Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

X-RAY CRYSTALLOGRAPHIC ANALYSIS OF CYTOCHROME C' FROM TWO BACTERIAL SPECIES

This thesis is submitted as partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University.

AARON JOHN DOBBS

March, 1995

574·192454 Dob

.

ABSTRACT

The structure of cytochrome c' from two closely related bacterial species, Alcaligenes sp and Alcaligenes denitrificans, have been determined from X-ray diffraction data to 1.80 Å and 2.15 Å resolution respectively using the anomalous scattering of the single iron atom in each to identify and refine a weak molecular replacement solution. Molecular replacement studies, with the program AMORE, used two isomorphous data sets (from the two species), two independent search models (the cytochromes c' from Rhodospirillum molischianum and Rhodospirillum rubrum), both with and without sidechains, and two different resolution ranges (10.0-4.0 Å and 15.0-3.5 Å) to generate a large number of potential solutions. No single solution stood out and none appeared consistently. The iron position in each structure was then determined from its anomalous scattering contribution and all molecular replacement solutions were discarded which did not (i) place the iron correctly and (ii) orient the molecule such that a crystallographic 2-fold axis generated a dimer like those of the two search models. Finally, electron density maps phased solely by the iron anomalous scattering were calculated. As these were combined and subjected to solvent flattening and histogram matching (program SQUASH), correlation with the remaining molecular replacement solutions identified one as correct and enabled it to be improved and subjected to preliminary refinement. The correctness of the solution was confirmed by parallel isomorphous replacement studies. Both crystal structures have been refined using least-squares methods, to give final R-factors of 0.184 for the Alcaligenes sp cytochrome c' (953 protein atoms and 89 solvent molecules) and 0.167 for the Alcaligenes denitrificans cytochrome c' (950 protein atoms and 75 solvent molecules). Analysis and comparisons of these structures with three cytochrome c' structures previously determined show that despite the low level of sequence conservation among the family members the gross overall structure is maintained (four- α -helix bundle). The configuration of the iron ligands and of the surrounding haem environment are very similar indicating that although residues are not conserved they are replaced by residues which fulfil a similar function. There are relatively few sidechain...sidechain interactions in cytochromes c' which probably reflects the fact that the majority of stabilising i^{interactions} are hydrophobic in nature. This hydrophobic packing could also explain the lack of sequence identity between the different species of cytochrome c' as strict conservation of the residues is not required. All the structures do have a similar haem stabilisation framework, with an approximately ten residue piece of structure situated in the BC loop involved in both haem stabilisation and interhelix stabilisation in all of the cytochromes c'

determined. The overall four-helix structure is also discussed in terms of its parameters with respect to the current interest in the *de novo* design of proteins.

ACKNOWLEDGEMENTS

Many people have given me their time and advice during my thesis and if I do not mention your name please don't be offended as I do thank you.

The biggest acknowledgement goes to my supervisors Prof. Ted N. Baker and Dr. Bryan F. Anderson who gave endless support and guidance throughout a long and difficult Ph.D. Their contribution was immeasurable in both knowledge and encouragement.

Also Mrs Heather M. Baker for her adept crystallisation skills and kindly ear when required. Dr. Gill E. Norris for providing me the crystals for this study plus a place to stay when finishing off this thesis.

Dr. Hale. H. Nicholson and the University of Oregon for the collection of data sets involved in this thesis.

The post-docs such as Drs. David Thomas, Hale Nicholson, Colin Groom, Rick Faber and Maria Bewley who all provided me with different ideas and techniques in macromolecular crystallography.

The other members of the crystallography research group (past and present) should not get away without mention, so thank you..

Two very good friends, Michael "you should be humanitarian ambassador" Nairn, who unfortunately for the general population has a very similar sense of humour to mine and Dean "pirate" Severinsen both of whom got me through this thesis and life in general.

I am grateful to Massey University for the position of Graduate Assistant to make this study possible and to the Howard Hughes Medical Institute grant for further funding.

