Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

PREPARATION OF CHEMICALLY MODIFIED

BEAD CELLULOSE RESINS AND THEIR

APPLICATION TO PROTEIN PURIFICATION

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University

Simon Christopher Burton

1995

ERRATA

- Page 39 : the legend for Table 2.7 (line 7) should refer to Table 2.6, not 2.7.
- Page 55 : insert "+ 1 ml ethanol" (in paragraph 5), to dissolve ligands.
- Page 56 : line 5 of paragraph 2 should read "0.7-1.0 ml/g".
- Page 61 : the activation level should be "0.093 mMoles/g" in line 1, paragraph 2.
- Page 72 : swap titration figures of AGE cysteamine (rows 6 and 7).
- Page 118 : the figure caption should be "...PPA (59%)".
- Page 120 : delete "for", line 7, paragraph 1.
- Page 129 : "mMoles/g dry" should read "0.043 mMoles/g", line 1, paragraph 1.
- Page 139 : change the legend labels for AMP to "(D)" and APIMID to "(C)".
- Page 153 : change Figure 6.10 to Figure 6.11, lines 5 and 9, paragraph 2.
- Page 161 : change "Figure 5.1" to "Figure 5.3", paragraph 1, line 4.
- Page 164 : delete "and eluted", paragraph 1, line 4.
- Page 169 : the legend's second sentence should read "pH 5.2 and 7.5 respectively".
- Page 171 : the percentage should be 50-70% paragraph 2, line 3.
- Page 171 : change "Figure 7.6" to to "Figure 7.5", paragraphs 1 and 2.
- Page 180 : the vinyl pyridine figure should be "\$7.60".

ABSTRACT

A bead cellulose matrix, Perloza[™], was chemically modified to prepare inexpensive resins for chromatography. Conventional and novel resins were produced. Adsorption and elution methods suitable for industrial chromatography were developed. An agarose matrix, Sepharose[™], was used for comparison.

Matrix activation with carbonyldiimidazole (CDI) was optimised for Sepharose and Perloza. Improved, reliable performance was obtained using column solvent exchange, with an imidazole tracer. Substitution efficiency of 75-98% was obtained for aminoacyl ligands/spacer arms by minimising water content. The aqueous carboxymethylation level obtained for Perloza was 0.3-0.4 mMoles/g dry. This was increased to 1.3-2 mMoles/g dry, using 75-80% DMSO solvated Perloza. Epichlorohydrin and bisepoxide activation levels (+/- organic solvents) were low.

Etherification of Perloza with allyl bromide or allyl glycidyl ether resulted in high **allylation** levels (> 1.50 mMoles/g), even in aqueous media. Matrix allyl groups were reacted with bromine water or aqueous N-bromosuccinimide, to produce (predominantly) bromohydroxypropyl groups. Subsequent attachment of amine and thiol ligands, by nucleophilic **substitution**, was simple and efficient.

Allyl matrices were also used for free radical **addition** of sulphite and various thiols (mercaptoethanol, mercaptoacids, glutathione). Efficient addition was found without thermal or chemical catalysis. Addition of mercaptoacetic acid followed by carboxylate titration was the preferred measure of (allyl) activation level. Addition of several other thiols occurred at 60°C.

The usefulness of allyl chemistries was exemplified by preparation of **ion exchange** resins. Their physical and chromatographic properties compared favourably with commercial resins. They combined good laboratory performance with high flow rates and simple, cheap preparation suited to large scale use.

Mixed mode resins were prepared from CDI and allyl matrices. These contained charged (secondary amine or carboxylate) and hydrophobic (alkyl spacer arm and/or ligand) groups. The milk clotting enzyme **chymosin**, was adsorbed to these resins at high and low ionic strength. Near homogeneous chymosin was eluted by a pH change, which induced electrostatic repulsion. Alkyl carboxylate resins were preferred. They were simple to prepare, use and regenerate, despite the use of crude broths.

