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Abstract 

 

In the present thesis, we deal with the construction of non trivial formulas in higher 

order logic languages. In particular, we focus on using SO (Second-Order logic) and 

TO (Third-Order logic) to express kSATQBF , and SATQBF respectively. First of all, 

we explain the relationship between logic languages and complexity classes. Then we 

give formal definitions and examples for FO (First-Order), SO and 

HO  ( 2)i i  (Higher-Order logic). It is known that, for every 1k  , 
kSATQBF is a 

complete problem for the level P

k of PH (Polynomial-time hierarchy), and 

that SATQBF is a complete problem for PSPACE. As the expressibility of SO is 

known to equal the class PH, then we know that there must be an SO formula which 

can express kSATQBF . On the other hand, PSPACE is known to be equal in 

expressive power to SO with the addition of a second order transitive closure 

quantifier, which is widely conjectured to be strictly more expressive than SO alone. 

As TO includes PSPACE , this means that there must be a TO formula that can 

express SATQBF . Here we give first a top down explanation on the use of SO to 

express kSATQBF . A detailed SO formula is presented. We then give a top down 

presentation of the sketch of a TO formula for SATQBF . 
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1 Introduction 

 

For many years there has been a lot of interest in query languages for relational 

databases. As we know query languages are specialized languages for asking 

questions, or queries, which involve the data in a database [RG03]. There are two 

major types of relational query languages, logical and algebraic. Logical languages, 

such as the language of relational calculus contain formulas which when evaluated on 

a database return as an answer the set of all tuples that satisfy them. These types of 

languages are non-procedural in nature. Algebraic languages, which contain relational 

algebra, consist of programs whose basic operations are algebraic ones like join and 

projection. These types of languages are procedural in nature [Var82]. 

 

Between these two types of query languages, strong relationships exist. Many 

researchers have been working on this subject. Therefore, how to distinguish these 

two types of query languages, and what the differences are, are important questions 

that we have to face. There are different ways to measure the complexity of evaluating 

queries in a specific language. One of the ways is to compare the expressive power of 

these languages. Computational complexity theory is brought into this field; it 

measures the amount of computational resources, such as time and space that are 

needed, as a function of the size of the input, to compute a query [Imm99]. It helps us 

to compare the expressibility of different query languages by looking at their 

corresponding complexity classes. 

 

Regarding relational database theory, there is a lot of information that is related. 

Following Codd’s pioneering work [Cod72] on relational calculus and relational 

algebra, a lot of work has been done studying and comparing the expressive power of 

these query languages. A central topic in Database Theory in recent years is to study 

the expressive power of different logics which are built as different sorts of extensions 

to first-order logic (FO), or equivalently, relational calculus or relational algebra, used 
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as computation models for the expression of queries to relational databases, which can 

be sketched in the following graph (See Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Expressibility of different logic languages 

 

Looking at the graph above, in a more pure logic setting, the problem is regarded as 

the expressibility of different logics in finite model theory [EF99]. Finite model 

theory studies, among other subjects, the expressive power of logics on finite models, 

in contrast to classical model theory, on the other hand, which concentrates on infinite 

structures, given that most subjects of interest in mathematics deal with infinite 

structures. There are many interesting research areas in finite model theory. One is 

interested in the expressiveness of logics over finite graphs, finite strings, or other 

finite relational structures.  

 

However it seems that not much attention has been devoted in the literature to the 

actual use of higher order logics to express non trivial properties of structures. With 

our work in [RT08] and in this thesis we aim to start a line of research in that 

direction. 

 

In the present work by QBF (Quantified Boolean Formulas) we mean the formulas of 
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the form 1 1 2 2... ( )n nF Q x Q x Q x E , where E is a Boolean expression involving the 

variables 1 2, ,..., nx x x and each iQ is either " " or " " . For 1k  , by kQBF we mean 

the QBF formulas which have k alternated blocks of quantifiers, starting with an 

existential block. kSATQBF and SATQBF denote respectively, the problems of 

deciding whether a kQBF formula or a QBF formula is satisfiable. As we know, for 

every 1k  ,  is P

k kSATQBF  complete, where

...

NP

NPP NP

k NP  . We also know 

that SATQBF is a complete problem for PSPACE. As according to computational 

complexity theory, the expressibility of SO (Second-Order logic) equals the class PH 

(Polynomial-time hierarchy), then we know that, for every 1k  , kSATQBF can be 

expressed in SO. On the other hand, PSPACE is known to be equal in expressive 

power to SO with the addition of a second order transitive closure operator, which is 

widely conjectured to be strictly more expressive than SO alone. As TO 

includes PSPACE , this means that there must be a TO formula that can 

express SATQBF . However, it seems that how to express these problems in SO and 

TO, respectively, is far from well known. In this thesis, we give in full detail an SO 

formula to express kSATQBF  and then we give a sketch of a TO formula to 

express SATQBF . 

 

In Section 2, we will give examples of graph properties expressed in different logics. 

We will mainly focus on FO, SO, TO and the expressive power that each of them have 

through a few examples of queries. Once we have a basic picture about what they are, 

we will focus in the following sections on the expressibility of second order logic, 

using this logic to express kSATQBF . And then we will give in Subsection 5.3 a top 

down presentation of the sketch of a TO formula for SATQBF . 
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2 Background 

 

2.1 Finite Model Theory, Relational Database and Queries 

 

Finite Model Theory and Relational Database Theory are two disciplines      

intimately connected. While Finite Model Theory provides a solid theoretical 

foundation to databases, databases provide one of the main concrete scenarios for 

Finite Model Theory within computer science. And most of the overlaps between 

Finite Model Theory and Relational Database Theory occur in the theory of query 

languages. Chandra and Harel [CH80] formalized the notion of computable queries 

for relational databases in 1980, and since then intensive studies have been done along 

this direction. There is much research which has focused on the completeness of 

different query languages and their expressive powers or computational complexities. 

From a theoretical perspective, it is desirable for a model of computation of queries to 

be representation independent, which means queries to databases that represent the 

same reality should evaluate to the same result. In mathematical terms, Chandra and 

Harel [CH80] partially captured the previous concept by asking queries to isomorphic 

databases to evaluate to the same result. Therefore, the subject of query languages has 

become the most important bridge between Finite Model theory and relational 

databases, since logic languages are one of the ways to express queries.  

 

2.2 Relationship with Complexity classes 

 

Computational complexity theory and logic languages are two fundamental areas in 

computer science. In computational complexity theory there are several basic notions 

and ongoing questions of which we have to be aware. Such as different computational 

models, some classic complexity classes, the relationship between different 

complexity classes, how to classify them, and then, what relationships between these 

complexity classes have been discovered, and what have not. And why we need to 
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define these complexity classes. Let us look at the different perspectives. 

 

Before we go any further, let us look at an overall picture of the relationship between 

different classic complexity classes and logics: (Figure 2)  

 

 

 

Figure 2: Relationship between different classic complexity classes and logics 

 

From the graph above, we can clearly see the relationship among these complexity 

classes. Most researchers believe it looks like the graph above, i.e., that all inclusions 

are proper. The known relationships are, however, as follows, where   means strict 

inclusion, and   means inclusion. 

 

NLOGSPACEPNPPHPSPACEDTIME
(1)

(2 )
On NTIME

(1)

(2 )
On  

  

 

For instance, we know that NLOGSPACE is included in P (PTIME), but we still do 

not know if there are any problems in P, which are not in NLOGSPACE. This means 

that it could be the case that P = NLOGSPACE. The following are known 

relationships: 

 

...

(2 )

NP

NPn NPTO NTIME  

SATQBF

 
2               

PSPACE FO PFP

SO TC

   

 

 

PH SO  

kSATQBF  

NP SO 

 NPC  

P FO LFP     

NLOGSPACE FO TC     
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NLOGSPACE   PSPACE 

 

P   EXPTIME = DTIME
(1)

(2 )
On  

 

2.3 Using Logic to Express Database Queries 

 

2.3.1 First-Order logic (FO) 

 

Following [TT03], a First Order language L ( ) is the set of formulas built up from 

the relation symbols of   and the relation symbols: =,   using logical connectives: 

, ,   variables: x, y, z, …, and quantifiers: ,  . The relation symbol   refers to a 

total ordering on the domain of the structure, and the quantifiers range over this 

domain (Universal quantifier  for All, Existential quantifier  for Exists). A term is 

either a variable or a constant symbol in the schema.  

 

A schema or vocabulary is as follows: 1 ,..., sR R    , where for 1 i s  ， iR  is 

a relation symbol of arity 1ir  . 

 

Let  be a schema, we define the set of atomic formulae on the schema   as 

follows: 

 

1. If R is a relation symbol in   of arity r, for some r  1, and 0 1,..., rt t  are 

variables, then 0 1( ,..., )rR t t   is an atomic formula. 

 

2. If 0t  and 1t are variables, then 0t = 1t  is an atomic formula. 

 

3. Nothing else is an atomic formula. 
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We define the set of well formed formulae as follows: 

 

1. An atomic formula is a well formed formula. 

 

2. If ,  are well formed formulae, then the following are also well formed 

formulae: ( ),( ),( ),( )           

 

3. If  is a well formed formulae, and x is an individual variable, then the following 

are also well formed formulae: ( ), ( )x x    

 

4. Nothing else is a well formed formula. 

 

The variable x is said to be bound in the formulae ( )x  and ( )x  . If a variable is 

not bound in a formula, then it is said to be free in that formula. By 1( ,..., )rx x we 

denote a formula of First-Order logic whose free variables are exactly 1{ ,..., }rx x . A 

sentence is a formula with no free variables.  

 

How to use FO in a particular context, such as relational databases, becomes an 

important issue. Here we need to define the semantics for relational calculus, which is 

also considered to have the same expressive power as First-Order Logic. There are 

two basic concepts.  

 

A structure (or database instance) of schema  is as follows: 

A A A

1A=<D , ,..., sR R  ,where AD is a finite set, for1 i s  , A

iR is a relation of arity ir  

on AD  which interprets the relation symbol iR  in  . 

 

Firstly, assume we have a relational schema . A valuation v on a database A of 
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schema , is a function which assigns to each individual variable x an element in 

dom(A). 

 

Let 0 1,v v be two valuations on a database A of schema , and let x be a variable, we 

say that 0v  and 1v  are x-equivalent if they coincide in every variable, with the 

possible exception of variable x. 

 

Secondly, considering the same database A of schema , if we have a valuation v on 

the database A, we can define inductively the notion of satisfaction, which is denoted 

as |= .  

 

A, v |= R ( 0 r-1x ,..., x ) where R is a relation symbol in   of arity r, for some r 1, and 

0 r-1x ,..., x  are individual variables, if and only if the r-tuple (v( 0x ), …, v( r-1x )) 

belongs to the relation AR . 

 

A, v |= 0t = 1t  where 0t , 1t are variables, if and only if v ( 0t ) = v ( 1t ). 

 

A, v|=   where   is a well formed formula, if and only if it is not the case that A, 

v |= . 

 

A, v|=   where ,  are well formed formulae, if and only if A, v|=  and A, 

v|= . 

 

A, v|=   where ,  are well formed formulae, if and only if A, v|= or A, 

v|= , or both hold. 
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A, v|= ( )x   where x is an individual variable and  is a well formed formula, if 

and only if there is at least one valuation v’, which is x-equivalent to v, such that A, 

v’|= . That is, if and only if there is at least one element in the domain of the 

database, such that A, v|=  when that element replaces the variable x in the 

formula . 

 

A, v|= ( )x   where x is an individual variable and   is a well formed formula, if 

and only if for every valuation v’, which is x-equivalent to v, A, v’|= . That is, A, 

v|=  if we replace the variable x in the formula   with any element in the domain 

of the database. 

 

Let   be a schema, let r 1, and let R be a relation symbol of arity r. A query of 

arity r and schema  is a function q: RB B   that preserves isomorphisms, and 

such that for every database A of schema ( ), dom (q (A)) ⊆ dom (A). That is, all 

the elements which form the output to the query q when evaluated on a given database 

A must belong to the domain of that database. 

 

A Boolean query is a function q: {TRUE,FALSE}B   that preserves 

isomorphisms. 

 

If  ( 1,..., kx x ) is a formula of schema with free variable { 1,..., kx x }, A is a database 

of schema , and 1,..., ka a  are elements of the domain of A, with A|=  ( 1,..., kx x ) 

[ 1,..., ka a ], we denote that   is TRUE, when interpreted by A, under a valuation v 

where for 1   i   k it is v ( ix ) = ia . Now we consider the set of all such valuations 

as follows:  
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A  = {( 1,..., ka a ): 1,..., ka a dom (A)   A|=  ( 1,..., kx x ) [ 1,..., ka a ]} 

 

That is, A  is the relation defined by   in the database A, and its arity is given by 

the number of free variables in . Formally, we say that a formula  ( 1,..., kx x ) of 

schema , expresses a query q of schema , if for every database A of schema , is 

q(A) = A . Similarly, a sentence   expresses a Boolean query q if for every 

database A of schema , is q(A) = TRUE if and only if A|= . 

 

2.3.1.1 Examples 

 

We will denote the input degree of a node in a directed graph as id and the output 

degree as od. 

 

We consider a database of schema F   , where F has the following semantics: 

 

Departure City (From) Arrival City (To) 

  

 

Query 1: “Get the cities from which there are flights to exactly one city” which means 

that their output degree is 1. 

 

To express this in FO logic: ( ) ( ( , ) ( ( , ) ( ))x y F x y z F x z z y      , which means 

that there is one city y, such that there is a flight from x to y, and that for every city z, 

if there is a flight from x to that city z, then z is equal to y. x in this formula is the only 

free variable, because it does not have any quantifier which binds it. We use ( )x to 

denote this formula. Consider a simple database instance as in (Figure 3); the result 
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for the query will be the unary relation {(PN)}. 

 

 

 

Query 2: “Get the cities from which there are flights to exactly 2 other cities” (output 

degree =2). 

 

Suppose that a given database contains the name of cities and pairs (a, b) of such 

cities such that a given airline offers services from A to B without stopover. Let 

2F    be the database schema, and let J1 be a database instance of : 

 

 

  1J = { 1 1,J JD F } where 1JD = {A, B, C, D, E, F}, and 

1JF = {(A, D), (A, B), (B, C), (D, E), (B, F)} 

1J :  

 

 

This query in logic:  

1 2 1 2 1 2 3 3 3 1 3 2( ) ( ( , ) ( , ) ( ( , ) ( )))x z z z z F x z F x z z F x z z z z z            

 

Query 3: Get the cities with flights to all cities from which there is exactly one flight. 

 

 

 

Wellington 

Auckland 

PN Result Figure 3 

F B 

E D 

C B 

B A 

D A 

To From 
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1 2 1 2 3 1 3 3 2 1( ) ( ( ( , ) ( ( , ) ( )) ( , ))x z z F z z z F z z z z F x z        

 

 

If we slightly change the query, as follows: Get the cities with flights to EXACTLY all 

cities from which there is exactly one flight, and then the result will be different: 

 

 

 

2.3.2 Second-Order logic 

 

Second-Order Logic is an extension of First Order Logic, which allows quantifying 

over relations. 

 

This part expresses that the output degree of 
1z  is 1. It will 

give us all the cities whose output degree is 1. 

Once we have all the cities with output degree 1, we say that 

for all those cities there is a flight from x to them. 

Result 

Figure 4 

Not in the Result. 

Because this city 

has a flight to a 

city whose output 

degree is greater 

than 1. 
Figure 5 
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Definition 1 (Second-order logic) ([Lib04], p113). The definition of second-order 

logic, SO, extends the definition of FO with second-order variables, ranging over 

subsets and relations on the universe, and quantification over such variables. We 

assume that for every k > 0, there are infinitely many variables 1 2, ,...,k kX X ranging 

over k-ary relations. A formula of SO can have both first-order and second-order free 

variables; we write ( , )x X to indicate that x  are free first-order variables, and 

X are free second-order variables. 

 

Given a vocabulary or schema   that consists of relation and constant symbols, we 

define SO terms and formulae, and their free variables, as follows: 

 

1. Every first-order variable x, is a first-order term. The only free variable of a term x 

is variable x. 

 

2. There are three kinds of atomic formulae: 

 

a) FO atomic formulae; that is, formulae of the form 

i. t = t’, where t, t’ are variables, and 

ii. R( t ), where t  is a tuple of variables, and R , and 

 

b) X ( 1,..., kt t ), where 1,..., kt t  are variables, and X is a second-order variable of 

arity k. The free first-order variables of this formula are free first-order 

variables of 1,..., kt t ; the free second-order variable is X. 

 

3. The formulae of SO are closed under the Boolean connectives , ,    and 

first-order quantification, with the usual rules of free variables. 
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4. If ( , , )x Y X  is a formula, then Y ( , , )x Y X and Y ( , , )x Y X  are formulae, 

whose free variables are x  and X . 

 

The semantics is defined as follows. Suppose A is a database of schema . For each 

formula ( , )x X , we define the notion of satisfaction | ( , )A b B , where b is a tuple 

of elements of AD of the same length as x , and for X = ( 1,..., lX X ), with each 

iX being of arity in , 1( ,..., )lB B B , where each iB  is subset of ( ) inAD . 

We give the semantics only for constructions that are different from those for FO: 

 

1. If ( , )x X  is X ( 1,..., kt t ), where X is k-ary and 1,..., kt t are terms, with free 

variables among x , then | ( , )A b B if and only if the tuple ( 1 ( ),..., ( )A A

kt b t b ) is in 

B. 

 

2. If ( , )x X  is Y ( , , )x Y X , where Y is k-ary, then | ( , )A b B  if for some 

C ( )A kD , it is the case that | ( , , )A b C B . 

 

3. If ( , )x X  is Y ( , , )x Y X , and Y is k-ary, then | ( , )A b B  if for all 

C ( )A kD , we have | ( , , )A b C B . 