Lastly I would like to thank my family who still are not quite sure about what I do but gave me their support throughout my time at Massey University.

CONTENTS

	Page
ABSTRACT	ii
ABBREVIATIONS	ix
LIST OF FIGURES	xii
LIST OF TABLES	xv

Chapter One

INTRODUCTION

			Page
1.1		Cytochromes in biology	1
	1.1.1	Classification on basis of their optical spectra	1
	1.1.2	Distribution and roles	5
1.2		c-Type cytochromes	5
	1.2.1	Common features	5
	1.2.2	Subclassification of cytochromes c	6
	1.2.3	c-Type cytochromes in bacteria	10
1.3		Cytochromes c'	11
	1.3.1	Distribution	11
	1.3.2	Functional role	12
	1.3.3	Physicochemical properties	14
	1.3.4	Amino acid sequences	17
	1.3.5	X-ray crystallographic structures of cytochrome c'	17
1.4		Aims of this study	18

Chapter Two

CRYSTALLISATION, DATA COLLECTION AND PROCESSING

2.1		Purification of cytochrome c' 19		
2.2		Crystallisation of cytochrome c' from Alcaligenes sp and Alcaligene		
		denitrificans	19	
2.3		Data collection and processing	21	
	2.3.1	Photon factory data set - Alcaligenes sp native data	21	
		Data collection		
		Data processing		

v

2.3.2	Anomalous data from Alcaligenes sp	27
	Data collection	
	Data processing	
2.3.3	Heavy atom data from Alcaligenes sp	30
	Data collection	
	Data processing	
	Scaling with Alcaligenes sp native data	
2.3.4	R-Axis data from Alcaligenes denitrificans	36
	Data collection	
	Data processing	

Chapter Three MOLECULAR REPLACEMENT

3.1	The rotation function 40			
3.2		The translation function 4		
3.3	Computational methods		43	
	3.3.1	ALMN	43	
	3.3.2	TFFC	45	
	3.3.3	X-PLOR	45	
		Rotation program		
		PC refinement		
		Translation program		
	3.3.4	AMORE	47	
		Data processing		
		Rotation program		
		Translation program		
		Rigid body refinement		
3.4		Search models	48	
3.5		Results	51	
	3.5.1	Results using ALMN/TFFC	51	
		Rotation program (ALMN)		
		Translation program (TFFC)		
	3.5.2	Results using X-PLOR	57	
		Rotation program		
		Translation program		
	3.5.3	Results from AMORE	61	
3.6		Retrospective comparison of molecular replacement results	s	
			64	

vi

Chapter Four

PHASE DETERMINATION BY ISOMORPHOUS REPLACEMENT AND ANOMALOUS SCATTERING

4.1		Introduction 66		
4.2		Structure factor and phase relationships 6		
	4.2.1	Isomorphous replacement	68	
		Single isomorphous replacement (SIR)		
		Multiple isomorphous replacement (MIR)		
	4.2.2	Incorporation of anomalous scattering	70	
		Single isomorphous replacement with anomamlous		
		scattering (SIRAS)		
		Multiple isomorphous replacement with anomamlo	us	
		scattering (MIRAS)		
4.3		Practical considerations	75	
4.4		Determination of heavy atom positions	76	
	4.4.1	Use of the Patterson function	76	
	4.4.2	Use of difference Fouriers	77	
	4.4.3	Refinement of the heavy atom positions	77	
	4.4.4	Treatment of errors	78	
4.5		Results	79	
	4.5.1	Heavy atom soaking trials	79	
	4.5.2	Heavy atom site determination	81	
	4.5.3	Phase calculations	82	
	4.5.4	Determination of iron sites	83	
	4.5.5	Phasing from anomalous scattering	84	

