Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Backbone Dynamics of Bovine β-Lactoglobulin by ¹⁵N NMR Spectroscopy

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science in Biochemistry

Institute of Fundamental Sciences and Institute of Molecular Biosciences

> Massey University New Zealand.

Kristy Baker 2011

In Memory of Clinton John Reeve

Abstract

Bovine β -lactoglobulin (β -Lg) is a small 162 residue protein of unknown function from the whey component of milk, constituting ~50 % by dry mass. The protein is of great interest to the dairy industry due, in part, to its role in the fouling of dairy plants during heat treatment, and the significant operational costs this incurs. The structure of this protein is an eight stranded β -barrel with one long and two short flanking α helices. It is dimeric at neutral pH but dissociates at pH < 3.

In New Zealand herds there are three genetic variants, with variants A and B of bovine β -Lg predominating, while the C variant occurs at low levels in Jersey cows. However, despite the structural similarities of the three variants, milks containing one of A, B or C behaves differently when subjected to thermal processing. A greater understanding of factors that differentiate these protein variants is therefore important. In this study, ¹⁵N nuclear magnetic (NMR) spectroscopy methods have been used to study the backbone dynamics of β -Lg A and B, at one temperature, and the hitherto unstudied C variant, at three temperatures. For follow-up functional studies a mutant protein, a covalently linked Ala34Cys dimer, was produced.

Acknowledgements

My first thanks go to my supervisor Dr. Patrick Edwards for providing me with a wealth of knowledge into the understanding of NMR spectroscopy based protein dynamics, assisting me with my figures, running the pulse sequences and taking the time to help me understand Linux and all the NMR programs. Many thanks to my other supervisors Professor Geoffrey Jameson for your encouragement, proof-reading my thesis, helping me keep things rolling in the critical end stages and for our interesting discussions and to Dr. Gill Norris for the resources and feedback into the molecular biology aspects of this project. I would like to express my gratitude and appreciation to Dr. Greg Sawyer, Trevor Loo and Dr. Alexander Goroncy for your sound advice, helpful insight and good cheer Also, thanks to the NMR group, former members and current; Hari, Jo, Martin, David and Nishit. I would especially like to thank my friends Jan, Ava and Carlene for keeping things fun and interesting and I would like to also thank other members of the structural biology group. I am grateful to my parents Grant and Lynette Baker, Craig's parents Malcolm and Fiona Lunn, my sister Rachel and brother Ted, for their love, support and frequent hot meals. Thanks again to Rachel for proof-reading my thesis. Also, I express my gratitude to Gribbles Veterinary Pathology for providing me with the means to finish and equipping me with new skills. Particular thanks to Dr. David Tisdall, Dr. Phil McKenna, Dr. Fraser Hill and Dr. Janice Thompson for encouraging me and taking an interest in my research. Thanks to Gaylene for the laughs and working with me. Thanks to Clint for being a good friend, wanting to know more about what I do and willing me to succeed. Sorry you can't be here to celebrate with me at the finish line. Thanks to Mark for all the coffees, listening to me grumble and not trying to tell me what to do to fix it. I couldn't have made it this far without your friendship. Thanks to the former Foundation for Research, Science and Technology (FRST) for providing funding, which enabled these studies, and to the Riddet Institute for providing me a scholarship. And finally I would like to thank Craig for constantly believing in me, making me laugh and sharing the bigger picture.

