Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ABUNDANCE AND FORAGING NICHES OF FOREST BIRDS

IN PART OF THE RUAMAHANGA ECOLOGICAL AREA,

TARARUA STATE FOREST PARK

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University

> Michael Moffat June 1989

•

ABSTRACT

To test the applicability in New Zealand of ecological theories derived from the study of northern temperate and tropical avifaunas, the bird community in part of the Ruamahanga Ecological Area, Tararua State Forest Park was studied from October 1982 until February 1985. Α modified five-minute bird count to determine the relative abundances of each bird species with a near/far ratio proved useful in assessing the distribution of the common bird species but was inadequate for the rarer species. Twenty-nine bird species were seen, twenty-one of which probably bred within the study area. Eleven forest bird species were seen with sufficient frequency to apply the near/far. Bird species diversity was significantly correlated with foliage height diversity, but not with plant species diversity. Principal component analysis was used as a graphical tool to describe the inter-relationships of bird species distribution with plant species and plant structure in greater detail. Bird species composition was related to both the forest structure and the plant species composition. The distributions of ten common bird species were positively correlated with high canopy forest, five species with red beech-dominated forest and five species with podocarp/broadleaf-dominated forest. Many of the bird species were most abundant at the end of the breeding season in February-March. This was not apparent from consideration of the five-minute bird counts alone because of seasonal changes in conspicuousness. The modified five-minute bird counts were useful indicators of bird movement into and out of the study area. Only whiteheads showed consistent seasonal changes in altitudinal distribution, higher in summer than in winter. By determining the relative importance of foliage height, tree species and substrate bird species foraging niches were examined. Foraging site showed the greatest difference between bird species, followed by tree species and then foraging height. Comparison with other studies showed that there is a large degree of plasticity in foraging niche site between habitats in New Zealand birds. Foraging niches of congeners in Australia and New Zealand were similar. Each bird species preferred different species of trees for foraging. In winter decreased foraging niche overlaps were observed in conjunction with mixed species flocking. Studies of New Zealand birds indicate that foraging niches are sufficiently plastic for forest conservation management strategies be considered on a forest by forest basis. The plasticity of foraging niches may also account for the small proportion of introduced birds in the study area. Competition is probably important in structuring the forest bird community. Both niche breadths and niche overlaps were comparable with studies on much richer bird assemblages. Introduced birds were largely confined to forest margins and to resources which were previously used by extinct native birds, suggesting that the remaining native birds are successfully excluding introduced birds.

iii

Acknowledgements

I would like to thank my supervisors Ed Minot and Brian Springett for their constructive criticisms and advice on the draft of this thesis. Eds' statistical expertise was a great help and he also wrote the program which I used for my principal component analyses. David Dawson provided the inspiration for the modification of his five-minute bird count technique. He derived the formula for calculation of the density indices, and was particularly helpful during the initial stages of the study.

John Innes, John Leathwick and their colleagues of the Forest Research Institute, Rotorua suggested the use of TWINSPAN for analysis of forest types and supplied a forum for discussion outside the university system. The research was funded by Forest Service contract 170.

David Drummond and his co-workers John Archer, Brendan Spring and Eric Strachan collected the detailed botanical data used in this thesis. Their companionship in the bush was a great boon.

The helpful suggestions of Malcolm Crawley and Harry Recher clarified the intent and conclusions of the thesis. Their grammatical corrections were also appreciated.

Finally, the staff and students of the Botany and Zoology Department, Massey University, have provided a pleasant and stimulating working environment.