 

Definition 2 ([Lib04], p115) Existential SO logic, or SO , is defined as the restriction 

of SO that consists of the formulae of the form 1... ,nX X    where  does not have 

any second-order quantification. If, furthermore, all iX ’s have arity 1, the resulting 

restriction is called existential monadic SO, or MSO . If the second-order quantifier 

prefix consists only of universal quantifiers, we speak of the universal SO logic, 

or SO , and its further restriction to monadic quantifiers is referred to as MSO . 
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2.3.2.1 Examples 

 

We include below some examples from [FT04], among other sources. 

 

Here is an example of how to use Second-Order Logic to express a query that 

represents a well known problem, which is known in graph theory as “3–colorability”. 

Let us consider a graph G with the schema 2E   . We have to check whether the 

graph G is 3 colorable, which means that the nodes in G can be colored, using three 

different colors, in such a way that each node has exactly one color and no two nodes 

with the same color are connected by an edge. The query can be expressed by an 

existential Second-Order formula of the form: ( )RYB  , where R, Y, B are unary 

predicates (sets that represent the 3 colors, Red(R), Yellow(Y), and Blue(B)), and  is 

a First-Order formula.  

 

Note that “3-colorability” can be used in the flights example. Here is the query: “Can 

we split the set of cities in 3 groups, in such a way that no direct flight connects two 

cities of the same group?” 

 

Departure City (From) Arrival City (To) 

  

 

RBY("all cities belong exactly to 1 set, R, B or Y, and whenever 

we have a flight it connects two cities which belong to different sets")

RBY( x((R(x) Y(x) B(x))            "all nodes have a colo





 

     ur"

      R(x) ( Y(x) B(x))

      Y(x) ( R(x) B(x))

      B(x) ( R(x) Y(x))                   "1 single colour per node"

   

   

   
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       y(Flights(x,y) (R(x) R(y))    "all edges link two nodes of 

                                    (Y(x) Y(y))                       different colors"

                                    ( (xB

  

 

 ) (y)))))                             B

 

 

Second-Order logic differs from First-Order logic in that it has variables and 

quantifiers not only for individuals but also for n-ary relations. The expressive power 

of Second-Order logic is higher than First-Order logic; for instance, the transitive 

closure query and 3-colorability (an NP complete problem) are not expressible in 

First-Order logic, but can be expressed in Second-Order logic. 

 

Query: “Which pairs of cities are connected through flights, either with or without 

stopovers?” This is the transitive closure or reachability query, and it uses binary 

existential Second-Order logic (bin SO).  

 

1 2(v,w) S R ("the graph(S,R) is a subgraph of Flights, and one of 

its connected componets is linear, with root v and leaf w")

(v,w) S R(S(v) S(w)                     "v,w S"

              xy(R(x,y)





 

    

  F(x,y))            "R Flights"

              xy(R(x,y) S(x) S(y))     "R S S"

              x(S(x) y(R(x,y) R(y,x)))  

               "there are no isolated nodes in the graph (S,R)"

              



    

  

x(S(x) x=w y(R(x,y))

                                                 

                                   x w y(R(x,y) z(R(x,z) y=z)))  

                                   "w is a leaf, and all othe

 



   

r nodes have od=1"

              x(S(x) x=v y(R(y,x))

                                                

                                    x v y(R(y,x) z(R(z,x) y=z)))  

                           

  



   

        "v is a root, and all other nodes have id=1"
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2.3.3 Third Order logic ( TO ) 

 

In the alphabet of third order logic besides the usual logical and punctuation symbols, 

we have a countable infinite set of individual variables, for every arity, a countable 

infinite set of second order relation variables, and for every arity and every type, a 

countable infinite set of relation variables of third order. A type is a particular 

combination of individual and SO relation variables. We use upper case letters like 

X and Y for relation variables, and lower case letters like x and y for individual 

variables.  

 

Let  be a schema or relational vocabulary. We define the set of atomic formulae on 

the vocabulary  as follows: 

 

(1) If R is a relation symbol in  of arity r, for some 1r  , and 0 1, ..., rx x   are 

individual variables, then R ( 0 1, ..., rx x  ) is an atomic formula. 

 

(2) If x and y are individual variables, then x = y is an atomic formula. 

 

(3) If X is a relation variable of order 2, and of arity r, for some 1r  , and 0 1, ..., rx x   

are individual variables, then X ( 0 1, ..., rx x  ) is an atomic formula. 

 

(4) If X is a relation variable of order 3 and of arity r, for some 0r  , and for 0 i r  , 

iY  is either an individual variable or a relation variable of order 2, then X 0 1( ,..., )rY Y   

is an atomic formula, provided that at least one of the variables iY  is a relation 

variable of order 2, The particular tuple of individual and relation variables must 

agree with the type of the third order variable X. 

 

(5) Nothing else is an atomic formula. 
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Let 0r  . A second-order relation of arity r is a relation in the classical sense, i.e., a 

set of r-tuples of elements of the domain of a given structure. A relation of order 3 of 

arity r, or a third order relation of arity r, is a set of r-tuples where each component is 

either a relation of order 2, or an element of the domain of a given structure, 

according to the type of the third order relation. 

 

Let be a relational vocabulary. A valuation v on a -structure A, is a function which 

assigns to each individual variable x an element in dom(A), and to each relation 

variable X of order j, for some1 4j  , and of arity r, for some 0r  , a relation of 

order j, arity r, and of the same type as X if j=3, on dom(A). Let 0 1,v v be two 

valuations on a -structure A, and let V be a variable of whichever kind, we say 

that 0v and 1v are V-equivalent if they coincide in every variable of whichever kind, 

with the possible exception of variable V. We also use the notion of equivalence w.r.t. 

sets of variables. Let A be a -structure, and let v be a valuation on A. Next, we 

define inductively the notion of satisfaction inTO . 

 

(1) A, 0 1| ( ,..., )rv R x x  , where R is a relation symbol in of arity r, for some 1r  , 

and 0 1, ..., rx x  are individual variables, iff the r-tuple 0 1( ( ),..., ( ))rv x v x  belongs to the 

(second-order) relation AR . 

 

(2) A, 0 1| ( ,..., ),rv X x x  where X is a relation variable of order 2 and of arity r, for 

some 1r  , and 0 1, ..., rx x  are individual variables, iff the 

r-tuple 0 1( ( ),..., ( ))rv x v x  belongs to the second-order relation v(X). 

 

(3) A, 0 1| ( ,..., )rv X Y Y  , where X is a relation variable of order 3, and of arity r, for 

some 0r  , and for 0 i r  , iY  is either an individual variable or a relation variable 
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of order 2, iff the r-tuple of elements and/or relations of order 2 (according to the type 

of X), 0 1( ( ),..., ( ))rv Y v Y  belongs to the relation of order 3 v(X). 

 

(4) A, | ,v x y  where x, y are individual variables, iff v(x) = v(y). 

 

(5) A, |v  , where is a well-formed formula, iff it is not the case that A, |v  . 

 

(6) A, | ,v    where ,  are well-formed formula, iff A, |  and A, |v v    

 

(7) A, | ,v     where ,  are well-formed formula, iff either A, |  or A, |v v   , 

or both hold. 

 

(8) A, | ( ),v x   where x is an individual variable and is a well-formed formula, iff 

there a valuation 'v , which is x-equivalent to v, such that A, ' |v   

 

(9) A, | ( ),v x  where x is an individual variable and is a well-formed formula, iff 

for every valuation 'v , which is x-equivalent to v, A, ' |v   

 

(10) A, | ( ),v X   where X is a relation variable, and is a well-formed formula, iff 

there is a valuation 'v , which is X-equivalent to v, such that A, ' |v   

 

(11) A, | ( ),v X   where X is a relation variable, and is a well-formed formula, 

iff for every valuation 'v , which is X-equivalent to v, A, ' |v   
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2.3.3.1  Examples in Third-Order Logic (TO)  

 

We include below some examples from [FT04]. Let’s consider the schema 

2Bought    of the sales database together with its intuitive meaning. That is, if R is 

a relation instance of relation schema Bought = (Customer, Article), a pair (x,y)R iff 

customer x bought article y. Here 3,1S  is a relation variable of order 3 and arity 1, 

and 3,2R is a relation variable of order 3 and arity 2. 

 

3,1 2,1 3,1 2,1 2,1

2,1 3,1 2,1 2,1

S S S

S

S S S

( ( ( ) x( y(Bought(x,y) (y)))) 

"each set  in  is the set of articles bought by some customer"

  x( ( ( ) y(Bought(x,y) (y))))

   "for each customer, the set of 

      

   

S S

S

S

3,1 3,1

articles bought by him/her, is a set in "

  ...)

  ("  is the set of sets of articles bought by the different customers and...")



 

S

S S

 

Then we can express properties of the sets of articles bought by different customers, 

for example: “For exactly half of the possible subsets of articles, there is some 

customer who bought those articles”. The existential Third-Order formula for this 

query: 

 

3,1 3,1 2,1 3,1 2,1 2,1

1 2 1

3,1

1

3,1 2,1 2,1

2

( (( ( ) y( (y) x(Bought(x,y))))  

                                 "  is a set of subsets of articles"

            ( ( ) y( (y) x(Bought(x,y)))) 

          

S S S

S S

     

  

S S S

S

S

3,1

2

2,1 3,1 2,1 3,1 2,1

1 2

                       "  is a set of subsets of articles"

            (( y( (y) x(Bought(x,y)))) ( ( ) ( )))  

                                 "every subset of articles is eith

S S S    

S

S S

3,1 3,1

1 2er in or in "S S
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3,1 2,1 3,1 2,1 3,1 3,1

1 2 1 2

3,1 2,1 2,1

1

3,1

1

            ( ( ) ( ))   "no set is in both  and "

           ( ( ) x( y( (y) (Bought(x,y))))  

              "every set in  is the set of articles bought by 

S S

S S

 

   

S S S S

S

S

3,1 2,1 2,1

2

3,1

2

3,2 2,1 2,1 2,1 3,2 3

1 2 3 1 2 1

some customer"

           ( ( ) x( y( (y) (Bought(x,y))))  

             "no set in  is the set of articles bought by some customer"

            ( (( ( , )

S S

S S S S S

   

  

S

S

R R S ,1 3,1

1 2 2 1 2

3,2 3,2

1 2 1 3 2 3

3,2 3,2

1 2 3 2 1 3

, )

( ) ( ))  " "

                               ( ( , ) ( )        "function"

                               ( ( , ) ( , ) = )        "injectivity"

       

S S

S S S S S

S S S S S S

S  

  

 

  

S R S S

R R

R R

3,1 3,2

1 1 2 1 2

3,1 3,2

2 2 1 1 2

                        ( ( ) ( ( , )))                  "totality"

                               ( ( ) ( ( , )))))                "surjectivity"

S S S S

S S S S

 

 

S R

S R

 

 

Note that 3,2R is a bijection if and only if it is a function which is total, injective and 

surjective, and that 3,1 3,1 3,1 3,1

1 2 1 2"there is a bijection between  and "  | | | | . S S S S  

 

3 Sub-formulas and rules used throughout the thesis 

 

In what follows, we will use the following conventions. 

 

1. Variables 

a. Lowercase for first order variables, like tv . 

b. Uppercase for second order variables, like tV . 

c. Large Uppercase for third order variables, like tV . 
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d. We will use super indices in variables. 2,1

tV  is a second order variable 

with arity 1, 2,2

tE  is a second order variable with arity 2. 3,1

TV  is a third 

order variable with arity 1, 3,2

TE  is a third order variable with arity 2, and 

so on. When we use only one super-index, we mean an SO variable of that 

arity. 

 

2. Parenthesis: some parentheses are indexed for matching different levels. 

We will usually index "("and "["  starting from 0 in the outermost level, 

like 0 1 2 2 1 0( ( (    ) ) ) . 

 

3. As disjunctions and conjunctions are associative, we do not use parenthesis 

to enclose the two operations. That is, we write 1 2 3     instead 

of 1 2 3( )    . 

 

4. We write 1 2   instead of 1 2( )   . 

 

5. Throughout this thesis by “graph” we mean “directed graph”. 

The following sub-formulas are well known. They can be found in [RT08] among 

other sources. 

 

(For an edge relation E  and total order  ) 

 

1. Successor: ( , )   ( , ) [( ( , ) ( , )) ( )]SUC x y x y v x v v y v x v y            

 

2. Predecessor: ( , )  ( , )PRED y x SUC x y   
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3. Path: ( , )  "( , ) ( )";  note that ( , ) ( )EPATH v w v w TC E v v TC E    (we will 

also use 2,4

1 1 2 2( , , , )EPATH x y x y  where E is a 2
nd

 order relation of arity 4, 

meaning that there is a path in E from 1 1( , )x y to 2 2( , )x y ). 

 

1 2

( , )

 V" E" ( ', "(E"( ', ") V"( ') V"( ") E( ', ")) '(V"( ') V( '))

              (V"( ) V"( ) '(E"( ', ) "[V"( ") ( " ) '(E"( ', "))]

                                               

EPATH v w

v v v v v v v v v v v

v w v v v v v v v v v v

       

       

                                 "v is the only minimal node"

                                          '(E"( , ') "[V"( ") ( " ) '(E"( ", '))]

                                                 

v w v v v v w v v v     

                                "w is the only maximal node"

              (V"( ) ( ) '(E"( ', ) "(V"( ") E"( ", ) " '))

                                                                      

z z z v v v z v v v z v v        

           "all nodes except  have id=1"

              (V"( ) ( ) '(E"( , ') "(V"( ") E"( , ") " ')))

                                                                                  "all n

v

z z z w v z v v v z v v v        

odes except  have od=1"

"(V",E") is a linear subgraph of the graph (V,E), with minimal node  and maximal node "

w

v w

 

4. Path in 3
rd

 order graph: 3,2( , )EPATH X Y , where E is a 3
rd

 order relation of 

arity 2, and X, Y are 2
nd

 order relations of arity 1, meaning that there is a path 

in E from the set X to the set Y.  

 

5. Linear graph: ( , )LINEAR V E  (we will also use 2,4( , )LINEAR V E , where V 

is a 2
nd

 order relation of arity 2, and E is a 2
nd

 order relation of arity 4). 
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 w

 [ ''' '''((a) (b))] (c)

Formula (a) says " ( ( ''', '''))"

Formula (b) says " ( ( ''', '''))"

Formula (c) says " (  is the only minimal in ( , ),  is the only maximal in ( , ),

            

E

E

v

v w

PATH v w

PATH w v

v V E w V E

   



                every node except  has id=1 and every node except  has od=1)"v w

 

     ( " "( ', "( "( ', ") "( ') "( ") ( ', "))

                          '( "( ') ( ')) ( "( ''') "( ''')

                          '( "( ', ''') "[ "( ") ( " ''') '( "( ', "))

V E v v E v v V v V v E v v

v V v V v V v V w

v E v v v V v v v v E v v

    

   

     

   (a)

]

                          '( "( ''', ') "[ "( ") ( " ''') '( "( ", '))]

                          ( "( ) ( ''') '( "( ', ) "( "( ") "( ", ) " '))

                          ( "(

v E w v v V v v w v E v v

z V z z v v E v z v V v E v z v v

z V z

     

        

 ) ( ''') '( "( , ') "( "( ") "( , ") " ')))

       " "( ', "( "( ', ") "( ') "( ") ( ', "))

                          '( "( ') ( ')) ( "( ''') "( ''')

                          

z w v E z v v V v E z v v v

V E v v E v v V v V v E v v

v V v V v V v V w

       

    

   



(b)

'( "( ', ''') "[ "( ") ( " ''') '( "( ', "))]

                          '( "( ''', ') "[ "( ") ( " ''') '( "( ", '))]

                          ( "( ) ( ''') '( "( ', ) "( "( ")

v E v w v V v v w v E v v

v E v v v V v v v v E v v

z V z z w v E v z v V v

     

     

      "( ", ) " '))

                          ( "( ) ( ''') '( "( , ') "( "( ") "( , ") " ')))

       (( ( ) ( )

                          '( ( ', ) "[ ( ") ( " ) '( ( ', "))]

    

E v z v v

z V z z v v E z v v V v E z v v v

V v V w

v E v v v V v v v v E v v

  

        

 

     

(c)

                      '( ( , ') "[ ( ") ( " ) '( ( ", '))]

                          ( ( ) ( ) '( ( ', ) "( ( ") ( ", ) " '))

                          ( ( ) ( ) '( ( , ')

v E w v v V v v w v E v v

z V z z v v E v z v V v E v z v v

z V z z w v E z v v

     

        

      "( ( ") ( , ") " '))))V v E z v v v  

 

6. "0"  ( )x y y x y x       

 

7. "1"  ( ) ( ( ))x y y x y x z z x z x z y             

 

4 Quantified Boolean Formulas 

 

4.1 Definitions 
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1. Quantified Boolean Formulas: [GJ03, p107] 

 

A quantified Boolean formula (QBF) is a formula of the 

form 1 1 2 2... ( )n nF Q x Q x Q x E , where E is a Boolean expression involving the 

variables 1 2, ,..., nx x x and each iQ is either" " or" " . 

 

kQBF : Let X be an ordered set of propositional variables, let 

1 2 3, , ,..., kX X X X be disjoint sub-sequences forming a partition of X , and 

let 1 2{ , ,..., }
ii i i ilX x x x . A quantified Boolean formula over X is in kQBF if it is 

of the form
1 2 31 2 3 11 1 21 2 31 3 1... ( '( ... , ... , ... ,..., ... ))

kk k l l l k klX X X QX x x x x x x x x     , 

where the quantifier Q is if k is odd and if k is even. ' is a quantifier-free 

Boolean formula over the variables in X. iX denotes a sequence of different 

variables from the set ,X and iX denotes    

1 2 3 1 2. . . ,   d e n o t e s  , , . . . ,
i ii i i il i i i ilx x x x X x x x        etc. 

 

2. An alternating valuation is a finite structure ( , , )va V E B  such that: 

 

1) ( , )V E is a directed graph, which is an out-tree that has all the leaves at 

the same depth d, for some natural d. 

 

2) The output degree of any non leaf node is 2 . 

 

3) For every1 k d  , all the nodes at depth k  have the same output 

degree. 
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4) : {0,1}B V   is a total function such that for every pair of nodes a, b 

which are siblings, it is ( ) ( )B a B b . 