Glossary of Abbreviations

Å	Ångstrom (10^{-10} m)		
Aa	Amino acid		
AEC	Anion exchange chromatography		
α-La	α-Lactalbumin		
Amp	Ampicillin		
Bis-tris	1,3-Bis(tris(hydroxymethyl)methylamino)propane		
β-Lg	β-Lactoglobulin		
BME	β-Mercaptoethanol		
Вр	Base-pair		
С	Carbon		
°C	Degrees Celsius		
CPMG	Carr-Purcell-Meiboom-Gill		
Da	Dalton		
DNA	Deoxyribonucleic acid		
dNTP	Deoxyribonucleotide triphosphate		
DsbC	Disulfide bond isomerase C		
EDTA	Ethylene diamine tetra-acetic acid		
EtBr	Ethidium bromide		
EtOH	Ethanol		
FID	Free induction decay		
g	Gram		
×g	Multiples of gravitational force		
GER	Germany		
Н	Hydrogen		
HindIII	DNA restriction endonuclease sourced from <i>Haemophilus influenza</i>		
HMH	6-Hydroxy-6-methyl-3-heptanone		
HSQC	Hetero-nuclear single quantum correlation		
т	I.L. 1		
	Italy		
IEC			
IPIG	Isopropyl-β-D- thiogalactopyranoside		
V	Voluin		
K	Kelvill		
Kall Vh			
	Kilo Daltan		
KDa Varal	NIIO-Dalloll		
крп	DINA restriction endonuclease sourced from <i>Klebstella pneumonia</i>		
ID	Luria Portani madia		
LD			

I	I	
m	Metre	
mAU	Milli absorbance units	
MCS	Multiple cloning site	
MCS1	Multiple cloning site one	
MCS2	Multiple cloning site two	
μg	Micro gram	
MHz	Mega hertz	
mL	Milli litre	
μL	Micro litre	
mM	Milli molar (mmol L^{-1})	
mol	Mole	
ms	Millisecond	
Ν	Nitrogen	
NcoI	DNA restriction endonuclease sourced from Gordonia rubripertincta	
NdeI	DNA restriction endonuclease sourced from <i>Neisseria denitrificans</i>	
ng	Nanograms	
nm	Nanometers	
NMR	Nuclear Magnetic Resonance spectroscopy	
NOE	Nuclear Overhauser Effect	
NOESY	Nuclear Overhauser Effect Spectroscopy	
ns	Nanoseconds	
NZ	New Zealand	
1D	One-dimensional	
OD ₆₀₀	Optical density (at a wavelength of 600 nanometres)	
Ра	Pascal (= 10^{-5} bar, 145.05 × ⁻⁶ psi)	
PCR	Polymerase chain reaction	
рН	Negative decadal logarithm of proton concentration	
рКа	Acid dissociation constant, as negative decadal logarithm	
ppm	Parts per million	
ps	Picoseconds	
1		
R_1	Longitudinal (or spin-lattice) relaxation rate	
R_2	Transverse (or spin-spin) relaxation rate	
RBP	Retinol binding protein	
RBS	Ribosome binding site	
RCI	Random coil index	
Rey	Exchange induced relaxation rate	
S^2	Squared order parameter	
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis	
SEC	Size-exclusion chromatography	
ss-NOE	Steady state-nuclear Overhauser effect	
TAE	Tris-acetate-EDTA buffer	
τ	Effective correlation time	
Temp	Temperature	
Tet	Tetracycline	
100	1 ou de you no	

$\tau_{\rm m}$	Molecular correlation time
TOCSY	Total correlation spectroscopy
2D	Two-dimensional
3D	Three-dimensional
USA	United States of America
UV	Ultraviolet light
V	Volts
V/V	Volume per volume
w/v	Weight per volume

Abbreviations of Nucleic Acids

One Letter Code	Base Represented
Α	Adenine
Т	Thymine
С	Cytosine
G	Guanine
U	Uracil

Abbreviations of Amino Acids

Amino Acid	3-Letter Code	1-letter code
Alanine	Ala	А
Arginine	Arg	R
Asparagine	Asn	Ν
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic Acid	Glu	Е
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	Ι
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

