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ABSTRACT

Inbreeding coefficients at one and two loci are evaluated for
recurrent selection and overlapping generations selection schemes.
These mating schemes have found great use in plant and animal breeding.
The inbreeding coefficients are derived in terms of probability
measures that genes are identical by descent. The procedures
demonstrated here can be applied to any regular system of mating

between individuals or groups of individuals.

For individual mating systems, two digametic individual measures
are defined and employed in the derivation of a recurrence formula
for the one-locus inbreeding coefficients. Two further classes of
individual measures, trigametic and quadrigametic, are required for
transition from one generation to the previous one to allow the
calculation of the inbreeding coefficients for the two-locus case.
This process is illustrated for the case of recurrent selection. For
recurrent selection populations with various imposed assumptions,
numerical values of the average inbreeding coefficients at the end of
the breeding cycles are listed to demonstrate the effects of linkage
and population size on the accrual of inbreeding and hence of

homozygosity.

For group mating systems, gametic set measures are needed in
addition to the average individual measures. Transition equations
relating values in successive generations of gametic set measures are
established for the calculation of the group inbreeding coefficients.
As an illustration of this process, the one- and two-locus inbreeding
coefficients for populations with overlapping generations are
evaluated. Both monoecious and dioecious populations of diploids
are considered and family size is not restricted to being Poisson.
Inbreeding effective numbers found by the exact treatment here are

compared to various previous approximate results.
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il INTRODUCTION

Since SEWALL WRIGHT (1921) introduced the concept.of the inbreeding
coefficient F, in terms of the correlation between uniting gametes,
population geneticists have found great use for such a measure as it
summarizes information about the mating system. Later, BARTLETT and
HALDANE (1934) using a generation matrix of mating types and MALECOT
(1948) using probability arguments succeeded in providing alternative
methods of calculating inbreeding coefficients. Of these, MALECOT's
definition of the coefficient as the probability of identity by descent
of homologous genes within an individual is more widely accepted because

it leads to easier application.

The reason for choosing the inbreeding coefficient F, as a basis
for the analysis of one-locus systems is partly the ease with which it
can be calculated. WRIGHT (1922) gave the formula for the inbreeding

coefficient of an individual I in a given pedigree as

n+n_ 1+ F
_ bl 1A
Fio = L (2) (———7;———

17 )

where A denotes an arbitrary common ancestor n, and n, generations

1 2
above the two parents of I. The summation extends over all such
different pathways and ancestors. For regular systems of mating,
MALECOT (1948) showed that recurrence formulas can be established for
the evaluation of the inbreeding coefficients. His idea was extended

by COCKERHAM (1967) to include matings between groups of individuals.

The applications of the one-locus inbreeding coefficients have been
well studied (e.g. KEMPTHORNE 1957). In the first place, it indicates
the effect of finite population size or a regular system of mating on
a population of breeding individuals, thus allowing different systems
to be compared. Secondly, a knowledge of the properties of the initial
population together with the inbreeding coefficient allows the evaluation
of the mean and the variance of a quantitative trait. The calculation
of the covariance between the genotypic values of inbred individuals
requires the introduction of the four-gene measures as discussed by

WEIR and COCKERHAM (1977).



Many characters of plants and animals exhibit continuous variation
as a result of the simultaneous segregation of many genes at many loci
affecting the characters. On the other hand, a character controlled
by certain loci may be affe¢ted by selection practised on other loci.
The analysis of characters in these situations necessitates the study
of multi-locus theory. While the one-locus quantitative theory involves
the dependencies between the action or frequencies of allelic genes
caused by dominance or inbreeding, the consideration of the effect of
two or more loci involves the further complications of epistasis,

linkage and linkage disequilibrium.

As the analysis of one-locus systems requires the knowledge of the
inbreeding coefficient F , it is natural that an analogous measure, the
two-locus inbreeding coefficient P, should be of considerable help in
the study of two-locus models. This quantity gives the probability that
two linked autosomal loci of a diploid individual carry genes identical
by descent. COCKERHAM and WEIR (1968) and WEIR and COCKERHAM (1969a)
were able to establish an algorithm by which the two-locus inbreeding
coefficient can be calculated and they demonstrated the procedure for
sib mating and for any pedigree mating of individuals. The algorithm
requires the introduction of trigametic and quadrigametic measures in
addition to the usual digametic ones, the one-locus inbreeding and
coancestry coefficients needed for the one-locus theory. WEIR and
COCKERHAM (1969 b) also used similar arguments in conjunction with
those of COCKERHAM (1967) to develop a procedure for the evaluation
of two-locus group inbreeding coefficients for systems of matings

between groups of individuals.