 

3. Let   be a kQBF  formula, for some natural 0k  , let 1,..., 0kl l  , 

respectively, be the lengths of the alternating quantifier blocks of  , and let 

( , , )va V E B  be an alternating valuation. We say that va  is an alternating 

valuation suitable for  , if the following holds: 

 

a) The depth of the tree ( , )V E  is 1 ... 1kd l l    . 

 

b) For every 11 ... :ki l l     

i) if 11 i l   or 1 2 1 2 31l l i l l l      , … or 

1 2 ' 1 1 2 '... 1 ...k kl l l i l l l         , then all the nodes at depth 1i   

in ( , )V E  have no siblings, where 1 'k k   is the index of the last 

existential quantifier block in  ; 

 

ii) if 1 1 21l i l l    , or 1 2 3 1 2 3 41l l l i l l l l        , … or 

1 2 '' 1 1 2 ''... 1 ...k kl l l i l l l         , then all the nodes at depth 1i   

in ( , )V E  have exactly one sibling, where 2 ''k k   is the index of 

the last universal quantifier block in  . Note that there might not be 

such ''k  in . 
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4.  Let   be a kQBF  formula, for some natural 0k  , and let ( , , )va V E B  

be an alternating valuation that is suitable for . A leaf valuation in va  is a 

structure ( ', ', ')vl V E B  such that ( ', ')V E  is a path in ( , )V E  from the 

root to one leaf, and '' |VB B , i.e., ' {( , ) : ' ( , ) }B v b v V v b B    . 

 

5.  A leaf valuation vl  in va  corresponds to a valuation v  for  , where for 

0 i d  , if the node a  has depth i  in ( ', ')V E , then ( ) ( )jhv x B a , where 

0 j k   is the greatest natural such that 1 2 11 ... ji l l l       and 

1 2 11 ( ... )jh i l l l       . 

 

That is, every depth 0 i d   in va  corresponds to one variable in , 

namely the variable that is quantified in the ( 1)i th   place in the quantifier 

prefix of . Correspondingly, every node in vl  corresponds to one variable 

in , i.e., the i th node in ( ', ')V E  corresponds to the variable that is 

quantified in the ( 1)i th   place in the quantifier prefix of . 

  

6. Let kQBF , for some 1k  , and let va  be an alternating valuation suitable 

for  . We say that va  satisfies   if for every leaf valuation vl  in va , it is 

the case that vl  satisfies  , i.e., the valuation v  that corresponds to vl  

according to the definition above, satisfies  ; in symbols: |v  . 

 

7. Let 1.k   kSATQBF  is the set of formulas kQBF , such that there is an 

alternating valuation suitable for   that satisfies . 
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8. SATQBF  is the set of formulas kQBF , for some 1k  , such that there 

is an alternating valuation suitable for   that satisfies  . 

 

9. Note that with the definition in 3, we are building a tree to represent the 

assignment of values to variables where each variable in an existentially 

quantified block has only one value assigned to it, and each variable in a 

universally quantified block gives rise to two paths in the tree and both of 

these paths must be able to be given a valuation such that the quantifier free 

part of   is satisfied, in order for the alternating valuation to satisfy . (See 

Figure 8) 

 

5 Expressing SATQBF and kSATQBF in Logic 

 

5.1 Complexity of the problems 

 

We briefly show in this sub section that there are formulas in SO and TO that 

express the queries kSATQBF and SATQBF , respectively. Note, however, that to 

the best of our knowledge these formulas are not known. 

 

5.1.1 kSATQBF can be expressed in Second-Order Logic 

 

It is known that, for 1k  , kSATQBF is complete for P

k , where P

k is defined 

as follows. ([Sto76]) 

 

Definition The polynomial-time hierarchy (PH)  

 

is{ , , : 0},P P P

k k k k    where 0 0 0 ;P P P P     and for 0,k   
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1 ( )P P

k kNP   

...

NP

NPNPNP (There is a stack of 1k   NP’s) 

1 ( ),P P

k kco NP     

1 ( ).P P

k kP    

We also define
0

.P

k
k

PH




   

 

Where, if C, D, are Turing Machine complexity classes, DC denotes the 

class of queries computed by machines in C which have an oracle in the 

class D. 

 

In particular, note that 1

P NP  and 1

P co NP   . PH possesses the 

following inclusion structure: 

 

1 1 1  for all 0.P P P P P

k k k k k k         

 

Corollary 7.22 ([Imm99]) A Boolean query is in PH, iff it is second-order 

expressible, that is PH=SO. 

 

Hence, we know that, for every 1k  kSATQBF can be expressed in SO. In 

fact, 1

k kSATQBF  . 

 

5.1.2 SATQBF can be expressed in Third-Order Logic 

 

SATQBFTO and hence TO, because of the following 3 facts: 

 

1. 
(1) (1)

(2 ) (2 )
O On nPSPACE DTIME NTIME   [GJ03] 
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2.  Theorem 4.4 ([Sto76], p19): SATQBF is PSPACE-complete. 

 

3. 
(1)

(2 )
OnTO NTIME   and 

...(1)

(2 )

NP

O NPn NP

k

TO NTIME (there is a stack 

of  'k NP s ). [HT06] 

 

Hence, we know that SATQBF can be expressed in TO. 

 

5.2 Expressing kSATQBF  in Second-Order Logic 

 

In this subsection we present a detailed construction of an SO formula which 

expresses kSATQBF . 

 

To encode the input formula, we use the following vocabulary (following 

[MP96] and [Fer08]): 

 

( ) |, , , , , , , , ,XP P P P P P P P P         

Then: ( ) |, , , , , , , , , ,I I I I I I I I I I I

XI D P P P P P P P P P        represents 

a kQBF formula . 

 

We assume that the input formula , except for the quantifier prefix Q , is 

fully parenthesized, there is at least one pair of matching parentheses, and 

every sub formula in ' which involves a unary or binary operator is enclosed 

in parentheses. We further assume that there is at least one quantifier in , 

and that there are no parentheses in the quantifier prefix. 
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1 2 3 1 2 311 1 21 2 31 3 11 1 21 2 31 3 1... ... ... ...... ... ( '( ... , ... , ... ,..., ... ))
k kl l l kl l l l k klx x x x x x Q x x x x x x x x x       

 

  Example: let 1 2 3 1 3 2 3(( ) ( ))x x x x x x x           

 

  As a linear graph, which is defined as the successor relation induced by I : 

 

 

   

  The  - structure that encodes  is as follows: 

( ) |, , , , , , , , , ,I I I I I I I I I I I

XI D P P P P P P P P P        

(

)

|

where

{0,1,...,35}

:  total order in 

{14,25}

{17,29}

{23}

{0,3}

{7}

{12,13,24}

{22,34,35}

{1,4,8,15,18,26,30}

{2,5,6,9,10,11,16,19,20,21,27,28,31,32,33}

I

I I

I

I

I

I

I

I

I

I

X

I

D

D

P

P

P

P

P

P

P

P

P

































 

 

0 1 2 3 4 7 8 9 13 14 

19 20 21 24 25 26 30 31 33 35 

Figure 6 

|             |     |     |     )        (            |     |             |     |     |     )    )

                                             

X X X   

                   

 

        |               |     |             |     |     |     (    (           

                                    

X X X X   

               
 

15 

16 17 18 
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5.2.1  Informal Expression 

Let 1k  . We can build an SO formula to express the problem kSATQBF  in 

four levels of abstraction. 

 

1
st
 Level: 

 

“  alternating valuation va suitable for which satisfies ”. This can be 

expressed as “ a partial valuation on block 1, such that partial valuation 

on block 2,   a partial valuation on block 3, …” such that all of these 

valuations satisfy the quantifier free part ' of . This is clearly equivalent 

to the following: 

 

2
nd

 Level: 

 

(2.1) “  Partial valuation 1v on
111 1{ ,..., }lx x ,  partial 

valuation 2v on
221 2{ ,..., }lx x ,…, / partial valuation kv on 1{ ,..., }

kk klx x  such 

that …” 

 

(2.2) “… the valuation 1 2 ...  satisfies 'kv v v v  ” Recall that ' is the 

quantifier free part of . 

 

Following our definitions in 4.1 above, we can think of an alternating 

valuation as a binary tree, as in Figure 8. In that tree, that represents an 

alternating valuation suitable for , each leaf node determines a unique path 

from the root to that node. We represent that path with the linear graph tG  

which together with the function tB represents what we have defined as a 
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leaf valuation. Note that the alternating valuation satisfies the input 

formula , if and only if every leaf valuation satisfies ' . 

 

We will use linear graphs ( , )i i iG V E with functions : {0,1}i iB V  to 

represent the partial valuations iv (See Figure 7). Correspondingly, we will 

use a linear graph ( , )t t tG V E with a function : {0,1}t tB V  to represent the 

leaf valuation v . So, each leaf valuation is represented by a corresponding 

pair ,t tG B  . 

 

3
rd

 Level: 

 

We give next a more detailed expression of the two abstract expressions of 

level 2, labelled (2.1), (2.2). 

 

5.2.1.1 Expressing (2.1): Encoding each leaf valuation for the input 

formula , using the graph tG  

 

 

Figure 7 

 

1G

 

2G  3G  kG  

Linear graph 1G   Linear graph 2G  Linear graph 3G   …… Q Linear graph kG  

1 1 1,G V E   ,k k kG V E   2 2 2,G V E   
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Figure 8 

 

Let 1 2, ,..., kX X X  be disjoint sub-sequences of propositional variables. 

 

If we consider the quantifier prefix of the input formula 1 2 3... kX X X QX   as 

a tree, then the depth of the tree is 1 2

1

| | | | | | ... | |
k

i k

i

V V V V


    . And if ix in 

the quantifier-free formula '  is quantified in order j-th in , then its value 

must be B (j-th node in tG ). 

 

Expression (2.1) can then be expressed as follows: 

 

111 12 13 1... lx x x x     
221 22 23 2... lx x x x     

3 1 2 331 32 33 3 1 11 1 21 2 31 3 1.... .. .. ( '( .. , .. , .. ,.., .. ))
k kl k kl l l l k klx x x x Qx Qx x x x x x x x x     

1 1 1 1( , , )G V E B  
2 2 2 2( , , )G V E B

 

3 3 3 3( , , )  ......  ( , , )k k k kG V E B G V E B   

1U  3U  2U  kU  0/1 

Graph tG  
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1 1 1 2 2 2

1 2 2

1 2

set  and binary relations  and , set  and binary relations  and ,

   ...,  set  and binary relations  and , ( , ,

       ([" =< , > is a linear graph"]                 

k k k k t t t

t t t

V E B V E B

Q V E B V E B

G V E

  

 

                                               

"The length of  is equal to the number of variables 

                                                                               in the 

tG

(1)

        [

1 1 1 3 3 3 ' ' '

1 1

quantifier prefix of "] 

      [" , , , ,..., ,  are linear graphs"]      

          (where '  is the index of the last  quantifier in the prefix)

 

      [" : {0,1},

k k kG V E G V E G V E

k

B V B



      



 

(2)

(3)

3 3 ' '

1 3 '

: {0,1},..., : {0,1} are total functions"]    

      ["the lengths of the linear graphs , ,...,  are equal to the lengths of 

             the corresponding quantifier blocks in "]    

k k

k

V B V

G G G



 



(4)

1 2 1 2 3

2 2 2 4 4 4 '' '

                                           

      [ [ (" , , ,...,  are disjoint sets"                                                           

         [" , , , ...

k

k k

V V V V

G V E G V E G V



     

(5)

(6)

' ''

2 2 4 4 '' ''

,  are linear graphs"]   

             (where ''  is the index of the last  quantifier in the prefix)

 

         [" : {0,1}, : {0,1},..., : {0,1} are total functions"] 

k

k k

E

k

B V B V B V





   

(7)

(8)

 

2 4 ''         ["the lengths of the linear graphs , ,...,  are equal to the lengths of 

                the corresponding quantifier blocks in " )

   

kG G G





 ]                                               (9)

2 2 2

1 2 1 1

2 2

      , ... ("  is a partial bijection: 1st part of "

                              "  is a partial bijection: 2nd part of "

                              ... ... "  is a partial

k t

t

k

U U U U G G

U G G

U

 

 

 

1 2

1 2 2

 bijection: k_th part of ")

         " : {0,1} is a total function that  with , ,..., "

" ... "]                                              

k t

t t k

t k

G G

B V coincides B B B

B B B B



 

  

       (10)

  

                                  (11)
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(Level 4)  

 

(1) “The graph tG is a linear graph”: ( , )t tLINEAR V E  

 

(2)"The length of  is equal to the number of variables in the quantifier prefix of "tG   

This statement is implied by the following statement: 

 

"  is a partial surjective injection from the quantifier prefix of  to ,  which maps every

 to its corresponding node in , and which preserves and ."

p t

I

t t

V G

X G E





This statement is expressed in further detail in (1) in 5.2.1.2.1 

 

1 1 1 3 3 3 ' ' '

1 1 3 3 ' '

" , , , ,..., ,  are linear graphs":

       (where '  is the index of the last  quantifier in the prefix)

      ( , ) ( , ) ... ( , )

k k k

k k

G V E G V E G V E

k

LINEAR V E LINEAR V E LINEAR V E

     



  

(3)   

 

 

1 1 3 3 ' '

1 1

1 1

" : {0,1} : {0,1} ... : {0,1} are total functions"

       [ , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))               

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(4) 

1

3 3

3 3

             "total"

                            ( ( , ) ( "0" "1"))]

        , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))         

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

3

' '

'

                   "total"

                            ( ( , ) ( "0" "1"))]

        ......

        , , '[ ( , ) ( , ') ( ')                    "function"

                            ( (

k k

k

B t p p p

t p p B t p B t p p p

V

    



   

 '

'

) ( ( , )))                            "total"

                            ( ( , ) ( "0" "1"))]]

k

k

t p B t p

B t p p p



    
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' 2

1,3,5,..., '

'1 1

1 2 3 ' ' 1 '1 2

' 2,1 1

If ' ,  then (by  we mean the formula template  instantiated with ') :

... ( )

If ' ,  then (by  we mean the formula template  instantiate

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(5) 

' 2 ' 2

1,3,5,..., ' 2

1 2 3

1 2 3 ' 1 ' 2,1 2 1 2 3 1

d with ' 2):

( ' 2 is the previous to the last  block, and the subformulas , ,  

take care of the last quantifier block).

... ( ) ... ()
i k

k k i k eL L

i k

k

v v v v v v v v v

  

   
 

 

 

 

  ( 2 3)

 

 

Figure 9 

 

1 0 1 2 3 1 1

"for 1 ,   is the first quantifier of the j-th alternating quantifier block:" 

(when i is not the index of the last block)

( ( ) ( ) ( ) ... ( ) "0"

    "where  is  if ( 1) 

j

i Q i

Q

j i v

P v P v P v P v v

P P i

    



 

      



1 2 2 3 1

1 2 1 2

2 3

is odd, or  if ( 1) is even"

            [ ( , ) ( , ) ... ( , )]

            [ '( ( , ') ( ', ) ' ' ( '))]

            [ '( ( , ') ( ', )

i i

P i

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v



   

  

 



   

       

    2 3

1 1 ' 0

'

' ' ( '))]

            ...

            [ '( ( , ') ( ', ) ' ' ( '))])

            "where  is  if  is odd, or  if  is even"

i i i i Q

Q

v v v v P v

v PATH v v PATH v v v v v v P v

P P i P i



   

 

   



       

 

Q X … Q X … X … 

iv

 

s  's  1iv   

Q Q   

t  't  

( , )i iV E  

'L   
“Next X in the same alternating block” ( )XNext  

kv  
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1 0 1 2 3 | 1

"for 1 ,   is the first quantifier of the j-th alternating quantifier block:"

("for ,   is the last element in the block ,  which must be |")

( ( ) ( ) ( ) ... ( ) ( ) ="0" 

 

j

e

Q k e

j i v

i k v i

P v P v P v P v P v v   

 



      

1 2 2 3

1 2 1 2

      "where  is  if  is odd, or  if  is even"

                [ ( , ) ( , ) ... ( , )]

                [ '( ( , ') ( ', ) ' ' ( '))]

                

Q

k e

P P k P k

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v

 

  

  

   

       

2 3 2 3

' 0

'

[ '( ( , ') ( ', ) ' ' ( '))]

                ...

