and only if v (0t) = v (1t).

A, v|=  where  is a well formed formula, if and only if it is not the case that A,

v |= .

A, v|=  where , are well formed formulae, if and only if A, v|= and A,

v|= .

A, v|=  where , are well formed formulae, if and only if A, v|= or A,

v|= , or both hold.

 Wei Ren (02103176)

 13

A, v|= ()x  where x is an individual variable and  is a well formed formula, if

and only if there is at least one valuation v’, which is x-equivalent to v, such that A,

v’|= . That is, if and only if there is at least one element in the domain of the

database, such that A, v|= when that element replaces the variable x in the

formula .

A, v|= ()x  where x is an individual variable and  is a well formed formula, if

and only if for every valuation v’, which is x-equivalent to v, A, v’|= . That is, A,

v|= if we replace the variable x in the formula  with any element in the domain

of the database.

Let  be a schema, let r 1, and let R be a relation symbol of arity r. A query of

arity r and schema  is a function q: RB B   that preserves isomorphisms, and

such that for every database A of schema (), dom (q (A)) ⊆ dom (A). That is, all

the elements which form the output to the query q when evaluated on a given database

A must belong to the domain of that database.

A Boolean query is a function q: {TRUE,FALSE}B  that preserves

isomorphisms.

If  (1,..., kx x) is a formula of schema with free variable { 1,..., kx x }, A is a database

of schema , and 1,..., ka a are elements of the domain of A, with A|=  (1,..., kx x)

[1,..., ka a], we denote that  is TRUE, when interpreted by A, under a valuation v

where for 1  i  k it is v (ix) = ia . Now we consider the set of all such valuations

as follows:

 Wei Ren (02103176)

 14

A = {(1,..., ka a): 1,..., ka a dom (A)  A|=  (1,..., kx x) [1,..., ka a]}

That is, A is the relation defined by  in the database A, and its arity is given by

the number of free variables in . Formally, we say that a formula  (1,..., kx x) of

schema , expresses a query q of schema , if for every database A of schema , is

q(A) = A . Similarly, a sentence  expresses a Boolean query q if for every

database A of schema , is q(A) = TRUE if and only if A|= .

2.3.1.1 Examples

We will denote the input degree of a node in a directed graph as id and the output

degree as od.

We consider a database of schema F   , where F has the following semantics:

Departure City (From) Arrival City (To)

Query 1: “Get the cities from which there are flights to exactly one city” which means

that their output degree is 1.

To express this in FO logic: () ((,) ((,) ())x y F x y z F x z z y      , which means

that there is one city y, such that there is a flight from x to y, and that for every city z,

if there is a flight from x to that city z, then z is equal to y. x in this formula is the only

free variable, because it does not have any quantifier which binds it. We use ()x to

denote this formula. Consider a simple database instance as in (Figure 3); the result

 Wei Ren (02103176)

 15

for the query will be the unary relation {(PN)}.

Query 2: “Get the cities from which there are flights to exactly 2 other cities” (output

degree =2).

Suppose that a given database contains the name of cities and pairs (a, b) of such

cities such that a given airline offers services from A to B without stopover. Let

2F   be the database schema, and let J1 be a database instance of :

 1J = { 1 1,J JD F } where 1JD = {A, B, C, D, E, F}, and

1JF = {(A, D), (A, B), (B, C), (D, E), (B, F)}

1J :

This query in logic:

1 2 1 2 1 2 3 3 3 1 3 2() ((,) (,) ((,) ()))x z z z z F x z F x z z F x z z z z z          

Query 3: Get the cities with flights to all cities from which there is exactly one flight.

Wellington

Auckland

PN Result Figure 3

F B

E D

C B

B A

D A

To From

 Wei Ren (02103176)

 16

1 2 1 2 3 1 3 3 2 1() (((,) ((,) ()) (,))x z z F z z z F z z z z F x z      

If we slightly change the query, as follows: Get the cities with flights to EXACTLY all

cities from which there is exactly one flight, and then the result will be different:

2.3.2 Second-Order logic

Second-Order Logic is an extension of First Order Logic, which allows quantifying

over relations.

This part expresses that the output degree of
1z is 1. It will

give us all the cities whose output degree is 1.

Once we have all the cities with output degree 1, we say that

for all those cities there is a flight from x to them.

Result

Figure 4

Not in the Result.

Because this city

has a flight to a

city whose output

degree is greater

than 1.
Figure 5

 Wei Ren (02103176)

 17

Definition 1 (Second-order logic) ([Lib04], p113). The definition of second-order

logic, SO, extends the definition of FO with second-order variables, ranging over

subsets and relations on the universe, and quantification over such variables. We

assume that for every k > 0, there are infinitely many variables 1 2, ,...,k kX X ranging

over k-ary relations. A formula of SO can have both first-order and second-order free

variables; we write (,)x X to indicate that x are free first-order variables, and

X are free second-order variables.

Given a vocabulary or schema  that consists of relation and constant symbols, we

define SO terms and formulae, and their free variables, as follows:

1. Every first-order variable x, is a first-order term. The only free variable of a term x

is variable x.

2. There are three kinds of atomic formulae:

a) FO atomic formulae; that is, formulae of the form

i. t = t’, where t, t’ are variables, and

ii. R(t), where t is a tuple of variables, and R , and

b) X (1,..., kt t), where 1,..., kt t are variables, and X is a second-order variable of

arity k. The free first-order variables of this formula are free first-order

variables of 1,..., kt t ; the free second-order variable is X.

3. The formulae of SO are closed under the Boolean connectives , ,   and

first-order quantification, with the usual rules of free variables.

 Wei Ren (02103176)

 18

4. If (, ,)x Y X is a formula, then Y (, ,)x Y X and Y (, ,)x Y X are formulae,

whose free variables are x and X .

The semantics is defined as follows. Suppose A is a database of schema . For each

formula (,)x X , we define the notion of satisfaction | (,)A b B , where b is a tuple

of elements of AD of the same length as x , and for X = (1,..., lX X), with each

iX being of arity in , 1(,...,)lB B B , where each iB is subset of () inAD .

We give the semantics only for constructions that are different from those for FO:

1. If (,)x X is X (1,..., kt t), where X is k-ary and 1,..., kt t are terms, with free

variables among x , then | (,)A b B if and only if the tuple (1 (),..., ()A A

kt b t b) is in

B.

2. If (,)x X is Y (, ,)x Y X , where Y is k-ary, then | (,)A b B if for some

C ()A kD , it is the case that | (, ,)A b C B .

3. If (,)x X is Y (, ,)x Y X , and Y is k-ary, then | (,)A b B if for all

C ()A kD , we have | (, ,)A b C B .

Definition 2 ([Lib04], p115) Existential SO logic, or SO , is defined as the restriction

of SO that consists of the formulae of the form 1... ,nX X   where  does not have

any second-order quantification. If, furthermore, all iX ’s have arity 1, the resulting

restriction is called existential monadic SO, or MSO . If the second-order quantifier

prefix consists only of universal quantifiers, we speak of the universal SO logic,

or SO , and its further restriction to monadic quantifiers is referred to as MSO .

 Wei Ren (02103176)

 19

2.3.2.1 Examples

We include below some examples from [FT04], among other sources.

Here is an example of how to use Second-Order Logic to express a query that

represents a well known problem, which is known in graph theory as “3–colorability”.

Let us consider a graph G with the schema 2E   . We have to check whether the

graph G is 3 colorable, which means that the nodes in G can be colored, using three

different colors, in such a way that each node has exactly one color and no two nodes

with the same color are connected by an edge. The query can be expressed by an

existential Second-Order formula of the form: ()RYB  , where R, Y, B are unary

predicates (sets that represent the 3 colors, Red(R), Yellow(Y), and Blue(B)), and is

a First-Order formula.

Note that “3-colorability” can be used in the flights example. Here is the query: “Can

we split the set of cities in 3 groups, in such a way that no direct flight connects two

cities of the same group?”

Departure City (From) Arrival City (To)

RBY("all cities belong exactly to 1 set, R, B or Y, and whenever

we have a flight it connects two cities which belong to different sets")

RBY(x((R(x) Y(x) B(x)) "all nodes have a colo





 

     ur"

 R(x) (Y(x) B(x))

 Y(x) (R(x) B(x))

 B(x) (R(x) Y(x)) "1 single colour per node"

   

   

   

 Wei Ren (02103176)

 20

 y(Flights(x,y) (R(x) R(y)) "all edges link two nodes of

 (Y(x) Y(y)) different colors"

 ((xB

  

 

) (y))))) B

Second-Order logic differs from First-Order logic in that it has variables and

quantifiers not only for individuals but also for n-ary relations. The expressive power

of Second-Order logic is higher than First-Order logic; for instance, the transitive

closure query and 3-colorability (an NP complete problem) are not expressible in

First-Order logic, but can be expressed in Second-Order logic.

Query: “Which pairs of cities are connected through flights, either with or without

stopovers?” This is the transitive closure or reachability query, and it uses binary

existential Second-Order logic (bin SO).

1 2(v,w) S R ("the graph(S,R) is a subgraph of Flights, and one of

its connected componets is linear, with root v and leaf w")

(v,w) S R(S(v) S(w) "v,w S"

 xy(R(x,y)





 

    

  F(x,y)) "R Flights"

 xy(R(x,y) S(x) S(y)) "R S S"

 x(S(x) y(R(x,y) R(y,x)))

 "there are no isolated nodes in the graph (S,R)"



    

  

x(S(x) x=w y(R(x,y))

 x w y(R(x,y) z(R(x,z) y=z)))

 "w is a leaf, and all othe

 



   

r nodes have od=1"

 x(S(x) x=v y(R(y,x))

 x v y(R(y,x) z(R(z,x) y=z)))

  



   

 "v is a root, and all other nodes have id=1"

 Wei Ren (02103176)

 21

2.3.3 Third Order logic (TO)

In the alphabet of third order logic besides the usual logical and punctuation symbols,

we have a countable infinite set of individual variables, for every arity, a countable

infinite set of second order relation variables, and for every arity and every type, a

countable infinite set of relation variables of third order. A type is a particular

combination of individual and SO relation variables. We use upper case letters like

X and Y for relation variables, and lower case letters like x and y for individual

variables.

Let  be a schema or relational vocabulary. We define the set of atomic formulae on

the vocabulary  as follows:

(1) If R is a relation symbol in  of arity r, for some 1r  , and 0 1, ..., rx x  are

individual variables, then R (0 1, ..., rx x ) is an atomic formula.

(2) If x and y are individual variables, then x = y is an atomic formula.

(3) If X is a relation variable of order 2, and of arity r, for some 1r  , and 0 1, ..., rx x 

are individual variables, then X (0 1, ..., rx x ) is an atomic formula.

(4) If X is a relation variable of order 3 and of arity r, for some 0r  , and for 0 i r  ,

iY is either an individual variable or a relation variable of order 2, then X 0 1(,...,)rY Y 

is an atomic formula, provided that at least one of the variables iY is a relation

variable of order 2, The particular tuple of individual and relation variables must

agree with the type of the third order variable X.

(5) Nothing else is an atomic formula.

 Wei Ren (02103176)

 22

Let 0r  . A second-order relation of arity r is a relation in the classical sense, i.e., a

set of r-tuples of elements of the domain of a given structure. A relation of order 3 of

arity r, or a third order relation of arity r, is a set of r-tuples where each component is

either a relation of order 2, or an element of the domain of a given structure,

according to the type of the third order relation.

Let be a relational vocabulary. A valuation v on a -structure A, is a function which

assigns to each individual variable x an element in dom(A), and to each relation

variable X of order j, for some1 4j  , and of arity r, for some 0r  , a relation of

order j, arity r, and of the same type as X if j=3, on dom(A). Let 0 1,v v be two

valuations on a -structure A, and let V be a variable of whichever kind, we say

that 0v and 1v are V-equivalent if they coincide in every variable of whichever kind,

with the possible exception of variable V. We also use the notion of equivalence w.r.t.

sets of variables. Let A be a -structure, and let v be a valuation on A. Next, we

define inductively the notion of satisfaction inTO .

(1) A, 0 1| (,...,)rv R x x  , where R is a relation symbol in of arity r, for some 1r  ,

and 0 1, ..., rx x  are individual variables, iff the r-tuple 0 1((),..., ())rv x v x  belongs to the

(second-order) relation AR .

(2) A, 0 1| (,...,),rv X x x  where X is a relation variable of order 2 and of arity r, for

some 1r  , and 0 1, ..., rx x  are individual variables, iff the

r-tuple 0 1((),..., ())rv x v x  belongs to the second-order relation v(X).

(3) A, 0 1| (,...,)rv X Y Y  , where X is a relation variable of order 3, and of arity r, for

some 0r  , and for 0 i r  , iY is either an individual variable or a relation variable

 Wei Ren (02103176)

 23

of order 2, iff the r-tuple of elements and/or relations of order 2 (according to the type

of X), 0 1((),..., ())rv Y v Y  belongs to the relation of order 3 v(X).

(4) A, | ,v x y  where x, y are individual variables, iff v(x) = v(y).

(5) A, |v  , where is a well-formed formula, iff it is not the case that A, |v  .

(6) A, | ,v    where ,  are well-formed formula, iff A, | and A, |v v  

(7) A, | ,v    where ,  are well-formed formula, iff either A, | or A, |v v   ,

or both hold.

(8) A, | (),v x   where x is an individual variable and is a well-formed formula, iff

there a valuation 'v , which is x-equivalent to v, such that A, ' |v 

(9) A, | (),v x  where x is an individual variable and is a well-formed formula, iff

for every valuation 'v , which is x-equivalent to v, A, ' |v 

(10) A, | (),v X   where X is a relation variable, and is a well-formed formula, iff

there is a valuation 'v , which is X-equivalent to v, such that A, ' |v 

(11) A, | (),v X  where X is a relation variable, and is a well-formed formula,

iff for every valuation 'v , which is X-equivalent to v, A, ' |v 

 Wei Ren (02103176)

 24

2.3.3.1 Examples in Third-Order Logic (TO)

We include below some examples from [FT04]. Let’s consider the schema

2Bought    of the sales database together with its intuitive meaning. That is, if R is

a relation instance of relation schema Bought = (Customer, Article), a pair (x,y)R iff

customer x bought article y. Here 3,1S is a relation variable of order 3 and arity 1,

and 3,2R is a relation variable of order 3 and arity 2.

3,1 2,1 3,1 2,1 2,1

2,1 3,1 2,1 2,1

S S S

S

S S S

((() x(y(Bought(x,y) (y))))

"each set in is the set of articles bought by some customer"

 x((() y(Bought(x,y) (y))))

 "for each customer, the set of

      

   

S S

S

S

3,1 3,1

articles bought by him/her, is a set in "

 ...)

 (" is the set of sets of articles bought by the different customers and...")