Contents

Abstracti		
Acknowledgementsiii		
Glossary of Abbreviations	V	
Contents	ix	
List of Figures	xiii	
List of Tables	XV	
1 Introduction	1	
1.1 Introduction	2	
1.2 Milk	3	
1.3 Bovine β-Lactoglobulin	4	
1.4 Molecular Structure of β-Lg	5	
1.4.1 Dimeric Interface		
1.4.2 The Tanford Transition	9	
1.5 Solution Structures of Bovine β-Lg	10	
1.5.1 Solution Structures of β -Lg at Low pH	11	
1.5.2 Solution Studies of β -Lg at Neutral pH Using an Ala34Cy	s Mutant Dimer	
1.6 Expressing Isotopically Labelled β -Lg for NMR Spectroscop	y13	
1.6.1 Recombinant Expression in Yeast		
1.6.2 Heterologous Expression in <i>Escherichia coli</i>	14	
1.6.3 Purification of β -Lg Variants		
1.7 Exploring Protein Dynamics Using High-Field NMR Spectro	scopy 17	
1.7.1 N Relaxation Experiments and Model-Free Analysis		
1.7.2 Examination of Backbone Dynamics with Other Methods.		
1.7.5 Backbone Dynamics of p-Lg		
1.8 Studies of p-Lg variants		
1.8.1 Polymorphic p-Lg variants		
1.8.2 Structural Differences of p-Lg variants A, B and C		
1.0. Effects of Host on P L a		
1.9 Effects on Poving & La During Heat Treatment of Mills		
1.9.1 Effects of Bovine p-Lg During Heat Treatment of Milk	$D = \frac{1}{2}$	
1.9.2 The Effects of Heat Treatment to Purfled p-Lg Variants A	\mathbf{B} and \mathbf{C}	
Changes in B. L. g. Upon Increases in Temperature	22	
1.0.4 Other Easters Affasting Heat Treatment of R. I. a		
1.7.4 Other Factors Affecting field frequinent of p-Lg		
1.10 Function of β_{-1} g	24 27	
1.11 I unduon of p -Lg		

CONTENTS

	1.12 A	ims of this Investigation	29
2	Mater	ials and Methods	31
	2.1 G	eneral Materials and Methods	32
	2.1.1	Purified Water	32
	2.1.2	General Buffers and Solutions Used in this Study	32
	2.1.3	Media	33
	2.1.4	Glycerol Stocks	34
	2.1.5	Measurement of Optical Density (OD) of Cultures	34
	2.2 M	Iethods for Deoxyribonucleic Acid (DNA) Work	35
	2.2.1	Site-Directed Mutagenesis Strategy.	35
	2.2.2	Bacterial Strains Used in this Thesis	36
	2.2.3	Template Plasmid Constructs Used	36
	2.2.4	DNA Concentration	36
	2.2.5	Methods for Plasmid Purification	37
	2.2.6	DNA Agarose Gel Electrophoresis Methods	37
	2.2.7	Transformation Methods	37
	2.2.8	Site-Directed Mutagenesis Using the Polymerase Chain Reaction (PCR).	38
	2.3 Pi	rotein Biochemical Methods	40
	2.3.1	Determination of Protein Concentration	40
	2.3.2	Polyacrylamide Gel Electrophoresis Methods (PAGE)	40
	2.3.3	Heterologous Expression of β-Lg Variants	41
	2.3.4	Purification of Recombinant β-Lg	42
	2.4 N	uclear Magnetic Resonance (NMR) Methods	44
	2.4.1	Theory of 'Model-Free' Analysis of ¹⁵ N Backbone Dynamics of Proteins	
			44
	2.4.2	Assigning the Backbone of B-Lg C	52
	2.4.3	Backbone Verification and Assignment of B-Lg A. B and C Monomeric	
		Variants using 3D ¹⁵ N. ¹ H-TOCSY-HSOC and 3D ¹⁵ N. ¹ H-NOESY-HSOC	С
		Experiments	54
	2.4.4	Assigning Backbone β -Lg C ¹ H and ¹⁵ N Chemical Shifts at 313 K and	
		320 K via a ¹⁵ N. ¹ H-HSOC Temperature Series	55
	245	15 N ¹ H NMR Relaxation Experiments Used to Probe Dynamics of β -L g	55
	2.4.6	Data Processing and Analysis	56
	2.4.7	Model-Free Analysis	57
	2.4.8	Estimation of Backbone Flexibility Using Tertiary Structure	57
	2.4.9	Calculation of Protein Flexibility Using the Random Coil Index (RCI)	57
	2>		01
3	Result	s and Discussion	59
	3.1 R	ationalised Site-Directed Mutagenesis of the BLG Gene	60
	3.1.1	PCR Site-Directed Mutagenesis	60
	3.1.2	Verifying Plasmid Amplification via DNA Agarose Gel Electrophoresis.	60
	3.1.3	Transformation of Amplicon into E. coli Top10 Hosts	61
	3.1.4	DNA Sequencing of the BLG C Open Reading Frame (ORF)	62
	3.2 E	xpression and Purification of β-Lg Variants	63
	3.2.1	Introduction	63
	3.2.2	Expression of Recombinant Isotopically Labelled Bovine β-Lg C	63
	3.2.3	Purification of Recombinant Isotopically Labelled Bovine β-Lg C	67
	3.2.4	Conformational Analyses by Means of NMR Spectroscopy	71
	3.3 A	ssigning the Protein Backbone of β-Lactoglobulin C	73
	3.3.4	Backbone Assignments for B-Lg C at 305 K	73
	335	Backbone Assignments for B-Lg C at 313 K and 320 K	75
	5.5.5	Zuencone rissignments for p Eg C at 515 fx and 520 fx	, 5