                [ '( ( , ') ( ', ) ' ' ( '))])

                "where  is  if  is odd, or  if 

k e k e Q

Q

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v v v v v P v

P P k P

  

 

 

       



       

 is even"k

 

2 0 1

" '  is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next  and E :"

         (when  is not the index of the last block)

( '[( ( , ') ( ', ) '

i

X i

i i i

L

i

v PATH v v PATH v v v       1

1

( ')) '( '( ', '))]   

         "domain of '   "

  '( ( ') '( '( ', ')))  " '  is surjective"

  , , ', '[[( '( , ) '( ', ') ' ( , ) ( ', ) ( , ')

                 

i X

i

i i

v P v y L v y

L

y V y v L v y L

s t s t L s t L s t s s PATH v s PATH s v PATH s s



   

   

 

      

( '( ( , ') ( ', ') ' ' ' ( ')))) ( , ')]

                 " '  preseves  in the  alternating block and  (implies injectivity)"

  ' '[ '( ', ') ( ')]

  ' ' '([ '( ',

X i

X i

i

z PATH s z PATH z s z s z s P z E t t

L Next ith E

v y L v y V y

v y z L v

         

 

 0') '( ', ')] ( ' '))])      " '  is a function"y L v z y z L  

 

" '  is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next  and E :"

(when )

i

X i

L

i k
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2 0( '[( ( , ') ( ', ) ( ')) '( '( ', '))]   

        "domain of '   "

  '( ( ') '( '( ', ')))  " '  is surjective"

  , , ', '[[( '( , ) '( ', ') ' ( , ) ( ', )

k e X

k

k e

v PATH v v PATH v v P v y L v y

L

y V y v L v y L

s t s t L s t L s t s s PATH v s PATH s v P

  

 

     

 

       ( , ')

                 ( '( ( , ') ( ', ') ' ' ' ( ')))) ( , ')]

                 " '  preseves  in the k-  alternating block and  (implies injectivity)"

  ' '[ '( ',

X k

X k

ATH s s

z PATH s z PATH z s z s z s P z E t t

L Next th E

v y L v y



         



0

') ( ')]

  ' ' '([ '( ', ') '( ', ')] ( ' '))])      " '  is a function"

kV y

v y z L v y L v z y z L



   

 

3 0 | |

"For ,   is the last | for the last quantifier in the quantifier prefix":

( '(( ( , ') ( ')) ( )

  '( ( , ') ( ( ') ( '))) "there are no quantifiers after "

  ' ' '

e

e e

e e

i k v

v SUC v v P v P v

v PATH v v P v P v v

z y w v

 

  



   

   

  |'[ ( ', ) ([ ( ', ) ( ', ')] ( '))

                                                               " '  is the last quantifier in the block "

                                            

e ePATH y v PATH v v PATH y v P v

w k

    

                     " '  is the  of the variable quantified"

                                                                            "y' is the first | for that variable"

                      (Q

z X

P 0') ( ') ( ', ') ( ', ')])

                                              "where  is  if  is odd, or  is  if  is even"

X

Q Q

w P z SUC z y SUC w z

P P k P P k

 

 

  

 

1 2 1 3 1

2 3 2 4 2 1

 "[( ) ( ) ... ( )

     ( ) ( ) ... ( ) ... ( )]"

where " " is (( ( ) ( )) ( ( ) ( )))

k

k k k

i j i j j i

V V V V V V

V V V V V V V V

V V x V x V x V x V x

  

   





      

         

    

(6)

 

 

(7) 2 2 2 4 4 4 '' '' ''" , , , ... ,  are linear graphs":k k kG V E G V E G V E        

(where ''  is the index of the last  quantifier in the prefix)k   

2 2 4 4 '' ''( , ) ( , ) ... ( , )k kLINEAR V E LINEAR V E LINEAR V E    
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2 2 4 4 '' ''

2 2

2 2

" : {0,1} : {0,1} ... : {0,1} are total functions"

[ , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))           

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(8) 

         

2

4 4

4 4

                  "total"

                            ( ( , ) ( "0" "1"))]

        , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))    

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

4

'' ''

                        "total"

                            ( ( , ) ( "0" "1"))]

        ......

        , , '[ ( , ) ( , ') ( ')                    "function"

                           

k k

B t p p p

t p p B t p B t p p p

    



   

'' ''

''

 ( ( ) ( ( , )))                           "total"

                            ( ( , ) ( "0" "1"))]]

k k

k

V t p B t p

B t p p p

 

    

 

 

' 2

2,4,6,..., ''

''1 1

1 2 3 '' '' 1 ''1 2

'' 2,1 1

If '' ,  then (by  we mean the formula template  instantiated with ''):

... ( )

If '' ,  then (by  we mean the formula template  in

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(9) 

' 2 ' 2

2,4,6,..., '' 2

1 2 3

1 2 3 '' 1 '' 2,1 2 1 2 3

stantiated with '' 2):

( '' 2 is the previous to the last  block, and the subformulas , ,

take care of the last quantifier block)

... ( ))
i k

k k iL L

i k

k

v v v v v v v

  

 
 

 

 

 

 ( 1 2 3

1 2 1 2 3

... ( )

where the subformulas , , ,  and  are the same as in (5) above.

k e

i i

v v   

    

 

 

2 2 2

1 2

1 1

1

1 1

2 2

2

("

: Total injection,

       preserves , ,

       includes first node in  as U (first node in ),

: Total injection,

       preserves , ,

       includes succ

k

t

t

t

t

t

V V

E E

V E

V V

E E



 





 





(10)   U U ...U

U

U

1 1 2 2

3 3

3

2 2 3

essor in  of node U (last node in ) in  as U (first node in ),

: Total injection,

       preserves , ,

       includes successor in  of node U (last node in ) in  as U (first no

t t

t

t

t t

E E V E

V V

E E

E E V

 





U

3

1 1

de in ),

...,  and

: Total injection,

       preserves , ,

       includes successor in  of node U (last node in ) in  as U (first node in )")

k k t

k t

t k k t k k

E

V V

E E

E E V E 

 





U
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2 2 2

1 2 ... (...

    ,  ,  , [(( ( , ) ( , )) )    "function"

                     ( ( , ) ( , )) )     "injection"

                     ( ( ) ( ( , )))                "total"

  

k

k k

k k

k k

U U U

x y t u U x y U x t y t

U x y U u y x u

V x y U x y

 

   

   

 

                   ( ( , ) ( ( ) ( ))          " : "

                     (( ( , ) ( , ) ( , )) ( , ))  "preserves "

                     (( ( , ) ( , ) ( , )) ( , ))  "prese

k k t k k t

k k k t k

k k t k

U x y V x V y U V V

U x y U u t E x u E y t E

U x y U u t E y t E x u

   

   

   

1 1

1

rves "

                     (( ( , ) ( ( , )) ( , ) ( ( , ) ( )))

                                         ( , ))])

                   "includes successor in  of node U (last n

t

k k t k k

k

t k

E

U x y v E x v E y t v E v u V u

U u t

E

 



    



1ode in ) 

                                                               in  as U (first node in )"

k

t k k

E

V E



 

 

1 2

1 1

2 2

 "   with , ,..., "

'[( ( , ) ( , ) ( , ')) ']

'[( ( , ) ( , ) ( , ')) ']

...

'[( ( , ) ( , ) ( , ')) ']

t k

t

t

k k t

B coincides B B B

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

    



    





    

(11)

 

 

5.2.1.2 Expressing (2.2) 

(2.2) is equivalent to the following informal expression, which we will 

express in two parts: 

 

…… …… 

…… …… 

x u 

y t 

1kU   kU  

tG  

kG

 

1kG   
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2 2 4 1 2 3 2 2 2 2 2 2 2 3

( ) 1 0... , , , , , , , , , , , , , (p C STV C E ST E M C C C C C C C H    

(2.2a) 2[ [ ”There is a formula  on {0,1} which corresponds to the 

formula with the leaf valuation represented by ,t tG B …” ]  

(2.2b) 2 1 0["...such that the formula  is true"])] ] )  

 

5.2.1.2.1 Expressing (2.2a)： 

Now we need to represent the relationships among the input graph, 

the graph tG  and the quantifier free part  of the input formula: 

 

| || ||| ... ||| ... | '( |, ||, |||,..., ||| ... |( )X X X QX X X X X  

 

Figure 10 

 

| || ||| |||| ... ... ... ...( ||| ...( ||| ...))( )X X X X X X     

 

Input Graph 

 

Graph tG  

pV : Variable Position 

Sub Graph   

3H  

:  A quantifier free formula on: { (,), , , ,1,0   } 

For instance: (((1 0) (1 0)) ...(...))     

0/1 0/1 

oV : Variable Occurrence 
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Figure 11 

 

This expression is showed below based upon Figure 10. 

["  is a partial bijection from the quantifier prefix of  (restricted to the  in the 

quantifier prefix) to V ,  which maps every  to its corresponding node in , and 

which preserves and ."]   

p

t t

I

t

V X

X G

E



                                                                             

["  is a partial surjective injection from the quantifier free part of  to the first 

formula in ( , ) (see Figures 12C

H

C E

 

(1)

, 13), which maps every "X" in the quantifier free 

part to the corresponding position in the first formula in ( , ) which we denote 

by , which preserves , ,(,), , and  and ,  and which ignores "|

C

I C

C E

E     "."]        (2)

 

["  that is a bijection from " | ... | " in " | ... | "  to " | ... | " in "(... | ... | ...)",

linking the quantification of a variable with each occurrence of the variable in the 

quantifier free part of , wher

oV QX X



 

0

0

e is the root in ( ),  is the leaf in ( ), 

 is the root in ( ), and  is the leaf in ( ). The variable in  which corresponds 

to the function  is replaced in  by the value a

o f o

o f o

o

z dom V z dom V

y ran V y ran V

V





 

1

ssigned to that variable by the leaf 

valuation < , >. (See Note that  is represented in ( , ) starting 

in the node (first node in ( , )) and ending in the node ( (second no

t t C

ST C

G B C E

M ST E E M





Figures 10, 11) 

de 

in ( , ))) and is equivalent to the formula  without quantifier prefix, with the 

variables replaced by 0 or 1 according to the leaf valuation in < , >."]  

(More explanation is given in 

ST

t t

ST E

G B



5.2.1. . See )                                2.2 Figures 12 and 13 (3)

 

 

| ...... | ...                             ... | ...... | ...( )QX X  

0 'z  0z  fz  'fz  
0 'y  0y  fy  'fy  

oV : Variable Occurrence 
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(Level 4) 

( , , ( ( , ) ( , ) ( = )                            "  is a function"

                            ( ( , ) ( , ) = )              "  is injective"

                            (( ( )

p p p

p p p

X

x y z V x y V x z y z V

V x y V z y x z V

P x PRED

  

  

 

(1)

( , ) [ ( ) ( )]) ( ( ) ( , )))  

                                                                                        "domain of ","range of "

                           "  is a partia

t p

p p

p

x z P z P z y V y V x y

V V

V

      

l bijection:  in quantifier prefix of  in "

s,t,s',t'([ (s,s') (t,t') (s',t')] ( ( , )

                            '(( ' ' ( , ') (z', )) ( '))))) 

                

t t

p p t

X

X V G

V V E PATH s t

z z s z t PATH s z PATH t P z





 



   

      

          "  preserves  restricted to the  in the quantifier prefix, and ."I

p tV X E

 

1 2 1 2 1 2 1 2 1 2 1 1 2 2

( 1 2 2

, , , , ( ( ( ( , , ) ( , , )) (( )

                                                     '( ( ') ( ', )) ( , )))  

                                                 

x y y z z H x y y H x z z y z y z

x P x PATH x x C y y

 



     

  

(2)

2 1 2 1 2 2

1 2 1 2 1 2

     "  is a function: quantifier free part of "

                            ( ( , , ) ( , , ) =z)                "  is injective"

                            ', ', ', ', ', ', '

H C

H x y y H z y y x H

y y z z t t v



  

 

  

 2

2 3

2 1 2 2 1 2 1 2 1 2

,

                               ( ( ( ') ( ( , '))      " '  is the root in < , >"

                               ( ', ) ( ', ', ') ( , ', ') ( ', ', ', ')

                 

ST ST

ST C

v

ST v y E y v v ST E

E v v M v y y M v z z E t t z z



   

1 2 1 2 1 2 1 2 3 1 2 2              ( ', ', , ) ( , , ', ')) '( ( ', , )))

                                                                        "the range of  is the first formula in < , >"

C CE E

C

PATH y y y y PATH y y t t x H x y y

H C E





  

( 1 2 1 2 2 1                            ( '( ( ') ( ', )) ', '( ( , ', '))) )

                                                                        "the domain of  is the quantifier free part o

x P x PATH x x y y H x y y

H





    

1 2 1 2 1 2 1 2 1 2 1 2

f "

                            , ', , , , , [(( ( , , ) ( , , ) ( , , , ))

                                               ( ( , ) ( ( , ) '(( ( , ') ( ', )

      

Cx x z y y z z H x y y H z z z E y y z z

SUC x z PATH x z x PATH x x PATH x z

 



   

   

  

|

1 2 ( ( 1 2 ) ) 1 2

                                         ' ' ) ( '))))

                                           ( ( , , ) (( ( ) ( , )) ( ( ) ( , ))

                                             

x x x z P x

H x y y P x C y y P x C y y

    

    

1 2 1 2

1 2 0 1 2 1 1 2

                          ( ( ) ( , )) ( ( ) ( , ))

                                              ( ( ) ( , )) ( ( ) ( ( , ) ( , )))))]

                                   "  pr

X

P x C y y P x C y y

P x C y y P x C y y C y y

H

   

 

   

    

eserves  (ignoring |) and E , { , ,(,), }, and maps  to 0/1"I C X   

 

(3)
2

0 0 0 0 1 2 2 1, , , , ', ', ', '[ [ ]o f f f fV z y z y z y z y    (a) (b) (c) (d)]  
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1 2 3 0 0 0

0 0

[ [ ( ( , ) ', '( ( , ') ( ', '))

           ( , ) ', '( ( , ') ( ', '))

           z'([ ( , ') ( ', )] '( ( ', ' )))            total

           '([

o o

o f f f o

f

V z y z y PRED z z V z y

V z y z y SUC z z V z y

PATH z z PATH z z y V z y

y PATH





 

 

  

  



(a) 

0 0 3

0 0

( , ') ( ', )] '( ( ', ' ))))         surjective

           " is the root in ( ),  is the leaf in ( ),  is the root in ( ), 

              is the leaf in ( )"

f

o f o o

f o

y y PATH y y z V z y

z dom V z dom V y ran V

y ran V

  

 

 

3 | |, , , [ ( ( , ) ( ( ) ( )))

                      (( ( , ) ( , )) )                     function

                      (( ( , ) ( , )) )                   injective

              

o

o o

o o

x y v w V x y P x P y

V x y V x v y v

V x y V w y x w

  

   

   

(b)

3        (( ( , ) ( , ) ( , )) ( , )))]

                      "  is a bijection from " | ... | " in " | ... | "  to " | ... | " in "(... | ... | ...)",  

                      which also preserves "

o o

o

I

V x y V v w SUC x v SUC y w

V QX X

    



 

3 0 0 0

0

0 0 0

0

( ( , ') ( ')               

  " ' is the predecessor of the root in ( ),  i.e., it is the X in the quantifier prefix"

          ( , ') ( ')         

  " ' is the predecesso

X

o

X

PRED z z P z

z dom V

PRED y y P y

y





 

 

(c)

|

| 3 2

r of the root in ( ),  i.e., it is the X in the quantifier free part "

          ( , ') ( ')               " ' is the successor of the leaf in ( )"

          ( , ') ( ')) ]

o

f f f f o

f f f

ran V

SUC z z P z z dom V

SUC y y P y





 

          " ' is the successor of the leaf in ( )"f oy ran V

 

2 0 1 2 0 1 2

0 1 2 1 1 2 2 1

0 0

, '[ ( ( ', ) ( , ')) ( , ( ( ', , )

             [( ' "0" ( , )) ( ' "1" ( , ))]))] ]    

                                                             " ( ( ')) ( ')"

p t

t p

x x V z x B x x z z H y z z

x C z z x C z z

B V z H y





   

     



(d)
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5.2.1.2.2 Expressing (2.2b): “… such that the formula  is    

true” Evaluating the formula . 

 

Once we have built the quantifier-free formula on {0, 1}, we must 

evaluate . We do so by evaluating one connective at a time, and 

one pair of matching parenthesis at a time, until the final result 

becomes 1.  

 

Before we write the informal expression, let us look at an example 

of an evaluation process first. In this example, we can see that there 

are 10 evaluation steps, which correspond to 10 “operators” (i.e., 

either connectives or pairs of matching parenthesis) that are 

evaluated during the whole process. If there are at most n symbols 

in , that means that we need at most n evaluation steps to get the 

result of the formula  . That is why the nodes of the 

graph ( , )CC E are pairs, and its edges are quadruples. In this way we 

allow the whole evaluation process to take up to n steps (where n is 

the length of the input formula ), where in each step we have a 

propositional formula on {0, 1} with up to n symbols. Each node in 

the graph ( , )STST E represents one such formula, and the function M 

(for Marker) is a pointer which tells us in which node in ( , )CC E  

that formula begins (Figure 12). Note that in each evaluation step 

either one or two symbols are removed from the formula at the 

previous step. 
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Figure 12 

 

We redraw below the graphs (A) and (B) of Figure 12 with a horizontal 

orientation (Figure 13). Each evaluation step is called a stage. And the first 

symbol in each stage is given by the marker function M. 

 

Figure 13 

 

Based upon Figures 12 and 13, we show below the steps we need to follow 

to express (2.2b). 

1.    ((0 1) ( 0)) (1 0))

2.    ((0 1) (1)) (1 0))

3.    ((0 1) 1) (1 0))

4.    ((1) 1) (1 0))

5.    ((1) 1) (1))

6.    (1 1) (1))

7.    (1 1) 1)

8.    (1) 1)

9.    1 1)

10.  1

(

(

(

)

11.  1 

(

(

(

(

(

(

( )

(

TRUE

    

   

   

  

 

 

 





 

n Steps 

n Symbols 

Includes 

(1, 1) 

(1, 2) 

(1, 3) 

(1, 1n ) 

(2, 1) 

(2, 2) 

(2, 3) 

(2, 2n ) 

Includes 

(s, 1) 

(s, 2) 

(s, 3) 

(s, sn ) 

2n  

An evaluation step 

(A)  
1 2( , )STST E  

Marker (in Red) 

s n  

Computation 

2 4( , )CC E  

Stages 

1 2( , )STST E  

2( )n  

( )n  

Marker 
Marker 

3M  

1 2( , )f f  
1 2( , )l l  

1 2( ', ')f f
 

1 2( ', ')l l  

vE    

(B)  2 4( , )CC E  
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["( , ) is a linear graph"]                                                                            

["( , ) is a linear graph"]                                                              

C

ST

C E

ST E

(1)

1 2

2 2 2

         

[" :  is an injective and total function that preserves 

      in  and "]                                                                               

   [" , , ,

ST C

M ST C

PATH E E

C C C C  

 



(2)

(3)

2 2 2 2

( ) 1 0

2 2 2 2 2 2 2

( ) 1 0

, , ,  are pairwise disjoint, 

       and "]                                          

   ["For every stage , from stage  to stage +1, we need to follow the 

 

C C C

C C C C C C C C

x x x

   



(4)

      rules of evaluation (See  Part A). The formula in < , > 

       at stage +1 is the same as the formula at stage , except for one of 

       three possible sorts of changes, which corre

CC E

x x

Figure 12

spond to the cases ( ), 

       ( ) and ( ) of "]                                                                       

a

b c Figure 14 (5)

 

(Level 4) The respective formal expressions are showed below: 

 

2,4

0 1 2 1 2 1 2 3 1 2 1 2 3

3 1 1 2 2 1 2 3 2

( , )

( , )

( , ', , , , ( ( ( ( , , ) ( , , ))

                                         ( ( ) ( ) ( , )) )   

                                  

C

ST

LINEAR C E

LINEAR ST E

s s t t k k M s t t M s k k

t k t k ST s C t t





 

     

(1)

(2)

(3)

1 2

3 1 2 1 1 2 1 3

3 1 2 4 1 2 4 3

            "  is a function, : "

                      ( [ ( , , ) ( , , )] = )     "  is injective"

                      ( ( ) ', '( ( , ', ')) )        "  is total"

         

M M ST C

M s k k M t k k s t M

ST s t t M s t t M



  

 

3 4 1 2 1 2 4

2,4

1 2 1 2 3 1 0

             ( [ ( , , ) ( ', , ) ( , ')]

                                         ( , , , )) ) )

                                          "M preserves  in  and "

C

ST

E

ST C

M s t t M s k k PATH s s

PATH t t k k

PATH E E

  


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1 2 1 2 1 2 1 2 1 2

1 2 ( 1 2 1 2 ) 1 2

1 2 1 1 2 1 2 0 1 2

, (( ( , ) ( , )) ( ( , ) ( , ))

                  ( ( , ) ( , )) ( ( , ) ( , ))

    ( ( , ) ( , )) ( ( , ) ( , )) ...)