The two-locus inbreeding coefficient allows an identity disequi-

librium to be defined
2
nll = F]l = (Fl)

which measures the dependence of two genes at two loci and hence increases
with linkage. This quantity is zero for any pedigree mating in the absence
of linkage as then the relationship F,, = (Fl)2 always holds. For any
regular system of mating, it is zero for a non-inbred initial population

or when complete double identity is obtained and is positive for all

other generations.



The two-locus inbreeding coefficient, though characterizing the
effects of linkage and mating system on the identity by descent of
two pairs of linked genes, does not by itself provide the expression
of joint genotypic frequencies at two loci. To offer complete solutions
to two-locus problems, a complete set of four-gene parameters needs to

be set up.

A pair of genes is said to be equivalent by descent if both genes

' at one

descend from genes on one initial gamete. For two genes a, a
locus and two genes b, b' at a second locus, a class of individual

descent measures was defined which gives the probabilities of the various
arrangements of these four genes on gametes in the initial population
(COCKERHAM and WEIR 1973, 1977, WEIR and COCKERHAM 1973, 1974). The
measures thus relate the structure of any generation to that of an
initial population. A set of eight summary components of descent mea-
sures was chosen to work with as they are simpler to evaluate and to

apply than the original set of measures. General procedures for cal-
culating these summary measures have been established. When the structure
of the initial population is known, these summary measures lead to
expressions for two-locus genotypic frequencies and various disequilibria
functions, and also to the means and variances of quantitative characters
(WEIR and COCKERHAM 1977). The last paper also mentioned that some
eight-gene descent measures would need to be defined in dealing with the

problem of covariances between individuals.

When two genes at each of two loci are simultaneously equivalent
by descent, their identity by descent is ensured. Therefore two com-
ponents of the summary measures are the one-and two-locus inbreeding
oefficients. In particular, in the absence of initial linkage disequi-
librium, these two coefficients are sufficient to express the two-locus
genetypic frequencies, means and variances in terms of the properties

of an initial population.

The two-locus inbreeding coefficient thus contains a great deal
of information about the two-locus structure of a population as the
one-locus coefficient does for the one-locus model. It is the purpose
of the present work to illustrate further the evaluation of the two-

locus inbreeding coefficients in the cases of recurrent selection



and overlapping generations selection schemes. These are schemes
designed to slow down the rate of inbreeding in selection programmes
and the inbreeding coefficients would give indications of the approach
to homozygosity. The literature appropriate to the two mating schemes

will be reviewed when they are introduced in Chapters 3 and 4.

Techniques developed for population genetics are thus being applied
to quantitative genetics. The mating schemes studied contain the com-
plication that specific rules are stated for the selection of members
of a generation to serve as parents of the next generation. An indication
of the complexity is the fact that this thesis offers the first exact

and correct evaluation of even the one-locus inbreeding coefficients.

Just as inbreeding measures summarize information about mating
systems, effective numbers can be defined and summarize the behaviour
of inbreeding measures. Such effective numbers will be discussed when

appropriate throughout the thesis.



2 REVIEW OF ONE- AND TWO-LOCUS INBREEDING MEASURES

2.1 One-Locus Individual Measures

For inbreeding at one locus, the identity status of pairs of genes
a, a' at the locus is needed. A probability measure X with two compo-

nents according to the identity relations is defined as

X, (a,a") Prob (aza')

X(a,a') =
X,(a,a") Prob (a%a')

where the equivalence sign = means identity by descent. No restriction

is placed on the number of alleles.

X is a digametic measure as a and a' must be carried on two distinct
gametes. When dealing with individual mating schemes, two types of the
measure need to be distinguished according to whether or not the two
gametes unite and these two are sufficient for the establishment of

recurrence relations for the evaluation of the one-locus inbreeding

coefficient :
f& = X(a,a' : a,a' are on two gametes uniting to form
individual I)
QJK =_§(a,a' : a,a' are on two gametes taken from

individuals J and K respectively).

Evidently, FII is the inbreeding coefficient of I,

Fo,. 1s the panmictic coefficient of I,

I

elJK is the coancestry coefficient of J and K,

and FlI if I is the offspring of J and K.

= By



2% One-Locus Group Measures

To study systems of matings between groups of individuals, let
I, J, K denote individuals Belonging to groups i, j and k respectively.
Thie coancestry between groups j and k is determined by the identity
status of genes on two gametes taken randomly from the two gametic
output sets provided by groups j and k respectively. It is referred
to as a gametic set measure. To take account of the gametic sampling

scheme, it is necessary to specify the groups that receive the gametes.