Chapter Five STRUCTURE DETERMINATION

Density modification	86
Improvement of anomalous scattering phases and their use in	
determining the correct molecular replacement solution	86
Improvement of SIR phases using solvent	
flattening	90
Improvement of SIR phases using molecular	
averaging	91
Combining SIR phases with anomalous scattering	
	Density modification Improvement of anomalous scattering phases and their use determining the correct molecular replacement solution Improvement of SIR phases using solvent flattening Improvement of SIR phases using molecular averaging Combining SIR phases with anomalous scattering

		phases using SIGMAA	92
	5.2.4	Combining SIR phases with anomalous scattering	
		phases using OVERLAPMAP	93
5.3		Refinement methods	96
	5.3.1	Least squares refinement with TNT	96
	5.3.2	Refinement with X-PLOR	97
	5.3.3	Model rebuilding	97
	5.3.4	Inclusion of solvent	98
5.4		Progress of refinement	99
	5.4.1	Refinement of Alcaligenes sp cytochrome c'	99
	5.4.2	Refinement of Alcaligenes denitrificans	
		cytochrome c'	103
5.5		Quality of the final models	105
	5.5.1	Accuracy of the model for Alcaligenes sp	
		cytochrome c'	105
	5.5.2	Accuracy of the model for Alcaligenes denitrificant	5
		cytochrome c'	109
	5.5.3	Conformational angles	112
		Mainchain torsion angles (ϕ , ψ)	
		Sidechain torsion angles ($\chi_1 - \chi_5$)	

Chapter Six STRUCTURE DESCRIPTION

6.1		The overall fold 118		
6.2		Hydrogen bonding details 12		
	6.2.1	Mainchainmainchain hydrogen bonding	122	
	6.2.2	Mainchainsidechain hydrogen bonding	127	
	6.2.3	Sidechainsidechain hydrogen bonding	132	
	6.2.4	Haem hydrogen bonding	134	
6.3		Loops and turns		
6.4		Modified N-terminus		
6.5		Analysis of the haem geometry		
6.6		Analysis of the haem environment		
6.7		Dimer interface		
6.8		Thermal parameters		
6.9		Solvent structure 15		
6.10		Crystal packing 10		

Chapter Seven

STRUCTURAL COMPARISONS WITH OTHER CYTOCHROMES C'

7.1		Sequence alignment 167		
7.2		Structural superposition 169		
7.3		Secondary structure	171	
7.4		Helix orientations	173	
7.5		Connecting loops	178	
7.6		Sidechain hydrogen bonding	181	
	7.6.1	Sidechainmainchain hydrogen bonding	181	
	7.6.2	Sidechainsidechain hydrogen bonding	183	
	7.6.3	Haem hydrogen bonding	185	
7.7		Haem geometry and environment	188	
	7.7.1	Haem stereochemistry	188	
	7.7.2	Haem environment	192	
7.8		The dimer interface	198	
7.9		Solvent structure 200		

Chapter Eight GENERAL DISCUSSION

8.1 Structure determination		205
8.2 Structural aspects		210
8.3 Future work		220
APPEN	DIX I	222
APPENDIX II		
BIBLIO	GRAPHY	247

ABBREVIATIONS

NO ₃ -		Nitrate ion		
A ₂₈₀		Absorbance at 280nm		
CM-cellulose		Carboxymethyl cellulose		
R. rubrum		Rhodospirillum rubrum		
R. molischian	ит	Rhodospirillum molischianum		
Cys		Cysteine		
His		Histidine		
a.a		amino acid		
NH ₃		ammonia		
NADP/H		phosphorylated NAD		
NO		Nitric oxide		
N ₂ O		Nitrous oxide		
NO ₂		Nitrogen dioxide		
NO ₂ -		Nitrite		
Rps. viridis		Rhodopseudomonas viridis		
Rps. palustrus	;	Rhodopseudomonas palustrus		
Rps. capsulate	2	Rhodopseudomonas capsulata		
Rps. sphaeroid	des	Rhodopseudomonas sphaeroides		
pI		Isoelectric point		
Chr. Vinosum		Chromatium vinosum		
М	mol L-	1		
IP	Image	plate		
Asp	Alcalig	enes sp		
Ade	Alcalig	enes denitrificans		
Rms	Root-n	nean-square		
MR	Molecu	ılar replacement		
MIR	Multip	le isomorphous replacement		
MIRAS	Multip	e isomorphous replacement with anomalous scattering		
SIR	Single	isomorphous replacement		
SIRAS	Single isomorphous replacement with anomalous scatteri			
Asp	Aspartic acid			
Gln	Glutamine			
Glu	Glutamic acid			
Ala	Alanine			
Pro	Proline			
Asn	Asparagine			
Hem	Haem			