The presence of charged groups could cause non-specific adsorption, interference with target protein adsorption and greater fouling. Weak acid and base hydrophobic groups (e.g. pyridyl) were attached to matrices and titration confirmed that uncharged and charged forms were obtained in a pH range (5-9) suitable for protein chromatography. At low ligand density, the salt promoted hydrophobic adsorption properties of these resins (uncharged from) were similar to those of Phenyl Sepharose. At higher ligand density, retention was longer, eventually leading to adsorption independent of ionic strength. Complete elution was obtained by pH adjustment (to the partially ionised resin form). Chymosin was strongly adsorbed to uncharged pyridyl (hydrophobic ionisable) resins and rapidly eluted by a small pH change. High ligand density (strong adsorption) is favourable for large scale use because the ionic strength of feedstreams does not need to be adjusted prior to loading.

Strong adsorption to mixed mode and weakly ionisable resins was also found for **amylase**. Rapid elution (and significant purification) was again obtained by a small pH change. **Subtilisin** was adsorbed likewise by most hydrophobic ionisable resins and recovered efficiently at pH 5.2. However, subtilisin adsorption to mixed mode resins was comparatively weak, possibly reflecting the weaker hydrophobicity of subtilisin compared to amylase.

The adsorption of **catalase** on Phenyl Sepharose and (low ligand density) pyridyl Perloza was equivalent, at pH 7.5. Catalase was eluted by a pH change from the Perloza resin, whereas elution from Phenyl Sepharose required addition of ethylene glycol. This indicated that pyridyl Perloza resins would be useful for chromatography of very hydrophobic proteins.

ACKNOWLEDGMENTS

I would like to thank my supervisors Dr Neill Haggarty, Dr Chris Moore and especially Dr David Harding for their advice and support. I would also like to thank Dr Harding for distillation of allyl bromide, various syntheses (epibromohydrin, dibromotyramine, mercaptoethylpyridine, mercaptohexanoic acid and mercaptobutyric acid).

I also wish to thank Marcia Baker for ordering of chemicals, Dick Poll for assistance with FPLC operation and HPLC of chymosin elution samples and David Elgar and Dr John Ayers for advice on epichlorohydrin and propylene oxide reactions and preparation of ion-exchange resins. I would like to thank all those in the Separation Science laboratory and the many people in the Department of Chemistry and Biochemistry who have helped me.

Many thanks to David Walker for assistance with word processing.

I wish to thank Megazyme for the gift of the maltoheptaoside amylase substrate and Genencor International for enzyme and substrate samples. Special thanks to Henry Heinsohn, Ben Bulthuis, Todd Becker and Landon Steele of Genencor for their support with chymosin, amylase and subtilisin purification projects. Thanks also to Landon Steele for help with obtaining various literature.

Finally I wish to thank Genencor for the project funding which has supported the majority of the work recorded here and my attendance at the Recovery of Biological Products VII conference at San Diego, 1994.

TABLE OF CONTENTS

Abstract	ii
Acknowledgments	iv
Table of Contents	v
List of Figures	ix
List of Tables	xi
List of Abbreviations	xii
CHAPTER 1 INTRODUCTION	1
The incentive for research in protein chromatography	1
Basic principles of chromatography	1
Protein chromatography	5
Large scale materials and applications	7
Hydrophobic interaction chromatography	12
Mixed mode HIC resins	15
The requirement for further investigation of mixed mode chromatography	20
Research aims	20
CHAPTER 2 STANDARD ACTIVATION CHEMISTRIES	21
Introduction	21
Materials and Methods	27
Reagents and equipment	27
CDI activation	27
Aminoacyl spacer arm substitution	28
Carboxymethylation of Perloza	29
Protein capacity, swollen volume and flow rate measurements of CM Perloza	29
Epihalohydrin and bisepoxide activations	30
Divinylsulphone activation	31
Titration methods	31
Results and Discussion	32
CDI activation	32
Attachment of aminoacyl spacer arms to CDI activated matrices	34
Carboxymethylation	37
Etherification with bifunctional reagents	39
Summary	41