3% K ° X(a,a' : a is on one gamete in the gametic set that
P d group p receives from group j and a' is on

one gamete in the gametic set that group q

receives from group k).

The inbreeding function of group i’.zi’ is given by the average

coancestry between its parental groups, j and k say

averages taken over all such pairs of gametes. Recurrence relations are
then established between values in successive generations of a complete

set of digametic set measures for the evaluation of Ei'

A difficulty arises when one group acts as a donor of both gametes

for a gametic set measure, for example Y. . . The two gametes taken

P q
from the same group may have come from the same individual and there is

a possibility of the two genes being automatically identical by descent.
This situation prohibits the expansion of gametic set measures back
directly to gametic set measures of the previous generation. Individual
measures need to be defined to identify cases that the two gametes of

interest have come from the same or two distinct individuals

EJ Kk = X(a,a' : a is on a gamete taken from individual J in
J group j and a' is on a gamete from individual

K in group k).



Primes are used to denote distinct individuals. For example, the
average individual coancestry function for two distinct members of

grouwp j is written as 6 The procedure is thus to express a gametic

=J.J!
13
set measure as a linear combination of individual measures by using the
gametic sampling probabilities, and then to expand these individual mea-
sures back to gametic set measures of the previous generation (WEIR

and COCKERHAM 1969b).

2.3 Two-Locus Individual Measures

The following work serves as an extension of Section 2.1 and
is based on the work of WEIR and COCKERHAM (1968a). TFor two loci with
genes a and b respectively, the identity status of two pairs of genes,
a, a' and b, b' is needed. The usual procedure is to define a four

component vector for these gene pairs as

-Xll(ab,a'b'; Prob(aza', bzb')

Xlo(ab,a'b') Prob(aza', b#b')

zﬂab,a'b') - XOI(ab,a'b‘) - Prob(aia‘, b=b')
Xpo(absa'b") Prob(a#a', bib')

| B - 4

To evaluate such two-locus inbreeding measures, it is necessary to
distinguish the cases where the pairs of genes are carried on two, three
or four gametes. There are two digametic measures, just as there are

in the one-locus case

E& = X(ab,a'b' : ab,a'b' are on the two gametes uniting to
form individual I),
QJK = Zﬂab,a'b‘ : ab,a'b' are on two gametes taken from

individuals J and K, respectively).

The trigametic and quadrigametic measures are written as Y and ¢,

respectively

lI‘JH = X(ab,a'b' : ab, ajb' are on three gametes taken from
bl

individuals I, J, and K, respectively),



8 = X(ab,a'b' : a,b,a',b' are on four gametes taken from
2IJsKL —

individuals I, J, K and L, respectively).

The four components of each measure sum to unity. The first and
fourth component of F._, giving the probabilities of double identity

and double non-identity by descent are termed the two-locus inbreeding

and panmictic coefficients respectively for individual I.

One locus measures may be found by summing appropriate components

of two-locus measures as shown in Table 2.1.

Table 2.1 Relationship between One- and Two-locus Measures

Fiig Fio; Fi..=F

Fo1p FOOI Fo.;=Fo;

FoapsFip Foop=Fog i

O11 O104y O1-gx781 ¢

Bo1 Bo04y B0 g0k

0. 1517015y 8405780 1

Yipge Tegk |8

Y‘“I;JK Yoor. gk O0-1570015

O 1011y BeopyOory 1




Table 2.1 (continued)

S11g;k1, S1015.k1, 1 1701y
801151 So015.y1 B0 1,001k
O.151%015, 80517005y, L

For example, the one-locus coefficient of an individual I is given by

FII = FIII % F1oI = F11I 3 F01I

with the assumption that both loci are equally inbred. Once the
one-locus coefficients are known, the tables demonstrate that only
one component of each of the two-locus measures need be calculated
in order to determine all the measures. For convenience, the compo-

nent Xgo for double non-identity is usually chosen to work with.

The linkage parameter is defined so that the gametic array

produced by an individual with genotype ab / a'b' is

1+A % 1-A . 1-A _,
(T ab, m a'b . Tab s m a'b).
2.4 Two-Locus Group Measures

In analysing group mating systems at two loci, WEIR and COCKERHAM

(1969b) have defined three classes of gametic set measures

yj K = X(ab,a'b' : ab are on one gamete in the gametic set
P d that group p receives from group j and a'b’

are on one gamete in the gametic set that

group q receives from group k),

Viodx = X(ab,a'b' : ab is on one gamete in the gametic set
that group p receives from group i, a'
is on one gamete in the gametic set that
group q receives from group j and b' is
on one gamete in the gametic set that

group r receives from group k),
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Ci 3 sk & = X(ab,a'b' : a,b,a',b' are on four gametes in the
= : LS
pra- s gametic sets that groups p,q,r,s

receive from groups i,j,k,%, respectively).