 

S

S S

Then we can express properties of the sets of articles bought by different customers,

for example: “For exactly half of the possible subsets of articles, there is some

customer who bought those articles”. The existential Third-Order formula for this

query:

3,1 3,1 2,1 3,1 2,1 2,1

1 2 1

3,1

1

3,1 2,1 2,1

2

(((() y((y) x(Bought(x,y))))

 " is a set of subsets of articles"

 (() y((y) x(Bought(x,y))))

S S S

S S

     

  

S S S

S

S

3,1

2

2,1 3,1 2,1 3,1 2,1

1 2

 " is a set of subsets of articles"

 ((y((y) x(Bought(x,y)))) (() ()))

 "every subset of articles is eith

S S S    

S

S S

3,1 3,1

1 2er in or in "S S

 Wei Ren (02103176)

 25

3,1 2,1 3,1 2,1 3,1 3,1

1 2 1 2

3,1 2,1 2,1

1

3,1

1

 (() ()) "no set is in both and "

 (() x(y((y) (Bought(x,y))))

 "every set in is the set of articles bought by

S S

S S

 

   

S S S S

S

S

3,1 2,1 2,1

2

3,1

2

3,2 2,1 2,1 2,1 3,2 3

1 2 3 1 2 1

some customer"

 (() x(y((y) (Bought(x,y))))

 "no set in is the set of articles bought by some customer"

 ((((,)

S S

S S S S S

   

  

S

S

R R S ,1 3,1

1 2 2 1 2

3,2 3,2

1 2 1 3 2 3

3,2 3,2

1 2 3 2 1 3

,)

() ()) " "

 ((,) () "function"

 ((,) (,) =) "injectivity"

S S

S S S S S

S S S S S S

S  

  

 

  

S R S S

R R

R R

3,1 3,2

1 1 2 1 2

3,1 3,2

2 2 1 1 2

 (() ((,))) "totality"

 (() ((,))))) "surjectivity"

S S S S

S S S S

 

 

S R

S R

Note that 3,2R is a bijection if and only if it is a function which is total, injective and

surjective, and that 3,1 3,1 3,1 3,1

1 2 1 2"there is a bijection between and " | | | | . S S S S

3 Sub-formulas and rules used throughout the thesis

In what follows, we will use the following conventions.

1. Variables

a. Lowercase for first order variables, like tv .

b. Uppercase for second order variables, like tV .

c. Large Uppercase for third order variables, like tV .

 Wei Ren (02103176)

 26

d. We will use super indices in variables. 2,1

tV is a second order variable

with arity 1, 2,2

tE is a second order variable with arity 2. 3,1

TV is a third

order variable with arity 1, 3,2

TE is a third order variable with arity 2, and

so on. When we use only one super-index, we mean an SO variable of that

arity.

2. Parenthesis: some parentheses are indexed for matching different levels.

We will usually index "("and "[" starting from 0 in the outermost level,

like 0 1 2 2 1 0((())) .

3. As disjunctions and conjunctions are associative, we do not use parenthesis

to enclose the two operations. That is, we write 1 2 3    instead

of 1 2 3()    .

4. We write 1 2  instead of 1 2()   .

5. Throughout this thesis by “graph” we mean “directed graph”.

The following sub-formulas are well known. They can be found in [RT08] among

other sources.

(For an edge relation E and total order )

1. Successor: (,) (,) [((,) (,)) ()]SUC x y x y v x v v y v x v y          

2. Predecessor: (,) (,)PRED y x SUC x y 

 Wei Ren (02103176)

 27

3. Path: (,) "(,) ()"; note that (,) ()EPATH v w v w TC E v v TC E   (we will

also use 2,4

1 1 2 2(, , ,)EPATH x y x y where E is a 2
nd

 order relation of arity 4,

meaning that there is a path in E from 1 1(,)x y to 2 2(,)x y).

1 2

(,)

 V" E" (', "(E"(', ") V"(') V"(") E(', ")) '(V"(') V('))

 (V"() V"() '(E"(',) "[V"(") (") '(E"(', "))]

EPATH v w

v v v v v v v v v v v

v w v v v v v v v v v v

       

       

 "v is the only minimal node"

 '(E"(, ') "[V"(") (") '(E"(", '))]

v w v v v v w v v v     

 "w is the only maximal node"

 (V"() () '(E"(',) "(V"(") E"(",) " '))

z z z v v v z v v v z v v        

 "all nodes except have id=1"

 (V"() () '(E"(, ') "(V"(") E"(, ") " ')))

 "all n

v

z z z w v z v v v z v v v        

odes except have od=1"

"(V",E") is a linear subgraph of the graph (V,E), with minimal node and maximal node "

w

v w

4. Path in 3
rd

 order graph: 3,2(,)EPATH X Y , where E is a 3
rd

 order relation of

arity 2, and X, Y are 2
nd

 order relations of arity 1, meaning that there is a path

in E from the set X to the set Y.

5. Linear graph: (,)LINEAR V E (we will also use 2,4(,)LINEAR V E , where V

is a 2
nd

 order relation of arity 2, and E is a 2
nd

 order relation of arity 4).

 Wei Ren (02103176)

 28

 w

 [''' '''((a) (b))] (c)

Formula (a) says " ((''', '''))"

Formula (b) says " ((''', '''))"

Formula (c) says " (is the only minimal in (,), is the only maximal in (,),

E

E

v

v w

PATH v w

PATH w v

v V E w V E

   



 every node except has id=1 and every node except has od=1)"v w

 (" "(', "("(', ") "(') "(") (', "))

 '("(') (')) ("(''') "(''')

 '("(', ''') "["(") (" ''') '("(', "))

V E v v E v v V v V v E v v

v V v V v V v V w

v E v v v V v v v v E v v

    

   

     

 (a)

]

 '("(''', ') "["(") (" ''') '("(", '))]

 ("() (''') '("(',) "("(") "(",) " '))

 ("(

v E w v v V v v w v E v v

z V z z v v E v z v V v E v z v v

z V z

     

        

) (''') '("(, ') "("(") "(, ") " ')))

 " "(', "("(', ") "(') "(") (', "))

 '("(') (')) ("(''') "(''')

z w v E z v v V v E z v v v

V E v v E v v V v V v E v v

v V v V v V v V w

       

    

   



(b)

'("(', ''') "["(") (" ''') '("(', "))]

 '("(''', ') "["(") (" ''') '("(", '))]

 ("() (''') '("(',) "("(")

v E v w v V v v w v E v v

v E v v v V v v v v E v v

z V z z w v E v z v V v

     

     

      "(",) " '))

 ("() (''') '("(, ') "("(") "(, ") " ')))

 ((() ()

 '((',) "[(") (") '((', "))]

E v z v v

z V z z v v E z v v V v E z v v v

V v V w

v E v v v V v v v v E v v

  

        

 

     

(c)

 '((, ') "[(") (") '((", '))]

 (() () '((',) "((") (",) " '))

 (() () '((, ')

v E w v v V v v w v E v v

z V z z v v E v z v V v E v z v v

z V z z w v E z v v

     

        

      "((") (, ") " '))))V v E z v v v  

6. "0" ()x y y x y x     

7. "1" () (())x y y x y x z z x z x z y           

4 Quantified Boolean Formulas

4.1 Definitions

 Wei Ren (02103176)

 29

1. Quantified Boolean Formulas: [GJ03, p107]

A quantified Boolean formula (QBF) is a formula of the

form 1 1 2 2... ()n nF Q x Q x Q x E , where E is a Boolean expression involving the

variables 1 2, ,..., nx x x and each iQ is either" " or" " .

kQBF : Let X be an ordered set of propositional variables, let

1 2 3, , ,..., kX X X X be disjoint sub-sequences forming a partition of X , and

let 1 2{ , ,..., }
ii i i ilX x x x . A quantified Boolean formula over X is in kQBF if it is

of the form
1 2 31 2 3 11 1 21 2 31 3 1... ('(... , ... , ... ,..., ...))

kk k l l l k klX X X QX x x x x x x x x     ,

where the quantifier Q is if k is odd and if k is even. ' is a quantifier-free

Boolean formula over the variables in X. iX denotes a sequence of different

variables from the set ,X and iX denotes

1 2 3 1 2. . . , d e n o t e s , , . . . ,
i ii i i il i i i ilx x x x X x x x        etc.

2. An alternating valuation is a finite structure (, ,)va V E B such that:

1) (,)V E is a directed graph, which is an out-tree that has all the leaves at

the same depth d, for some natural d.

2) The output degree of any non leaf node is 2 .

3) For every1 k d  , all the nodes at depth k have the same output

degree.

 Wei Ren (02103176)

 30

4) : {0,1}B V  is a total function such that for every pair of nodes a, b

which are siblings, it is () ()B a B b .

3. Let  be a kQBF formula, for some natural 0k  , let 1,..., 0kl l  ,

respectively, be the lengths of the alternating quantifier blocks of  , and let

(, ,)va V E B be an alternating valuation. We say that va is an alternating

valuation suitable for  , if the following holds:

a) The depth of the tree (,)V E is 1 ... 1kd l l    .

b) For every 11 ... :ki l l   

i) if 11 i l  or 1 2 1 2 31l l i l l l      , … or

1 2 ' 1 1 2 '... 1 ...k kl l l i l l l         , then all the nodes at depth 1i 

in (,)V E have no siblings, where 1 'k k  is the index of the last

existential quantifier block in  ;

ii) if 1 1 21l i l l    , or 1 2 3 1 2 3 41l l l i l l l l        , … or

1 2 '' 1 1 2 ''... 1 ...k kl l l i l l l         , then all the nodes at depth 1i 

in (,)V E have exactly one sibling, where 2 ''k k  is the index of

the last universal quantifier block in  . Note that there might not be

such ''k in .

 Wei Ren (02103176)

 31

4. Let  be a kQBF formula, for some natural 0k  , and let (, ,)va V E B

be an alternating valuation that is suitable for . A leaf valuation in va is a

structure (', ', ')vl V E B such that (', ')V E is a path in (,)V E from the

root to one leaf, and '' |VB B , i.e., ' {(,) : ' (,) }B v b v V v b B    .

5. A leaf valuation vl in va corresponds to a valuation v for  , where for

0 i d  , if the node a has depth i in (', ')V E , then () ()jhv x B a , where

0 j k  is the greatest natural such that 1 2 11 ... ji l l l      and

1 2 11 (...)jh i l l l       .

That is, every depth 0 i d  in va corresponds to one variable in ,

namely the variable that is quantified in the (1)i th  place in the quantifier

prefix of . Correspondingly, every node in vl corresponds to one variable

in , i.e., the i th node in (', ')V E corresponds to the variable that is

quantified in the (1)i th  place in the quantifier prefix of .

6. Let kQBF , for some 1k  , and let va be an alternating valuation suitable

for  . We say that va satisfies  if for every leaf valuation vl in va , it is

the case that vl satisfies  , i.e., the valuation v that corresponds to vl

according to the definition above, satisfies  ; in symbols: |v  .

7. Let 1.k  kSATQBF is the set of formulas kQBF , such that there is an

alternating valuation suitable for  that satisfies .

 Wei Ren (02103176)

 32

8. SATQBF is the set of formulas kQBF , for some 1k  , such that there

is an alternating valuation suitable for  that satisfies  .

9. Note that with the definition in 3, we are building a tree to represent the

assignment of values to variables where each variable in an existentially

quantified block has only one value assigned to it, and each variable in a

universally quantified block gives rise to two paths in the tree and both of

these paths must be able to be given a valuation such that the quantifier free

part of  is satisfied, in order for the alternating valuation to satisfy . (See

Figure 8)

5 Expressing SATQBF and kSATQBF in Logic

5.1 Complexity of the problems

We briefly show in this sub section that there are formulas in SO and TO that

express the queries kSATQBF and SATQBF , respectively. Note, however, that to

the best of our knowledge these formulas are not known.

5.1.1 kSATQBF can be expressed in Second-Order Logic

It is known that, for 1k  , kSATQBF is complete for P

k , where P

k is defined

as follows. ([Sto76])

Definition The polynomial-time hierarchy (PH)

is{ , , : 0},P P P

k k k k    where 0 0 0 ;P P P P     and for 0,k 

 Wei Ren (02103176)

 33

1 ()P P

k kNP   

...

NP

NPNPNP (There is a stack of 1k  NP’s)

1 (),P P

k kco NP   

1 ().P P

k kP  

We also define
0

.P

k
k

PH




 

Where, if C, D, are Turing Machine complexity classes, DC denotes the

class of queries computed by machines in C which have an oracle in the

class D.

In particular, note that 1

P NP  and 1

P co NP   . PH possesses the

following inclusion structure:

1 1 1 for all 0.P P P P P

k k k k k k       

Corollary 7.22 ([Imm99]) A Boolean query is in PH, iff it is second-order

expressible, that is PH=SO.

Hence, we know that, for every 1k  kSATQBF can be expressed in SO. In

fact, 1

k kSATQBF  .

5.1.2 SATQBF can be expressed in Third-Order Logic

SATQBFTO and hence TO, because of the following 3 facts:

1.
(1) (1)

(2) (2)
O On nPSPACE DTIME NTIME  [GJ03]

 Wei Ren (02103176)

 34

2. Theorem 4.4 ([Sto76], p19): SATQBF is PSPACE-complete.

3.
(1)

(2)
OnTO NTIME  and

...(1)

(2)

NP

O NPn NP

k

TO NTIME (there is a stack

of 'k NP s). [HT06]

Hence, we know that SATQBF can be expressed in TO.

5.2 Expressing kSATQBF in Second-Order Logic

In this subsection we present a detailed construction of an SO formula which

expresses kSATQBF .

To encode the input formula, we use the following vocabulary (following

[MP96] and [Fer08]):

() |, , , , , , , , ,XP P P P P P P P P      

Then: () |, , , , , , , , , ,I I I I I I I I I I I

XI D P P P P P P P P P       represents

a kQBF formula .

We assume that the input formula , except for the quantifier prefix Q , is

fully parenthesized, there is at least one pair of matching parentheses, and

every sub formula in ' which involves a unary or binary operator is enclosed

in parentheses. We further assume that there is at least one quantifier in ,

and that there are no parentheses in the quantifier prefix.

 Wei Ren (02103176)

 35

1 2 3 1 2 311 1 21 2 31 3 11 1 21 2 31 3 1... ('(... , ... , ... ,..., ...))
k kl l l kl l l l k klx x x x x x Q x x x x x x x x x       

 Example: let 1 2 3 1 3 2 3(() ())x x x x x x x         

 As a linear graph, which is defined as the successor relation induced by I :

 The  - structure that encodes is as follows:

() |, , , , , , , , , ,I I I I I I I I I I I

XI D P P P P P P P P P      

(

)

|

where

{0,1,...,35}

: total order in

{14,25}

{17,29}

{23}

{0,3}

{7}

{12,13,24}

{22,34,35}

{1,4,8,15,18,26,30}

{2,5,6,9,10,11,16,19,20,21,27,28,31,32,33}

I

I I

I

I

I

I

I

I

I

I

X

I

D

D

P

P

P

P

P

P

P

P

P

































0 1 2 3 4 7 8 9 13 14

19 20 21 24 25 26 30 31 33 35

Figure 6

| | | |) (| | | | |))

X X X   

                   

 | | | | | | ((

X X X X   

               

15

16 17 18

 Wei Ren (02103176)

 36

5.2.1 Informal Expression

Let 1k  . We can build an SO formula to express the problem kSATQBF in

four levels of abstraction.

1
st
 Level:

“  alternating valuation va suitable for which satisfies ”. This can be

expressed as “ a partial valuation on block 1, such that partial valuation

on block 2,  a partial valuation on block 3, …” such that all of these

valuations satisfy the quantifier free part ' of . This is clearly equivalent

to the following:

2
nd

 Level:

(2.1) “  Partial valuation 1v on
111 1{ ,..., }lx x ,  partial

valuation 2v on
221 2{ ,..., }lx x ,…, / partial valuation kv on 1{ ,..., }

kk klx x such

that …”

(2.2) “… the valuation 1 2 ... satisfies 'kv v v v  ” Recall that ' is the

quantifier free part of .