Contents

3.4 ¹⁵ N NMR Backbone Dynamics of Bovine β -Lg C at 305 K	.77
3.4.1 Results for ¹ H- ¹⁵ N Relaxation of Monomeric Bovine β -Lg C	77
3.5 Model-Free Analysis of Dynamics at 305 K	84
3.5.1 The Determination of the Overall Correlation Time for β -Lg C at 305 K.	84
3.5.2 Results for Selection and Distribution of Model-Free Motional Parameter	S
	84
3.5.3 Results for the Model-Free Analysis of Backbone Dynamics	85
3.6 Backbone Dynamics of β-Lg C at 305 K, 313 K and 320 K	95
3.6.1 Model Selection for Bovine β-Lg C at 305 K, 313 K and 320 K	97
3.6.2 The Model-Free Parameters at 305 K, 313 K and 320 K	97
3.7 Assigning the Backbone of β-Lg Variants A and B1	07
3.8 Comparing Dynamics of β-Lg A, B and C at 305 K1	09
3.8.1 Assessment of Residues in Close Proximity to the Substitution Sites1	.09
3.8.2 Relaxation Measurements for Bovine β -Lg Variants, A, B and C at 305 K	,
	10
3.8.3 Model-Free Fits for Bovine β -Lg A, B and C at 305 K1	11
3.8.4 Model-Free Parameters for β -Lg A, B and C at 305 K1	11
3.9 Comparing the Model-Free Derived Order Parameters with those	
Estimated Using Two Alternative Methods	15
3.9.1 The Zhang and Brüshweiler Structure Based Method	15
3.9.2 The Random Coil Index (RCI) Chemical Shift Based Dynamics	16
3.9.3 Comparison of Methods Estimating β -Lg Order Parameters	16
3.10 β-Lg Covalently Linked Mutant Dimers	18
3.10.1 Introduction	18
2 10.2 Expression	10
2.10.4 Durifying the B L g A 24C Mutont	21
3.10.5 NMR Spectroscopy at Neutral pH	$\frac{21}{22}$
$3.11 = {}^{15}$ N Backbone Dynamics of β L α	22
5.11 N Backbone Dynamics of p-Lg	24
4 Conclusions and Future Directions1	29
4.1 Conclusions	30
4.1.1 Generating Isotopically Labelled β-Lg1	30
4.1.2 ¹⁵ N Backbone Dynamics of β-Lg C at 305 K1	31
4.1.3 Effects of Temperature on ¹⁵ N Dynamics of β-Lg C1	31
4.1.4 Effects of Polymorphisms on 15 N Backbone Dynamics of β -Lg	32
4.1.5 Methods Interpreting Backbone Dynamics	32
4.2 Future Directions1	33
4.2.1 Alternative Testing for Model Selection	33
4.2.2 Comparing Dynamics of β -Lg A, B and C Variants at Higher Temperatur	res
	33
4.2.3 Assessing Dynamics at More than One Static Magnetic Field Strength 1	33
4.2.4 β -Lg's Putative Role as a Pheromone Binding Protein	34
Deferences	25
KUU UIUU	.33
Appendices:	