                         

s s C s s C s s C s s C s s

C s s C s s C s s C s s

C s s C s s C s s C s s

   

 

 

   

   

    

(4)

2 2 2 2 2 2 2

( ) 1 0

1 2 1 2 1 2 1 2 1 2 ( 1 2 ) 1 2

0 1 2 1 1 2

1 2 1 2 1

      " , , , , , ,  are pairwise disjoint"

, ( ( , ) ( ( , ) ( , ) ( , ) ( , ) ( , )

                               ( , ) ( , )))

, (( ( , ) (

C C C C C C C

s s C s s C s s C s s C s s C s s C s s

C s s C s s

s s C s s C s

  

  



     

 

  2 1 2 1 2 1 2 1 2

( 1 2 1 2 ) 1 2 1 2 0 1 2 1 2

1 1 2 1 2

2 2 2 2 2 2 2

( ) 1 0

, )) ( ( , ) ( , )) ( ( , ) ( , ))

           ( ( , ) ( , )) ( ( , ) ( , )) ( ( , ) ( , ))

           ( ( , ) ( , )))

           "( ) "

s C s s C s s C s s C s s

C s s C s s C s s C s s C s s C s s

C s s C s s

C C C C C C C C

 

  

   

     

 



 

(5) 4

1 2 1 2 1 2 1 2[ ( ) , , , , , ', ', ', '[  [ (vx ST x E f f l l f f l l      (d) (e) (0) (a) (b) (c))]]]  

 

The function vE maps the formula at stage x to the formula at stage x+1. 

 

The sub formula (d) corresponds to the last transition, i.e. the transition to the 

last formula in , CC E  (“0” or “1”). The sub formula (e) corresponds to 

the last formula in , CC E  . The three sub formulas (a), (b), (c) correspond 

to the three possible cases (a), (b), (c) as in Figure 14, according to which 

sort of operation is the one involved in the transition from the formula in 

stage x to the next formula in , CC E  . Note that the transition to the last 

formula (d) is necessarily an instance of case (c) in Figure 14. For case (c) in 

Figure 14, vE  is not total in its domain, since 1 2 ( ( , ) ( )v v  and 

1 2 ) ( , ) ( )w w  are not mapped. For the last formula, vE  is not injective, 

since ' ' ' ' ' ' ' '

1 2 1 2 1 1 2 2( , )" "( , )  ( . .,   and )f f l l i e f l f l    (see Figure 16). 
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Figure 14 

Where 1 2 3{ , } and , , {0,1}b b b     . 

 

Figure 15 

1 2(   )b b  

3( )b  

11 12 21 22 31 32( , )( , )( , )p p p p p p
 

Function: vE  

1(  )b  

2( )b  

11 12 21 22( , )( , )p p p p  
1(  )b  

1 b  

11 12( , )p p
 

21 22Case b (p ,p ) void( )  
1 2 1 2Case c (v , v )(w ,w ) void( )

 

1 2( , )v v  
1 2( , )w w  

1 2( , )v v  
1 2( , )v v  

1 2( , )w w  
1 2( , )w w  

1 2 11 12 1 2( ', ')( ', ')( ', ')v v p p w w
 

1 2 11 12 1 2( ', ')( ', ')( ', ')v v p p w w  11 12( ', ')p p  

21 22 31 32Case a (p ,p )(p ,p ) void( )

 

1 2( , )f f  11 12( , )z z  
21 22( , )z z  

1 2( , )v v  

1 2( , )f f  
1 2( , )l l  

1 2( ', ')f f  
1 2( ', ')l l  

1 2( , )v v  

1 2( ', ')v v  

1 2( , )w w
 

1 2( ', ')w w
 

vE  

vE  

vE Preserves CE  

1 2( , )f f  
1 2( , )l l  

1 2( ', ')f f  
1 2( ', ')l l  

1 2( , )v v  
1 2( , )w w

 

vE  

Cases a, b Case c 

1 2( ', ')f f  11 12( ', ')z z  
21 22( ', ')z z  

1 2( ', ')v v  

11 12( ', ')p p  

1 2( ', ')l l

 

1 2( , )l l

 

Left side of the window 
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Figure 16 

6 7 8 1 1

9 1 2 1 2 1 2 0 1 2 1 2 1 2 1 2 1 2 2

  ( ( ( , ( ( , ) ( , ))   

      "  is not the leaf in  and is not the predecessor of the leaf "

                      ( , , , , , ( ( ( ( , , , ) ( , , , ))

        

ST ST

ST

v v

y y E x y E y y

x E

s s t t k k E s s t t E s s k k

 

  

(0)

2 1 1 2 2 1 2 1 2 2 1

2 1 2 1 2 1

                  ( ( ) ( , ) ( , )) )   

                                                          "  is a function, :  "

                               ( [ ( , , , ) ( ,

v v

v v

t k t k C s s C t t

E E C C

E s s k k E t

     



  2 1 2 1 1 2 2 2 0 9 8 7

4

, , )] ( = )) ) ) ) )     

                                                          "  is injective, :C  " 

                               " partial injection  mapping the formula in

v v

v

t k k s t s t

E E C

E

  





7 1 2 1 2 1 2 1 2

1

 < , > in stage  

                                to the formula in < , > in stage ( ))"

( ( ( , , ) " ( ( ), ( , ))" " ( , ) ( ', ')")

                          " ( [ ( ( ))],

C

C ST

ST C C

C ST ST

C E x

C E E x

M x f f M E x E l l E l l f f

E M E E x

   

 1 2

1 2 1 2 1 2 1 2

2,4 2,4

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

', ')")

"[( , ), ( , )] and [( ', '), ( ', ')] are the  of the two formulas as in Figure 15"

 

         , , , (( ( , , , )) [(( ( , , , ) ( , , , )
C Cv E E

l l

f f l l f f l l

y y z z E y y z z PATH f f y y PATH y y l l  

delimiters

2,4 2,4

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 7 6

1 2 1 2

))

                                ( ( ', ', , ) ( , , ', '))]

         ( , , ', ') ( , , ', ')) )

          "  maps nodes from the subgraph [( , ), ( , )] to 

C CE E

v v

v

PATH f f z z PATH z z l l

E f f f f E l l l l

E f f l l

 

 

1 2 1 2the subgraph [( ', '), ( ', ')]"f f l l

 

1 1 2 1 2 1 2 1 2 11 12 21 22 31 32 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22

21 22 31 32 1 2 11 12 31 32 1 2

 ( , , , , ', ', ', ', , , , , , , ', '

( ( , , , ) ( , , , ) ( , , , )

       ( , , , ) ( , , , ) ( , , , )

 

C CE E C

C C C

v v w w v v w w p p p p p p p p

PATH f f v v PATH w w l l E p p p p

E p p p p E v v p p E p p w w

 

 

  

(a)

2,4 2,4

( 1 2 ) 1 2 1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12

1 2 1 2 1 2 1 2 (

      ( , ) ( , ) ( ', ', ', ') ( ', ', ', ')

       ( ', ', ', ') ( ', ', ', ') ( , , ', ')

       ( , , ', ') ( , , ', ') (

C CE E

C C v

v v

C v v C w w PATH f f v v PATH w w l l

E v v p p E p p w w E p p p p

E v v v v E w w w w C

   

  

   1 2 ) 1 2

1 2 1 2 1 2 1 2

', ') ( ', ')

       "[( , ), ( , )] and [( ', '), ( ', ')] define the  (Figure 15 a, b)"

v v C w w

v v w w v v w w



windows of change

 

1(  )b

 

1 b  

11 12( , )p p  
1 2( , )f f  

1 2( , )l l  

vE  

11 12 1 2 1 2( ', ') ( ', ') ( ', ')p p f f l l   

1(  )b

 

1 b  

11 12( , )p p  
1 2( , )f f  

1 2( , )l l  
11 12( ', ')p p  

, CC E   

x y 

, STST E   

3M  
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2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4

3 1 2 11

, , , , ', ', ', '[ ( ( ( , , , ) ( , , , )

         ( , , , ) ( , , ', ') ( , , ', '))

        ( ( ', ', '

C C

C

E E

C v v

E

z z z z z z z z PATH f f z z PATH z z v v

E z z z z E z z z z E z z z z

PATH f f z

 

  

 2,4

12 21 22 1 2 11 12 21 22 3 2

2,4 2,4

2 3 1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22

, ') ( ', ', ', ') ( ', ', ', ')) )

         ( ( ( , , , ) ( , , , ) ( , , , )

         ( , , ', ') ( , , ', '))

C

C C

E C

E E C

v v

z PATH z z v v E z z z z

PATH w w z z PATH z z l l E z z z z

E z z z z E z z z z

 

  

  3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2 1        ( ( ', ', ', ') ( ', ', ', ') ( ', ', ', ')) ) ]

"  preserves  outside of the windows, and preserves left and right side of the windows (Figure 15)

C CE E C

v C

PATH w w z z PATH z z l l E z z z z

E E

  

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 1 2 11 12 11 12 1 2

3 ( 11 12 ( 11 12

"

, , ', '[ ( ( , , , ) ( , , , ) ( , , ', '))

        ( ( ', ', ', ') ( ', ', ', ')

        [ (C ( , ) C ( ',

C C

C C

E E v

E E

z z z z PATH f f z z PATH z z v v E z z z z

PATH f f z z PATH z z v v

z z z z

  

 

  ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12

' )) (C ( , ) C ( ', '))

               (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( ,

z z z z

z z z z z z z z

z z z z z z z z

z z

   



 

   

   

 11 12 3 2 1

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2

11 12 11 12 2

) C ( ', '))] ) ]

               "  preserves symbols in "

        , , ', '[ ( ( , , , ) ( , , , )

        ( , , ', ')) (

C C

v

E E

v

z z

E

z z z z PATH w w z z PATH z z l l

E z z z z



 

 

left side of the window

2,4 2,4

2 1 2 11 12 11 12 1 2

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

( ', ', ', ') ( ', ', ', ')

        [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

     

C CE EPATH w w z z PATH z z l l

z z z z z z z z

z z z z z z z z   



   

   

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

1 0 11

          (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', '))] ) ]

                "  preserves symbols in "

        [ ( ( ,

v

z z z z z z z z

z z z z

E

C p

 

   

 



right side of the window

12 0 31 32 21 22 0 11 12

0 11 12 0 31 32 21 22 0 11 12

0 11 12 1 31 32 21 22 0 11 12

0 11

) ( , ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( (

p C p p C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p







  

   

   

 12 1 31 32 21 22 1 11 12

1 11 12 0 31 32 21 22 0 11 12

1 11 12 0 31 32 21 22 1 11 12

1 1

, ) ( , ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( (

p C p p C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p







  

   

   

 1 12 1 31 32 21 22 1 11 12

1 11 12 1 31 32 21 22 1 11 12 1 0 1

11 12 21

, ) ( , ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))] ) )

            "In ( ', ' ) we get the  of applying the operator  in ( ,

p C p p C p p C p p

C p p C p p C p p C p p

p p p



 

  

   

result 22

1 11 12 2 31 32

) to the 

             Boolean values ,  in ( , ), and ,  in ( , ) (Figure 14a)"

p

b p p b p p
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1 1 2 1 2 1 2 1 2 11 12 21 22 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22

1 2 11 12 21 22 1 2

( 1 2 ) 1 2

 ( , , , , ', ', ', ', , , , , ', '

( ( , , , ) ( , , , ) ( , , , )

     ( , , , ) ( , , , )

     ( , ) ( , )

C CE E C

C C

E

v v w w v v w w p p p p p p

PATH f f v v PATH w w l l E p p p p

E v v p p E p p w w

C v v C w w PATH

 

 

 

  

(b)

2,4 2,4

1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12

1 2 1 2 1 2 1 2 ( 1 2 ) 1 2

1 2

( ', ', ', ') ( ', ', ', ')

     ( ', ', ', ') ( ', ', ', ') ( , , ', ')

     ( , , ', ') ( , , ', ') ( ', ') ( ', ')

      "[( , ),

C CE

C C v

v v

f f v v PATH w w l l

E v v p p E p p w w E p p p p

E v v v v E w w w w C v v C w w

v v



  

   

1 2 1 2 1 2

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11

( , )] and [( ', '), ( ', ')] define the windows of change (Figure 15 a, b)"

     , , , , ', ', ', '[ ( ( ( , , , ) ( , , , )

              ( ,

C CE E

C

w w v v w w

z z z z z z z z PATH f f z z PATH z z v v

E z

 

 12 21 22 11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2

2,4

2 3 1 2 11

, , ) ( , , ', ') ( , , ', '))

              ( ( ', ', ', ') ( ', ', ', ') ( ', ', ', ')) )

              ( ( ( , , ,

C C

C

v v

E E C

E

z z z E z z z z E z z z z

PATH f f z z PATH z z v v E z z z z

PATH w w z z

 

  

 2,4

12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21

) ( , , , ) ( , , , )

              ( , , ', ') ( , , ', '))

              ( ( ', ', ', ') ( ', ', ', ') ( ', ', '

C

C C

E C

v v

E E C

PATH z z l l E z z z z

E z z z z E z z z z

PATH w w z z PATH z z l l E z z z

 

 

   22 3 2 1

2,4

11 12 11 12 1 2 1 2 11 12

, ')) ) ]

               "  preserves  outside of the windows, and preserves left and 

                right side of the windows (Figure 15)"

      , , ', '[ ( ( , , , )
C

v C

E

z

E E

z z z z PATH f f z z P  2,4

11 12 1 2

2,4 2,4

11 12 11 12 2 2 1 2 11 12 11 12 1 2

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

( , , , )

              ( , , ', ')) ( ( ', ', ', ') ( ', ', ', ')

              [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

       

C

C C

E

v E E

ATH z z v v

E z z z z PATH f f z z PATH z z v v

z z z z z z z z

  

   

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

             (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

                    (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

                    (C ( , ) C ( ', '))] ) ]

 

z z z z z z z z

z z z z z z z z

z z z z

   

 

   

   

 

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2

2,4

11 12 11 12 2 2

                    "  preserves symbols in left side of the window"

       , , ', '[ ( ( , , , ) ( , , , )

               ( , , ', ')) ( (

C C

C

v

E E

v E

E

z z z z PATH w w z z PATH z z l l

E z z z z PATH

 

  2,4

1 2 11 12 11 12 1 2

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

', ', ', ') ( ', ', ', ')

               [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

                    (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

    

CEw w z z PATH z z l l

z z z z z z z z

z z z z z z z z   



   

   

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

                (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

                    (C ( , ) C ( ', '))] ) ]

                    "  preserves symbols in right side of the window"

    

v

z z z z z z z z

z z z z

E

 

   

 

1 0 21 22 11 12 1 11 12

1 21 22 11 12 0 11 12 1 0 1

11 12

               [ ( ( , ) ( , ) ( ', '))

                         ( ( , ) ( , ) ( ', '))] ) )

                     "In ( ', ' ) we get the result of applying , i

C p p C p p C p p

C p p C p p C p p

p p



 

  

  

 11 12

1 21 22

n ( , ), to the

                      Boolean value ,  in ( , ) (Figure 14b)"

p p

b p p
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1 1 2 1 2 11 12 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 1 2 11 12 11 12 1 2

2,4 2,4

( 1 2 ) 1 2 1 2 11 12 11 12 1 2

 ( , , , , , , ', '

( ( , , , ) ( , , , ) ( , , , ) ( , , , )

    ( , ) ( , ) ( ', ', ', ') ( ', ', ',

C C

C C

E E C C

E E

v v w w p p p p

PATH f f v v PATH w w l l E v v p p E p p w w

C v v C w w PATH f f p p PATH p p l l

 

  

   

(c)

11 12 11 12

1 2 1 2 11 12 11 12

2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12

')

    ( , , ', ')

    "[( , ), ( , )] and [( ', '), ( ', ')] define the windows of change (Figure 15c)"

    , , , , ', ', ', '[ ( ( ( , , , )
C

v

E E

E p p p p

v v w w p p p p

z z z z z z z z PATH f f z z PATH



  2,4

21 22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 11 12 21 22 21 22 11 12 3 2

( , , , )

            ( , , , ) ( , , ', ') ( , , ', '))

            ( ( ', ', ', ') ( ', ', ', ') ( ', ', ', ')) )

 

C

C C

C v v

E C E

z z v v

E z z z z E z z z z E z z z z

PATH f f z z E z z z z PATH z z p p

  

  

2,4 2,4

2 3 1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4

3 21 22 1 2 11 12

           ( ( ( , , , ) ( , , , ) ( , , , )

            ( , , ', ') ( , , ', '))

            ( ( ', ', ', ') ( ', ',

C C

C

E E C

v v

E C

PATH w w z z PATH z z l l E z z z z

E z z z z E z z z z

PATH z z l l E z z

  

 

