Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A QUALITY CONTROL SYSTEM FOR THE MANUFACTURE OF SPRAY DRIED MILK POWDERS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Technology at Massey University

CHRISTOPHER GROSVENOR BLOORE

February, 1981

To my wife, Jane

,

24

1

ABSTRACT

In the last decade the New Zealand dairy industry has greatly increased its spray drying capacity in response to the world market demand for spray dried milk products. Powder specifications are becoming increasingly complex and smaller quantities of each product are required as the number of different products grows. These factors have made it necessary to learn more about the way processing variables influence the product quality in order to improve product quality control.

A computer simulation model providing a complete description of the drier behaviour was developed from a series of experiments on a pilot scale spray drier. This took the form of regression equations relating the quality parameters of skim milk powder to the drier operating variables and the composition and physical properties of the skim milk. The model was then used in the development of a quality control system and also to simulate and evaluate a variety of commercial operating practices.

The characteristics of the spray drying process were investigated using the pilot plant evaporator and spray drier at the New Zealand Dairy Research Institute, which had been fully instrumented and interfaced to a process control computer. The drier studies confirmed the importance of low concentrate viscosity in the production of good quality milk powder. This could be achieved by keeping concentrate holding times to a minimum and by using high temperature, short time preheat treatments. The protein content of the skim milk was found to be the major determinant in the seasonal changes observed in concentrate viscosity, high protein contents giving high viscosities.

The study of the hydrodynamics of centrifugal pressure nozzle atomisers revealed that the nozzles used in milk powder drying fall into two distinct categories, each with characteristic behaviour in response to variations in fluid viscosity. The magnitude of the viscosity effect depends on the ratio of the swirl chamber and orifice diameters. The large capacity nozzles used in tall-form driers exhibit a marked decrease in pressure drop at constant flowrate as the viscosity of the concentrate fed to them is increased. This was found to play a very important part in determining the overall behaviour of the drier. Five operating variables; the inlet air temperature and the concentrate total solids, feedrate, atomising pressure and temperature, proved to be necessary and sufficient to describe the drier performance and to predict the properties of the powder. Simulation studies of two outlet air temperature control strategies clearly demonstrated the superiority of inlet air temperature manipulation over that of concentrate feedrate, for driers employing large capacity nozzles.

The drier model was used in the selection, tuning and evaluation of a quality control system based on the SIMPLEX Evolutionary Operation scheme of Spendley et al. The process of spray drying milk powders presents several control problems. There are a number of quality parameters assessed by laboratory analysis, which means that feedback is multivariable, delayed and subject to error. Furthermore, the processing characteristics of milk change with time. A single measure of the powder quality was obtained from penalty functions based on economic considerations. After selection of the SIMPLEX step sizes with the help of the simulation model, a pilot plant trial of the scheme was conducted.

The Simplex evolutionary operation method was found to be a simple robust procedure which rapidly improved the product quality and maintained it in the face of disturbances typical of those likely to occur in commercial operation. The method provides two sets of plant conditions in advance, a feature which permits a substantial increase in the speed of attainment of optimum conditions for processes with setpoint response times similar to the time required to analyse the product quality. The Simplex method is therefore particularly suited to the manufacture of spray dried milk powders.

ACKNOWLEDGEMENTS

The author wishes to record his gratitude to all the technicians and technical officers who over the years performed several thousand often extremely tedious analyses of milk powder samples. The help furnished by the staff of the Analytical Chemistry Section of the NZDRI and the Auckland Regional Laboratory of the Dairy Division of the Ministry of Agriculture and Fisheries is also gratefully acknowledged.

Valuable advice and assistance on experimental design and statistical analysis was provided by R. H. Fletcher and I. R. Hughes, and all the members of the Milk Powders and Drying section provided advice, support and encouragement. In particular, the author wishes to thank Mr A. G. Baucke, who operated the pilot plant with great élan, for his many invaluable contributions to the experimental work. The help of Dr W. B. Sanderson, Dr D. J. Sandoz and Dr I. F. Boag as supervisors is also acknowledged with thanks.

The work described in this thesis was built on the foundation laid by the Milk Powder Control and Information Project, and thanks are due to all those who participated in that venture.