The procedure for the evaluation of the two-locus group inbreeding
function zi is to first express it as the coancestry function between

the parental groups, j and k say,

E.: =L
—i E%.k.
ivi
and then to establish recurrence relations for a complete set of gametic
set measures for the calculation of Y. K
Ii%1
Just as in the one-locus case, whenever a group appears more than
once as a donor in the subscript of a gametic set measure, the expan-
sion procedure requires an intermediate stage of individual measures.
Let I,J,K,L denote members of group i,j,k,£, respectively, three types

of individual measures are distinguished

QJ K = X(ab,a'b' : ab, a'b' are on two gametes taken from
1K individuals J, K in groups j and k,

respectively),

lI 2 J K = zﬂab,a'b' : ab, a',b' are on three gametes taken
& s from individuals I,J,K in groups 1i,]
and k, respectively),
QI.J.;KkL = X(ab,a'b' : a,b,a',b' are on four gametes taken
3 9 2

from individuals I,J,K,L in groups i,

j,k and &, respectively).
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3 ONE- AND TWO-LOCUS INBREEDING FOR RECURRENT SELECTION

3.1 Introduction

With the inbreeding measures defined generally, and the machinery
developed by COCKERHAM and WEIR (1968) for the calculation of the two-
locus inbreeding coefficients, in this Chapter a one- and two-locus
analysis of inbreeding for a population undergoing recurrent selection

is presented.

The use of recurrent selection (RS) procedures in plant breeding
is now well established. As PENNY, et al (1963) point out in their
review, the recombination or crossing phase in an RS programme slows the
rapid approach to homozygosity which limits selection under selfing
systems. To monitor the level of homozygosity in RS programme, it is
convenient to calculate inbreeding coefficients. These coefficients
indicate identity by descent and so do not give a complete description
of homozygosity. They do provide lower bounds, however, (CAIN and
HINKELMANN, 1970) and the algebra needed to establish recurrence
equations for inbreeding coefficients may also be applied directly

to measures of homozygosity.

A one-locus coefficient was calculated by SPRAGUE, et al (1952)
and a quite detailed discussion of one- and two-locus coefficients was
given by CAIN and HINKELMANN (1970, 1972). These last two papers
contain some errors and do not seem to follow the most natural develop-
ment of inbreeding measures. One difficulty with the papers of CAIN
and HINKELMANN is that they are based on the approach of SHIKATA (e.g.,
SHIKATA, 1965) which is of 1imited application (e.g., WEIR, 1971).

F

382 Mating and Selection Schemes

The population consists of diploid individuals capable of both
selfing and intercrossing. There is no restriction on the number of
alleles at each of the loci studied. A constant number of progeny per
individual is assumed and possible viability effects are ignored. The

development will be based on one progeny per mating (self or intercross).



.2

Initially N non-inbred and unrelated individuals are drawn from
a source population and selfed. The resulting N offspring are crossed
in -all possible pairs and then another selfing phase entered. The
population size would quickly become unmanageable of course for there
would be M = N(N-1)/2 individuals at the end of the first intercross
phase, M(M-1)/2 at the end of the second, and so on.

Selection will be supposed to be practised by selecting N indivi-
duals at the end of each selfing phase. 'The basis for this selection
will not be discussed, but note (CAIN and HINKELMANN, 1970) that this
treatment includes such schemes as simple RS, reciprocal RS and RS for
general and specific combining ability. The calculations made will
include all of the M individuals at the end of each intercross phase.
Selection will be supposed to be at random, so tnat it is necessary to
make use of sampling probabilities. Any mating scheme in which there
is no choice of mates is expressly excluded from consideration here,
but may be analysed by other methods (e.g., WEIR and COCKERHAM, 1969a).
Most of the discussion will be for the case where N individuals are
chosen quite at random from the M at the end of each selfing phase,
and so would be appropriate for a control population. Following
CAIN and HINKELMANN (1970), two schemes of random selection with
constraints will be considered. These are the so called "minimum'" and
"maximum" inbreeding schemes. In the former case, each of the selected
individuals contributes exactly two gametes to the next group of selected
individuals. In the latter case, one of the selected individuals contri-
butes N-1 gametes, two contribute two gametes while the remaining N-3
individuals each contributes exactly one gamete to the next group of
selected individuals. The mating and selection schemes are illustrated
for N = 4 in Figure 3.1. Random selection is when the four individuals
selected in generation 1 of a cycle are selected without regard to gametic

contributions in the previous cycle.