Val	Valine
Lys	Lysine
Ile	Isoleucine
Leu	Leucine
Thr	Threonine
Met	Methionine
Tyr	Tyrosine
Phe	Phenylalanine
Ser	Serine
AB loop	Loop between helices A and B
BC loop	Loop between helices B and C
CD loop	Loop between helices C and D
DEAE	Diethyl aminoethyl
ALDH	Aldehyde dehydrogenase
FPLC	Fast protein liquid chromatography
NAD/H	Nicotinamide adenine dinucleotide
ATP	Adenosine triphosphate
SDS	Sodium dodecylsulphate
PEG	Polyethylene glycol
DMNB	3,4-dihydro-3-methyl-6-nitro2H-1,3-benoxazin-2-one
Da	Dalton
ASCC	Alcaligenes sp cytochrome c'
ADCC	Alcaligenes denitrificans cytochrome c'
CVCC	Chr. vinosum cytochrome c'
RMCC	R. molischianum cytochrome c'
RRCC	R. rubrum cytochrome c'
VDW	van der Waals
PCMB	para-chloromecuribenzoate
PHMB	para-hydroxymecuribenzoate

xi

ŕ

LIST OF FIGURES

Figure

20 - 0.000 (mmm) - 0.000 - 0.00

1.1.1.1	Structures of haem groups in cytochromes	2
1.1.1.2	UV-visible absorption spectra of c-type cytochromes	4
1.2.2.1	Ribbon diagrams of various c-type cytochromes	7
1.2.2.2	UV-visible spectra of selected c-type cytochromes	8
1.2.3.1	Terminal reactions in bacterial electron transport systems	10
1.3.2.1	Denitrifying electron transport system of Pa. denitrificans	13
1.3.3.1	Effect of octahedral crystal field on the d-orbital splitting	15
1.3.3.2	Spin states of octahedral Fe(III)	16
2.2.1	Crystals of cytochrome c' from Alcaligenes sp	20
2.3.1.1	% intensities greater than 3σ (Photon factory data set)	26
2.3.1.2	% completeness vs resolution (Photon factory data set)	26
2.3.2.1	% completeness vs resolution (Xuong-Hamlin data set)	29
2.3.2.2	% intensities greater than 3σ (Xuong-Hamlin data set)	29
2.3.3.1	% completeness vs resolution (Heavy atom data set)	33
2.3.3.2	% intensities greater than 3σ (Heavy atom data set)	33
2.3.3.3	Riso vs resolution for platinum derivatives	35
2.3.4.1	% completeness vs resolution (R-Axis data set)	37
2.3.4.2	% intensities greater than 3σ (R-Axis data set)	39
3.3.1.1	Eulerian angle system	44
4.2.1	Argand diagram defining structure factor amplitude and phases	67
4.2.1.1	Harker construction for SIR	68
4.2.1.2	"True" and "wrong" values for SIR structure factors	69
4.2.1.3	Harker construction for MIR	7 0
4.2.2.1	Relationship between F_P , F_{PH} , and F_H	73
4.2.2.2	SIR with anomalous scattering	75
5.2.1	Haem density from anomalously phased map	88
5.2.2	AB Loop density from anomalously phased map	88
5.2.1.1	Electron density in AB loop after solvent flattening of SIR phases	90
5.2.2.1	Application of molecular averaging	91
5.2.2.2	Electron density in AB loop	92
5.2.3.1	Density in AB loop from combined "SIR" and "Iron" map	93
5.2.4.1	Electron density in AB loop	94
5.2.4.2	Electron density in BC loop	94
5.5.1.1	Electron density from final 2Fo-Fc map in AB loop	106