Following our definitions in 4.1 above, we can think of an alternating

valuation as a binary tree, as in Figure 8. In that tree, that represents an

alternating valuation suitable for , each leaf node determines a unique path

from the root to that node. We represent that path with the linear graph tG

which together with the function tB represents what we have defined as a

 Wei Ren (02103176)

 37

leaf valuation. Note that the alternating valuation satisfies the input

formula , if and only if every leaf valuation satisfies ' .

We will use linear graphs (,)i i iG V E with functions : {0,1}i iB V  to

represent the partial valuations iv (See Figure 7). Correspondingly, we will

use a linear graph (,)t t tG V E with a function : {0,1}t tB V  to represent the

leaf valuation v . So, each leaf valuation is represented by a corresponding

pair ,t tG B  .

3
rd

 Level:

We give next a more detailed expression of the two abstract expressions of

level 2, labelled (2.1), (2.2).

5.2.1.1 Expressing (2.1): Encoding each leaf valuation for the input

formula , using the graph tG

Figure 7

1G

2G 3G kG

Linear graph 1G  Linear graph 2G Linear graph 3G …… Q Linear graph kG

1 1 1,G V E  ,k k kG V E  2 2 2,G V E 

 Wei Ren (02103176)

 38

Figure 8

Let 1 2, ,..., kX X X be disjoint sub-sequences of propositional variables.

If we consider the quantifier prefix of the input formula 1 2 3... kX X X QX   as

a tree, then the depth of the tree is 1 2

1

| | | | | | ... | |
k

i k

i

V V V V


    . And if ix in

the quantifier-free formula ' is quantified in order j-th in , then its value

must be B (j-th node in tG).

Expression (2.1) can then be expressed as follows:

111 12 13 1... lx x x x   
221 22 23 2... lx x x x   

3 1 2 331 32 33 3 1 11 1 21 2 31 3 1.... ('(.. , .. , .. ,.., ..))
k kl k kl l l l k klx x x x Qx Qx x x x x x x x x   

1 1 1 1(, ,)G V E B
2 2 2 2(, ,)G V E B

3 3 3 3(, ,) (, ,)k k k kG V E B G V E B 

1U 3U 2U kU 0/1

Graph tG

 Wei Ren (02103176)

 39

1 1 1 2 2 2

1 2 2

1 2

set and binary relations and , set and binary relations and ,

 ..., set and binary relations and , (, ,

 ([" =< , > is a linear graph"]

k k k k t t t

t t t

V E B V E B

Q V E B V E B

G V E

  

 

"The length of is equal to the number of variables

 in the

tG

(1)

 [

1 1 1 3 3 3 ' ' '

1 1

quantifier prefix of "]

 [" , , , ,..., , are linear graphs"]

 (where ' is the index of the last quantifier in the prefix)

 [" : {0,1},

k k kG V E G V E G V E

k

B V B



      



 

(2)

(3)

3 3 ' '

1 3 '

: {0,1},..., : {0,1} are total functions"]

 ["the lengths of the linear graphs , ,..., are equal to the lengths of

 the corresponding quantifier blocks in "]

k k

k

V B V

G G G



 



(4)

1 2 1 2 3

2 2 2 4 4 4 '' '

 [[(" , , ,..., are disjoint sets"

 [" , , , ...

k

k k

V V V V

G V E G V E G V



     

(5)

(6)

' ''

2 2 4 4 '' ''

, are linear graphs"]

 (where '' is the index of the last quantifier in the prefix)

 [" : {0,1}, : {0,1},..., : {0,1} are total functions"]

k

k k

E

k

B V B V B V





   

(7)

(8)

2 4 '' ["the lengths of the linear graphs , ,..., are equal to the lengths of

 the corresponding quantifier blocks in ")

kG G G





] (9)

2 2 2

1 2 1 1

2 2

 , ... (" is a partial bijection: 1st part of "

 " is a partial bijection: 2nd part of "

 " is a partial

k t

t

k

U U U U G G

U G G

U

 

 

 

1 2

1 2 2

 bijection: k_th part of ")

 " : {0,1} is a total function that with , ,..., "

" ... "]

k t

t t k

t k

G G

B V coincides B B B

B B B B



 

  

 (10)

 (11)

 Wei Ren (02103176)

 40

(Level 4)

(1) “The graph tG is a linear graph”: (,)t tLINEAR V E

(2)"The length of is equal to the number of variables in the quantifier prefix of "tG 

This statement is implied by the following statement:

" is a partial surjective injection from the quantifier prefix of to , which maps every

 to its corresponding node in , and which preserves and ."

p t

I

t t

V G

X G E





This statement is expressed in further detail in (1) in 5.2.1.2.1

1 1 1 3 3 3 ' ' '

1 1 3 3 ' '

" , , , ,..., , are linear graphs":

 (where ' is the index of the last quantifier in the prefix)

 (,) (,) ... (,)

k k k

k k

G V E G V E G V E

k

LINEAR V E LINEAR V E LINEAR V E

     



  

(3)

1 1 3 3 ' '

1 1

1 1

" : {0,1} : {0,1} ... : {0,1} are total functions"

 [, , '[(,) (, ') (') "function"

 (() ((,)))

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(4)

1

3 3

3 3

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

 (() ((,)))

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

3

' '

'

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

 ((

k k

k

B t p p p

t p p B t p B t p p p

V

    



   

 '

'

) ((,))) "total"

 ((,) ("0" "1"))]]

k

k

t p B t p

B t p p p



    

 Wei Ren (02103176)

 41

' 2

1,3,5,..., '

'1 1

1 2 3 ' ' 1 '1 2

' 2,1 1

If ' , then (by we mean the formula template instantiated with ') :

... ()

If ' , then (by we mean the formula template instantiate

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(5)

' 2 ' 2

1,3,5,..., ' 2

1 2 3

1 2 3 ' 1 ' 2,1 2 1 2 3 1

d with ' 2):

(' 2 is the previous to the last block, and the subformulas , ,

take care of the last quantifier block).

... () ... ()
i k

k k i k eL L

i k

k

v v v v v v v v v

  

   
 

 

 

 

  (2 3)

Figure 9

1 0 1 2 3 1 1

"for 1 , is the first quantifier of the j-th alternating quantifier block:"

(when i is not the index of the last block)

(() () () ... () "0"

 "where is if (1)

j

i Q i

Q

j i v

P v P v P v P v v

P P i

    



 

      



1 2 2 3 1

1 2 1 2

2 3

is odd, or if (1) is even"

 [(,) (,) ... (,)]

 ['((, ') (',) ' ' ('))]

 ['((, ') (',)

i i

P i

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v



   

  

 



   

       

    2 3

1 1 ' 0

'

' ' ('))]

 ...

 ['((, ') (',) ' ' ('))])

 "where is if is odd, or if is even"

i i i i Q

Q

v v v v P v

v PATH v v PATH v v v v v v P v

P P i P i



   

 

   



       

Q X … Q X … X …

iv

s 's 1iv 

Q Q 

t 't

(,)i iV E

'L 
“Next X in the same alternating block” ()XNext

kv

 Wei Ren (02103176)

 42

1 0 1 2 3 | 1

"for 1 , is the first quantifier of the j-th alternating quantifier block:"

("for , is the last element in the block , which must be |")

(() () () ... () () ="0"

j

e

Q k e

j i v

i k v i

P v P v P v P v P v v   

 



      

1 2 2 3

1 2 1 2

 "where is if is odd, or if is even"

 [(,) (,) ... (,)]

 ['((, ') (',) ' ' ('))]

Q

k e

P P k P k

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v

 

  

  

   

       

2 3 2 3

' 0

'

['((, ') (',) ' ' ('))]

 ...

 ['((, ') (',) ' ' ('))])

 "where is if is odd, or if

k e k e Q

Q

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v v v v v P v

P P k P

  

 

 

       



       

 is even"k

2 0 1

" ' is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next and E :"

 (when is not the index of the last block)

('[((, ') (',) '

i

X i

i i i

L

i

v PATH v v PATH v v v       1

1

(')) '('(', '))]

 "domain of ' "

 '((') '('(', '))) " ' is surjective"

 , , ', '[[('(,) '(', ') ' (,) (',) (, ')

i X

i

i i

v P v y L v y

L

y V y v L v y L

s t s t L s t L s t s s PATH v s PATH s v PATH s s



   

   

 

      

('((, ') (', ') ' ' ' (')))) (, ')]

 " ' preseves in the alternating block and (implies injectivity)"

 ' '['(', ') (')]

 ' ' '(['(',

X i

X i

i

z PATH s z PATH z s z s z s P z E t t

L Next ith E

v y L v y V y

v y z L v

         

 

 0') '(', ')] (' '))]) " ' is a function"y L v z y z L  

" ' is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next and E :"

(when)

i

X i

L

i k

 Wei Ren (02103176)

 43

2 0('[((, ') (',) (')) '('(', '))]

 "domain of ' "

 '((') '('(', '))) " ' is surjective"

 , , ', '[[('(,) '(', ') ' (,) (',)

k e X

k

k e

v PATH v v PATH v v P v y L v y

L

y V y v L v y L

s t s t L s t L s t s s PATH v s PATH s v P

  

 

     

 

       (, ')

 ('((, ') (', ') ' ' ' (')))) (, ')]

 " ' preseves in the k- alternating block and (implies injectivity)"

 ' '['(',

X k

X k

ATH s s

z PATH s z PATH z s z s z s P z E t t

L Next th E

v y L v y



         



0

') (')]

 ' ' '(['(', ') '(', ')] (' '))]) " ' is a function"

kV y

v y z L v y L v z y z L



   

3 0 | |

"For , is the last | for the last quantifier in the quantifier prefix":

('(((, ') (')) ()

 '((, ') ((') ('))) "there are no quantifiers after "

 ' ' '

e

e e

e e

i k v

v SUC v v P v P v

v PATH v v P v P v v

z y w v

 

  



   

   

  |'[(',) ([(',) (', ')] ('))

 " ' is the last quantifier in the block "

e ePATH y v PATH v v PATH y v P v

w k

    

 " ' is the of the variable quantified"

 "y' is the first | for that variable"

 (Q

z X

P 0') (') (', ') (', ')])

 "where is if is odd, or is if is even"

X

Q Q

w P z SUC z y SUC w z

P P k P P k

 

 

  

1 2 1 3 1

2 3 2 4 2 1

 "[() () ... ()

 () () ... () ... ()]"

where " " is ((() ()) (() ()))

k

k k k

i j i j j i

V V V V V V

V V V V V V V V

V V x V x V x V x V x

  

   





      

         

    

(6)

(7) 2 2 2 4 4 4 '' '' ''" , , , ... , are linear graphs":k k kG V E G V E G V E     

(where '' is the index of the last quantifier in the prefix)k 

2 2 4 4 '' ''(,) (,) ... (,)k kLINEAR V E LINEAR V E LINEAR V E  

 Wei Ren (02103176)

 44

2 2 4 4 '' ''

2 2

2 2

" : {0,1} : {0,1} ... : {0,1} are total functions"

[, , '[(,) (, ') (') "function"

 (() ((,)))

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(8)

2

4 4

4 4

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

 (() ((,)))

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

4

'' ''

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

k k

B t p p p

t p p B t p B t p p p

    



   

'' ''

''

 (() ((,))) "total"

 ((,) ("0" "1"))]]

k k

k

V t p B t p

B t p p p

 

    

' 2

2,4,6,..., ''

''1 1

1 2 3 '' '' 1 ''1 2

'' 2,1 1

If '' , then (by we mean the formula template instantiated with ''):

... ()

If '' , then (by we mean the formula template in

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(9)

' 2 ' 2

2,4,6,..., '' 2

1 2 3

1 2 3 '' 1 '' 2,1 2 1 2 3

stantiated with '' 2):

('' 2 is the previous to the last block, and the subformulas , ,

take care of the last quantifier block)

... ())
i k

k k iL L

i k

k

v v v v v v v

  

 
 

 

 

 

 (1 2 3

1 2 1 2 3

... ()

where the subformulas , , , and are the same as in (5) above.

k e

i i

v v   

    

 

2 2 2

1 2

1 1

1

1 1

2 2

2

("

: Total injection,

 preserves , ,

 includes first node in as U (first node in),

: Total injection,

 preserves , ,

 includes succ

k

t

t

t

t

t

V V

E E

V E

V V

E E



 





 





(10) U U ...U

U

U

1 1 2 2

3 3

3

2 2 3

essor in of node U (last node in) in as U (first node in),

: Total injection,

 preserves , ,

 includes successor in of node U (last node in) in as U (first no

t t

t

t

t t

E E V E

V V

E E

E E V

 





U

3

1 1

de in),

..., and

: Total injection,

 preserves , ,

 includes successor in of node U (last node in) in as U (first node in)")

k k t

k t

t k k t k k

E

V V

E E

E E V E 

 





U

 Wei Ren (02103176)

 45

2 2 2

1 2 ... (...

 , , , [(((,) (,))) "function"

 ((,) (,))) "injection"

 (() ((,))) "total"

k

k k

k k

k k

U U U

x y t u U x y U x t y t

U x y U u y x u

V x y U x y

 

   

   

 

 ((,) (() ()) " : "

 (((,) (,) (,)) (,)) "preserves "

 (((,) (,) (,)) (,)) "prese

k k t k k t

k k k t k

k k t k

U x y V x V y U V V

U x y U u t E x u E y t E

U x y U u t E y t E x u

   

   

   

1 1

1

rves "

 (((,) ((,)) (,) ((,) ()))

 (,))])

 "includes successor in of node U (last n

t

k k t k k

k

t k

E

U x y v E x v E y t v E v u V u

U u t

E

 



    



1ode in)

 in as U (first node in)"

k

t k k

E

V E



1 2

1 1

2 2

 " with , ,..., "

'[((,) (,) (, ')) ']

'[((,) (,) (, ')) ']

...

'[((,) (,) (, ')) ']

t k

t

t

k k t

B coincides B B B

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

    



    





    

(11)

5.2.1.2 Expressing (2.2)

(2.2) is equivalent to the following informal expression, which we will

express in two parts:

…… ……

…… ……

x u

y t

1kU  kU

tG

kG

1kG 

 Wei Ren (02103176)

 46

2 2 4 1 2 3 2 2 2 2 2 2 2 3

() 1 0... , , , , , , , , , , , , , (p C STV C E ST E M C C C C C C C H  

(2.2a) 2[[”There is a formula  on {0,1} which corresponds to the

formula with the leaf valuation represented by ,t tG B …”]

(2.2b) 2 1 0["...such that the formula is true"])]])

5.2.1.2.1 Expressing (2.2a)：

Now we need to represent the relationships among the input graph,

the graph tG and the quantifier free part of the input formula:

| || ||| ... ||| ... | '(|, ||, |||,..., ||| ... |()X X X QX X X X X  

Figure 10

| || ||| ||||(||| ...(||| ...))()X X X X X X     

Input Graph

Graph tG

pV : Variable Position

Sub Graph 

3H

: A quantifier free formula on: { (,), , , ,1,0   }

For instance: (((1 0) (1 0)) ...(...))   

0/1 0/1

oV : Variable Occurrence

 Wei Ren (02103176)

 47

Figure 11

This expression is showed below based upon Figure 10.