The quantities to be determined are the average inbreeding coeffi-
cients for the intercross and selfed populations, so that all members of
these populations must be considered whether or not they contribute to

succeeding generations.
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Figure 3.1. Mating and selection schemes for N = 4, Selected

individuals are shown as solid circles.
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3k 13 One-Locus Case

The inbreeding coefficient of a random one of the M members, say
A, of generation 2 (intercrossed generation) of cycle n can be written
as FIA or as F1(2 Y As not all members of this generation have the
bl

same pedigree, FIA is an average measure. is first expressed as

FlA
elBB" the coancestry of two of the N distinct individuals B and B'
chosen at random from generation 1 (selected selfed generation) of
cycle n. The process of tracing gametes back in time continues until
a set of transition equations is established which allow the calcula-

tion of F1 and of FlB'

A

K5 & oal Sampling Probabilities for One-Locus Case

If C and C' are the parents of B and B', respectively, they are
distinct members of the selected intercross population (generation 2

of cycle n-1) and

Fia = Binmn = By : (3.3.1)
The selected intercross population refers to the parents of the
selected selfed population. Further expansion back in time requires
account to be taken of whether C and C' have a common parent, with
probability P211, or whether they have four distinct parents, with

probability P For both schemes in Figure 3.1, individual A has

1111°
grandparents C, C' with a common parent D, while the grandparents of
individual A' do not have a common parent. In general, when a set of
2m gametes received by m members of generation 2 of cycle n is consi-

dered, Pt + " is the probability that these gametes are from r
PPN

individuals in generation 1 of cycle n and that the ith of these

individuals contributed ts of the gametes. This requires that the

ti sum to 2m.

The four gametes received by distinct individuals C, C' necessarily
come from three or four individuals unless N, the selected population

size, is equal to 2. This provides

P211 1111
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For the unrestricted random sampling scheme, N =2 3, the sampling
probabilities may be taken to refer to four gametes uniting to form
any two of the M crossed offspring in generation 2 of a cycle. The
number of such pairs of offspring is (2) and, since selection is
random, the number of ways in which three distinct parents can be
chosen for a pair is (g) . Finally, the number of ways in which one
of the three parents can be chosen to contribute two gametes, and

become the common parent to the pair of individuals, is (i) so that

_ N 3//’M oy .

Pogq © (3)(1) (2)— T * © = , Nz23 . (3.3.2)
For the restricted random selection schemes, as in CAIN and
HINKELMANN (1970),let a; denote the number of gametes contributed by
the ith selected individual to the next generation of selected indi-

viduals. These a; must satisfy

1sa sN-1 , .g a, = N
1=1

and may be regarded as the number of gametes the ith selected selfed
individual contributes to the following generation of selected inter-
crossed individuals. Now P211 can be regarded as the probability that
a pair of individuals from the selected intercross population have a
common parent in the preceding selected self population. There are (g)
such pairs of individuals and ? ai(ai—l)/Q pairs of gametes from a

single parent, so that *

P211 = ? ai(ai—l)/N(N—l) . (3.3.3)

Figure 3.1 shows the ai's for the case N = 4. For minimum

inbreeding, a; = 2 for i = 1,2,...N so that

B 2/(N-1) , N2=3
while for maximum inbreeding it is appropriate to write a = N-1,
a, = a, -~ 2, a; = 1 for i = 4,5,...N and hence
P = (N° -3N+6)/N(N-1) , N =4 . (3.3.4)

211
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Note that, as expected, P211 for unrestricted random selection is
greater than that for minimum inbreeding and less than that for maximum

inbreeding for all N = Y.

k32 Recurrence Formulae for N =2 4 for One-Locus Case

If primes are used to denote distinct random individuals, equation
(3.3.1) can be expressed as

6 BoslH

].CC\‘ = 211 38 )/u + P 8 . (3.3.5)

ipp T *“1ppe 1111°¥DD"

From the usual result for the coancestry of an individual with itself

)/2 (3.3.6)

and these expressions may be substituted into (3.3.5) which, with
elDD' written as FlC’ gives

Fip = 8P,,,/16 + (3P, , + WP

A )Flc/u + P

Fip/16.  (3.3.7)

1111 211

Recall that D, D' are any two of the selected selfed individuals, while
@ Hn FIC refers to any of the M offspring obtained by crossing these.
In general then, the average inbreeding for the whole of the

intercross generation follows from (3.3.7) as

Fio,my = 3Fpq1716 + (=P, 0 /WF (5 (1)

+ P (3.3.8)

211}“1(2,11—2)/16

and that for the whole of the selfed generation follows from (3.3.6)
as
F = (1 + - BlasSn
1(1,n) ( F1(2,n-1))/2 Eait))
While any initial conditions at all may be accommodated, it is usual
to take Fl(g,o) = F1(2,1) = 0, where F1(2,o) is for the initial N

individuals.
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For unrestricted random selection, substitution of P211 from
(3.3.2) into (3.3.8) gives

3 N~ bl

Fi(a,n) ~ s T W1 Fi(2,n-1) ¥ GO D) Fico,n-2)  (3-3-10)

which corrects equations (3.1), (3.2) of CAIN and HINKELMANN (1970).