Finally, the author wishes to thank his employers, the NZDRI, who provided the research facilities, for their financial support.

TABLE OF CONTENTS page ABSTRACT ii ACKNOWLEDGEMENTS iv TABLE OF CONTENTS vii LIST OF ILLUSTRATIONS LIST OF TABLES ix CHAPTER 1 GENERAL INTRODUCTION PART I THE DRIER MODEL CHAPTER 2 INTRODUCTION 2.1 Spray Drying in the New Zealand Dairy Industry 2.2 Literature Review CHAPTER 3 EXPERIMENTAL 3.1 The Pilot Scale Equipment 3.2 Process Instruments and Actuators 3.3 Instrument Calibration 24 3.4 Laboratory Analyses 25 Experimental Considerations 3.5 3.6 Experimental Designs and Methods CHAPTER 4 RESULTS 4.1 Nozzle Hydrodynamics 4.2 Factors Affecting Concentrate Viscosity 51 4.3 The Effects of some Drier Design Variables 61

v

1

3

3

3

8

13

13

20

29

34

41

41

80

The Effects of the Drier Operating Variables 4.4 66

CHAPTER 5 THE DRIER MODEL

5.1	The Model Structure	80
5.2	The Simulation Program	82
5.3	Some Simulation Results	88

(6.1	Methodology	96
(6.2	Atomisation	96
	6.3	Concentrate Viscosity	98
(6.4	Drier Design Features	99
(6.5	Operating Variables	100
(6.6	The Simulation Model	102
PART II OP	TIMIS	ATION	104
CHAPTER 7	INTRO	DUCTION	104
	7.1	Evolutionary Optimisation Techniques	105
i	7.2	The Choice of Optimisation Scheme	107
CHAPTER 8	THE S	IMPLEX SCHEME	108
٤	8.1	The Simplex Algorithm	108
٤	8.2	Choice of Manipulated Variables	112
٤	8.3	Choice of Step Sizes	113
٤	8.4	Ranking the Responses	115
CHAPTER 9 1	RESUL	IS AND DISCUSSION	122
9	9.1	Pilot Plant Trial Results	122
c.	9.2	Simulation Results	126
PART III CON	NCLUS	IONS	133
CHAPTER 10 (CONCLU	USIONS	133
APPENDIX I	Pi	lot Plant Equipment	135
APPENDIX II	Pil	lot Plant and Laboratory Instrumentation	136
APPENDIX II	I Exj	perimental Design Matrices	138
APPENDIX IV	Exa	ample of Statistical Model-Building	143
APPENDIX V	Met	thods for Laboratory Analyses	146
APPENDIX VI	Exj	perimental Data	149
APPENDIX VI	I Res	sults of Simplex Pilot Plant Trial	164

REFERENCES

5

167

4.10) Graph illustrating the effect of preheat conditions on WPNI	59
4.11	Moisture contours	68
4.12	2 Solubility Index contours	70
4.13	Bulk density (100 taps) contours	72
4.14	Particle density contours	74
4.15	Mean particle size (D) contours	75
4.16	Outlet air temperature contours	77
4.17	Graphs showing the area of drier operation satisfying the	
	requirement that: M \preccurlyeq 4.0 % and SI \preccurlyeq 0.5 ml	78
5.1	A flowchart of the drier simulation model	83
5.2	The simulation model subroutine solving the equations	
	relating the nozzle pressure, flowrate and viscosity and	
	the concentrate viscosity total solids and temperature	86
5.3	The simulation model subroutine implementing the outlet	
	temperature controllers	89
5.4	The effects of inlet temperature, total solids and	
	flowrate at fixed concentrate temperature	90
5.5	The effects of inlet temperature, total solids and	
	atomising pressure at fixed concentrate temperature	92
5.6	Graphs of moisture vs outlet temperature for two types	
	of outlet temperature controller	93
5.7	Graphs of SI vs outlet temperature for two types of	
	outlet temperature controller	95
8.1	Three successive moves for the Simplex EVOP scheme	111
8.2	Graphs of atomising pressure against concentrate	
	temperature at a constant feedrate of 280 l/h and three	
	concentrate total solids	114
8.3	Graphs of penalty functions for moisture, SI, bulk density	
	and milk solids throughput	120
9.1	The results of the first day of the pilot plant trial	
	of the Simplex scheme	123
9.2	The results of the second day of the pilot plant trial	
	of the Simplex scheme	125
9.3	The results of the third and fourth days of the pilot plant	
	trial of the Simplex scheme	127