А.	Mo	lecular Biology	
A	. .1	General Chemicals Used	
A	<u>.</u> 2	The Genetic Code	
A	A.3	Structures & Abbreviations of Standard Amino Acids	
1	1.5	Structures & Hobieviations of Standard Hinno Herds	

CONTENTS

A.4 A.5	DNA Ladder and Protein Molecular Weight Marker Synthetic β-Lg A Sequence	
A.6	pETDuet-1 Vector Map	
B. Ch	emical Shift Tables	151
B.1	Chemical Shifts for β -Lg C at Three Temperatures	152
B.2	Chemical Shifts for β -Lg Variants A, B and C	157
C. Rel	laxation Parameters	
C.1	¹⁵ N Relaxation Parameters for β -Lg C at 305 K	
C.2	¹⁵ N Relaxation Parameters for β -Lg C at 305 K, 313K and 320 K	
C.3	15 N Relaxation Parameters for β -Lg A, B and C Variants at 305 K	
D. Mo	odel-Free Parameters	171
D.1	β-Lg C Model-Free at 305 K	172
D.2	β-Lg C Model-Free at 313 K	177
D.3	β-Lg C Model-Free at 320 K	
D.4	β-Lg A Model-Free at 305 K	
D.5	β-Lg B Model-Free at 305 K	

List of Figures

Figure 1.1	Structure of β-Lg
Figure 1.2	Topology of Bovine β-Lg7
Figure 1.3	Structure of β-Lg's Dimeric Interface at pH 6.5, as Determined Using X-Ray Crystallography
Figure 1.4	Molecular Process of the Closed-Open Tanford Transition of Bovine
	β-Lg
Figure 1.5	One-Dimensional NMR Spectra of β -Lg Sampled at Neutral pH and
	Low pH11
Figure 1.6	Expression Constructs
Figure 1.7	Time-scales of Protein Dynamics Measurable by NMR Spectroscopy17
Figure 1.8	Description of the Order Parameter, S^2 , and the Conformational
	Exchange Parameter $R_{\rm ex}$
Figure 1.9	Schematic Diagram and Structural Alignments Amongst Several
	Lipocalin Family Members
Figure 2.1	SDFs for Rigid Spheres
Figure 2.2	Plot Tracking Changes in S ² as α is Increased
Figure 2.3	Lipari-Szabo SDF
Figure 3.1	Amplicon from PCR Site-Directed Mutagenesis
Figure 3.2	Analysis of IPTG-Induced Expression and Solubility of Recombinant
	β-Lg C
Figure 3.3	Analysis of the Purification of Recombinant Bovine β -Lg C
Figure 3.4	Overlay of the ¹³ N-Labelled β -Lg C HSQC Spectrum with the
	¹³ N-Labelled β -Lg B HSQC Spectrum
Figure 3.5	Assigned ¹³ N, ¹ H-HSQC Spectrum of Monomeric ¹³ C, ¹³ N-β-Lg C74
Figure 3.6	An overlay of Three ¹⁵ N, ¹ H-HSQC Sampled at 305 K, 313 K, and
	320 K
Figure 3.7	Examples of Plots Used to Determine Relaxation Rates
Figure 3.8	A Summary of ¹⁵ N R_1 and R_2 Relaxation Rates for Monomeric β -Lg C.82
Figure 3.9	Summaries of { ¹ H}- ¹⁰ N NOE Enhancement Values and the Ratios
	R_2/R_1 for Monomeric β -Lg C
Figure 3.10	Order Parameters (S^2) vs Residue for Monomeric ¹⁵ N β -Lg C at 305 K.92
Figure 3.11	S^2 Trends Along Secondary Structural Elements of Monomeric β -Lg C.
Figure 3.12	Conformational Exchange Terms and Internal Correlation Times for
	Monomeric β -Lg C
Figure 3.13	Overall Correlation Times for β -Lg C at Different Temperatures96
Figure 3.14	S^2 vs. Residue for Monomeric β -Lg C at 305 K, 313 K and 320 K102
Figure 3.15	An Overlay of S^2 Traces for β -Lg C at 305 K, 313 K and 320 K 103
Figure 3.16	R_{ex} vs. Residue for β -Lg C Sampled at 305 K, 313 K and 320 K 104
Figure 3.17	τ_e vs. Residue for Monomeric $\beta\text{-Lg}C$ at 305 K, 313 K and 320 K 105
Figure 3.18	Changes in ¹⁵ N Chemical Shifts for β -Lg C between 305 K and
	320 K