xin

5.5.1.2	Electron density from final 2Fo-Fc map of haem pyrrole rings	106
5.5.1.3	Luzzati plot for Alcaligenes sp and Alcaligenes denitrificans	107
5.5.1.4	Real space-coefficient plot (mainchain atoms) vs residue number	108
	- Alcaligenes sp	
5.5.1.5	Real space-coefficient plot (sidechain atoms) vs residue number -	108
	Alcaligenes sp	
5.5.1.6	Electron density from final 2Fo-Fc map of Asp75	109
5.5.2.1	Example of ADCC model fitting density in final 2Fo-Fc map	110
5.5.2.2	Real space-coefficient plot (mainchain atoms) vs residue number	111
	- Alcaligenes denitrificans	
5.5.2.3	Real space-coefficient plot (sidechain atoms) vs residue number -	111
	Alcaligenes denitrificans	
5.5.2.4	Density from final 2Fo-Fc map around Arg69 in ADCC	112
5.5.3.1	Ramachandran plot for Alcaligenes sp	114
5.5.3.2	Ramachandran plot for Alcaligenes denitirifcans	115
5.5.3.3	Distribution of χ_1 values in ASCC	116
5.5.3.4	Distribution of χ_1 values in ADCC	117
6.1.1	Molscript diagram of monomer	119
6.1.2	Ca stereo plot (Molscript) of monomer	120
6.2.1.1	Plot of nn+4 hydrogen bond lengths in helix A	124
6.2.1.2	Plot of nn+4 hydrogen bond lengths in helix B	125
6.2.1.3	Plot of nn+4 hydrogen bond lengths in helix C	125
6.2.1.4	Plot of nn+4 hydrogen bond lengths in helix D	126
6.2.1.5	Stereoview of mainchain hydrogen bonding (residues 41 - 45)	126
6.2.1.6	Stereoview of nn+4 hydrogen bonding (residues 91 - 97)	127
6.2.2.1	Stereodiagram of N-cap (residue 37)	130
6.2.2.2	Stereodiagram of backbonding interaction	131
6.2.3.1	Stereoview of "local" sidechainsidechain interaction	133
6.2.4.1	Hydrogen bonding around propionate sidechain on ring A	135
6.2.4.2	Hydrogen bonding around propionate sidechain on ring B	136
6.2.4.3	Hydrogen bonding of conserved Arg12 residue	138
6.3.1	Type II turn involving residues 60-63	140
6.3.2	Type II' turn involving residues 65-68	141
6.4.1	Electron density of modified N-terminus in Alcaligenes sp	142
6.5.1	Protohaem IX group present in cytochromes c'	143
6.5.2	Coordination of iron atom	144
6.5.3	Stereodiagram of Arg124 sidechain and its environ	146
6.6.1	Molscript diagram showing residues within VDW contact	149