  2,4

21 22 11 12 11 12 3 2 1

11 12 11 12 1

', ') ( ', ', ', ')) ) ]

            "  preserves  outside of the windows, and preserves left and 

            right side of the windows (Figure 15)"

     , , ', '[ (

CE

v C

z z PATH p p z z

E E

z z z z



 2,4 2,4

2 1 2 11 12 11 12 1 2

2,4 2,4

11 12 11 12 2 2 1 2 11 12 21 22 11 12

3 ( 11 12 ( 11 12

( , , , ) ( , , , )

             ( , , ', ')) ( ( ', ', ', ') ( ', ', ', ')

                       [ (C ( , ) C ( ', '

C C

C C

E E

v E E

PATH f f z z PATH z z v v

E z z z z PATH f f z z PATH z z p p

z z z z



  

  ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

)) (C ( , ) C ( ', '))

                             (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

                             (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

z z z z

z z z z z z z z

z z z z z z z z

   

 

   

   

11 12 11 12 3 2 1

2,4

11 12 11 12 1 2 1 2 11 12

                             (C ( , ) C ( ', '))] ) ]

                             "  preserves symbols in left side of the window"

      , , ', '[ ( ( , , , )
C

v

E E

z z z z

E

z z z z PATH w w z z PATH

  

  2,4

11 12 1 2

2,4 2,4

11 12 11 12 2 2 11 12 11 12 11 12 1 2

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

( , , , )

              ( , , ', ')) ( ( ', ', ', ') ( ', ', ', ')

                         [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '

C

C Cv E E

z z l l

E z z z z PATH p p z z PATH z z l l

z z z z z z z z

  

   

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

))

                             (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

                             (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

                            

z z z z z z z z

z z z z z z z z

      

   

11 12 11 12 3 2 1

1 0 11 12 0 11 12 1 11 12 1 11 12 1 0

 (C ( , ) C ( ', '))] ) ]

                             "  preserves symbols in right side of the window"

                        [ ( ( , ) ( ', ')) ( ( , ) ( ', '))] )

v

z z z z

E

C p p C p p C p p C p p

  

    1

11 12 1 11 12

)

                         "In ( ', ' ) we get a copy of the Boolean value ,  in ( , ) (Figure 14c)"p p b p p


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0 1

11 12 11 12 2 1 2 11 12 1 2 11 12

11 12 1 2 1 2 11 12

( ( , ) ( ( , ))

      , , ', '( ( , , ) ( , ', ') ( , , , )

                                     ( , , , ) ( , , ', ')

                       

ST ST

C

C C

y E x y z E y z

p p p p M x f f M y p p E f f p p

E p p l l E l l p p

 

  

 

(d) (

21 22 11 12 21 22

( 1 2 ) 1 2 3 1 11 12 1 11 12

              ', '( ( ', ', ', '))

                                     ( , ) ( , ) [ ( ( , ) ( ', '))

                                                              

Cp p E p p p p

C f f C l l C p p C p p



   

0 11 12 0 11 12 3 2 1 0              ( ( , ) ( ', '))] ) ) )C p p C p p 

 

0

"  is the predecessor of the leaf in , so that this is the last transition" (See Figure 16)

Note that the last transition is necessarily an instance of case c in Figure 14.

( ( , ))      

ST

ST

x E

y E x y(e) (  

1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 0

                                                                "  is the leaf in "

        ', '( ( , ', ') ', '( ( ', ', ', ')) "( ', ') is a leaf in "

        ( ', '))))

 

ST

C C

x E

p p M x p p y y E p p y y p p E

C p p

 



                                                                                  "the last formula in < , > is "1"   "CC E

 

5.2.1.3 Complete expression for kSATQBF  

 

We get the complete expression by combining the three parts together (that is 

taking (2.1) from 5.2.1.1, (2.2a) from 5.2.1.2.1, and (2.2b) from 5.2.1.2.2, 

together with the quantification in 5.2.1.2). 

 

1 2 2 1 2 2

1 1 1 2 2 2

1 2 2 1 2 2 2 2 4 1 2 3

2 2 2 2 2 2 2 3

( ) 1 0

1 2

0

, , , , , ,

   ..., , , , , , , , , , , , ,

   , , , , , , ,

  ( [" =< , > is a linear graph"]                                     

k k k k t t t p c ST

t t t

V E B V E B

Q V E B V E B V C E ST E M

C C C C C C C H

G V E

  

  

  

1 1 1 3 3 3 ' ' '

                            

"The length of  is equal to the number of variables in the quantifier prefix of "] 

[" , , , ,..., ,  are linear graphs"]          

 

t

k k k

G

G V E G V E G V E



      

(1)

  [ (2)

(3)

    (where '  is the index of the last  quantifier in the prefix)k 
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1 1 3 3 ' '

1 3 '

[" : {0,1}, : {0,1},..., : {0,1} are total functions"]         

["the lengths of the linear graphs , ,...,  are equal to the lengths of 

   the corresponding quantifier blocks in "

k k

k

B V B V B V

G G G



   



(4)

]                                                      

["  is a partial bijection from the quantifier prefix of  (restricted to the  

   in the quantifier prefix) to V ,  which maps every  to it

p

t

V X

X



(5)

s corresponding node in , 

   and which preserves and ."]                                                                    

["( , ) is a linear graph"]                                      

t

I

t

C

G

E

C E





(6)

1 2

                                        

["( , ) is a linear graph"]                                                                           

[" :  is an injective and total function t

STST E

M ST C



 

(7)

(8)

2 2 2 2 2 2 2

( ) 1 0

2 2 2 2 2 2 2

( ) 1 0

hat preserves  in  and "] 

[" , , , , , ,  are pairwise disjoint sets, 

  and "]                                                  

["  is a p

ST CPATH E E

C C C C C C C

C C C C C C C C

H

  

  







(9)

(10)

artial surjective injection from the quantifier free part of  to the first 

   formula in ( , ), which maps every "X" in the quantifier free part to the 

   corresponding position in the first formula 

CC E



1

2 1 2 3

in ( , ) which we denote by , 

   which preserves , ,(,), , and  and ,  and which ignores "|". "]                

[

      [ ([" , , ,...,  are disjoint sets"]                             

c

I C

k

C E

E

V V V V



   



(11)

2 2 2 4 4 4 '' '' ''

2 2

                                   

[" , , , ... ,  are linear graphs"]               

      (where ''  is the index of the last  quantifier in the prefix)

[" : {

k k kG V E G V E G V E

k

B V

      



 

(12)

(13)

4 4 '' ''

2 4 ''

0,1}, : {0,1},..., : {0,1} are total functions"]            

["the lengths of the linear graphs , ,...,  are equal to the lengths of 

   the corresponding quantifier blocks in "] )

k k

k

B V B V

G G G



 



(14)

 

2 2 2

1 2 1 1

2 2

, ... (["  is a partial bijection: 1st part of "]

                     ["  is a partial bijection: 2nd part of "]

     

k t

t

U U U U G G

U G G

 

 

                                                         (15)

                ... ... ["  is a partial bijection: th part of "])k k tU G k G                (16)
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1 2

1 2 2

2

2 0 0 0

[" : {0,1} is a total function that  with , ,..., "

  " ... "]]

[ , , , ,

t t k

t k

o f f

B V B B B

B B B B

V z y z y z

 

 

  

                                                                                   (17)

coincides

0 3 4

5 0

0 5

5

', ', ', '[ (

   [ " is the root in ( ),  is the leaf in ( ), 

         is the root in ( ),  is the leaf in ( )"]                                          

     [ "  is 

f f

o f o

o f o

o

y z y

z dom V z dom V

y ran V y ran V

V

 

(18)

5

a partial bijection from " | ... | " in " | ... | "  to " | ... | " in "(... | ... | ...)",

         which preserves "]

   

I

QX X

                                                                                      (19)

 

5 0

0

  [ " ' is predecessor of root in dom ( )"

       " ' is predecessor of root in ran ( )"

" ' is successor of leaf in dom ( )"

       " ' i

o

o

f o

f

z V

y V

z V

y









                                            

  

        

5 4

4 0 0 4 3

s successor of leaf in ran ( )"] )                                                          

( [" ( ( ')) ( ')" ]) ]                                                                         

o

t p

V

B V z H y 

(20)

 

2 1 0

  

["The truth value of  on the valuation  is 1"]] ] )                                          tB

(21)

(22)

 

(1) “The graph tG is a linear graph”: ( , )t tLINEAR V E  

 

(2) "The length of  is equal to the number of variables in the quantifier prefix of "tG   

 

This statement is implied by the following statement: 

"  is a partial bijection from the quantifier prefix of  (restricted to the  

in the quantifier prefix) to V ,  which maps every  to its corresponding node in , 

and which preserves and ." (See

p

t t

I

t

V X

X G

E



  (6) below)

 

(3) 1 1 1 3 3 3 ' ' '" , , , ,..., ,  are linear graphs":k k kG V E G V E G V E       

 (where '  is the index of the last  quantifier in the p r   x) efik   

1 1 3 3 ' '( , ) ( , ) ... ( , )k kLINEAR V E LINEAR V E LINEAR V E    
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1 1 3 3 ' '

1 1

1 1

" : {0,1} : {0,1} ... : {0,1} are total functions"

       [ , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))               

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(4) 

1

3 3

3 3

             "total"

                            ( ( , ) ( "0" "1"))]

        , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))         

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

3

' '

'

                  "total"

                            ( ( , ) ( "0" "1"))]

        ......

        , , '[ ( , ) ( , ') ( ')                    "function"

                            ( (

k k

k

B t p p p

t p p B t p B t p p p

V t

    



   

 '

'

) ( ( , )))                            "total"

                            ( ( , ) ( "0" "1"))]]

k

k

p B t p

B t p p p



    

 

 

' 2

1,3,5,..., '

'1 1

1 2 3 ' ' 1 '1 2

' 2,1 1

If ' ,  then (by  we mean the formula template  instantiated with ') :

... ( )

If ' ,  then (by  we mean the formula template  instantiate

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(5) 

' 2 ' 2

1,3,5,..., ' 2

1 2 3

1 2 3 ' 1 ' 2,1 2 1 2 3 1 2

d with ' 2):

( ' 2 is the previous to the last  block, and the subformulas , ,  

take care of the last quantifier block)

... ( ) ... ()
i k

k k i k eL L

i k

k

v v v v v v v v v

  

   
 

 

 

 

  ( 3)

 

1 0 1 2 3 1 1

"for 1 ,   is the first quantifier of the j-th alternating quantifier block:" 

(when i is not the index of the last block)

( ( ) ( ) ( ) ... ( ) "0"

    "where  is  if ( 1) 

j

i Q i

Q

j i v

P v P v P v P v v

P P i

    



 

      



1 2 2 3 1

1 2 1 2

is odd, or  if ( 1) is even"

                     [ ( , ) ( , ) ... ( , )]

                     [ '( ( , ') ( ', ) ' ' ( '))]

                        [

i i

P i

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v



   

  



   

       

  2 3 2 3

1 1 ' 0

'

'( ( , ') ( ', ) ' ' ( '))]

                        ...

                        [ '( ( , ') ( ', ) ' ' ( '))])

                         "where  is

i i i i Q

Q

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v v v v v P v

P

  

   

      



       

  if  is odd, or  if  is even"P i P i 

 



                                                 Wei Ren (02103176) 

 63 

1 0 1 2 3 | 1

"for 1 ,   is the first quantifier of the j-th alternating quantifier block:"

("for ,   is the last element in the block ,  which must be |")

( ( ) ( ) ( ) ... ( ) ( ) ="0" 

 

j

e

Q k e

j i v

i k v i

P v P v P v P v P v v   

 



      

1 2 2 3

1 2 1 2

      "where  is  if  is odd, or  if  is even"

                    [ ( , ) ( , ) ... ( , )]

                    [ '( ( , ') ( ', ) ' ' ( '))]

        

Q

k e

P P k P k

PATH v v PATH v v PATH v v

v PATH v v PATH v v v v v v P v

 

  

  

   

       

2 3 2 3

' 0

               [ '( ( , ') ( ', ) ' ' ( '))]

                       ...

                       [ '( ( , ') ( ', ) ' ' ( '))])

                          

k e k e Q

v PATH v v PATH v v v v v v P v

v PATH v v PATH v v v v v v P v

  

 

       



       

'    "where  is  if  is odd, or  if  is even"

" '  is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next  and E :" when  is not the index of the last blo

Q

i

X i

P P k P k

L

i

 

2 0 1 1

ck

( '[( ( , ') ( ', ) ' ( ')) '( '( ', '))]   

         "domain of '   "

  '( ( ') '( '( ', ')))  " '  is surjective"

  , , ', '[[( '( , ) '( ', ') ' ( , )

i i i i X

i

i

v PATH v v PATH v v v v P v y L v y

L

y V y v L v y L

s t s t L s t L s t s s PATH v s

    



       

 

      1( ', ) ( , ')

                    ( '( ( , ') ( ', ') ' ' ' ( ')))) ( , ')]

                    " '  preseves  in the  alternating block and  (implies injectiv

i

X i

X i

PATH s v PATH s s

z PATH s z PATH z s z s z s P z E t t

L Next ith E

  

 



        

0

ity)"

  ' '[ '( ', ') ( ')]

  ' ' '([ '( ', ') '( ', ')] ( ' '))])      " '  is a function"

iv y L v y V y

v y z L v y L v z y z L

 

   

 

2 0

" '  is a bijection from the X in the i-th alternating quantifier block to V ,

which preserves Next  and E :"

(when )

( '[( ( , ') ( ', ) ( ')) '( '( ', '))]   "domain of '   "

  

i

X i

k e X

L

i k

v PATH v v PATH v v P v y L v y L

y

  



     

 '( ( ') '( '( ', ')))  " '  is surjective"

  , , ', '[[( '( , ) '( ', ') ' ( , ) ( ', ) ( , ')

                    ( '( ( , ') ( ', ') ' ' ' ( ')))) ( , ')

k

k e

X k

V y v L v y L

s t s t L s t L s t s s PATH v s PATH s v PATH s s

z PATH s z PATH z s z s z s P z E t t

  

 



      

        

0

]

                    " '  preseves  in the k-  alternating block and  (implies injectivity)"

  ' '[ '( ', ') ( ')]

  ' ' '([ '( ', ') '( ', ')] ( ' '))])      " '  is a function"

X k

k

L Next th E

v y L v y V y

v y z L v y L v z y z L

 

   



                                                 Wei Ren (02103176) 

 64 

3 0 | |

"For ,   is the last | for the last quantifier in the quantifier prefix":

( '(( ( , ') ( ')) ( )

  '( ( , ') ( ( ') ( '))) "there are no quantifiers after "

  ' ' '

e

e e

e e

i k v

v SUC v v P v P v

v PATH v v P v P v v

z y w v

 

  



   

   

  |'[ ( ', ) ([ ( ', ) ( ', ')] ( '))

   " '  is the last quantifier in the block ,  '  is the  of the variable quantified"

   "y' is the first | for that variable"

                      

e ePATH y v PATH v v PATH y v P v

w k z X

P

    

 0( ') ( ') ( ', ') ( ', ')])

                                              "where  is  if  is odd, or  is  if  is even"

Q X

Q Q

w P z SUC z y SUC w z

P P k P P k

 

 

  

( , , ( ( , ) ( , ) ( = )                         "  is a function"

                            ( ( , ) ( , ) = )              "  is injective"

                            (( ( ) (

p p p

p p p

X

x y z V x y V x z y z V

V x y V z y x z V

P x PRED

   

  

 

(6)

, ) [ ( ) ( )]) ( ( ) ( , )))  

                                "domain of ","range of "

                            "  is partial bijection:  in quantifier prefix of  in "

s,t,s',t

t p

p p

p t t

x z P z P z y V y V x y

V V

V X V G

     



 '([ (s,s') (t,t') (s',t')] ( ( , )

                            '(( ' ' ( , ') (z', )) ( ')))) 

"  preserves  restricted to the  in the quantifier prefix, and ."

p p t

X

I

p t

V V E PATH s t

z z s z t PATH s z PATH t P z

V X E



 

  

      



 

2,4

0 1 2 1 2 1 2 3 1 2 1 2 3

1 2

3 1 1 2 2 1 2 3 2

3

( , )

( , )

( , ', , , , ( ( ( ( , , ) ( , , ))

               ( ( ) ( ) ( , )) )     "  is a function, : "

                      ( [ ( ,

C

ST

LINEAR C E

LINEAR ST E

s s t t k k M s t t M s k k

t k t k ST s C t t M M ST C

M s





  

      



(7)

(8)

(9)

1 2 1 1 2 1 3

3 1 2 4 1 2 4 3

2,4

3 4 1 2 1 2 4 1

, ) ( , , )] = )     "  is injective"

                      ( ( ) ', '( ( , ', ')) )        "  is total"

                      ( [ ( , , ) ( ', , ) ( , ')] ( ,
CST E

k k M t k k s t M

ST s t t M s t t M

M s t t M s k k PATH s s PATH t

 

 

    2 1 2 3 1 0, , )) ) )

                       "M preserves  in  and "ST C

t k k

PATH E E
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1 2 1 2 1 2 1 2 1 2

1 2 ( 1 2 1 2 ) 1 2

1 2 1 1 2 1 2 0 1 2

, (( ( , ) ( , )) ( ( , ) ( , ))

                  ( ( , ) ( , )) ( ( , ) ( , ))

    ( ( , ) ( , )) ( ( , ) ( , )) ...)