CHAPTER 3 MATRIX ACTIVATION WITH ALLYL REAGENTS 42 AND METHODS OF LIGAND ATTACHMENT

Introduction	42	
Materials and Methods		
Reagents and equipment		
General reaction methods	49	
Crosslinking of Perloza with epichlorohydrin	49	
Allyl bromide activation	49	
Allyl glycidyl ether activation	51	
Titration methods	52	
Halogenation methods	53	
Substitution methods for brominated resins	54	
Oxidation of allyl Perloza	55	
Addition methods	55	
Results and Discussion	58	
Allyl bromide activation of Perloza and titration methods	58	
Allyl glycidyl ether (AGE) activation	64	
Reactions of allyl matrices	66	
Substitution reactions of brominated allyl Perloza		
Oxidation of matrix allyl groups		
Free radical addition reactions	76	
Summary	88	
CHAPTER 4 PROPERTIES OF ALLYL PERLOZA ION EXCHANGE RESINS	89	
Introduction	89	
Materials and Methods	91	
Reagents and equipment	91	
Physical and chromatographic properties of ion exchange resins		
Results and discussion		
Physical properties	94	
Protein chromatography and capacities on SP and TMA Perloza resins 1		

Summary

108

109 CHAPTER 5 PURIFICATION OF CHYMOSIN BY MIXED MODE CHROMATOGRAPHY

Introduction	109
Materials and Methods	111
Reagents and equipment	111
Ligand attachment	111
Chromatography	113
Analytical methods	114
Results and Discussion	115
Epoxide activated matrices	115
Mixed mode resins produced from CDI activated aminocaproic acid Perloza	116
Other carboxylate resins	119
Purification performance comparison	121
Capacity testing	127
Resin fouling	127
Low molecular weight coloured contaminants of elution samples	127
Resins produced using allyl chemistry	129
Preferred method	129
Comparison with previous mixed mode chromatography examples	129
Summary	131
CHAPTER 6 PREPARATION AND USE OF HYDROPHOBIC	132
IONISABLE RESINS	
Introduction	132
Materials and Methods	134
Reagents and equipment	134
Ligand attachment	134
Results and Discussion	136
Ligand options	136
Ligand attachment	138
Titration curve analysis of resins	140
Model protein chromatography	146
Chymosin adsorption to weak base resins	151
Other proteins	154
Summary	155

109

CHAPTER 7 APPLICATIONS OF MIXED MODE AND 156 HYDROPHOBIC IONISABLE RESINS

Introduction	156
Materials and Methods	158
Reagents and equipment	158
Assays	158
Amylase and subtilisin chromatography	159
Subtilisin capacity	160
Catalase chromatography	160
Results and Discussion	161
Subtilisin	161
Amylase	168
Catalase	171
Summary	173
CHAPTER 8 CONCLUSIONS	174
Results summary	174
Future prospects	177
APPENDIX 1 Molar prices for activation reagents and ligands	179
APPENDIX 2 Structures of hydrophobic ionisable ligands	181
REFERENCES	183

LIST OF FIGURES

Figure 1.1	The effect of flow rate on plate height	4		
Figure 1.2	The effect of protein concentration on column efficiency	6		
Figure 1.3	Activation methods for introduction of charged groups 10			
Figure 3.1	Possible reactions of cellulose with a bifunctional reagent			
Figure 3.2	Attachment of allyl groups to matrices	44		
Figure 3.3	(A) Bromination of allyl matrices and (B) ligand substitution 4			
Figure 3.4	Possible addition reactions of allyl matrices	47		
Figure 3.5	Absorbance versus concentration of bromine water	59		
Figure 3.6	Titration curve of (AGE, NBS) IDA Perloza	71		
Figure 3.7	(a) Thioether linked MEP (b) Pyridinium linked MEP	73		
Figure 3.8 Titration curves of (a) MAA 10% AB and				
	(b) MPA 7% AB Perloza	77		
Figure 3.9	Bisulphite addition levels at various pH values	81		
Figure 4.1 Possible effects of ligand attachment at a sterically restric				
	site for : (A) allyl Perloza, (B) SP Perloza, (C) MAA Perloza,			
	(D) base washed MAA Perloza	97		
Figure 4.2	Titration curves of (A) MAA, (B) SP, (C) TMA and			
	(D) DEA Perloza ion exchange resins	98		
Figure 4.3	Flow properties of SP7F Perloza, SP Sepharose, and neutral			
	Perloza resins	100		
Figure 4.4	Flow properties of various SP and Q Perloza fine resins	101		
Figure 4.5	Flow properties of SP and Q Perloza and Ostsorb			
	(medium grades)	102		
Figure 4.6	Flow properties of (A) crosslinked and (B) uncrosslinked MAA			
	Perloza	103		
Figure 4.7	Absorbance traces for BSA chromatography on (A) SP Perloza,			
	(B) SP Sepharose, (B1) TMA Perloza and (D) Q Sepharose	104		
Figure 5.1	Chymosin chromatography on APP ECH Sepharose 6B	116		
Figure 5.2	Chymosin chromatography on Perloza CDI aminocaproic			
	PPA (67%)	118		
Figure 5.3	Titration curves of Perloza CDI ACA, at high and low ionic			
	strength	120		
Figure 5.4	SDS PAGE of chymosin elution samples	123		
Figure 5.5	SDS PAGE of CM and ACA chymosin load and elution samples	124		
Figure 5.6	RP-HPLC traces : Perloza and Sepharose (APP) elution samples	125		
Figure 5.7	RP-HPLC traces : CM and Perloza ACA elution samples	126		