[" is a partial bijection from the quantifier prefix of (restricted to the in the

quantifier prefix) to V , which maps every to its corresponding node in , and

which preserves and ."]

p

t t

I

t

V X

X G

E





[" is a partial surjective injection from the quantifier free part of to the first

formula in (,) (see Figures 12C

H

C E

 

(1)

, 13), which maps every "X" in the quantifier free

part to the corresponding position in the first formula in (,) which we denote

by , which preserves , ,(,), , and and , and which ignores "|

C

I C

C E

E     "."] (2)

[" that is a bijection from " | ... | " in " | ... | " to " | ... | " in "(... | ... | ...)",

linking the quantification of a variable with each occurrence of the variable in the

quantifier free part of , wher

oV QX X



 

0

0

e is the root in (), is the leaf in (),

 is the root in (), and is the leaf in (). The variable in which corresponds

to the function is replaced in by the value a

o f o

o f o

o

z dom V z dom V

y ran V y ran V

V





1

ssigned to that variable by the leaf

valuation < , >. (See Note that is represented in (,) starting

in the node (first node in (,)) and ending in the node ((second no

t t C

ST C

G B C E

M ST E E M





Figures 10, 11)

de

in (,))) and is equivalent to the formula without quantifier prefix, with the

variables replaced by 0 or 1 according to the leaf valuation in < , >."]

(More explanation is given in

ST

t t

ST E

G B



5.2.1. . See) 2.2 Figures 12 and 13 (3)

| | | | ...()QX X

0 'z 0z fz 'fz
0 'y 0y fy 'fy

oV : Variable Occurrence

 Wei Ren (02103176)

 48

(Level 4)

(, , ((,) (,) (=) " is a function"

 ((,) (,) =) " is injective"

 ((()

p p p

p p p

X

x y z V x y V x z y z V

V x y V z y x z V

P x PRED

  

  

 

(1)

(,) [() ()]) (() (,)))

 "domain of ","range of "

 " is a partia

t p

p p

p

x z P z P z y V y V x y

V V

V

      

l bijection: in quantifier prefix of in "

s,t,s',t'([(s,s') (t,t') (s',t')] ((,)

 '((' ' (, ') (z',)) (')))))

t t

p p t

X

X V G

V V E PATH s t

z z s z t PATH s z PATH t P z





 



   

      

 " preserves restricted to the in the quantifier prefix, and ."I

p tV X E

1 2 1 2 1 2 1 2 1 2 1 1 2 2

(1 2 2

, , , , ((((, ,) (, ,)) (()

 '((') (',)) (,)))

x y y z z H x y y H x z z y z y z

x P x PATH x x C y y

 



     

  

(2)

2 1 2 1 2 2

1 2 1 2 1 2

 " is a function: quantifier free part of "

 ((, ,) (, ,) =z) " is injective"

 ', ', ', ', ', ', '

H C

H x y y H z y y x H

y y z z t t v



  

 

  

 2

2 3

2 1 2 2 1 2 1 2 1 2

,

 (((') ((, ')) " ' is the root in < , >"

 (',) (', ', ') (, ', ') (', ', ', ')

ST ST

ST C

v

ST v y E y v v ST E

E v v M v y y M v z z E t t z z



   

1 2 1 2 1 2 1 2 3 1 2 2 (', ', ,) (, , ', ')) '((', ,)))

 "the range of is the first formula in < , >"

C CE E

C

PATH y y y y PATH y y t t x H x y y

H C E





  

(1 2 1 2 2 1 ('((') (',)) ', '((, ', '))))

 "the domain of is the quantifier free part o

x P x PATH x x y y H x y y

H





    

1 2 1 2 1 2 1 2 1 2 1 2

f "

 , ', , , , , [(((, ,) (, ,) (, , ,))

 ((,) ((,) '(((, ') (',)

Cx x z y y z z H x y y H z z z E y y z z

SUC x z PATH x z x PATH x x PATH x z

 



   

   

  

|

1 2 ((1 2)) 1 2

 ' ') ('))))

 ((, ,) ((() (,)) (() (,))

x x x z P x

H x y y P x C y y P x C y y

    

    

1 2 1 2

1 2 0 1 2 1 1 2

 (() (,)) (() (,))

 (() (,)) (() ((,) (,)))))]

 " pr

X

P x C y y P x C y y

P x C y y P x C y y C y y

H

   

 

   

    

eserves (ignoring |) and E , { , ,(,), }, and maps to 0/1"I C X   

(3)
2

0 0 0 0 1 2 2 1, , , , ', ', ', '[[]o f f f fV z y z y z y z y    (a) (b) (c) (d)]

 Wei Ren (02103176)

 49

1 2 3 0 0 0

0 0

[[((,) ', '((, ') (', '))

 (,) ', '((, ') (', '))

 z'([(, ') (',)] '((', '))) total

 '([

o o

o f f f o

f

V z y z y PRED z z V z y

V z y z y SUC z z V z y

PATH z z PATH z z y V z y

y PATH





 

 

  

  



(a)

0 0 3

0 0

(, ') (',)] '((', ')))) surjective

 " is the root in (), is the leaf in (), is the root in (),

 is the leaf in ()"

f

o f o o

f o

y y PATH y y z V z y

z dom V z dom V y ran V

y ran V

  

3 | |, , , [((,) (() ()))

 (((,) (,))) function

 (((,) (,))) injective

o

o o

o o

x y v w V x y P x P y

V x y V x v y v

V x y V w y x w

  

   

   

(b)

3 (((,) (,) (,)) (,)))]

 " is a bijection from " | ... | " in " | ... | " to " | ... | " in "(... | ... | ...)",

 which also preserves "

o o

o

I

V x y V v w SUC x v SUC y w

V QX X

    



3 0 0 0

0

0 0 0

0

((, ') (')

 " ' is the predecessor of the root in (), i.e., it is the X in the quantifier prefix"

 (, ') (')

 " ' is the predecesso

X

o

X

PRED z z P z

z dom V

PRED y y P y

y





 

 

(c)

|

| 3 2

r of the root in (), i.e., it is the X in the quantifier free part "

 (, ') (') " ' is the successor of the leaf in ()"

 (, ') ('))]

o

f f f f o

f f f

ran V

SUC z z P z z dom V

SUC y y P y





 

  " ' is the successor of the leaf in ()"f oy ran V

2 0 1 2 0 1 2

0 1 2 1 1 2 2 1

0 0

, '[((',) (, ')) (, ((', ,)

 [(' "0" (,)) (' "1" (,))]))]]

 " ((')) (')"

p t

t p

x x V z x B x x z z H y z z

x C z z x C z z

B V z H y





   

     



(d)

 Wei Ren (02103176)

 50

5.2.1.2.2 Expressing (2.2b): “… such that the formula is

true” Evaluating the formula .

Once we have built the quantifier-free formula on {0, 1}, we must

evaluate . We do so by evaluating one connective at a time, and

one pair of matching parenthesis at a time, until the final result

becomes 1.

Before we write the informal expression, let us look at an example

of an evaluation process first. In this example, we can see that there

are 10 evaluation steps, which correspond to 10 “operators” (i.e.,

either connectives or pairs of matching parenthesis) that are

evaluated during the whole process. If there are at most n symbols

in , that means that we need at most n evaluation steps to get the

result of the formula  . That is why the nodes of the

graph (,)CC E are pairs, and its edges are quadruples. In this way we

allow the whole evaluation process to take up to n steps (where n is

the length of the input formula), where in each step we have a

propositional formula on {0, 1} with up to n symbols. Each node in

the graph (,)STST E represents one such formula, and the function M

(for Marker) is a pointer which tells us in which node in (,)CC E

that formula begins (Figure 12). Note that in each evaluation step

either one or two symbols are removed from the formula at the

previous step.

 Wei Ren (02103176)

 51

Figure 12

We redraw below the graphs (A) and (B) of Figure 12 with a horizontal

orientation (Figure 13). Each evaluation step is called a stage. And the first

symbol in each stage is given by the marker function M.

Figure 13

Based upon Figures 12 and 13, we show below the steps we need to follow

to express (2.2b).

1. ((0 1) (0)) (1 0))

2. ((0 1) (1)) (1 0))

3. ((0 1) 1) (1 0))

4. ((1) 1) (1 0))

5. ((1) 1) (1))

6. (1 1) (1))

7. (1 1) 1)

8. (1) 1)

9. 1 1)

10. 1

(

(

(

)

11. 1

(

(

(

(

(

(

()

(

TRUE

    

   

   

  

 

 

 





n Steps

n Symbols

Includes

(1, 1)

(1, 2)

(1, 3)

(1, 1n)

(2, 1)

(2, 2)

(2, 3)

(2, 2n)

Includes

(s, 1)

(s, 2)

(s, 3)

(s, sn)

2n

An evaluation step

(A)
1 2(,)STST E

Marker (in Red)

s n

Computation

2 4(,)CC E

Stages

1 2(,)STST E

2()n

()n

Marker
Marker

3M

1 2(,)f f
1 2(,)l l

1 2(', ')f f

1 2(', ')l l

vE 

(B) 2 4(,)CC E

 Wei Ren (02103176)

 52

["(,) is a linear graph"]

["(,) is a linear graph"]

C

ST

C E

ST E

(1)

1 2

2 2 2

[" : is an injective and total function that preserves

 in and "]

 [" , , ,

ST C

M ST C

PATH E E

C C C C  

 



(2)

(3)

2 2 2 2

() 1 0

2 2 2 2 2 2 2

() 1 0

, , , are pairwise disjoint,

 and "]

 ["For every stage , from stage to stage +1, we need to follow the

C C C

C C C C C C C C

x x x

   



(4)

 rules of evaluation (See Part A). The formula in < , >

 at stage +1 is the same as the formula at stage , except for one of

 three possible sorts of changes, which corre

CC E

x x

Figure 12

spond to the cases (),

 () and () of "]

a

b c Figure 14 (5)

(Level 4) The respective formal expressions are showed below:

2,4

0 1 2 1 2 1 2 3 1 2 1 2 3

3 1 1 2 2 1 2 3 2

(,)

(,)

(, ', , , , ((((, ,) (, ,))

 (() () (,)))

C

ST

LINEAR C E

LINEAR ST E

s s t t k k M s t t M s k k

t k t k ST s C t t





 

     

(1)

(2)

(3)

1 2

3 1 2 1 1 2 1 3

3 1 2 4 1 2 4 3

 " is a function, : "

 ([(, ,) (, ,)] =) " is injective"

 (() ', '((, ', '))) " is total"

M M ST C

M s k k M t k k s t M

ST s t t M s t t M



  

 

3 4 1 2 1 2 4

2,4

1 2 1 2 3 1 0

 ([(, ,) (', ,) (, ')]

 (, , ,))))

 "M preserves in and "

C

ST

E

ST C

M s t t M s k k PATH s s

PATH t t k k

PATH E E

  



 Wei Ren (02103176)

 53

1 2 1 2 1 2 1 2 1 2

1 2 (1 2 1 2) 1 2

1 2 1 1 2 1 2 0 1 2

, (((,) (,)) ((,) (,))

 ((,) (,)) ((,) (,))

 ((,) (,)) ((,) (,)) ...)

s s C s s C s s C s s C s s

C s s C s s C s s C s s

C s s C s s C s s C s s

   

 

 

   

   

    

(4)

2 2 2 2 2 2 2

() 1 0

1 2 1 2 1 2 1 2 1 2 (1 2) 1 2

0 1 2 1 1 2

1 2 1 2 1

 " , , , , , , are pairwise disjoint"

, ((,) ((,) (,) (,) (,) (,)

 (,) (,)))

, (((,) (

C C C C C C C

s s C s s C s s C s s C s s C s s C s s

C s s C s s

s s C s s C s

  

  



     

 

  2 1 2 1 2 1 2 1 2

(1 2 1 2) 1 2 1 2 0 1 2 1 2

1 1 2 1 2

2 2 2 2 2 2 2

() 1 0

,)) ((,) (,)) ((,) (,))

 ((,) (,)) ((,) (,)) ((,) (,))

 ((,) (,)))

 "() "

s C s s C s s C s s C s s

C s s C s s C s s C s s C s s C s s

C s s C s s

C C C C C C C C

 

  

   

     

 



(5) 4

1 2 1 2 1 2 1 2[() , , , , , ', ', ', '[[(vx ST x E f f l l f f l l      (d) (e) (0) (a) (b) (c))]]]

The function vE maps the formula at stage x to the formula at stage x+1.

The sub formula (d) corresponds to the last transition, i.e. the transition to the

last formula in , CC E  (“0” or “1”). The sub formula (e) corresponds to

the last formula in , CC E  . The three sub formulas (a), (b), (c) correspond

to the three possible cases (a), (b), (c) as in Figure 14, according to which

sort of operation is the one involved in the transition from the formula in

stage x to the next formula in , CC E  . Note that the transition to the last

formula (d) is necessarily an instance of case (c) in Figure 14. For case (c) in

Figure 14, vE is not total in its domain, since 1 2 ((,) ()v v and

1 2) (,) ()w w are not mapped. For the last formula, vE is not injective,

since ' ' ' ' ' ' ' '

1 2 1 2 1 1 2 2(,)" "(,) (. ., and)f f l l i e f l f l   (see Figure 16).

 Wei Ren (02103176)

 54

Figure 14

Where 1 2 3{ , } and , , {0,1}b b b     .