                        

s s C s s C s s C s s C s s

C s s C s s C s s C s s

C s s C s s C s s C s s

   

 

 

   

   

    

(10)

2 2 2 2 2 2 2

( ) 1 0

1 2 1 2 1 2 1 2 1 2 ( 1 2 ) 1 2

0 1 2 1 1 2

1 2 1 2

        " , , , , , ,  are pairwise disjoint"

, ( ( , ) ( ( , ) ( , ) ( , ) ( , ) ( , )

                               ( , ) ( , )))

, (( ( , ) (

C C C C C C C

s s C s s C s s C s s C s s C s s C s s

C s s C s s

s s C s s C

  

  



     

 

  1 2 1 2 1 2 1 2 1 2

( 1 2 1 2 ) 1 2 1 2 0 1 2 1 2

1 1 2 1 2

2 2 2 2 2 2 2

( ) 1 0

, )) ( ( , ) ( , )) ( ( , ) ( , ))

          ( ( , ) ( , )) ( ( , ) ( , )) ( ( , ) ( , ))

          ( ( , ) ( , )))

          "( ) "

s s C s s C s s C s s C s s

C s s C s s C s s C s s C s s C s s

C s s C s s

C C C C C C C C

 

  

   

     

 



1 2 1 2 1 2 1 2 1 2 1 1 2 2

( 1 2 2

, , , , ( ( ( ( , , ) ( , , )) (( )

                                                    '( ( ') ( ', )) ( , )))  

                             "  is a function, 

x y y z z H x y y H x z z y z y z

x P x PATH x x C y y

H

 





     

  

(11)

2 1 2 1 2 2

1 2 1 2 1 2 2

2 3

:quantifier free part of "

                      ( ( , , ) ( , , ) =z)         "  is injective"

                      ', ', ', ', ', ', ',

                          ( ( ( ')

H C

H x y y H z y y x H

y y z z t t v v

ST v



  

 

  





2 1 2 2 1 2 1 2 1 2

1 2 1 2 1 2 1

( ( , '))      " '  is the root in < , >"

                          ( ', ) ( ', ', ') ( , ', ') ( ', ', ', ')

                          ( ', ', , ) ( , , ',
C C

ST ST

ST C

E E

y E y v v ST E

E v v M v y y M v z z E t t z z

PATH y y y y PATH y y t t



   

  2 3 1 2 2

( 1 2 1 2 2 1

')) '( ( ', , )))

                             "the range of  is the first formula in < , >"

                      ( '( ( ') ( ', )) ', '( ( , ', '))) )

                       

C

x H x y y

H C E

x P x PATH x x y y H x y y









   

1 2 1 2 1 2 1 2 1 2 1 2

      "the domain of  is the quantifier free part of "

                      , ', , , , , [(( ( , , ) ( , , ) ( , , , ))

                                   ( ( , ) ( ( , )

C

H

x x z y y z z H x y y H z z z E y y z z

SUC x z PATH x z



 



 

   



|

1 2 ( ( 1 2 ) ) 1 2

'(( ( , ') ( ', )

                                    ' ' ) ( '))))

                                    ( ( , , ) (( ( ) ( , )) ( ( ) ( , ))

                            

x PATH x x PATH x z

x x x z P x

H x y y P x C y y P x C y y

  

    

    

1 2 1 2

1 2 0 1 2 1 1 2

                                  ( ( ) ( , )) ( ( ) ( , ))

                                        ( ( ) ( , )) ( ( ) ( ( , ) ( , )))))]

                      "  preserves (

X

I

P x C y y P x C y y

P x C y y P x C y y C y y

H

   

 

   

    

 ignoring |) and E , { , ,(,), }, and maps  to 0/1"C X  
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1 2 1 3 1

2 3 2 4 2

1

 "[( ) ( ) ... ( )

     ( ) ( ) ... ( )

     ......

     ( )]"

where " " is (( ( ) ( )) ( ( ) ( )))

k

k

k k

i j i j j i

V V V V V V

V V V V V V

V V

V V x V x V x V x V x

  

  







      

      



 

    

(12)

 

 

(13) 2 2 2 4 4 4 '' '' ''" , , , ... ,  are linear graphs":k k kG V E G V E G V E        

 (where ''  is the index of the last  quantifier in the   pr    efix)k   

2 2 4 4 '' ''( , ) ( , ) ... ( , )k kLINEAR V E LINEAR V E LINEAR V E    

 

2 2 4 4 '' ''

2 2

2 2

" : {0,1} : {0,1} ... : {0,1} are total functions"

[ , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))           

k kB V B V B V

t p p B t p B t p p p

V t p B t p

     

    

 

(14)

         

2

4 4

4 4

                 "total"

                            ( ( , ) ( "0" "1"))]

        , , '[ ( , ) ( , ') ( ')                    "function"

                            ( ( ) ( ( , )))     

B t p p p

t p p B t p B t p p p

V t p B t p

    

   

 

4

'' ''

                      "total"

                            ( ( , ) ( "0" "1"))]

        ......

        , , '[ ( , ) ( , ') ( ')                    "function"

                            

k k

B t p p p

t p p B t p B t p p p

    



   

 '' ''

''

( ( ) ( ( , )))                            "total"

                            ( ( , ) ( "0" "1"))]]

k k

k

V t p B t p

B t p p p



    

 

' 2

2,4,6,..., ''

''1 1

1 2 3 '' '' 1 ''1 2

'' 2,1 1

If '' ,  then (by  we mean the formula template  instantiated with ''):

... ( )

If '' ,  then (by  we mean the formula template  i

i k

k i

k k k i

k i

L

k k i k

v v v v v

k k

 

 

 








 







(15) 

' 2 ' 2

2,4,6,..., '' 2

1 2 3

1 2 3 '' 1 '' 2,1 2 1 2

nstantiated with '' 2):

( '' 2 is the previous to the last  block, and the subformulas , ,

take care of the last quantifier block)

... ( ))
i k

k k iL L

i k

k

v v v v v v v

  

 
 

 

 

 

 ( 3 1 2 3

1 2 1 2 3

... ( )

where the subformulas , , ,  and  are the same as in (5) above.

k e

i i

v v   

    

 
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2 2 2

1 2

1 1

1

1 1

2 2

2

("

: Total injection,

             preserves , ,

             includes first node in  as U (first node in ),

: Total injection,

             preserves , ,

   

k

t

t

t

t

t

V V

E E

V E

V V

E E



 





 



(16)   U U ...U

U

U

1 1 2 2

3 3

3

2

          includes successor in  of node U (last node in ) in  as U (first node in ),

: Total injection,

             preserves , ,

             includes successor in  of node U (l

t t

t

t

t

E E V E

V V

E E

E



 





U

2 3 3

1 1

ast node in ) in  as U (first node in ),

...,  and

: Total injection,

             preserves , ,

             includes successor in  of node U (last node in ) in  as U (first no

t

k k t

k t

t k k t k

E V E

V V

E E

E E V 

 





U

de in )")kE

 

2 2 2

1 2 ... (...

    ,  ,  , [(( ( , ) ( , )) )    "function"

                      ( ( , ) ( , )) )    "injection"

                      ( ( ) ( ( , )))               "total"

  

k

k k

k k

k k

U U U

x y t u U x y U x t y t

U x y U u y x u

V x y U x y

 

   

   

 

                    ( ( , ) ( ( ) ( ))         " : "

                      (( ( , ) ( , ) ( , )) ( , ))  "preserves "

                      (( ( , ) ( , ) ( , )) ( , ))  "pre

k k t k k t

k k k t k

k k t k

U x y V x V y U V V

U x y U u t E x u E y t E

U x y U u t E y t E x u

   

   

   

1 1

1

serves "

                      (( ( , ) ( ( , )) ( , ) ( ( , ) ( )))

                                         ( , ))])

                   "includes successor in  of node U (las

t

k k t k k

k

t k

E

U x y v E x v E y t v E v u V u

U u t

E

 



    



1t node in ) in  as U (first node in )"k t k kE V E

 

1 2

1 1

2 2

 "   with , ,..., "

'[( ( , ) ( , ) ( , ')) ']

'[( ( , ) ( , ) ( , ')) ']

...

'[( ( , ) ( , ) ( , ')) ']

t k

t

t

k k t

B coincides B B B

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

xytpp B t p U t y B y p p p

    



    





    

(17)
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2

2 0 0 0 0

3 4 5 0 0 0

0 0

[ , , , , ', ', ', '

            [ ( [ ( , ) ', '( ( , ') ( ', '))

           ( , ) ', '( ( , ') ( ', '))

           z'([ ( , ') ( ', )] '(

o f f f f

o o

o f f f o

f

V z y z y z y z y

V z y z y PRED z z V z y

V z y z y SUC z z V z y

PATH z z PATH z z y V





 

  

 

  

  

(18)

0 0 5

0 0

(z',y')))

           '([ ( , ') ( ', )] '( (z',y')))]

           " is the root in ( ),  is the leaf in ( ),  is the root in ( ), 

              is the leaf in (

f

o f o o

f o

y PATH y y PATH y y z V

z dom V z dom V y ran V

y ran V

   

 

)"

 

5 | |

5

, , , [ ( ( , ) ( ( ) ( )))

                      (( ( , ) ( , )) )

                      (( ( , ) ( , )) )

                      (( ( , ) ( , ) ( , )) ( , ))]

"  is

o

o o

o o

o o

o

x y v w V x y P x P y

V x y V x v y v

V x y V w y x w

V x y V v w SUC x v SUC y w

V

 

  

   

   

   

(19)

 a partial bijection from " | ... | " in " | ... | "  to " | ... | " in "(... | ... | ...)",  

which also preserves "I

QX X



 

5 0 0 0

0

0 0 0

0

[ ( , ') ( ')               

       " ' is the predecessor of the root in ( ),  i.e., it is the X in the quantifier prefix"

          ( , ') ( ')         

       " ' is the

X

o

X

PRED z z P z

z dom V

PRED y y P y

y





 

 

(20)

|

|

 predecessor of the root in ( ),  i.e., it is the X in the quantifier free part "

          ( , ') ( ')           " ' is the successor of the leaf in ( )"

          ( , ') (

o

f f f f o

f f

ran V

SUC z z P z z dom V

SUC y y P y





 

  5 4')] )         " ' is the successor of the leaf in ( )"f f oy ran V

 

4 0 1 2 0 1 2

0 1 2 1 1 2 4 3

0 0

, '( ( ( ', ) ( , ')) ( , ( ( ', , )

             [( ' "0" ( , )) ( ' "1" ( , ))]))) ]    

     " ( ( ')) ( ')"

p t

t p

x x V z x B x x z z H y z z

x C z z x C z z

B V z H y





   

     



(21)

 

 

  

4

3 1 2 1 2 1 2 1 2 4 5

 "  (the formula in < , > at stage 1 is the same as the formula at stage , 

             except for one subformula as in Figure 14)"

[ ( ) , , , , , ', ', ', '[ [

C

v

x C E x x

x ST x E f f l l f f l l

  

    

(22)

(4) (5) (0) 6 6 5 4 3 2 1 0( ] ] ) (1) (2) (3)) ] ] ]
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The sub formula (4) corresponds to the last transition, i.e. the transition to the 

last formula in , CC E  (“0” or “1”). The three sub formulas (1), (2), (3) 

correspond to the three possible cases (a), (b), (c) as in Figure 14, according 

to which sort of operation is the one involved in the transition from the 

formula in stage x to the next formula in , CC E  . 

 

6 7 8 1 1 8

8 1 2 1 2 1 2 0 1 2 1 2 1 2 1 2 1 2 2

  ( ( ( , ( ( , ) ( , ))    

"  is not the leaf in  and is not the predecessor of the leaf "

                ( , , , , , ( ( ( ( , , , ) ( , , , ))

                   

ST ST

ST

v v

y y E x y E y y

x E

s s t t k k E s s t t E s s k k

 

  

(0)

2 1 1 2 2 1 2 1 2 2 1

2 1 2 1 2 1 2

                           ( ( ) ( , ) ( , )) )   

                                                    "  is a function, :  "

                         ( [ ( , , , ) ( , ,

v v

v v

t k t k C s s C t t

E E C C

E s s k k E t t

     



  1 2 1 1 2 2 2 0 8 7

4

, )] ( = )) ) ) )      

                          "  is injective, :C  " 

                         " partial injection  mapping the formula in < , > in stage  

                       

v v

v C

k k s t s t

E E C

E C E x

  





7 1 2 1 2 1 2 1 2

1

1 2

1 2 1

   to the formula in < , > in stage ( ))"

( ( ( , , ) " ( ( ), ( , ))" " ( , ) ( ', ')")

                          " ( [ ( ( ))], ', ')")

                         "[( , ), (

C ST

ST C C

C ST ST

C E E x

M x f f M E x E l l E l l f f

E M E E x l l

f f l



   



2 1 2 1 2

2,4 2,4

1 2 1 2 1 2 1 2 1 2 1 2 1

, )] and [( ', '), ( ', ')] 

                            are the delimiters of the two formulas as in Figure 15"

 

            , , , (( ( , , , )) [(( ( , , , ) ( ,
C Cv E E

l f f l l

y y z z E y y z z PATH f f y y PATH y y   2 1 2

2,4 2,4

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 7 6

1 2

, , )))

                                             ( ( ', ', , ) ( , , ', '))]

            ( , , ', ') ( , , ', ')) )

"  maps nodes from the subgraph [( ,

C CE E

v v

v

l l

PATH f f z z PATH z z l l

E f f f f E l l l l

E f f

 

 

1 2 1 2 1 2), ( , )] to the subgraph [( ', '), ( ', ')]"l l f f l l

 

1 1 2 1 2 1 2 1 2 11 12 21 22 31 32 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22 21 22 31 32

1 2 11 12 31 32 1 2

 ( , , , , ', ', ', ', , , , , , , ', '

( ( , , , ) ( , , , ) ( , , , ) ( , , , )

       ( , , , ) ( , , , )

 

C CE E C C

C C

v v w w v v w w p p p p p p p p

PATH f f v v PATH w w l l E p p p p E p p p p

E v v p p E p p w w

 

  

 

(1)

2,4 2,4

( 1 2 ) 1 2 1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12 1 2 1 2

1 2 1 2 (

      ( , ) ( , ) ( ', ', ', ') ( ', ', ', ')

       ( ', ', ', ') ( ', ', ', ') ( , , ', ') ( , , ', ')

       ( , , ', ') (

C CE E

C C v v

v

C v v C w w PATH f f v v PATH w w l l

E v v p p E p p w w E p p p p E v v v v

E w w w w C

   

   

  1 2 ) 1 2

1 2 1 2 1 2 1 2

', ') ( ', ')

        "[( , ), ( , )] and [( ', '), ( ', ')] define the windows of change (Figure 15 a, b)"

v v C w w

v v w w v v w w


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2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4

3 1 2 11

, , , , ', ', ', '[ ( ( ( , , , ) ( , , , )

         ( , , , ) ( , , ', ') ( , , ', '))

        ( ( ', ', '

C C

C

E E

C v v

E

z z z z z z z z PATH f f z z PATH z z v v

E z z z z E z z z z E z z z z

PATH f f z

 

  

 2,4

12 21 22 1 2 11 12 21 22 3 2

2,4 2,4

2 3 1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22

, ') ( ', ', ', ') ( ', ', ', ')) )

         ( ( ( , , , ) ( , , , ) ( , , , )

         ( , , ', ') ( , , ', '))

C

C C

E C

E E C

v v

z PATH z z v v E z z z z

PATH w w z z PATH z z l l E z z z z

E z z z z E z z z z

 

  

  3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2 1        ( ( ', ', ', ') ( ', ', ', ') ( ', ', ', ')) ) ]

"  preserves  outside of the windows, and preserves left and right side of the windows (Figure 15)

C CE E C

v C

PATH w w z z PATH z z l l E z z z z

E E

  

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 1 2 11 12 11 12 1 2

3 ( 11 12 ( 11 1

"

, , ', '[ ( ( , , , ) ( , , , ) ( , , ', '))

        ( ( ', ', ', ') ( ', ', ', ')

         [ (C ( , ) C ( ',

C C

C C

E E v

E E

z z z z PATH f f z z PATH z z v v E z z z z

PATH f f z z PATH z z v v

z z z z

  

 

  2 ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12

' )) (C ( , ) C ( ', '))

              (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

              (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

              (C ( , )

z z z z

z z z z z z z z

z z z z z z z z

z z

   



 

   

   

  11 12 3 2 1

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4

2

C ( ', '))] ) ]

              "  preserves symbols in left side of the window"

, , ', '[ ( ( , , , ) ( , , , ) ( , , ', '))

        ( (

C C

C

v

E E v

E

z z

E

z z z z PATH w w z z PATH z z l l E z z z z

PATH



  

 2,4

1 2 11 12 11 12 1 2

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

', ', ', ') ( ', ', ', ')

        [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               

CEw w z z PATH z z l l

z z z z z z z z

z z z z z z z z   



   

   

 0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

1 0 11 12 0 31

(C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', '))] ) ]

              "  preserves symbols in right side of the window"

        [ ( ( , ) ( ,

v

z z z z z z z z

z z z z

E

C p p C p p

 

  

 

  32 21 22 0 11 12

0 11 12 0 31 32 21 22 0 11 12

0 11 12 1 31 32 21 22 0 11 12

0 11 12 1 31

) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( ( , ) ( ,

C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p p C p







 

   

   

  32 21 22 1 11 12

1 11 12 0 31 32 21 22 0 11 12

1 11 12 0 31 32 21 22 1 11 12

1 11 12 1 31

) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))

               ( ( , ) (

p C p p C p p

C p p C p p C p p C p p

C p p C p p C p p C p p

C p p C p







 

   

   

  32 21 22 1 11 12

1 11 12 1 31 32 21 22 1 11 12 1 0 1

11 12 21 22

, ) ( , ) ( ', '))

               ( ( , ) ( , ) ( , ) ( ', '))] ) )

            "In ( ', ' ) we get the result of applying the operator  in ( , ) to the 

 

p C p p C p p

C p p C p p C p p C p p

p p p p



 

 

   

1 11 12 2 31 32            Boolean values ,  in ( , ), and ,  in ( , ) (Figure 14a)"b p p b p p
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1 1 2 1 2 1 2 1 2 11 12 21 22 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 11 12 21 22

1 2 11 12 21 22 1 2

( 1 2 ) 1 2

 ( , , , , ', ', ', ', , , , , ', '

( ( , , , ) ( , , , ) ( , , , )

     ( , , , ) ( , , , )

     ( , ) ( , )

C CE E C

C C

E

v v w w v v w w p p p p p p

PATH f f v v PATH w w l l E p p p p

E v v p p E p p w w

C v v C w w PATH

 

 

 

  

(2)