For restricted random selection, if P211 from (3.3.3) is substituted
into (3.3.8),a result is obtained similar to that in equation (6.1) of
CAIN and HINKELMANN (1970), who refer to this case as effective direc-

tional selection.

In the maximum inbreeding case there is the unusual result that
average inbreeding increases with population size. This is because,

for N 2 6, P is an increasing function of N. As N increases, there

211
is a greater chance that any two members of the selected intercross
generation have a common parent. This extreme case is less likely to
occur by chance under unrestricted random selection as N increases,

however.

B33 Recurrence Formulae for N < 4 for One-Locus Case

For a population to be maintained at size less than four, there
can be no selection since M < N and the situation is really outside
the scope of this Chapter. For N=1 the system becomes the simple selfing
case with no scope for intercrossing. For N = 3 each individual always

contributes exactly two gametes to succeeding generations, and, from

either (3.3.2) or (3.3.3), P211 = 1. Equation (3.3.8) does reduce to
3 3 1
=Tty ET . .
Fl(2,n) 16 4 F1(2,n-1) T 16 Fl(g,n_g) (3.3.11)

as given in (6.1) of CAIN and HINKELMANN (1970).

To maintain a population of size N = 2, it would be necessary for
the pair of individuals in each intercrossing phase to leave two off-
spring instead of one. The system then reduces to one of alternating

selfing and full sib mating, for which the appropriate recurrence
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formula is
1

Fieo,n-1) ¥ 8 F1(2,n-2)" (3.3.12)

e (3] gp,
FI(2,n) 8 * 2

Eqﬁation (3.3.9) is still to be used in conjunction with (3.3.11)
and (3.3.12).

3.4 Two-Locus Case

For inbreeding at two loci, the identity status of two pairs of
genes , a,a' at one locus and b,b' at another locus needs to be consi-
dered. The four genes may be carried on two, three or four distinct
gametes and hence, in addition to the digametic measures sufficient
for the one-locus analysis, two further classes of measures, trigametic
and quadrigametic, are required for transition from one cycle to the
previous one to allow the calculation of the two-locus inbreeding

function.

From Table 2.1, it is evident that, to determine the four com-
ponents of the inbreeding function, the only information needed is
one of the components in addition to the one-locus coefficients, as
for example, F,,= Fyy + 2F;-1. It will be convenient to work with
the two-locus panmictic coefficient,and the corresponding (fourth)

components of other measures.

For further convenience the following average measures are defined

Yr.3k ok * Yr,0?/2 o
S0 T Cuoge t S1aud/? o
S 7 Gt Stonik t S o S/t

Expansions of two-locus measures make use of the linkage parameter

A which was defined on Page 9. The one-locus situation corresponds to
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A=1, for then the two loci are completely linked and a and b are
transmitted as one gene. Independent transmission of a and b occurs

when A=0.

3.4.1 Selfing Phase Expansions for Two-Locus Case

The general method of calculating F for any generation follows
that for the one-locus coefficient F,. Starting with a random member
A of generation 2 of cycle n, EA is expressed as the two-locus coancestry

coefficient of its distinct parents

By = gBB' and Fog, = Oggpp (3.4.1)

The tracing of the genes received by A back through the selfing
phase is now more complicated since the four genes may be carried on
two, three or four gametes in that phase. In particular, if indivi-
dual B receives gametes aCbC’ a'b! from its single parent C and trans-

cc
mits gamete aBbB to individual A, then aBbBiS traced back to the array

1+ A i, 1-A _, 1-A .

& et w et R e TR e
and similarly for the gamete transmitted from B' to A. The two arrays
may be written as the margins of a two way table, as in Table 3.1, and

the value of 6 in each of the sixteen cases written in the body

OOBB|
of the table.