Figure 15

1 2()b b

3()b

11 12 21 22 31 32(,)(,)(,)p p p p p p

Function: vE

1()b

2()b

11 12 21 22(,)(,)p p p p
1()b

1 b

11 12(,)p p

21 22Case b (p ,p) void()
1 2 1 2Case c (v , v)(w ,w) void()

1 2(,)v v
1 2(,)w w

1 2(,)v v
1 2(,)v v

1 2(,)w w
1 2(,)w w

1 2 11 12 1 2(', ')(', ')(', ')v v p p w w

1 2 11 12 1 2(', ')(', ')(', ')v v p p w w 11 12(', ')p p

21 22 31 32Case a (p ,p)(p ,p) void()

1 2(,)f f 11 12(,)z z
21 22(,)z z

1 2(,)v v

1 2(,)f f
1 2(,)l l

1 2(', ')f f
1 2(', ')l l

1 2(,)v v

1 2(', ')v v

1 2(,)w w

1 2(', ')w w

vE

vE

vE Preserves CE

1 2(,)f f
1 2(,)l l

1 2(', ')f f
1 2(', ')l l

1 2(,)v v
1 2(,)w w

vE

Cases a, b Case c

1 2(', ')f f 11 12(', ')z z
21 22(', ')z z

1 2(', ')v v

11 12(', ')p p

1 2(', ')l l

1 2(,)l l

Left side of the window

 Wei Ren (02103176)

 55

Figure 16

6 7 8 1 1

9 1 2 1 2 1 2 0 1 2 1 2 1 2 1 2 1 2 2

 (((, ((,) (,))

 " is not the leaf in and is not the predecessor of the leaf "

 (, , , , , ((((, , ,) (, , ,))

ST ST

ST

v v

y y E x y E y y

x E

s s t t k k E s s t t E s s k k

 

  

(0)

2 1 1 2 2 1 2 1 2 2 1

2 1 2 1 2 1

 (() (,) (,)))

 " is a function, : "

 ([(, , ,) (,

v v

v v

t k t k C s s C t t

E E C C

E s s k k E t

     



  2 1 2 1 1 2 2 2 0 9 8 7

4

, ,)] (=))))))

 " is injective, :C "

 " partial injection mapping the formula in

v v

v

t k k s t s t

E E C

E

  





7 1 2 1 2 1 2 1 2

1

 < , > in stage

 to the formula in < , > in stage ())"

(((, ,) " ((), (,))" " (,) (', ')")

 " ([(())],

C

C ST

ST C C

C ST ST

C E x

C E E x

M x f f M E x E l l E l l f f

E M E E x

   

 1 2

1 2 1 2 1 2 1 2

2,4 2,4

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

', ')")

"[(,), (,)] and [(', '), (', ')] are the of the two formulas as in Figure 15"

 , , , (((, , ,)) [(((, , ,) (, , ,)
C Cv E E

l l

f f l l f f l l

y y z z E y y z z PATH f f y y PATH y y l l  

delimiters

2,4 2,4

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 7 6

1 2 1 2

))

 ((', ', ,) (, , ', '))]

 (, , ', ') (, , ', ')))

 " maps nodes from the subgraph [(,), (,)] to

C CE E

v v

v

PATH f f z z PATH z z l l

E f f f f E l l l l

E f f l l

 

 

1 2 1 2the subgraph [(', '), (', ')]"f f l l

1 1 2 1 2 1 2 1 2 11 12 21 22 31 32 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22

21 22 31 32 1 2 11 12 31 32 1 2

 (, , , , ', ', ', ', , , , , , , ', '

((, , ,) (, , ,) (, , ,)

 (, , ,) (, , ,) (, , ,)

C CE E C

C C C

v v w w v v w w p p p p p p p p

PATH f f v v PATH w w l l E p p p p

E p p p p E v v p p E p p w w

 

 

  

(a)

2,4 2,4

(1 2) 1 2 1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12

1 2 1 2 1 2 1 2 (

 (,) (,) (', ', ', ') (', ', ', ')

 (', ', ', ') (', ', ', ') (, , ', ')

 (, , ', ') (, , ', ') (

C CE E

C C v

v v

C v v C w w PATH f f v v PATH w w l l

E v v p p E p p w w E p p p p

E v v v v E w w w w C

   

  

   1 2) 1 2

1 2 1 2 1 2 1 2

', ') (', ')

 "[(,), (,)] and [(', '), (', ')] define the (Figure 15 a, b)"

v v C w w

v v w w v v w w



windows of change

1()b

1 b

11 12(,)p p
1 2(,)f f

1 2(,)l l

vE

11 12 1 2 1 2(', ') (', ') (', ')p p f f l l 

1()b

1 b

11 12(,)p p
1 2(,)f f

1 2(,)l l
11 12(', ')p p

, CC E 

x y

, STST E 

3M

 Wei Ren (02103176)

 56

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4

3 1 2 11

, , , , ', ', ', '[(((, , ,) (, , ,)

 (, , ,) (, , ', ') (, , ', '))

 ((', ', '

C C

C

E E

C v v

E

z z z z z z z z PATH f f z z PATH z z v v

E z z z z E z z z z E z z z z

PATH f f z

 

  

 2,4

12 21 22 1 2 11 12 21 22 3 2

2,4 2,4

2 3 1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22

, ') (', ', ', ') (', ', ', ')))

 (((, , ,) (, , ,) (, , ,)

 (, , ', ') (, , ', '))

C

C C

E C

E E C

v v

z PATH z z v v E z z z z

PATH w w z z PATH z z l l E z z z z

E z z z z E z z z z

 

  

  3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2 1 ((', ', ', ') (', ', ', ') (', ', ', ')))]

" preserves outside of the windows, and preserves left and right side of the windows (Figure 15)

C CE E C

v C

PATH w w z z PATH z z l l E z z z z

E E

  

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 1 2 11 12 11 12 1 2

3 (11 12 (11 12

"

, , ', '[((, , ,) (, , ,) (, , ', '))

 ((', ', ', ') (', ', ', ')

 [(C (,) C (',

C C

C C

E E v

E E

z z z z PATH f f z z PATH z z v v E z z z z

PATH f f z z PATH z z v v

z z z z

  

 

 ) 11 12) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12

')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,

z z z z

z z z z z z z z

z z z z z z z z

z z

   



 

   

   

 11 12 3 2 1

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2

11 12 11 12 2

) C (', '))])]

 " preserves symbols in "

 , , ', '[((, , ,) (, , ,)

 (, , ', ')) (

C C

v

E E

v

z z

E

z z z z PATH w w z z PATH z z l l

E z z z z



 

 

left side of the window

2,4 2,4

2 1 2 11 12 11 12 1 2

3 (11 12 (11 12) 11 12) 11 12

11 12 11 12 11 12 11 12

(', ', ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

C CE EPATH w w z z PATH z z l l

z z z z z z z z

z z z z z z z z   



   

   

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

1 0 11

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', '))])]

 " preserves symbols in "

 [((,

v

z z z z z z z z

z z z z

E

C p

 

   

 



right side of the window

12 0 31 32 21 22 0 11 12

0 11 12 0 31 32 21 22 0 11 12

0 11 12 1 31 32 21 22 0 11 12

0 11

) (,) (,) (', '))

 ((,) (,) (,) (', '))

 ((,) (,) (,) (', '))

 ((

p C p p C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p







  

   

   

 12 1 31 32 21 22 1 11 12

1 11 12 0 31 32 21 22 0 11 12

1 11 12 0 31 32 21 22 1 11 12

1 1

,) (,) (,) (', '))

 ((,) (,) (,) (', '))

 ((,) (,) (,) (', '))

 ((

p C p p C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p







  

   

   

 1 12 1 31 32 21 22 1 11 12

1 11 12 1 31 32 21 22 1 11 12 1 0 1

11 12 21

,) (,) (,) (', '))

 ((,) (,) (,) (', '))]))

 "In (', ') we get the of applying the operator in (,

p C p p C p p C p p

C p p C p p C p p C p p

p p p



 

  

   

result 22

1 11 12 2 31 32

) to the

 Boolean values , in (,), and , in (,) (Figure 14a)"

p

b p p b p p

 Wei Ren (02103176)

 57

1 1 2 1 2 1 2 1 2 11 12 21 22 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22

1 2 11 12 21 22 1 2

(1 2) 1 2

 (, , , , ', ', ', ', , , , , ', '

((, , ,) (, , ,) (, , ,)

 (, , ,) (, , ,)

 (,) (,)

C CE E C

C C

E

v v w w v v w w p p p p p p

PATH f f v v PATH w w l l E p p p p

E v v p p E p p w w

C v v C w w PATH

 

 

 

  

(b)

2,4 2,4

1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12

1 2 1 2 1 2 1 2 (1 2) 1 2

1 2

(', ', ', ') (', ', ', ')

 (', ', ', ') (', ', ', ') (, , ', ')

 (, , ', ') (, , ', ') (', ') (', ')

 "[(,),

C CE

C C v

v v

f f v v PATH w w l l

E v v p p E p p w w E p p p p

E v v v v E w w w w C v v C w w

v v



  

   

1 2 1 2 1 2

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11

(,)] and [(', '), (', ')] define the windows of change (Figure 15 a, b)"

 , , , , ', ', ', '[(((, , ,) (, , ,)

 (,

C CE E

C

w w v v w w

z z z z z z z z PATH f f z z PATH z z v v

E z

 

 12 21 22 11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2

2,4

2 3 1 2 11

, ,) (, , ', ') (, , ', '))

 ((', ', ', ') (', ', ', ') (', ', ', ')))

 (((, , ,

C C

C

v v

E E C

E

z z z E z z z z E z z z z

PATH f f z z PATH z z v v E z z z z

PATH w w z z

 

  

 2,4

12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21

) (, , ,) (, , ,)

 (, , ', ') (, , ', '))

 ((', ', ', ') (', ', ', ') (', ', '

C

C C

E C

v v

E E C

PATH z z l l E z z z z

E z z z z E z z z z

PATH w w z z PATH z z l l E z z z

 

 

   22 3 2 1

2,4

11 12 11 12 1 2 1 2 11 12

, ')))]

 " preserves outside of the windows, and preserves left and

 right side of the windows (Figure 15)"

 , , ', '[((, , ,)
C

v C

E

z

E E

z z z z PATH f f z z P  2,4

11 12 1 2

2,4 2,4

11 12 11 12 2 2 1 2 11 12 11 12 1 2

3 (11 12 (11 12) 11 12) 11 12

(, , ,)

 (, , ', ')) ((', ', ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '))

C

C C

E

v E E

ATH z z v v

E z z z z PATH f f z z PATH z z v v

z z z z z z z z

  

   

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', '))])]

z z z z z z z z

z z z z z z z z

z z z z

   

 

   

   

 

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2

2,4

11 12 11 12 2 2

 " preserves symbols in left side of the window"

 , , ', '[((, , ,) (, , ,)

 (, , ', ')) ((

C C

C

v

E E

v E

E

z z z z PATH w w z z PATH z z l l

E z z z z PATH

 

  2,4

1 2 11 12 11 12 1 2

3 (11 12 (11 12) 11 12) 11 12

11 12 11 12 11 12 11 12

', ', ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

CEw w z z PATH z z l l

z z z z z z z z

z z z z z z z z   



   

   

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', '))])]

 " preserves symbols in right side of the window"

v

z z z z z z z z

z z z z

E

 

   

 

1 0 21 22 11 12 1 11 12

1 21 22 11 12 0 11 12 1 0 1

11 12

 [((,) (,) (', '))

 ((,) (,) (', '))]))

 "In (', ') we get the result of applying , i

C p p C p p C p p

C p p C p p C p p

p p



 

  

  

 11 12

1 21 22

n (,), to the

 Boolean value , in (,) (Figure 14b)"

p p

b p p

 Wei Ren (02103176)

 58

1 1 2 1 2 11 12 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 1 2 11 12 11 12 1 2

2,4 2,4

(1 2) 1 2 1 2 11 12 11 12 1 2

 (, , , , , , ', '

((, , ,) (, , ,) (, , ,) (, , ,)

 (,) (,) (', ', ', ') (', ', ',

C C

C C

E E C C

E E

v v w w p p p p

PATH f f v v PATH w w l l E v v p p E p p w w

C v v C w w PATH f f p p PATH p p l l

 

  

   

(c)

11 12 11 12

1 2 1 2 11 12 11 12

2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12

')

 (, , ', ')

 "[(,), (,)] and [(', '), (', ')] define the windows of change (Figure 15c)"

 , , , , ', ', ', '[(((, , ,)
C

v

E E

E p p p p

v v w w p p p p

z z z z z z z z PATH f f z z PATH



  2,4

21 22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 11 12 21 22 21 22 11 12 3 2

(, , ,)

 (, , ,) (, , ', ') (, , ', '))

 ((', ', ', ') (', ', ', ') (', ', ', ')))

C

C C

C v v

E C E

z z v v

E z z z z E z z z z E z z z z

PATH f f z z E z z z z PATH z z p p

  

  

2,4 2,4

2 3 1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4

3 21 22 1 2 11 12

 (((, , ,) (, , ,) (, , ,)

 (, , ', ') (, , ', '))

 ((', ', ', ') (', ',

C C

C

E E C

v v

E C

PATH w w z z PATH z z l l E z z z z

E z z z z E z z z z

PATH z z l l E z z

  

 

  2,4

21 22 11 12 11 12 3 2 1

11 12 11 12 1

', ') (', ', ', ')))]

 " preserves outside of the windows, and preserves left and

 right side of the windows (Figure 15)"

 , , ', '[(

CE

v C

z z PATH p p z z

E E

z z z z



 2,4 2,4

2 1 2 11 12 11 12 1 2

2,4 2,4

11 12 11 12 2 2 1 2 11 12 21 22 11 12

3 (11 12 (11 12

(, , ,) (, , ,)

 (, , ', ')) ((', ', ', ') (', ', ', ')

 [(C (,) C (', '

C C

C C

E E

v E E

PATH f f z z PATH z z v v

E z z z z PATH f f z z PATH z z p p

z z z z



  

 ) 11 12) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

)) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

z z z z

z z z z z z z z

z z z z z z z z

   

 

   

   

11 12 11 12 3 2 1

2,4

11 12 11 12 1 2 1 2 11 12

 (C (,) C (', '))])]

 " preserves symbols in left side of the window"

 , , ', '[((, , ,)
C

v

E E

z z z z

E

z z z z PATH w w z z PATH

  

  2,4

11 12 1 2

2,4 2,4

11 12 11 12 2 2 11 12 11 12 11 12 1 2

3 (11 12 (11 12) 11 12) 11 12

(, , ,)

 (, , ', ')) ((', ', ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '

C

C Cv E E

z z l l

E z z z z PATH p p z z PATH z z l l

z z z z z z z z

  

   

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

z z z z z z z z

z z z z z z z z

      

   

11 12 11 12 3 2 1

1 0 11 12 0 11 12 1 11 12 1 11 12 1 0

 (C (,) C (', '))])]

 " preserves symbols in right side of the window"

 [((,) (', ')) ((,) (', '))])

v

z z z z

E

C p p C p p C p p C p p

  

    1

11 12 1 11 12

)

 "In (', ') we get a copy of the Boolean value , in (,) (Figure 14c)"p p b p p



 Wei Ren (02103176)

 59

0 1

11 12 11 12 2 1 2 11 12 1 2 11 12

11 12 1 2 1 2 11 12

((,) ((,))

 , , ', '((, ,) (, ', ') (, , ,)

 (, , ,) (, , ', ')

ST ST

C

C C

y E x y z E y z

p p p p M x f f M y p p E f f p p

E p p l l E l l p p

 

  

 

(d) (

21 22 11 12 21 22

(1 2) 1 2 3 1 11 12 1 11 12

 ', '((', ', ', '))

 (,) (,) [((,) (', '))

Cp p E p p p p

C f f C l l C p p C p p



   

0 11 12 0 11 12 3 2 1 0 ((,) (', '))])))C p p C p p 

0

" is the predecessor of the leaf in , so that this is the last transition" (See Figure 16)

Note that the last transition is necessarily an instance of case c in Figure 14.

((,))

ST

ST

x E

y E x y(e) (

1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 0

 " is the leaf in "

 ', '((, ', ') ', '((', ', ', ')) "(', ') is a leaf in "

 (', '))))

ST

C C

x E

p p M x p p y y E p p y y p p E

C p p

 



 "the last formula in < , > is "1" "CC E

5.2.1.3 Complete expression for kSATQBF

We get the complete expression by combining the three parts together (that is

taking (2.1) from 5.2.1.1, (2.2a) from 5.2.1.2.1, and (2.2b) from 5.2.1.2.2,

together with the quantification in 5.2.1.2).