2,4 2,4

1 2 1 2 1 2 1 2

1 2 11 12 11 12 1 2 11 12 11 12

1 2 1 2 1 2 1 2 ( 1 2 ) 1 2

1 2

( ', ', ', ') ( ', ', ', ')

     ( ', ', ', ') ( ', ', ', ') ( , , ', ')

     ( , , ', ') ( , , ', ') ( ', ') ( ', ')

    "[( , ), (

C CE

C C v

v v

f f v v PATH w w l l

E v v p p E p p w w E p p p p

E v v v v E w w w w C v v C w w

v v w



  

   

1 2 1 2 1 2

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21 22 1 2

11 12 21 22

, )] and [( ', '), ( ', ')] define the windows of change (Figure 15 a, b)"

, , , , ', ', ', '[ ( ( ( , , , ) ( , , , )

     ( , , , ) (

C CE E

C v

w v v w w

z z z z z z z z PATH f f z z PATH z z v v

E z z z z E

 

  11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2

2,4 2,4

2 3 1 2 11 12 21 22 1

, , ', ') ( , , ', '))

         ( ( ', ', ', ') ( ', ', ', ') ( ', ', ', ')) )

         ( ( ( , , , ) ( , , ,

C C

C C

v

E E C

E E

z z z z E z z z z

PATH f f z z PATH z z v v E z z z z

PATH w w z z PATH z z l l



  

  2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 21 22 1 2 11 12 21 22 3 2 1

) ( , , , )

         ( , , ', ') ( , , ', '))

        ( ( ', ', ', ') ( ', ', ', ') ( ', ', ', ')) ) ]

"  preserves  outside 

C C

C

v v

E E C

v C

E z z z z

E z z z z E z z z z

PATH w w z z PATH z z l l E z z z z

E E



 

  

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4

2 1 2

of the windows, and preserves left and right side of the windows (Figure 15)"

, , ', '[ ( ( , , , ) ( , , , ) ( , , ', '))

       ( ( ', '

C C

C

E E v

E

z z z z PATH f f z z PATH z z v v E z z z z

PATH f f

  

 2,4

11 12 11 12 1 2

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

0 11 1

, ', ') ( ', ', ', ')

       [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

              (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

              (C ( ,

CEz z PATH z z v v

z z z z z z z z

z z z z z z z z

z z

   



   

   

 2 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

2,4

11 12 11 12 1 2 1 2 11

) C ( ', ')) (C ( , ) C ( ', '))

              (C ( , ) C ( ', '))] ) ]

              "  preserves symbols in left side of the window"

, , ', '[ ( ( , , ,
C

v

E

z z z z z z

z z z z

E

z z z z PATH w w z z

 

  

 

 2,4

12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 1 2 11 12 11 12 1 2

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

) ( , , , ) ( , , ', '))

       ( ( ', ', ', ') ( ', ', ', ')

       [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

              (

C

C C

E v

E E

PATH z z l l E z z z z

PATH w w z z PATH z z l l

z z z z z z z z

 

 

   

 11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

C ( , ) C ( ', ')) (C ( , ) C ( ', '))

              (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

              (C ( , ) C ( ', '))] ) ]

              "  preserves v

z z z z z z z z

z z z z z z z z

z z z z

E

   

 

  

   

 

1 0 21 22 11 12 1 11 12

1 21 22 11 12 0 11 12 1 0 1

11 12

symbols in right side of the window"

        [ ( ( , ) ( , ) ( ', '))

              ( ( , ) ( , ) ( ', '))] ) )

              "In ( ', ' ) we get the result of ap

C p p C p p C p p

C p p C p p C p p

p p



 

  

  

11 12

1 21 22

plying , in ( , ), to the

              Boolean value ,  in ( , ) (Figure 14b)"

p p

b p p


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1 1 2 1 2 11 12 11 12

2,4 2,4

0 1 2 1 2 1 2 1 2 1 2 11 12 11 12 1 2

2,4 2,4

( 1 2 ) 1 2 1 2 11 12 11 12 1 2

 ( , , , , , , ', '

( ( , , , ) ( , , , ) ( , , , ) ( , , , )

    ( , ) ( , ) ( ', ', ', ') ( ', ', ',

C C

C C

E E C C

E E

v v w w p p p p

PATH f f v v PATH w w l l E v v p p E p p w w

C v v C w w PATH f f p p PATH p p l l

 

  

   

(3)

11 12 11 12

1 2 1 2 11 12 11 12

2,4 2,4

11 12 21 22 11 12 21 22 1 2 3 1 2 11 12 21

')

    ( , , ', ')

[( , ), ( , )] and [( ', '), ( ', ')] define the windows of change (Figure 15c)"

, , , , ', ', ', '[ ( ( ( , , , ) ( ,
C C

v

E E

E p p p p

v v w w p p p p

z z z z z z z z PATH f f z z PATH z



  22 1 2

11 12 21 22 11 12 11 12 21 22 21 22 3

2,4 2,4

3 1 2 11 12 11 12 21 22 21 22 11 12 3 2

2 3

, , )

    ( , , , ) ( , , ', ') ( , , ', '))

          ( ( ', ', ', ') ( ', ', ', ') ( ', ', ', ')) )

          ( (

C C

C v v

E C E

E

z v v

E z z z z E z z z z E z z z z

PATH f f z z E z z z z PATH z z p p

PATH

  

  

 2,4 2,4

1 2 11 12 21 22 1 2 11 12 21 22

11 12 11 12 21 22 21 22 3

2,4 2,4

3 21 22 1 2 11 12 21 22 11

( , , , ) ( , , , ) ( , , , )

          ( , , ', ') ( , , ', '))

          ( ( ', ', ', ') ( ', ', ', ') ( '

C C

C C

E C

v v

E C E

w w z z PATH z z l l E z z z z

E z z z z E z z z z

PATH z z l l E z z z z PATH p

 

 

   12 11 12 3 2 1

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2

, ', ', ')) ) ]

"  preserves  outside of the windows, and preserves left and right side of the windows (Figure 15)"

, , ', '[ ( ( , , , ) ( , , , ) (
C C

v C

E E v

p z z

E E

z z z z PATH f f z z PATH z z v v E   11 12 11 12 2

2,4 2,4

2 1 2 11 12 21 22 11 12

3 ( 11 12 ( 11 12 ) 11 12 ) 11 12

11 12 11 12

, , ', '))

         ( ( ', ', ', ') ( ', ', ', ')

          [ (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', '

C CE E

z z z z

PATH f f z z PATH z z p p

z z z z z z z z

z z z z 

 

   

  11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

11 12 11 12 3 2 1

)) (C ( , ) C ( ', '))

               (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', '))] ) ]

               "  preserves symbols in left side v

z z z z

z z z z z z z z

z z z z

E

 

 

 

   

 

2,4 2,4

11 12 11 12 1 2 1 2 11 12 11 12 1 2 11 12 11 12 2

2,4 2,4

2 11 12 11 12 11 12 1 2

3 ( 11

of the window"

, , ', '[ ( ( , , , ) ( , , , ) ( , , ', '))

        ( ( ', ', ', ') ( ', ', ', ')

        [ (C ( ,

C C

C C

E E v

E E

z z z z PATH w w z z PATH z z l l E z z z z

PATH p p z z PATH z z l l

z z

  

 

 12 ( 11 12 ) 11 12 ) 11 12

11 12 11 12 11 12 11 12

0 11 12 0 11 12 1 11 12 1 11 12

) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

               (C ( , ) C ( ', ')) (C ( , ) C ( ', '))

            

z z z z z z

z z z z z z z z

z z z z z z z z

   

  

   

   

11 12 11 12 3 2 1

1 0 11 12 0 11 12 1 11 12 1 11 12 1 0 1

11 12

   (C ( , ) C ( ', ' ))] ) ]

               "  preserves symbols in right side of the window"

        [ ( ( , ) ( ', ')) ( ( , ) ( ', '))] ) )

         "In ( ', ' ) 

v

z z z z

E

C p p C p p C p p C p p

p p

 



 

   

1 11 12we get a copy of the Boolean value ,  in ( , ) (Figure 14c)"b p p

 

0 1

11 12 11 12 2 1 2 11 12 1 2 11 12

11 12 1 2 1 2 11 12

( ( , ) ( ( , ))

      , , ', '( ( , , ) ( , ', ') ( , , , )

                                     ( , , , ) ( , , ', ')

                       

ST ST

C

C C

y E x y z E y z

p p p p M x f f M y p p E f f p p

E p p l l E l l p p

 

  

 

(4) (

21 22 11 12 21 22

( 1 2 ) 1 2 3 1 11 12 1 11 12

              ', '( ( ', ', ', '))

                                     ( , ) ( , ) [ ( ( , ) ( ', '))

                                                              

Cp p E p p p p

C f f C l l C p p C p p



   

0 11 12 0 11 12 3 2 1 0              ( ( , ) ( ', '))] ) ) )C p p C p p 
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0

"  is the predecessor of the leaf in , so that this is the last transition" (See Figure 16)

Note that the last transition is necessarily an instance of case c in Figure 14.

( ( , ))       

ST

ST

x E

y E x y(5)(  

1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 0

                                                               "  is the leaf in "

        ', '( ( , ', ') ', '( ( ', ', ', ')) "( ', ') is a leaf in "

        ( ', '))))

  

ST

C C

x E

p p M x p p y y E p p y y p p E

C p p

 



                                                                               " the last formula in < , > is "1"   "CC E

 

5.3 Expressing SATQBF  in Third-Order Logic 

 

In this section we give a top down presentation of the sketch of the TO formula 

for SATQBF . We do not include the details of the sub-formulas whose expression 

in TO is straightforward, taking into account the detailed exposition of the SO 

formula for kSATQBF in section 5.2. 

 

Roughly, we first express the existence of an alternating valuation suitable for a 

given QBF  formula  . And then we proceed to evaluate that alternating 

valuation by evaluating each leaf valuation on a propositional formula on {0, 1} 

which we build from and the leaf valuation. For this last part we use the sub 

formulas that we have built for kSATQBF . 

 

Input formula : 

1 2 3 1 2 311 1 21 2 31 3 1 11 1 21 2 31 3 1... ... ... ...... ... ( '( ... , ... , ... ,..., ... ))
k kl l l k kl l l l k klx x x x x x Qx Qx x x x x x x x x       

Where k  is arbitrary, and the formula '  is the quantifier free part of . We 

use the same encoding as in kSATQBF . 
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Figure 17 

 

As before, we will also use four levels of abstraction to build a sketch for a TO 

formula to express .SATQBF  

 

1
st
 Level: 

 

“There is an alternating valuation va suitable for , which satisfies ” 

 

2
nd

 Level: 

 

2,1 2,2{0,1}, ,
3,1 3,2 3,2 :, , T t tV E

T T T
VV E B   

 

(2.1) (“ ( , )t t tG V E is a linear graph which represents the sequence of quantified 

variables in ” 

  

(2.2) “ ( ),T TV E is a binary tree with all its leaves at the same depth, which is in 

turn equal to the length of ( , )t tV E ” 

  

(2.3) “ ( ), ,T T TV E B is an alternating valuation va suitable for , i.e., all the 

nodes in ( ),T TV E whose depth correspond to a universally quantified variable in 

(No sibling) (Sibling) 

  
  
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the quantifier prefix of have exactly 1 sibling, and its value under TB  is 

different than that of the given node, and all the nodes whose depth correspond to 

an existentially quantified variable in the quantifier prefix of are either the root 

or have no siblings” (See Figure 17) 

  

(2.4) “Every leaf valuation in ( ), ,T T TV E B satisfies ' ”) 

 

3
rd

 Level: 

 

2,1 2,2 2,2, , ,
3,1 3,2 3,2, , t t pV E V

T T T
V E B

0
(  

 

Expressing (2.1): 

 

1 2

1[ " =< , > is a linear graph"  ( , )                                                            

"The length of  is equal to the number of variables in the quantifier prefix of " 

t t t t t

t

G V E LINEAR V E

G 





(1)

 

2

     

[ "  is a partial bijection from the quantifier prefix of  (restricted to the X 

in the quantifier prefix) to ,  which maps every  in  to its corresponding node in , 

and which preserves 

p

t t

t

V

V X G

E







2 1 and  in ,  (restricted to the X in the quantifier prefix)."] ]    

In 4th level (subformula 2): See (1) in 5.2.1.2.1 in SATQBF .

I

t

k

G  (2)

 

Expressing (2.2): 

 

1[ "( ) is a connected graph that has one root and one or more leaves."                

 "in ( ) except for the root, all nodes have id=1"                                                

,

,

T T

T T

V E

V E





(1)

(2)

 "in (  except for the leaves, all nodes have od=1 or 2"                                    , )T TV E (3)
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2,1 '3,1

2 3 4

3,2

 "in ( ) all leaves have the same depth, which is in turn equal to the length of ( , )" 

 [ " ( (  is a leaf in ( )) ( ,  bijection 

              

,

, '

t t

D

T T

T T T

V E

X X

V E

V E S V D



                           (4)

'

'

'

                   :  to which preserves  and | "

     ( )                                                                                                                     

     "

D
t D t ST

D

V S E

X

D

E

S



 

(5)

1

4 3 2 1

'

' ( ) is the leaf in ( , )"                                                                       

 "  includes the root of ( )") ) ] ]                                                  ,

t t t

D T T

X G V E

S V E

 



(6)

               (7)

 

1 1 3 1

1 1

1 1

1 2 1 2

1 1 1

1 1 2 2 1 2

1 1 1 1

1 2 3 1 2

In 4th level (subformulas 1, 2, 3):

[ ( ( ) ( , )) ( ( , ))

     ( ( ( , )))

     (( ( ) ) ( ( , ) ( ( , ) )))]

     ( ( ) (

TET T

T

T T T

T

R Z Z PATH R Z S S R

S S S S

Z Z Z R S S Z S S Z S S

Z Z S S S S S S

V E

E

V E E

V

   

 

      

    2 3 1 3 1 2 3( , ) ( , ) ( , )))T T TS S S Z S Z S Z SE E E     

 

Expressing (2.3): 

 

1

2

3,1

See Figures 8, 10 in  for ,  .

[ "  is a total function from  to {0,1}"                                                                  

  [ " ,  s.t. ( , | ) is a lin

k t p

t
D

T T

T D T SD

SATQBF G V

x V

B V

V S ES



    

(1)

3,2

ear graph which includes 

      the root of ( )                                                                                                  

 bijection  from the initial subgraph of  

,

t

T T

G

V E

D

(2)

up to ,  to  s.t.  preserves  and "

  

|t
DD T S

x ES ED
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1

3 4 5 5

5

        ( [ ( "the predecessor of ( ) in  is " " ")                                                     

         ( " ( ) has exactly one sibling in ( ),  

                   and  of that

,

I

p

T T

T

V x E

xD V E

B

 



(3)

5 4 sibling is  than ( ( ))") ]

                                                                                                                           

T xB D                                           (4)

1

4 5 5

5

                          

     [ ( "the predecessor of ( ) in  is " " ")                                                        

         ( " ( ) has no sibling in ( ),  or ( ) is the r,

I

p

T T

V x E

x xD V E D

 



 (5)

5 4 3 2 1oot in ( )") ] ) ] ]  ,T TV E (6)

  

Expressing (2.4): 

 

1

3,1
[ "  s.t. ( , | ) is a linear graph which includes the root 

   and a leaf of ( )"                                                                                                      ,
VST V T

T T

V
V S E

V E

S  

(

2

3

3,2
  ( " bijection : ,  which preserves  and "                                       

  ( " : {0,1}, which coincides with  w.r.t. "                                            

|

( )

t t

t t

VV T S

T V

V E

B V

S E

B S D

D 

 

1)

(2)

3 2 1

 

  "the leaf valuation represented by ( , , ) satisfies the quantifier free subformula

       ' of ") ) ]                                                                                     

t t tV E B

 



0

(3)

)                          

 In 4th level (subformula 4): See 5.2.1.2.2 in SATQBF .k

(4)

 

6 Conclusion and Future Work 

 

In this thesis, we have given a very brief introduction to Finite Model Theory and 

relational databases, the relationship between logic languages and complexity classes, 

the basic notions of First-Order logic, Second-Order logic, Third-Order logic and a 

few related examples. It gives us an overall picture on what logic languages are, how 

they relate to complexity classes and why they are so important.  
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The major purposes of this thesis are the following two points. Firstly, a non trivial 

Second-Order logic formula is built to express a non trivial property, namely the 

problem known as kSATQBF , which is defined, for some k >0 as the class of 

quantified propositional formulas with k  alternated blocks of quantifiers, starting 

with an existential block, which are true. As we know that the expressibility of SO 

(Second-Order logic) equals the class PH (Polynomial-time hierarchy), and that for 

every 0,k  kSATQBF is a complete problem for the level P

k of the PH, there must be 

a formula in SO which expresses kSATQBF . We give a detailed explanation on the use 

of SO to express kSATQBF . Secondly, using the knowledge gained from the first point, 

we give a top down presentation of the sketch of a Third Order Logic formula 

for SATQBF , which is defined similarly but where the number of blocks, k , is 

arbitrary. This is a problem known to be complete for PSPACE, which means that the 

existence of a Second-Order logic formula is very unlikely, since it would imply that 

PSPACE = PH. 

 

Tentatively, I will continue my research on the theoretical parts of Higher Order 

logics. Maybe I will bring some application perspectives into it such as the 

construction of a query language for relational databases based on Higher-Order 

Logics. Also, and following my master thesis, it is also worth investigating, as a part 

of my PHD work, how the strategy used here to define kSATQBF  can be adapted to 

define AUTOSAT  ([MP96], [Fer08]) for different fragments of Higher-Order logics. 

We know that for every k there is a reduction from kSATQBF to 0( )kAUTOSAT  . 

0( )kAUTOSAT  is the class of first order formulas with up to k alternations of blocks 

of quantifiers which represented as finite structures satisfy themselves. In fact, same 

as kSATQBF ,
0( )kAUTOSAT   is complete for the level p

k of the PH (Polynomial 

Hierarchy). It could be the case that this approach leads to tighter upper bounds than 

those in the work reported in those articles. 
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