LIST OF FIGURES

Figure 3.19	¹⁵ N, ¹ H-HSQC Spectra of ¹⁵ N-Labelled β-Lg Variants Sampled at	
	305 K and at pH 2.6108	
Figure 3.20	Comparison of S^2 and R_{ex} for β -Lg Variants A, B and C114	
Figure 3.21	Comparison of Methods Estimating β-Lg Order Parameters117	
Figure 3.22	Ala34Cys Mutation Designed to Engineer an Artificial Covalently	
	Linked Dimer	
Figure 3.23	Reduced and Non-Reduced SDS-PAGE Analysis of IPTG-Induced	
	Expression of β-Lg A Ala34Cys121	
Figure 3.24	Reduced and Non-Reduced SDS-PAGE Analysis of Pooled Samples	
	Containing Purified β-Lg A34C Mutants122	
Figure 3.25	Overlay of the ¹⁵ N-Labelled β -Lg A Ala34Cys HSQC Spectrum with	
-	the 'Native-Like' Monomeric ¹⁵ N-Labelled β -Lg A HSQC Spectrum. 123	

List of Tables

Table 1.1	Whey proteins of milk and some of their properties
Table 2.1	List of general solutions and buffers used in this study
Table 2.2	Chemicals and solutions that constitute minimal media used in this
	study
Table 2.3	Antibiotics, stock solutions, final concentration and sources
Table 2.4	List of <i>E. coli</i> strains used in this thesis
Table 2.5	List of expression vectors used as template DNA for PCR site-directed
	mutagenesis
Table 2.6	List of PCR template DNA constructs and complementing primers 38
Table 2.7	PCR conditions used for site-directed mutagenesis and amplification
	of expression vectors
Table 2.8	Acquisition parameters for CBCANH, CBCA(CO)NH and HNCO 3D
	experiments
Table 3.1	Purification of β-Lg C from <i>E. coli</i>
Table 3.2	Distribution of fits for model-free analyses of β -Lg C (305 K)
Table 3.3	Summary of the average relaxation and model-free dynamical
	parameters for β-Lg C measured at 305 K, 313 K and 320 K95
Table 3.4	Distribution of model fits for β-Lg C at 305 K, 313 K and 320 K97
Table 3.5	Summary of the average $R_1 R_2$ and NOE values and average order
	parameters (S^2) for residues in β -Lg A, B and C variants at 305 K 110
Table 3.6	Distribution of the model-free fits for monomeric B-Lg A, B and C
	variants sampled at 305 K