1 2 2 1 2 2

1 1 1 2 2 2

1 2 2 1 2 2 2 2 4 1 2 3

2 2 2 2 2 2 2 3

() 1 0

1 2

0

, , , , , ,

 ..., , , , , , , , , , , , ,

 , , , , , , ,

 ([" =< , > is a linear graph"]

k k k k t t t p c ST

t t t

V E B V E B

Q V E B V E B V C E ST E M

C C C C C C C H

G V E

  

  

  

1 1 1 3 3 3 ' ' '

"The length of is equal to the number of variables in the quantifier prefix of "]

[" , , , ,..., , are linear graphs"]

t

k k k

G

G V E G V E G V E



      

(1)

 [(2)

(3)

 (where ' is the index of the last quantifier in the prefix)k 

 Wei Ren (02103176)

 60

1 1 3 3 ' '

1 3 '

[" : {0,1}, : {0,1},..., : {0,1} are total functions"]

["the lengths of the linear graphs , ,..., are equal to the lengths of

 the corresponding quantifier blocks in "

k k

k

B V B V B V

G G G



   



(4)

]

[" is a partial bijection from the quantifier prefix of (restricted to the

 in the quantifier prefix) to V , which maps every to it

p

t

V X

X



(5)

s corresponding node in ,

 and which preserves and ."]

["(,) is a linear graph"]

t

I

t

C

G

E

C E





(6)

1 2

["(,) is a linear graph"]

[" : is an injective and total function t

STST E

M ST C



 

(7)

(8)

2 2 2 2 2 2 2

() 1 0

2 2 2 2 2 2 2

() 1 0

hat preserves in and "]

[" , , , , , , are pairwise disjoint sets,

 and "]

[" is a p

ST CPATH E E

C C C C C C C

C C C C C C C C

H

  

  







(9)

(10)

artial surjective injection from the quantifier free part of to the first

 formula in (,), which maps every "X" in the quantifier free part to the

 corresponding position in the first formula

CC E



1

2 1 2 3

in (,) which we denote by ,

 which preserves , ,(,), , and and , and which ignores "|". "]

[

 [([" , , ,..., are disjoint sets"]

c

I C

k

C E

E

V V V V



   



(11)

2 2 2 4 4 4 '' '' ''

2 2

[" , , , ... , are linear graphs"]

 (where '' is the index of the last quantifier in the prefix)

[" : {

k k kG V E G V E G V E

k

B V

      



 

(12)

(13)

4 4 '' ''

2 4 ''

0,1}, : {0,1},..., : {0,1} are total functions"]

["the lengths of the linear graphs , ,..., are equal to the lengths of

 the corresponding quantifier blocks in "])

k k

k

B V B V

G G G



 



(14)

2 2 2

1 2 1 1

2 2

, ... ([" is a partial bijection: 1st part of "]

 [" is a partial bijection: 2nd part of "]

k t

t

U U U U G G

U G G

 

 

 (15)

 [" is a partial bijection: th part of "])k k tU G k G    (16)

 Wei Ren (02103176)

 61

1 2

1 2 2

2

2 0 0 0

[" : {0,1} is a total function that with , ,..., "

 " ... "]]

[, , , ,

t t k

t k

o f f

B V B B B

B B B B

V z y z y z

 

 

  

 (17)

coincides

0 3 4

5 0

0 5

5

', ', ', '[(

 [" is the root in (), is the leaf in (),

 is the root in (), is the leaf in ()"]

 [" is

f f

o f o

o f o

o

y z y

z dom V z dom V

y ran V y ran V

V

(18)

5

a partial bijection from " | ... | " in " | ... | " to " | ... | " in "(... | ... | ...)",

 which preserves "]

I

QX X

 (19)

5 0

0

 [" ' is predecessor of root in dom ()"

 " ' is predecessor of root in ran ()"

" ' is successor of leaf in dom ()"

 " ' i

o

o

f o

f

z V

y V

z V

y









5 4

4 0 0 4 3

s successor of leaf in ran ()"])

([" ((')) (')"])]

o

t p

V

B V z H y 

(20)

2 1 0

["The truth value of on the valuation is 1"]]]) tB

(21)

(22)

(1) “The graph tG is a linear graph”: (,)t tLINEAR V E

(2) "The length of is equal to the number of variables in the quantifier prefix of "tG 

This statement is implied by the following statement:

" is a partial bijection from the quantifier prefix of (restricted to the

in the quantifier prefix) to V , which maps every to its corresponding node in ,

and which preserves and ." (See

p

t t

I

t

V X

X G

E



 (6) below)

(3) 1 1 1 3 3 3 ' ' '" , , , ,..., , are linear graphs":k k kG V E G V E G V E     

 (where ' is the index of the last quantifier in the p r x) efik 

1 1 3 3 ' '(,) (,) ... (,)k kLINEAR V E LINEAR V E LINEAR V E  

 Wei Ren (02103176)

 62

1 1 3 3 ' '

1 1

1 1

" : {0,1} : {0,1} ... : {0,1} are total functions"

 [, , '[(,) (, ') (') "function"

 (() ((,)))

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(4)

1

3 3

3 3

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

 (() ((,)))

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

3

' '

'

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

 ((

k k

k

B t p p p

t p p B t p B t p p p

V t

    



   

 '

'

) ((,))) "total"

 ((,) ("0" "1"))]]

k

k

p B t p

B t p p p



    

' 2

1,3,5,..., '

'1 1

1 2 3 ' ' 1 '1 2

' 2,1 1

If ' , then (by we mean the formula template instantiated with ') :

... ()

If ' , then (by we mean the formula template instantiate

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(5)

' 2 ' 2

1,3,5,..., ' 2

1 2 3

1 2 3 ' 1 ' 2,1 2 1 2 3 1 2

d with ' 2):

(' 2 is the previous to the last block, and the subformulas , ,

take care of the last quantifier block)

... () ... ()
i k

k k i k eL L

i k

k

v v v v v v v v v

  

   
 

 

 

 

  (3)

1 0 1 2 3 1 1

"for 1 , is the first quantifier of the j-th alternating quantifier block:"

(when i is not the index of the last block)

(() () () ... () "0"

 "where is if (1)

j

i Q i

Q

j i v

P v P v P v P v v

P P i

    



 

      



1 2 2 3 1

1 2 1 2

is odd, or if (1) is even"

 [(,) (,) ... (,)]

 ['((, ') (',) ' ' ('))]

 [

i i

P i

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v



   

  



   

       

  2 3 2 3

1 1 ' 0

'

'((, ') (',) ' ' ('))]

 ...

 ['((, ') (',) ' ' ('))])

 "where is

i i i i Q

Q

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v v v v v P v

P

  

   

      



       

 if is odd, or if is even"P i P i 

 Wei Ren (02103176)

 63

1 0 1 2 3 | 1

"for 1 , is the first quantifier of the j-th alternating quantifier block:"

("for , is the last element in the block , which must be |")

(() () () ... () () ="0"

j

e

Q k e

j i v

i k v i

P v P v P v P v P v v   

 



      

1 2 2 3

1 2 1 2

 "where is if is odd, or if is even"

 [(,) (,) ... (,)]

 ['((, ') (',) ' ' ('))]

Q

k e

P P k P k

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v

 

  

  

   

       

2 3 2 3

' 0

 ['((, ') (',) ' ' ('))]

 ...

 ['((, ') (',) ' ' ('))])

k e k e Q

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v v v v v P v

  

 

       



       

' "where is if is odd, or if is even"

" ' is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next and E :" when is not the index of the last blo

Q

i

X i

P P k P k

L

i

 

2 0 1 1

ck

('[((, ') (',) ' (')) '('(', '))]

 "domain of ' "

 '((') '('(', '))) " ' is surjective"

 , , ', '[[('(,) '(', ') ' (,)

i i i i X

i

i

v PATH v v PATH v v v v P v y L v y

L

y V y v L v y L

s t s t L s t L s t s s PATH v s

    



       

 

      1(',) (, ')

 ('((, ') (', ') ' ' ' (')))) (, ')]

 " ' preseves in the alternating block and (implies injectiv

i

X i

X i

PATH s v PATH s s

z PATH s z PATH z s z s z s P z E t t

L Next ith E

  

 



        

0

ity)"

 ' '['(', ') (')]

 ' ' '(['(', ') '(', ')] (' '))]) " ' is a function"

iv y L v y V y

v y z L v y L v z y z L

 

   

2 0

" ' is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next and E :"

(when)

('[((, ') (',) (')) '('(', '))] "domain of ' "

i

X i

k e X

L

i k

v PATH v v PATH v v P v y L v y L

y

  



     

 '((') '('(', '))) " ' is surjective"

 , , ', '[[('(,) '(', ') ' (,) (',) (, ')

 ('((, ') (', ') ' ' ' (')))) (, ')

k

k e

X k

V y v L v y L

s t s t L s t L s t s s PATH v s PATH s v PATH s s

z PATH s z PATH z s z s z s P z E t t

  

 



      

        

0

]

 " ' preseves in the k- alternating block and (implies injectivity)"

 ' '['(', ') (')]

 ' ' '(['(', ') '(', ')] (' '))]) " ' is a function"

X k

k

L Next th E

v y L v y V y

v y z L v y L v z y z L

 

   

 Wei Ren (02103176)

 64

3 0 | |

"For , is the last | for the last quantifier in the quantifier prefix":

('(((, ') (')) ()

 '((, ') ((') ('))) "there are no quantifiers after "

 ' ' '

e

e e

e e

i k v

v SUC v v P v P v

v PATH v v P v P v v

z y w v

 

  



   

   

  |'[(',) ([(',) (', ')] ('))

 " ' is the last quantifier in the block , ' is the of the variable quantified"

 "y' is the first | for that variable"

e ePATH y v PATH v v PATH y v P v

w k z X

P

    

 0(') (') (', ') (', ')])

 "where is if is odd, or is if is even"

Q X

Q Q

w P z SUC z y SUC w z

P P k P P k

 

 

  

(, , ((,) (,) (=) " is a function"

 ((,) (,) =) " is injective"

 ((() (

p p p

p p p

X

x y z V x y V x z y z V

V x y V z y x z V

P x PRED

   

  

 

(6)

,) [() ()]) (() (,)))

 "domain of ","range of "

 " is partial bijection: in quantifier prefix of in "

s,t,s',t

t p

p p

p t t

x z P z P z y V y V x y

V V

V X V G

     



 '([(s,s') (t,t') (s',t')] ((,)

 '((' ' (, ') (z',)) ('))))

" preserves restricted to the in the quantifier prefix, and ."

p p t

X

I

p t

V V E PATH s t

z z s z t PATH s z PATH t P z

V X E



 

  

      



2,4

0 1 2 1 2 1 2 3 1 2 1 2 3

1 2

3 1 1 2 2 1 2 3 2

3

(,)

(,)

(, ', , , , ((((, ,) (, ,))

 (() () (,))) " is a function, : "

 ([(,

C

ST

LINEAR C E

LINEAR ST E

s s t t k k M s t t M s k k

t k t k ST s C t t M M ST C

M s





  

      



(7)

(8)

(9)

1 2 1 1 2 1 3

3 1 2 4 1 2 4 3

2,4

3 4 1 2 1 2 4 1

,) (, ,)] =) " is injective"

 (() ', '((, ', '))) " is total"

 ([(, ,) (', ,) (, ')] (,
CST E

k k M t k k s t M

ST s t t M s t t M

M s t t M s k k PATH s s PATH t

 

 

    2 1 2 3 1 0, ,))))

 "M preserves in and "ST C

t k k

PATH E E

 Wei Ren (02103176)

 65

1 2 1 2 1 2 1 2 1 2

1 2 (1 2 1 2) 1 2

1 2 1 1 2 1 2 0 1 2

, (((,) (,)) ((,) (,))

 ((,) (,)) ((,) (,))

 ((,) (,)) ((,) (,)) ...)

s s C s s C s s C s s C s s

C s s C s s C s s C s s

C s s C s s C s s C s s

   

 

 

   

   

    

(10)

2 2 2 2 2 2 2

() 1 0

1 2 1 2 1 2 1 2 1 2 (1 2) 1 2

0 1 2 1 1 2

1 2 1 2

 " , , , , , , are pairwise disjoint"

, ((,) ((,) (,) (,) (,) (,)

 (,) (,)))

, (((,) (

C C C C C C C

s s C s s C s s C s s C s s C s s C s s

C s s C s s

s s C s s C

  

  



     

 

  1 2 1 2 1 2 1 2 1 2

(1 2 1 2) 1 2 1 2 0 1 2 1 2

1 1 2 1 2

2 2 2 2 2 2 2

() 1 0

,)) ((,) (,)) ((,) (,))

 ((,) (,)) ((,) (,)) ((,) (,))

 ((,) (,)))

 "() "

s s C s s C s s C s s C s s

C s s C s s C s s C s s C s s C s s

C s s C s s

C C C C C C C C

 

  

   

     

 



1 2 1 2 1 2 1 2 1 2 1 1 2 2

(1 2 2

, , , , ((((, ,) (, ,)) (()

 '((') (',)) (,)))

 " is a function,

x y y z z H x y y H x z z y z y z

x P x PATH x x C y y

H

 





     

  

(11)

2 1 2 1 2 2

1 2 1 2 1 2 2

2 3

:quantifier free part of "

 ((, ,) (, ,) =z) " is injective"

 ', ', ', ', ', ', ',

 (((')

H C

H x y y H z y y x H

y y z z t t v v

ST v



  

 

  





2 1 2 2 1 2 1 2 1 2

1 2 1 2 1 2 1

((, ')) " ' is the root in < , >"

 (',) (', ', ') (, ', ') (', ', ', ')

 (', ', ,) (, , ',
C C

ST ST

ST C

E E

y E y v v ST E

E v v M v y y M v z z E t t z z

PATH y y y y PATH y y t t



   

  2 3 1 2 2

(1 2 1 2 2 1

')) '((', ,)))

 "the range of is the first formula in < , >"

 ('((') (',)) ', '((, ', '))))

C

x H x y y

H C E

x P x PATH x x y y H x y y









   

1 2 1 2 1 2 1 2 1 2 1 2

 "the domain of is the quantifier free part of "

 , ', , , , , [(((, ,) (, ,) (, , ,))

 ((,) ((,)

C

H

x x z y y z z H x y y H z z z E y y z z

SUC x z PATH x z



 



 

   



|

1 2 ((1 2)) 1 2

'(((, ') (',)

 ' ') ('))))

 ((, ,) ((() (,)) (() (,))

x PATH x x PATH x z

x x x z P x

H x y y P x C y y P x C y y

  

    

    

1 2 1 2

1 2 0 1 2 1 1 2

 (() (,)) (() (,))

 (() (,)) (() ((,) (,)))))]

 " preserves (

X

I

P x C y y P x C y y

P x C y y P x C y y C y y

H

   

 

   

    

 ignoring |) and E , { , ,(,), }, and maps to 0/1"C X  

 Wei Ren (02103176)

 66

1 2 1 3 1

2 3 2 4 2

1

 "[() () ... ()

 () () ... ()

 ()]"

where " " is ((() ()) (() ()))

k

k

k k

i j i j j i

V V V V V V

V V V V V V

V V

V V x V x V x V x V x

  

  







      

      



 

    

(12)

(13) 2 2 2 4 4 4 '' '' ''" , , , ... , are linear graphs":k k kG V E G V E G V E     

 (where '' is the index of the last quantifier in the pr efix)k 

2 2 4 4 '' ''(,) (,) ... (,)k kLINEAR V E LINEAR V E LINEAR V E  

2 2 4 4 '' ''

2 2

2 2

" : {0,1} : {0,1} ... : {0,1} are total functions"

[, , '[(,) (, ') (') "function"

 (() ((,)))

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(14)

2

4 4

4 4

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

 (() ((,)))

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

4

'' ''

 "total"

 ((,) ("0" "1"))]

 , , '[(,) (, ') (') "function"

k k

B t p p p

t p p B t p B t p p p

    



   

 '' ''

''

(() ((,))) "total"

 ((,) ("0" "1"))]]

k k

k

V t p B t p

B t p p p



    

' 2

2,4,6,..., ''

''1 1

1 2 3 '' '' 1 ''1 2

'' 2,1 1

If '' , then (by we mean the formula template instantiated with ''):

... ()

If '' , then (by we mean the formula template i

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(15)

' 2 ' 2

2,4,6,..., '' 2

1 2 3

1 2 3 '' 1 '' 2,1 2 1 2

nstantiated with '' 2):

('' 2 is the previous to the last block, and the subformulas , ,

take care of the last quantifier block)

... ())
i k

k k iL L

i k

k

v v v v v v v

  

 
 

 

 

 

 (3 1 2 3

1 2 1 2 3

... ()

where the subformulas , , , and are the same as in (5) above.

k e

i i

v v   

    

 

 Wei Ren (02103176)

 67

2 2 2

1 2

1 1

1

1 1

2 2

2

("

: Total injection,

 preserves , ,

 includes first node in as U (first node in),

: Total injection,

 preserves , ,

k

t

t

t

t

t

V V

E E

V E

V V

E E



 





 



(16) U U ...U

U

U

1 1 2 2

3 3

3

2

 includes successor in of node U (last node in) in as U (first node in),

: Total injection,

 preserves , ,

 includes successor in of node U (l

t t

t

t

t

E E V E

V V

E E

E



 





U

2 3 3

1 1

ast node in) in as U (first node in),

..., and

: Total injection,

 preserves , ,

 includes successor in of node U (last node in) in as U (first no

t

k k t

k t

t k k t k

E V E

V V

E E

E E V 

 





U

de in)")kE

2 2 2

1 2 ... (...