TABLE OF CONTENTS			
	Page		
Abstract	ii		
Acknowledgements	. iv		
List of appendices	vi		
List of figures	vii		
List of tables	ix		
CHAPTER 1: INTRODUCTION	1		
1.1 Aims	2		
1.2 Analysis	5		
1.3 The study area	13		
CHAPTER 2: BIRD ABUNDANCE AND DISTRIBUTION	35		
2.1 Introduction	35		
2.2 Methods	39		
2.3 Results	41		
2.4 Discussion	72		
CHAPTER 3: FORAGING NICHES	82		
3.1 Introduction	82		
3.2 Methods	85		
3.3 Results	88		
3.4 Discussion	107		
CHAPTER 4: SYNTHESIS	117		
REFERENCES	122		
APPENDICES	148		

LIST OF APPENDICES

1	Tree species surrounding each station by tier	148
2	Tree species point height intercepts at each station	152
3	Structural parameters of the vegetation at each station	153
4	BASIC program for calculation of density indices	154
5	Total numbers of birds observed at each station	
	(80 counts)	155
6	Mean bird density at each station (birds per hectare)	156
7	Pearson correlation coefficients of bird species	
	densities with variables of the vegetation	157
8	Mean monthly five-minute bird counts	160
9	Percent of each class of behaviour observed	161
10	Percent foraging use of substrates	162
11	Percent foraging use of tree species	163
12	Percent foraging use of height classes	164
13	Seasonal foraging use of substrates (percent)	165
14	Seasonal foraging use of tree species (percent)	167
15	Seasonal foraging use of height classes (percent)	169
16	Number of birds counted each month on the contour	
	transects	171
17	Number of birds observed near/far at each station	175

LIST OF FIGURES

1.1	Map of the study area	15
1.2	Forest types and mean canopy height of each station	20
1.3	Principal component analysis of tree species	
	distribution (tiers data)	21
1.4	Principal component analysis of tree species	
	distribution (point height intercept data)	22
1.5	Principal component analysis of tree species	
	distribution (tiers data, stations 43-48 excluded)	26
1.6	Principal component analysis of tree species	
	distribution (point height intercept data stations	
	43-48 excluded)	27
1.7	Principal component analysis of forest structure	
	(stations 1-42 only)	28
1.8	Total rainfall at Putara	34
1.9	Monthly maxima and minima temperatures at site C	34
2.1	Effects of wind noise on mean five-minute bird counts	44
2.2	Effects of water noise on mean five-minute bird counts	44
2.3		
	bird counts	45
2.4	Principal component analysis of bird species	
	distribution	53
2.5		20
2.5	species distributions	54
2.6		7
2.0		55
	structure	22

2.7	Mean monthly five-minute bird counts	56
2.8	Principal component analysis of mean monthly	
	five-minute bird counts	59
2.9	Annual cycles of mean five-minute bird counts,	
	effective radii of detection and density indices	62
3.1	Dendrograms of foraging substrate overlaps	95
3.2	Dendrograms of foraging height overlaps	97
3.3	Dendrograms of foraging tree species overlaps	98
3.4	Dendrograms of multidimensional foraging niches	104

•

.

.

viii

LIST OF TABLES

~

1.1	The percentage occurrence of common woody species in	
	the vegetational strata of the study area	17
1.2	Two-way indicator species analysis of plant tiers	18
1.3	Two-way indicator species analysis of point height	
	intercepts	19
1.4	Diversity indices at each station	25
1.5	Mean temperatures within the study area	32
1.6	Mean rainfall within the study area	33
2.1	Quantification of environmental noise	43
2.2	Total numbers of birds observed in five-minute bird	
2.2		
	counts for all species observed in the study area	46
2.3	Mean five-minute bird counts, bird density indices and	
	effective radii sampled by station group	48
2.4	Numbers of birds observed at each group of stations in	
	1983 and 1984	71
3.1	Number of niche observations of each bird species	89
3.2	G values calculated from a comparison of first foraging	
	observation with subsequent foraging observations	94
3.3	Preferential use of tree species by foraging birds	101
3.4	Seasonal foraging niche breadths and evenness	105
3.5	Mean seasonal foraging overlaps	106
3.6	Comparison of New Zealand bird species foraging site	
	utilisations between studies	113

.