Figure 6.1	Small ion titration of residual carboxyl groups after ligand	
	attachment	139
Figure 6.2	Structures for some matrix/ionisable ligand products	141
Figure 6.3	Titration curves of Perloza CDI (A) diethylaminopropylamine	
	(B) aminopropylmorpholine, (C) aminopropylimidazole and	
	(D) aminomethylbenzimidazole	143
Figure 6.4	Titration curves of Perloza CDI (A) 4-AMP and (B) 3-AMP;	
	and Perloza AGE/NBS (c) MEP and (D) MIM	144
Figure 6.5	Titration curves of Perloza CDI (A) dibromotyramine,	
	(B) tyramine, (C) DAH nitrohydroxybenzoic acid and	
	(D) DAH chlorohydroxyphenylacetic acid	145
Figure 6.6	Salt promoted chromatography of myoglobin	147
Figure 6.7	Salt promoted chromatography of ribonuclease	148
Figure 6.8	Salt promoted chromatography of chymotrypsinogen	149
Figure 6.9	Salt promoted chromatography of lysozyme	150
Figure 6.10	Structures of (A) hexylamine ECH Sepharose and	
	(B) DEAPA ACA Perloza	152
Figure 6.11	Elution of chymosin from 2-AMP Perloza	
Figure 7.1	Subtilisin chromatography on carboxylate resins	160
Figure 7.2	Subtilisin chromatography on (A) MEP and (B) MIM AB Perloza	161
Figure 7.3	Amylase chromatography : (A) MIM, (B) MEP, (C) MBA	
	and (D) MHA Perloza	165
Figure 7.4	SDS PAGE of amylase elution samples	170
Figure 7.5	Catalase chromatography on (A) Phenyl Sepharose, (B) 4AMP	
	and (C) MEP Perloza	172

.

LIST OF TABLES

Table 1.1	Established methods of chromatography	2	
Table 2.1	CDI activation levels for batch solvent exchanged matrices	33	
Table 2.2	CDI activation levels using imidazole tracer column exchange 3		
Table 2.3	Coupling yields of CDI activated matrices with 6-aminocaproic acid		
Table 2.4	Solvent variations and verification of corrected substitutions	35	
Table 2.5	Substitution efficiencies of various aminoacyl spacer arms	36	
Table 2.6	Substitution levels, volumes and flow rates of CM Perloza resins	38	
Table 2.7	Lysozyme and haemoglobin capacities	39	
Table 3.1	Comparison of titration methods for allyl bromide activation levels	60	
Table 3.2	Titration values for variations of reagent and cosolvent proportion	61	
Table 3.3	Activation levels with solvent and base variations	62	
Table 3.4	Titration values for various AB% and 10-700g cellulose scales	63	
Table 3.5	AGE % versus activation level	65	
Table 3.6	MPA titrations for varying AGE reaction time and solvation	65	
Table 3.7	Stock allyl resin activation data (MAA titration)	66	
Table 3.8	Ligand substitution levels of NBS and bromine water intermediates	68	
Table 3.9	Substitution levels of various amine ligands on brominated allyl		
	Perloza	71	
Table 3.10	Substitution data for thiol ligands	73	
Table 3.11	Substitution levels for sodium sulphite on stock 10% AB Perloza	75	
Table 3.12	Catalyst and inhibitor effects on mercaptoacid addition	76	
Table 3.13	Efficiency of MSA and glutathione addition compared to MAA	79	
Table 3.14	Optimisation of sodium bisulphite addition	82	
Table 3.15	Addition levels for cysteamine and cysteine on allyl Perloza	85	
Table 4.1	Charge density and swollen volume of AB Perloza ion exchange		
	resins	95	
Table 4.2	Batch capacity data for Perloza, Ostsorb and Sepharose resins	105	
Table 4.3	Batch adsorption time versus capacity	106	
Table 4.4	SP7F column capacities for various proteins	106	
Table 5.1	Comparison of chymosin purification by different methods	122	
Table 5.2	Comparison of chymosin capacity for mixed mode and CM resins	128	
Table 6.1	Dissociation constants of some common weak organic bases	136	
Table 6.2	Dissociation constants of some common weak organic acids	136	
Table 6.3	Titration data for weak ionisable resins	142	
Table 7.1	Subtilisin activity recovery and from selected resins	166	
Table 7.2	Subtilisin capacity data	167	