 , , , [(((,) (,))) "function"

 ((,) (,))) "injection"

 (() ((,))) "total"

k

k k

k k

k k

U U U

x y t u U x y U x t y t

U x y U u y x u

V x y U x y

 

   

   

 

 ((,) (() ()) " : "

 (((,) (,) (,)) (,)) "preserves "

 (((,) (,) (,)) (,)) "pre

k k t k k t

k k k t k

k k t k

U x y V x V y U V V

U x y U u t E x u E y t E

U x y U u t E y t E x u

   

   

   

1 1

1

serves "

 (((,) ((,)) (,) ((,) ()))

 (,))])

 "includes successor in of node U (las

t

k k t k k

k

t k

E

U x y v E x v E y t v E v u V u

U u t

E

 



    



1t node in) in as U (first node in)"k t k kE V E

1 2

1 1

2 2

 " with , ,..., "

'[((,) (,) (, ')) ']

'[((,) (,) (, ')) ']

...

'[((,) (,) (, ')) ']

t k

t

t

k k t

B coincides B B B

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

    



    





    

(17)

 Wei Ren (02103176)

 68

2

2 0 0 0 0

3 4 5 0 0 0

0 0

[, , , , ', ', ', '

 [([(,) ', '((, ') (', '))

 (,) ', '((, ') (', '))

 z'([(, ') (',)] '(

o f f f f

o o

o f f f o

f

V z y z y z y z y

V z y z y PRED z z V z y

V z y z y SUC z z V z y

PATH z z PATH z z y V





 

  

 

  

  

(18)

0 0 5

0 0

(z',y')))

 '([(, ') (',)] '((z',y')))]

 " is the root in (), is the leaf in (), is the root in (),

 is the leaf in (

f

o f o o

f o

y PATH y y PATH y y z V

z dom V z dom V y ran V

y ran V

   

)"

5 | |

5

, , , [((,) (() ()))

 (((,) (,)))

 (((,) (,)))

 (((,) (,) (,)) (,))]

" is

o

o o

o o

o o

o

x y v w V x y P x P y

V x y V x v y v

V x y V w y x w

V x y V v w SUC x v SUC y w

V

 

  

   

   

   

(19)

 a partial bijection from " | ... | " in " | ... | " to " | ... | " in "(... | ... | ...)",

which also preserves "I

QX X



5 0 0 0

0

0 0 0

0

[(, ') (')

 " ' is the predecessor of the root in (), i.e., it is the X in the quantifier prefix"

 (, ') (')

 " ' is the

X

o

X

PRED z z P z

z dom V

PRED y y P y

y





 

 

(20)

|

|

 predecessor of the root in (), i.e., it is the X in the quantifier free part "

 (, ') (') " ' is the successor of the leaf in ()"

 (, ') (

o

f f f f o

f f

ran V

SUC z z P z z dom V

SUC y y P y





 

  5 4')]) " ' is the successor of the leaf in ()"f f oy ran V

4 0 1 2 0 1 2

0 1 2 1 1 2 4 3

0 0

, '(((',) (, ')) (, ((', ,)

 [(' "0" (,)) (' "1" (,))])))]

 " ((')) (')"

p t

t p

x x V z x B x x z z H y z z

x C z z x C z z

B V z H y





   

     



(21)

4

3 1 2 1 2 1 2 1 2 4 5

 " (the formula in < , > at stage 1 is the same as the formula at stage ,

 except for one subformula as in Figure 14)"

[() , , , , , ', ', ', '[[

C

v

x C E x x

x ST x E f f l l f f l l

  

    

(22)

(4) (5) (0) 6 6 5 4 3 2 1 0(]]) (1) (2) (3))]]]

 Wei Ren (02103176)

 69

The sub formula (4) corresponds to the last transition, i.e. the transition to the

last formula in , CC E  (“0” or “1”). The three sub formulas (1), (2), (3)

correspond to the three possible cases (a), (b), (c) as in Figure 14, according

to which sort of operation is the one involved in the transition from the

formula in stage x to the next formula in , CC E  .

6 7 8 1 1 8

8 1 2 1 2 1 2 0 1 2 1 2 1 2 1 2 1 2 2

 (((, ((,) (,))

" is not the leaf in and is not the predecessor of the leaf "

 (, , , , , ((((, , ,) (, , ,))

ST ST

ST

v v

y y E x y E y y

x E

s s t t k k E s s t t E s s k k

 

  

(0)

2 1 1 2 2 1 2 1 2 2 1

2 1 2 1 2 1 2

 (() (,) (,)))

 " is a function, : "

 ([(, , ,) (, ,

v v

v v

t k t k C s s C t t

E E C C

E s s k k E t t

     



  1 2 1 1 2 2 2 0 8 7

4

,)] (=)))))

 " is injective, :C "

 " partial injection mapping the formula in < , > in stage

v v

v C

k k s t s t

E E C

E C E x

  





7 1 2 1 2 1 2 1 2

1

1 2

1 2 1

 to the formula in < , > in stage ())"

(((, ,) " ((), (,))" " (,) (', ')")

 " ([(())], ', ')")

 "[(,), (

C ST

ST C C

C ST ST

C E E x

M x f f M E x E l l E l l f f

E M E E x l l

f f l



   



2 1 2 1 2

2,4 2,4

1 2 1 2 1 2 1 2 1 2 1 2 1

,)] and [(', '), (', ')]

 are the delimiters of the two formulas as in Figure 15"

 , , , (((, , ,)) [(((, , ,) (,
C Cv E E

l f f l l

y y z z E y y z z PATH f f y y PATH y y   2 1 2

2,4 2,4

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 7 6

1 2

, ,)))

 ((', ', ,) (, , ', '))]

 (, , ', ') (, , ', ')))

" maps nodes from the subgraph [(,

C CE E

v v

v

l l

PATH f f z z PATH z z l l

E f f f f E l l l l

E f f

 

 

1 2 1 2 1 2), (,)] to the subgraph [(', '), (', ')]"l l f f l l

1 1 2 1 2 1 2 1 2 11 12 21 22 31 32 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22 21 22 31 32

1 2 11 12 31 32 1 2

 (, , , , ', ', ', ', , , , , , , ', '

((, , ,) (, , ,) (, , ,) (, , ,)

 (, , ,) (, , ,)

C CE E C C

C C

v v w w v v w w p p p p p p p p

PATH f f v v PATH w w l l E p p p p E p p p p

E v v p p E p p w w

 

  

 

(1)

2,4 2,4

(1 2) 1 2 1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12 1 2 1 2

1 2 1 2 (

 (,) (,) (', ', ', ') (', ', ', ')

 (', ', ', ') (', ', ', ') (, , ', ') (, , ', ')

 (, , ', ') (

C CE E

C C v v

v

C v v C w w PATH f f v v PATH w w l l

E v v p p E p p w w E p p p p E v v v v

E w w w w C

   

   

  1 2) 1 2

1 2 1 2 1 2 1 2

', ') (', ')

 "[(,), (,)] and [(', '), (', ')] define the windows of change (Figure 15 a, b)"

v v C w w

v v w w v v w w



 Wei Ren (02103176)

 70

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4

3 1 2 11

, , , , ', ', ', '[(((, , ,) (, , ,)

 (, , ,) (, , ', ') (, , ', '))

 ((', ', '

C C

C

E E

C v v

E

z z z z z z z z PATH f f z z PATH z z v v

E z z z z E z z z z E z z z z

PATH f f z

 

  

 2,4

12 21 22 1 2 11 12 21 22 3 2

2,4 2,4

2 3 1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22

, ') (', ', ', ') (', ', ', ')))

 (((, , ,) (, , ,) (, , ,)

 (, , ', ') (, , ', '))

C

C C

E C

E E C

v v

z PATH z z v v E z z z z

PATH w w z z PATH z z l l E z z z z

E z z z z E z z z z

 

  

  3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2 1 ((', ', ', ') (', ', ', ') (', ', ', ')))]

" preserves outside of the windows, and preserves left and right side of the windows (Figure 15)

C CE E C

v C

PATH w w z z PATH z z l l E z z z z

E E

  

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 1 2 11 12 11 12 1 2

3 (11 12 (11 1

"

, , ', '[((, , ,) (, , ,) (, , ', '))

 ((', ', ', ') (', ', ', ')

 [(C (,) C (',

C C

C C

E E v

E E

z z z z PATH f f z z PATH z z v v E z z z z

PATH f f z z PATH z z v v

z z z z

  

 

  2) 11 12) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12

')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,)

z z z z

z z z z z z z z

z z z z z z z z

z z

   



 

   

   

  11 12 3 2 1

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4

2

C (', '))])]

 " preserves symbols in left side of the window"

, , ', '[((, , ,) (, , ,) (, , ', '))

 ((

C C

C

v

E E v

E

z z

E

z z z z PATH w w z z PATH z z l l E z z z z

PATH



  

 2,4

1 2 11 12 11 12 1 2

3 (11 12 (11 12) 11 12) 11 12

11 12 11 12 11 12 11 12

', ', ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

CEw w z z PATH z z l l

z z z z z z z z

z z z z z z z z   



   

   

 0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

1 0 11 12 0 31

(C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', '))])]

 " preserves symbols in right side of the window"

 [((,) (,

v

z z z z z z z z

z z z z

E

C p p C p p

 

  

 

  32 21 22 0 11 12

0 11 12 0 31 32 21 22 0 11 12

0 11 12 1 31 32 21 22 0 11 12

0 11 12 1 31

) (,) (', '))

 ((,) (,) (,) (', '))

 ((,) (,) (,) (', '))

 ((,) (,

C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p p C p







 

   

   

  32 21 22 1 11 12

1 11 12 0 31 32 21 22 0 11 12

1 11 12 0 31 32 21 22 1 11 12

1 11 12 1 31

) (,) (', '))

 ((,) (,) (,) (', '))

 ((,) (,) (,) (', '))

 ((,) (

p C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p p C p







 

   

   

  32 21 22 1 11 12

1 11 12 1 31 32 21 22 1 11 12 1 0 1

11 12 21 22

,) (,) (', '))

 ((,) (,) (,) (', '))]))

 "In (', ') we get the result of applying the operator in (,) to the

p C p p C p p

C p p C p p C p p C p p

p p p p



 

 

   

1 11 12 2 31 32 Boolean values , in (,), and , in (,) (Figure 14a)"b p p b p p

 Wei Ren (02103176)

 71

1 1 2 1 2 1 2 1 2 11 12 21 22 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22

1 2 11 12 21 22 1 2

(1 2) 1 2

 (, , , , ', ', ', ', , , , , ', '

((, , ,) (, , ,) (, , ,)

 (, , ,) (, , ,)

 (,) (,)

C CE E C

C C

E

v v w w v v w w p p p p p p

PATH f f v v PATH w w l l E p p p p

E v v p p E p p w w

C v v C w w PATH

 

 

 

  

(2)

2,4 2,4

1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12

1 2 1 2 1 2 1 2 (1 2) 1 2

1 2

(', ', ', ') (', ', ', ')

 (', ', ', ') (', ', ', ') (, , ', ')

 (, , ', ') (, , ', ') (', ') (', ')

 "[(,), (

C CE

C C v

v v

f f v v PATH w w l l

E v v p p E p p w w E p p p p

E v v v v E w w w w C v v C w w

v v w



  

   

1 2 1 2 1 2

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11 12 21 22

,)] and [(', '), (', ')] define the windows of change (Figure 15 a, b)"

, , , , ', ', ', '[(((, , ,) (, , ,)

 (, , ,) (

C CE E

C v

w v v w w

z z z z z z z z PATH f f z z PATH z z v v

E z z z z E

 

  11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2

2,4 2,4

2 3 1 2 11 12 21 22 1

, , ', ') (, , ', '))

 ((', ', ', ') (', ', ', ') (', ', ', ')))

 (((, , ,) (, , ,

C C

C C

v

E E C

E E

z z z z E z z z z

PATH f f z z PATH z z v v E z z z z

PATH w w z z PATH z z l l



  

  2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2 1

) (, , ,)

 (, , ', ') (, , ', '))

 ((', ', ', ') (', ', ', ') (', ', ', ')))]

" preserves outside

C C

C

v v

E E C

v C

E z z z z

E z z z z E z z z z

PATH w w z z PATH z z l l E z z z z

E E



 

  

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4

2 1 2

of the windows, and preserves left and right side of the windows (Figure 15)"

, , ', '[((, , ,) (, , ,) (, , ', '))

 ((', '

C C

C

E E v

E

z z z z PATH f f z z PATH z z v v E z z z z

PATH f f

  

 2,4

11 12 11 12 1 2

3 (11 12 (11 12) 11 12) 11 12

11 12 11 12 11 12 11 12

0 11 1

, ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,

CEz z PATH z z v v

z z z z z z z z

z z z z z z z z

z z

   



   

   

 2 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

2,4

11 12 11 12 1 2 1 2 11

) C (', ')) (C (,) C (', '))

 (C (,) C (', '))])]

 " preserves symbols in left side of the window"

, , ', '[((, , ,
C

v

E

z z z z z z

z z z z

E

z z z z PATH w w z z

 

  

 

 2,4

12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 1 2 11 12 11 12 1 2

3 (11 12 (11 12) 11 12) 11 12

) (, , ,) (, , ', '))

 ((', ', ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '))

 (

C

C C

E v

E E

PATH z z l l E z z z z

PATH w w z z PATH z z l l

z z z z z z z z

 

 

   

 11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', '))])]

 " preserves v

z z z z z z z z

z z z z z z z z

z z z z

E

   

 

  

   

 

1 0 21 22 11 12 1 11 12

1 21 22 11 12 0 11 12 1 0 1

11 12

symbols in right side of the window"