6.7.1	Molscript diagram of dimer interface	152
6.7.2	Schematic diagram showing shape recognition at interface	153
6.7.3	Electron density at dimer interface	153
6.8.1	Plot of mainchain B-values vs residue number - Alcaligenes sp	156
	and Alcaligenes denitrificans	
6.8.2	Plot of sidechain B-values vs residue number - Alcaligenes sp and	157
	Alcaligenes denitrificans	
6.9.1	"Common" solvent molecules between Alcaligenes sp and	160
	Alcaligenes denitrificans	
6.9.2	Solvent structure in ASCC	161
6.9.3	Solvent structure in ADCC	162
6.10.1	Crystal packing of cytochrome c'	163
6.10.2	Packing down six-fold axis	164
6.10.3	Salt bridge between Arg106 and Asp88	165
7.1.1	Sequence alignment of cytochromes c'	168
7.2.1	Rms deviation as a function of residue number for CVCC	170
7.2.2	Rms deviation as a function of residue number for RMCC	170
7.2.3	Rms deviation as a function of residue number for RRCC	171
7.5.1	Stereodiagram of AB loops superimposed	178
7.5.2	Stereodiagram of BC loops superimposed	179
7.5.3	Stereodiagram of CD loops superimposed	179
7.6.1.1	Hydrogen bonding involving Arg12	182
7.6.3.1	Haem hydrogen bonding	186
7.9.1	"Conserved" solvent positions in ASCC/RMCC	201
7.9.2	"Conserved" solvent positions in ASCC/CVCC	202
7.9.3	"Conserved" solvent positions in ADCC/RMCC	203
7.9.4	"Conserved" solvent positions in ADCC/CVCC	204
8.2.1	Helical wheel representation of residues	216
8.2.2	Correlation between soin state and ligand field strength	218
II.3.2.1	Structure of acetophenone	240
II.3.2.2	Solid matrix of p-hydroxyacetophenone resin	240
II.3.3.1	Native gel of ALDH using revised method	241
II.3.3.2	SDS gel of ALDH using revised method	242
II.4.1.1	Structure of β-octyl glucoside	244
II.4.1.2	Crystals of ALDH under "best" conditions	245
II.4.2.1	Crystals of DMNB modified ALDH	246

LIST OF TABLES

Distinguishing properties of c-type cytochromes Properties of some cytochromes c' Image plate data collection statistics (c-axis) Image plate data collection statistics (a-axis) Data collection and processing statistics (c-axis) Data collection and processing statistics (a-axis)

Table

1.2.2.1

1.3.3.1

2.3.1.1

2.3.1.2

2.3.1.3	Data collection and processing statistics (c-axis)	23
2.3.1.4	Data collection and processing statistics (a-axis)	24
2.3.1.5	Intav4 statistics	24
2.3.1.6	Statistics for Photon factory data as a function of resolution	25
2.3.2.1	Data processing statistics (Xuong-Hamlin data set)	28
2.3.2.2	Statistics for Xuong-Hamlin data set as a function of resolution	28
2.3.3.1	Data processing statistics (Heavy atom derivative data set)	32
2.3.3.2	Statistics for PT1 data set as a function of resolution	32
2.3.3.3	Scale and Riso values for PT1 derivative data set	34
2.3.3.4	Scale and Riso values for PT2 derivative data set	35
2.3.4.1	Cell dimensions of Alcaligenes sp and Alcaligenes denitrificans	36
2.3.4.2	Data processing statistics (R-Axis ADCC data set)	37
2.3.4.3	Statistics for R-Axis ADCC data set as a function of resolution	38
3.4.1.1	Search models used in ALMN and X-PLOR	49
3.4.1.2	Search models used in AMORE	50
3.5.1.1	Input values for ALMN	51
3.5.1.2	Cross rotation peaks - models derived from R. rubrum	52
3.5.1.3	Cross rotation peaks - models derived from R. molischianum	53
3.5.1.4	Rotation angles used in translation function	55
3.5.1.5	Translation function results - models derived from R. rubrum	55
3.5.1.6	Translation function results - models derived from R. rubrum	56
3.5.1.7	Translation function results - models derived from R .	56
	molischianum	
3.5.1.8	Translation function results - models derived from R .	57
	molischianum	
3.5.2.1	X-PLOR rotation peaks - models derived from R. rubrum	58
3.5.2.2	X-PLOR rotation peaks - models derived from R. molischianum	58
3.5.2.3	Rotation peaks after PC-refinement - models derived from R .	59
	rubrum	
3.5.2.4	Rotation peaks after PC-refinement - models derived from $R_{\rm c}$	59