LIST OF ABBREVIATIONS

AB	allyl bromide
ACA	aminocaproic acid
AEBS	aminoethylbenzenesulphonamide
AGE	allyl glycidyl ether
AMB	aminomethylbenzimidazole
AMP	(aminomethyl)pyridine (2, 3 and 4; ortho, meta and para)
APIMID	aminopropylimidazole
APM	aminopropylmorpholine
APP	aminophenylpropanediol
APS	ammonium persulphate
AUFS	full scale absorbance
AVA	aminovaleric acid
BD	butadiene diepoxide
BDE	butanediol diglycidyl ether
BHP	bromohydroxypropyl
β-lac	β-lactoglobulin
BME	mercaptoethanol
BP	benzoyl peroxide
BSA	bovine serum albumin
CD	carboxydecyl
CDI	carbonyldiimdazole
CHPA	chlorohydroxyphenylacetic acid
CM	carboxymethyl
CMC	cyclohexylmorpholinoethylcarbodiimide
CNBr	cyanogen bromide
CPAD	10-carboxypropionylaminodecyl
CYS	cysteine
DAH	diaminohexane
DCC	dicyclohexylcarbodiimide
DEA	diethylamine
DEAE	diethylaminoethyl
DEAPA	diethylaminopropylamine
DMF	dimethylformamide
DMSO	dimethylsulphoxide
DVS	divinylsulphone
ECH	epichlorohydrin

EDC	ethyldimethylaminopropylcarbodiimide
EEDQ	ethoxycarbonylethoxydihydroquinoline
GSH	glutathione
HETP	height equivalent to a theoretical plate
HIC	hydrophobic interaction chromatography
HIS	histidine
HPA	hydroxyphenylacetic acid
HPLC	high performance liquid chromatography
IDA	iminodiacetic acid
IEC	ion exchange chromatography
IgG	immunoglobulin G
IMAC	immobilised metal ion affinity chromatography
IS	ionic strength
LCC	liquid column chromatography
MAA	mercaptoacetic acid
MB	mercaptobenzimidazole
MBA	mercaptobutyric acid
MEP	mercaptoethylpyridine
MET	methionine
MHA	mercaptohexanoic acid
MIM	mercaptomethylimidazole (methimazole)
MP	(mercapto)pyridine (2 and 4; ortho and para)
MPA	mercaptopropionic acid
MSA	mercaptosuccinic acid
NBS	N-bromosuccinimide
NHBA	nitrohydroxybenzoic acid
PAGE	polyacrylamide gel electrophoresis
PALOL	phenylalaninol
PBA	phenylbutylamine
PEA	phenylethylamine
PHE	phenylalanine
PPA	phenylpropanolamine
Q	quaternary amino
QFF	Q Sepharose Fast Flow
RPC	reversed phase chromatography
SDS	sodium dodecyl sulphate
SEC	size exclusion chromatography
SHP	sulphohydroxypropyl

SP	sulphopropyl
SPPS	solid phase peptide synthesis
TBI	tetrabutylammonium iodide
TEOH	tetraethylammonium hydroxide
TMA	trimethylamine
tosyl	toluenesulphonyl
tresyl	trifluoroethanesulphonyl
TRP	tryptophan
WGAT	wheat germ aspartyl transcarbamoylase
XL	crosslinked