Collecting terms in this table shows that

5 C(10)? ’ . =
00BR' ~ m 00! 2 YOOC;C'C'
2 (3.4.2
4 (1_ ) 5 )
TR Weomse'a

where, once again, primes are used to denote distinct rather than

particular individuals.
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Table 3.1 Expansion of 6

00RR!
agby

14 1+ 1-A 1-A

m m m m
e TR 1 1
00RR! aCbC aCbC aCbC aCbC
1+A
- 3crPer | Boocer Boocer Yoocr;ce Yoocr;cc
14X, .,
i 2Pt | Soocer O00cc! Yoocr;cc Yoocrsee

2p+Pp: N

1= ‘
i 3crPer | Yoogserer Yoogyerer Soocescrer Cooceserer
1-A
T 3cPer | Yoogerer Yoogyerer Sooceserer Cooccyerer

Further expansion, now through the intercross phase, will require
the use of sampling probabilities as previously, followed by expansions
through another selfing phase. These selfing expansions will evidently
be for genes received by two, three or four individuals (in generation

1 of cycle n-1).
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For the other digametic measure 0 double non-identity

00BB?
is preserved only if the four genes on the two gametes from B

descend from four distinct genes on the two gametes received by
B from its single parent C. This occurs with probability (1+A2)/u

and hence

2
_ 142

When genes a',b', or when all four genes a,b,a',b', are on separate
gametes from B, double non-identity is preserved with probability
1/4 and

I
YOOB;BB = L} eDOCC L] (3-'4.'4)

il
6°°BB;BB =% %o0cc (3.4.5)

The argument for the expansion of Yoog.gtp! is the same as that
b

for © except that the frequencies for the gametic array of a'b'

00BB'
are all equal to 1/4. Since genes a',b' are on separate gametes,

linkage cannot affect these frequencies. The appropriate expansion is

then
_1+>\6 1
YOOB;BIBl R ooce! + E.YOOC;C|CI
. 1-x 5 (3.4.6)
4 ooccyc'cC!

When genes a and b are also on separate gametes, linkage does not

affect the gametic arrays of either ab or a'b'. The expansion for
600BB,B'B' is then obtained from (3.4.6) by removing A
= 1 1 1
GGOBB;B'BT =3 Bo0ccr t 3 Yooc,crer V3 6°°CC;C'C" (3.4.7)

To preserve double non-identity in expanding Yoop.pp' > 8enes a
>
and a' must be traced back to genes on distinct gametes received by

B from C so that
1

Yoop;pp' = 2 Yooc;ce! (Smue)
By symmetry the expansion for Y°°B~B'B is
b
1 (3.4.9)

Yoop;g'g = 2 Yooc;cre C
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Combining equations (3.4.8) and (3.4.9) leads to the expansion of
the following average measure

1

YOOBW E (3.'4.10)

Yooc,eer -

Consider the expansion of Yoop.5'p"° the gamete carrying ab may
‘)
be a parental type or a recombinant type with probabilities (1+X)/2
or (1-1)/2 respectively. Therefore
1+A 1-2

R / + Ege=g

YOOB;B'B" > ooc,cren > oocc;c'e (3.4.11)

When genes a,b are carried on separate gametes, A may be removed from

equation (3.4.11) giving

1 il
GOOBB;B'B" = 2 Yoogycren t 5‘5ooCC;C'C” (3.4.12)
For § ., genes a and a' must be traced back to genes on

00BB';BB"

two gametes received by B to preserve double non-identity. This occurs

with probability 1/2 since a and a' are on separate gametes and hence

1
GOUBB';BB" -2 600CCV;CCn . (3.4.13)
By symmetry
§ = 1-6 (3.4.14)
00B'B;B"B ? OOC'C;C”C o .

When the same argument is also applied to genes b and b', the
following expansion is obtained

.
8 =58

(3.4.15)
00BB';BB'

09%ce! see!

Equations (3.4.12) - (3.4.14) provide the expansion of the average

quadrigametic measure

£l

d |
+ 5-50 — . (3.4.16)

50&_"_ - ocC';CcC"

BB';BB" & Yo0c;cren

Finally

GOOBB';B"B'" = GODCC';CHC'" - (3-'4.17)
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These equations may be manipulated more easily in matrix form.

For the selfed generation of cycle n, the twelve measures needed can

be written as a vector_g(l,n)

6

1 - .
Y(1,n) [®0gp 5 Pooppr > Yoop,pg > Yoop;g'p' > Yoop,BET °

§ $ 6
Yoop;p's" > ®oopp;pB * ©00BB;B'B' * C00BB';BB' ,

So08B;8'8" * S00BET;BET > Sooppr;prEm ]

and the ten measures needed for the intercross generation of cycle n-1

are written as v

Y(2,0-1) or as v

—(0,n)

L

\ S _—
¥io2.n-1) = LBoopc » Booger 5 Yooo,crer > Yoog,aar » Yoog,cron

6°°CC;C'C' 2 6°°CC';CC' > ©

-

oogeacue” 2 6°°CC‘;CC”

<SOOCC| ‘,C"C'" ] O
Equations (3.4.2) - (3.4.7), (3.4.10) - (3.4.12) and (3.4.15) - (3.4.17)
become

u

)~ @y

Y(0,n) (3.4.18)

where the 12 x 10 matrix Y has elements defined by those equations.