2.1	Numbers of Spray Driers Installed in the	
	New Zealand Dairy Industry, 1940 to 1980	5
3.1	A schematic diagram of the Wiegand evaporator	14
3.2	A photograph of the spray drier feed line showing the	
	instruments as installed during the 1977/78 dairying season	16
3.3	A photograph of the spray drier feed line showing the	
	instruments as installed during the 1978/79 and 1979/80	
	dairying seasons	16
3.4	A sketch showing the general arrangement of the Delaval	
	spray drier	17
3.5	A sketch of the device constructed to allow the height of	
	the nozzle to be varied	18
3.6	A diagram showing two of the drier ducting arrangements	19
3.7	A Graph showing the run order for replicate 10 of the	
	main seasonal experiment	35
4.1	Graph of flow number vs viscosity for some Delavan SDX	
	series and Spraying Systems SX series nozzles	42
4.2	Drawings of the nozzles tested	44
4.3	Graphs of pressure vs viscosity at various flowrates for	
	a selection of spray nozzles	47
4.4	The effect of viscosity on the pressure-flowrate	
	relationship for a Delavan SB 54 nozzle	49
4.5	Bar charts of the concentrate viscosity and protein content	
	over two dairying seasons	53
4.6	Bar charts of the concentrate viscosity and the milk	
	mineral content over the two seasons	54
4.7	Graphs of concentrate viscosity against temperature for	
	various total solids and protein contents	55
4.8	Graphs illustrating the effect of preheat conditions on	
	the viscosity of concentrate measured immediately after	
	the concentrate heater	57
4.9	Graphs illustrating the effect of preheat conditions on	
	the viscosity of concentrate measured 150 s after the	
	concentrate heater	58

9.4 The results of a simulation run with the same initial conditions as the third and fourth days of the pilot plant trial of the Simplex scheme
131

LIST OF TABLES

2-1	Spray Drier Numbers and Capacities in Mid-1980	4
2-2	Average Spray Drier Capacities (tonne/h)	6
2-3	Air Heaters Fitted to Each Type of Spray Drier	6
2-4	Nozzle Atomising Drier Operating Variables and	
	their Control Systems	7
2-5	The Effects of Processing Variables on Skim Milk Powder	
	Properties Found by Amundson	11
3-1	Variables of Interest in Describing the Behaviour of the	
	Spray Drier	30
3-2	Times Required to Change Variable Levels and the Accuracy	
	of their Control and Measurement	31
3-3	Structural Array for Spray Drying Variables	32
4-1	Dimensions of Atomiser Nozzles Tested	44
4-2	The Effect of Nozzle Geometry on the Viscosity Sensitivity	
	of the Nozzles	50
4-3	The Effects of Preheat Conditions and Concentrate	
	Total Solids on the Rate of Viscosity Increase at 45 C	60
4-4	Corrected Responses for the Throat Diameter - Nozzle	
	Position Experiment	61
4-5	The Effects of Throat Diameter and Nozzle Position on the	
	Powder Bulk Density	62
4-6	The Effects of Nozzle Orifice Size and Swirl Chamber	
	and Drier Feedrate	63
4-7	The Interaction Between Nozzle Orifice Size and Swirl Chamber	63
× 4- 8	The Effects of Inlet Air Temperature, Nozzle Orifice Size	
	and Concentrate Viscosity	64
4-9	Mean Values of the Responses for Various Combinations of	
	the Independent Variables	64

5 - 1	Options for Operating Spray Driers	81
5-2	Standard Deviations and Reporting Precision for	
	Laboratory Analyses	87
8-1	Choices of Manipulated Variables	113
8-2	Step Sizes for the Manipulated Variables	115
9-1	The Effect of Departures from the Optimal Step Sizes	128
9-2	The Effect of Changing the Moisture and SI Targets on the	
	Sum of P over 300 Points and the Number of Times the	
	Product Exceeded Specification	

•

۹.,

,