 [((,) (,) (', '))

 ((,) (,) (', '))]))

 "In (', ') we get the result of ap

C p p C p p C p p

C p p C p p C p p

p p



 

  

  

11 12

1 21 22

plying , in (,), to the

 Boolean value , in (,) (Figure 14b)"

p p

b p p



 Wei Ren (02103176)

 72

1 1 2 1 2 11 12 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 1 2 11 12 11 12 1 2

2,4 2,4

(1 2) 1 2 1 2 11 12 11 12 1 2

 (, , , , , , ', '

((, , ,) (, , ,) (, , ,) (, , ,)

 (,) (,) (', ', ', ') (', ', ',

C C

C C

E E C C

E E

v v w w p p p p

PATH f f v v PATH w w l l E v v p p E p p w w

C v v C w w PATH f f p p PATH p p l l

 

  

   

(3)

11 12 11 12

1 2 1 2 11 12 11 12

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21

')

 (, , ', ')

[(,), (,)] and [(', '), (', ')] define the windows of change (Figure 15c)"

, , , , ', ', ', '[(((, , ,) (,
C C

v

E E

E p p p p

v v w w p p p p

z z z z z z z z PATH f f z z PATH z



  22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 11 12 21 22 21 22 11 12 3 2

2 3

, ,)

 (, , ,) (, , ', ') (, , ', '))

 ((', ', ', ') (', ', ', ') (', ', ', ')))

 ((

C C

C v v

E C E

E

z v v

E z z z z E z z z z E z z z z

PATH f f z z E z z z z PATH z z p p

PATH

  

  

 2,4 2,4

1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4 2,4

3 21 22 1 2 11 12 21 22 11

(, , ,) (, , ,) (, , ,)

 (, , ', ') (, , ', '))

 ((', ', ', ') (', ', ', ') ('

C C

C C

E C

v v

E C E

w w z z PATH z z l l E z z z z

E z z z z E z z z z

PATH z z l l E z z z z PATH p

 

 

   12 11 12 3 2 1

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2

, ', ', ')))]

" preserves outside of the windows, and preserves left and right side of the windows (Figure 15)"

, , ', '[((, , ,) (, , ,) (
C C

v C

E E v

p z z

E E

z z z z PATH f f z z PATH z z v v E   11 12 11 12 2

2,4 2,4

2 1 2 11 12 21 22 11 12

3 (11 12 (11 12) 11 12) 11 12

11 12 11 12

, , ', '))

 ((', ', ', ') (', ', ', ')

 [(C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', '

C CE E

z z z z

PATH f f z z PATH z z p p

z z z z z z z z

z z z z 

 

   

  11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

)) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', '))])]

 " preserves symbols in left side v

z z z z

z z z z z z z z

z z z z

E

 

 

 

   

 

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 11 12 11 12 11 12 1 2

3 (11

of the window"

, , ', '[((, , ,) (, , ,) (, , ', '))

 ((', ', ', ') (', ', ', ')

 [(C (,

C C

C C

E E v

E E

z z z z PATH w w z z PATH z z l l E z z z z

PATH p p z z PATH z z l l

z z

  

 

 12 (11 12) 11 12) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

 (C (,) C (', ')) (C (,) C (', '))

z z z z z z

z z z z z z z z

z z z z z z z z

   

  

   

   

11 12 11 12 3 2 1

1 0 11 12 0 11 12 1 11 12 1 11 12 1 0 1

11 12

 (C (,) C (', '))])]

 " preserves symbols in right side of the window"

 [((,) (', ')) ((,) (', '))]))

 "In (', ')

v

z z z z

E

C p p C p p C p p C p p

p p

 



 

   

1 11 12we get a copy of the Boolean value , in (,) (Figure 14c)"b p p

0 1

11 12 11 12 2 1 2 11 12 1 2 11 12

11 12 1 2 1 2 11 12

((,) ((,))

 , , ', '((, ,) (, ', ') (, , ,)

 (, , ,) (, , ', ')

ST ST

C

C C

y E x y z E y z

p p p p M x f f M y p p E f f p p

E p p l l E l l p p

 

  

 

(4) (

21 22 11 12 21 22

(1 2) 1 2 3 1 11 12 1 11 12

 ', '((', ', ', '))

 (,) (,) [((,) (', '))

Cp p E p p p p

C f f C l l C p p C p p



   

0 11 12 0 11 12 3 2 1 0 ((,) (', '))])))C p p C p p 

 Wei Ren (02103176)

 73

0

" is the predecessor of the leaf in , so that this is the last transition" (See Figure 16)

Note that the last transition is necessarily an instance of case c in Figure 14.

((,))

ST

ST

x E

y E x y(5)(

1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 0

 " is the leaf in "

 ', '((, ', ') ', '((', ', ', ')) "(', ') is a leaf in "

 (', '))))

ST

C C

x E

p p M x p p y y E p p y y p p E

C p p

 



 " the last formula in < , > is "1" "CC E

5.3 Expressing SATQBF in Third-Order Logic

In this section we give a top down presentation of the sketch of the TO formula

for SATQBF . We do not include the details of the sub-formulas whose expression

in TO is straightforward, taking into account the detailed exposition of the SO

formula for kSATQBF in section 5.2.

Roughly, we first express the existence of an alternating valuation suitable for a

given QBF formula  . And then we proceed to evaluate that alternating

valuation by evaluating each leaf valuation on a propositional formula on {0, 1}

which we build from and the leaf valuation. For this last part we use the sub

formulas that we have built for kSATQBF .

Input formula :

1 2 3 1 2 311 1 21 2 31 3 1 11 1 21 2 31 3 1... ('(... , ... , ... ,..., ...))
k kl l l k kl l l l k klx x x x x x Qx Qx x x x x x x x x       

Where k is arbitrary, and the formula ' is the quantifier free part of . We

use the same encoding as in kSATQBF .

 Wei Ren (02103176)

 74

Figure 17

As before, we will also use four levels of abstraction to build a sketch for a TO

formula to express .SATQBF

1
st
 Level:

“There is an alternating valuation va suitable for , which satisfies ”

2
nd

 Level:

2,1 2,2{0,1}, ,
3,1 3,2 3,2 :, , T t tV E

T T T
VV E B 

(2.1) (“ (,)t t tG V E is a linear graph which represents the sequence of quantified

variables in ”



(2.2) “ (),T TV E is a binary tree with all its leaves at the same depth, which is in

turn equal to the length of (,)t tV E ”



(2.3) “ (), ,T T TV E B is an alternating valuation va suitable for , i.e., all the

nodes in (),T TV E whose depth correspond to a universally quantified variable in

(No sibling) (Sibling)




 Wei Ren (02103176)

 75

the quantifier prefix of have exactly 1 sibling, and its value under TB is

different than that of the given node, and all the nodes whose depth correspond to

an existentially quantified variable in the quantifier prefix of are either the root

or have no siblings” (See Figure 17)



(2.4) “Every leaf valuation in (), ,T T TV E B satisfies ' ”)

3
rd

 Level:

2,1 2,2 2,2, , ,
3,1 3,2 3,2, , t t pV E V

T T T
V E B

0
(

Expressing (2.1):

1 2

1[" =< , > is a linear graph" (,)

"The length of is equal to the number of variables in the quantifier prefix of "

t t t t t

t

G V E LINEAR V E

G 





(1)

2

[" is a partial bijection from the quantifier prefix of (restricted to the X

in the quantifier prefix) to , which maps every in to its corresponding node in ,

and which preserves

p

t t

t

V

V X G

E







2 1 and in , (restricted to the X in the quantifier prefix)."]]

In 4th level (subformula 2): See (1) in 5.2.1.2.1 in SATQBF .

I

t

k

G  (2)

Expressing (2.2):

1["() is a connected graph that has one root and one or more leaves."

 "in () except for the root, all nodes have id=1"

,

,

T T

T T

V E

V E





(1)

(2)

 "in (except for the leaves, all nodes have od=1 or 2" ,)T TV E (3)

 Wei Ren (02103176)

 76

2,1 '3,1

2 3 4

3,2

 "in () all leaves have the same depth, which is in turn equal to the length of (,)"

 [" ((is a leaf in ()) (, bijection

,

, '

t t

D

T T

T T T

V E

X X

V E

V E S V D



      (4)

'

'

'

 : to which preserves and | "

 ()

 "

D
t D t ST

D

V S E

X

D

E

S



(5)

1

4 3 2 1

'

' () is the leaf in (,)"

 " includes the root of ()"))]] ,

t t t

D T T

X G V E

S V E

 



(6)

 (7)

1 1 3 1

1 1

1 1

1 2 1 2

1 1 1

1 1 2 2 1 2

1 1 1 1

1 2 3 1 2

In 4th level (subformulas 1, 2, 3):

[(() (,)) ((,))

 (((,)))

 ((()) ((,) ((,))))]

 (() (

TET T

T

T T T

T

R Z Z PATH R Z S S R

S S S S

Z Z Z R S S Z S S Z S S

Z Z S S S S S S

V E

E

V E E

V

   

 

      

    2 3 1 3 1 2 3(,) (,) (,)))T T TS S S Z S Z S Z SE E E     

Expressing (2.3):

1

2

3,1

See Figures 8, 10 in for , .

[" is a total function from to {0,1}"

 [" , s.t. (, |) is a lin

k t p

t
D

T T

T D T SD

SATQBF G V

x V

B V

V S ES



    

(1)

3,2

ear graph which includes

 the root of ()

 bijection from the initial subgraph of

,

t

T T

G

V E

D

(2)

up to , to s.t. preserves and "

|t
DD T S

x ES ED

 Wei Ren (02103176)

 77

1

3 4 5 5

5

 ([("the predecessor of () in is " " ")

 (" () has exactly one sibling in (),

 and of that

,

I

p

T T

T

V x E

xD V E

B

 



(3)

5 4 sibling is than (())")]

T xB D (4)

1

4 5 5

5

 [("the predecessor of () in is " " ")

 (" () has no sibling in (), or () is the r,

I

p

T T

V x E

x xD V E D

 



 (5)

5 4 3 2 1oot in ()")])]] ,T TV E (6)

Expressing (2.4):

1

3,1
[" s.t. (, |) is a linear graph which includes the root

 and a leaf of ()" ,
VST V T

T T

V
V S E

V E

S  

(

2

3

3,2
 (" bijection : , which preserves and "

 (" : {0,1}, which coincides with w.r.t. "

|

()

t t

t t

VV T S

T V

V E

B V

S E

B S D

D 

 

1)

(2)

3 2 1

 "the leaf valuation represented by (, ,) satisfies the quantifier free subformula

 ' of "))]

t t tV E B

 



0

(3)

)

 In 4th level (subformula 4): See 5.2.1.2.2 in SATQBF .k

(4)

6 Conclusion and Future Work

In this thesis, we have given a very brief introduction to Finite Model Theory and

relational databases, the relationship between logic languages and complexity classes,

the basic notions of First-Order logic, Second-Order logic, Third-Order logic and a

few related examples. It gives us an overall picture on what logic languages are, how

they relate to complexity classes and why they are so important.

 Wei Ren (02103176)

 78

The major purposes of this thesis are the following two points. Firstly, a non trivial

Second-Order logic formula is built to express a non trivial property, namely the

problem known as kSATQBF , which is defined, for some k >0 as the class of

quantified propositional formulas with k alternated blocks of quantifiers, starting

with an existential block, which are true. As we know that the expressibility of SO

(Second-Order logic) equals the class PH (Polynomial-time hierarchy), and that for

every 0,k  kSATQBF is a complete problem for the level P

k of the PH, there must be

a formula in SO which expresses kSATQBF . We give a detailed explanation on the use

of SO to express kSATQBF . Secondly, using the knowledge gained from the first point,

we give a top down presentation of the sketch of a Third Order Logic formula

for SATQBF , which is defined similarly but where the number of blocks, k , is

arbitrary. This is a problem known to be complete for PSPACE, which means that the

existence of a Second-Order logic formula is very unlikely, since it would imply that

PSPACE = PH.

Tentatively, I will continue my research on the theoretical parts of Higher Order

logics. Maybe I will bring some application perspectives into it such as the

construction of a query language for relational databases based on Higher-Order

Logics. Also, and following my master thesis, it is also worth investigating, as a part

of my PHD work, how the strategy used here to define kSATQBF can be adapted to

define AUTOSAT ([MP96], [Fer08]) for different fragments of Higher-Order logics.

We know that for every k there is a reduction from kSATQBF to 0()kAUTOSAT  .

0()kAUTOSAT  is the class of first order formulas with up to k alternations of blocks

of quantifiers which represented as finite structures satisfy themselves. In fact, same

as kSATQBF ,
0()kAUTOSAT  is complete for the level p

k of the PH (Polynomial

Hierarchy). It could be the case that this approach leads to tighter upper bounds than

those in the work reported in those articles.

 Wei Ren (02103176)

 79

7 References

[CH80] Chandra A., Harel D.. Computable Queries for Relational Data Bases.

Journal of Computer and System Sciences 21(2), pp. 156-178, 1980.

[Cod72] Codd E. F. (1972). Relational completeness of database sublanguage. In Data

Base Systems (Rustin, Ed.). Prentice Hall. Pp. 65-98, 1972.

[EF99] Heinz-Dieter Ebbinghaus and J¨org Flum. Finite Model Theory. Perspectives

in Mathematical Logic. Springer, Berlin Heidelberg New York, 2nd

edition, 1999.

[Fer08] Ferrarotti, F. A., Expressibility of Higher-Order Logics on Relational

Databases: Proper Hierarchies, PhD thesis, Massey University, 2008.

[FT04] Ferrarotti, F.A., Turull-Torres, J.M., Using Higher Order Quantification in

Logical Query languages. Proceedings of 3
rd

 Chilean Database Workshops,

Arica, Chile, 2004.

[GJ03] Garey, M.R., Johnson, D.S., Computers and Intractability: A Guide to the

Theory of NP-Completeness, Bell Laboratories, New Jersey, 2003.

[HT06] Hella, L., Turull-Torres, J.M., Computing queries with higher order logics.

Theor. Comput. Sci.355, 197-214 (2006).

[Imm99] Immerman, N., Descriptive complexity, Springer-Verlag, New York, 1999.

[Lib04] Libkin, L., Elements of Finite Model Theory, Springer-Verlag, Berlin, 2004.

 Wei Ren (02103176)

 80

[MP96] Johann A. Makowsky and Yachin B. Pnueli. Arity and alternation in

second-order logic. Ann. Pure Appl. Logic, 78(1-3):189–202, 1996.

[RG03] Ramakrishnan R. & Gehrke J.. (2003). Database Management Systems (3
rd

Edition). New York: McGraw-Hill Companies, Inc.

[RT08] Ren, W., Turull-Torres, J.M., Cubic graph in Second Order Logic. Massey

University 2008.

[Sto76] Stockmeyer, L.J., The polynomial-time hierarchy. Theor. Comput. Sci.,

3(1):1–22, 1976.

[Sto87] Stockmeyer, L.J., Classifying the Computational Complexity of Problems.

Journal of Symbolic Logic, Volume 52, Issue 1 (Mar., 1987), 1-43.

[TT03] Turull-Torres J. M. (2003). Notes on Relational Calculus. Information Science

Research Centre, Massey University.

[Var82] Vardi M. Y. (1982). The Complexity of Relational Query Languages.

Association for Computing Machinery. 5: 137-146.