molischianum

Page

9

14

21

22

3.5.2.5	Translation function shifts - models derived from R. rubrum	60
3.5.2.6	Translation function shifts - models derived from R .	61
	molischianum	
3.5.3.1	AMORE molecular replacement solutions	63
3.6.1	Molecular replacement solutions (ALMN/TFFC) using final	64
	Alcaligenes sp model	
3.6.2	Testing AMORE solutions	65
4.2.2.1	Variation of atomic scattering factor with wavelength	71
4.5.1.1	Heavy atom complexes used in trials	80
4.5.2.1	Refined platinum sites	81
4.5.3.1	Phasing statistics for derivatives	82
4.5.4.1	Position of iron sites in unit cell - Alcaligenes sp	83
5.2.1	Electron density map correlations	89
5.2.4.1	Maps used in density combination	95
5.4.1.1	Course of refinement in ASCC	101
5.3.2.1	Course of refinement in ADCC	104
5.5.3.1	ϕ , ψ values in helical regions in ASCC and ADCC	113
6.1.1	α-helix assignments	121
6.2.1.1	Hydrogen bonding in kink found in helix A	124
6.2.2.1	Mainchainsidechain hydrogen bonding in ASCC	128
6.2.2.2	Mainchainsidechain hydrogen bonding in ADCC	129
6.2.3.1	Sidechainsidechain hydrogen bonds in ASCC/ADCC	132
6.2.4.1	Proteinhaem, solventhaem hydrogen bonds	137
6.3.1	Turns present in BC loop	139
6.5.1	Porphyrin stereochemistry and haem ligand binding geometry	145
6.5.2	Deviations from planarity in haem group	147
6.6.1	Haem packing contacts in ASCC/ADCC	150
6.7.1	Dimer interface interactions in ASCC/ADCC	154
6.8.1	Average mainchain and sidechain B-values in ASCC/ADCC	156
6.8.2	Average mainchain and sidechain B-values of the helices in	156
	ASCC/ADCC	
6.9.1	Number of hydrogen bonds and mean B-values	158
6.9.2	Analysis of solvent hydrogen bonds (ASCC)	159
6.9.3	Analysis of solvent hydrogen bonds (ADCC)	159
6.10.1	Intermolecular hydrogen bond contacts	166
7.2.1	Rms deviations and residues used in sequence alignment	169
7.3.1	Residues involved in α -helices in cytochromes c'	172
7.3.2	Residues forming 310 helices in cytochromes c'	173

xvi

7.4.1	Residues used in structural superpositions in cytochromes c'	174
7.4.2	Rms deviations of "core" elements	174
7.4.3	Rms differences for individual helices	175
7.4.4	Rms differences between helices and haem arrangement	175
7.4.5	Interhelix angles and distances in cytochromes c'	176
7.4.6	Range of interhelix angles and distances	177
7.5.1	Turns present in cytochromes c'	180
7.6.1.1	Mainchainsidechain interactions	181
7.6.1.2	Conserved sidechainsidechain and sidechainmainchain	183
	Hydrogen bonding involving Arg12	
7.6.2.1	Sidechainsidechain interactions in cytochromes c'	184
7.6.2.2	"Local" and "cross-linking" interactions	185
7.6.3.1	Haem hydrogen bonding	187
7.7.1.1	Porphyrin stereochemistry and haem ligand binding in RRCC,	189
	RMCC and CVCC	
7.7.1.2	Porphyrin stereochemistry and haem ligand binding in ASCC and	189
	ADCC	
7.7.1.3	Alternate χ_1 and χ_2 conformations at haem binding region	191
7.7.1.4	Comparison of Fe-Fe distance and haem - haem plane angles in	191
	cytochromes c'	
7.7.1.5	Closest contact distance for the "sixth" ligand in cytochromes c'	192
7.7.2.1	Haem packing contacts in ASCC	193
7.7.2.2	Haem packing contacts in RMCC	194
7.7.2.3	Haem packing contacts in CVCC	195
7.7.2.4	Haem packing contacts in RRCC	196
7.7.2.5	"Conserved" residues in haem packing	197
7.8.1	Dimer interface contacts	199