3.4.2 Sampling Probabilities for Two-Locus Case

The previous section showed that account must be taken of gametes
received by two, three or four individuals in generation 1 of a cycle.
The four genes of interest on these gametes can be traced back to genes
on up to four gametes received by individuals in generation 2 of the
previous cycle. Sampling probabilities are needed for these intercross
gametes. To take proper account of the restrictions on mating in the
intercross phase, sampling probabilities are defined foradl 2m gametes
received by m individuals (m = 2,3,4). Appropriate sums of these pro-
babilities are then taken to give the required probabilities for up

to four gametes. The sampling probabilities are given in Table 3.2.



Table 3.2

Gametic Sampling Probabilities
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"Numbers of

Gametes

Parents

(2m) (r)

Symbol

211
P1111

222

2211
P3111

21111

P111111

P2222

P3221

Po2211(1)

Po2211¢i1)

P32111

Pu1111

P311111

Po21111(4)

P221111(ii)

P2111111

Selection Scheme

Unrestricted® Minimum®* Maximum®
Inbreeding  Inbreeding

) 1 (N%-3N+6)/2

(i) %(N13) (Nla)

1 0 1

3 1 2(473)

(i) 5 (N;1)

(HE) e 0

(i) 0(1 if N=4) 0

(O 0 -3

) 0 0

(N 1 0

D) 0 20"

(i) 5 (N;1)

) 0 3

HHE) 7% 0

() TN G

(HHE -5 0



Table 3.2 (continued)
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Numbers of i Selection Scheme
Gametes Parents Symbol Unrestricted® Minimum®%* Maximum#*
(2m) (r) Inbreeding Inbreeding
VB3 1,N-5
¢ Pt Q@) 73 ) 0

o ge s M N
¢ divide by (m)/(r)
FWR o P N

%% divide by (m)/N

#% divide by (1)

tAssumes that N =2 r in any line and that N = 4,

The derivation of the sampling probabilities in Table 3.2 is

illustrated by reference to P211113

the probability that the six

gametes received by three of the N selected members of the intercross

generation descend from five members of the selected self generation

in the previous cycle in such a way that one of the five gives two

gametes. For the unrestricted random selection case,the six gametes

considered are received by any three of the M members of the whole

q g P
intercross generation so that 01111

will have a denominator of (2).

For the numerator , note that there are (5) ways of choosing the

five members of the self generation and (i) ways of choosing one of

them to give two gametes. There are then (;) ways of choosing two

from the remaining four individuals to provide the gametes which unite

with the two from the first individual chosen and so

jav]
|

5,4, N M .
s = T ICOERI ) Nz o5
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Although expressions were provided by CAIN and HINKELMANN (1970),
it is not possible to express the probabilities for the restricted
selection schemes in terms of a.s the numbers of gametes contributed to
the selected intercross individuals by the ith selected selfed individual.
When the probabilities involve a choice of more than one member of the
self generation (in contrast to the one needed for P211 in the one-
locus case), knowledge of the mating pattern between members of this

generation is needed. Such knowledge is not provided by the a. -

A restriction not mentioned by CAIN and HINKELMANN is made in the
case of minimum inbreeding. It will be assumed that the minimum
inbreeding scheme, in the intercross phase, is equivalent to circular
mating (KIMURA and CROW, 1963b) for N individuals. This means, for
example, that it is not possible to select two sets of N/2 offspring
that have disjoint sets of N/2 parents.

The sampling probabilities P for the two restricted selection

21111
schemes will be derived with reference to the three selected intercross
individuals as indicated by solid circles in Figure 3.2. 1In each case,

these three individuals receive six gametes satisfying the definition

of Poigaq-

N selected

intercross
individuals
Minimum Inbreeding
N selected
intercross
individuals
Maximum Inbreeding
Figure 3.2. Mating in intercross phase for minimum and

maximum inbreeding.
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For either restricted selection scheme three intercross indi-
viduals can be chosen in (g) ways. In the minimum inbreeding case
two of these three can be chosen to have a common parent in N ways.
The third can be chosen not to have a parent in common with either

of the first two in (N-4) ways so that

d
|

N
01111 N(N—H)/(3) N=z25

=0 . N<S5

In the maximum inbreeding case the common parent for two out of
the selected intercross individuals must be the selfed individual
which contributes (N-1) gametes. Two out of these (N-1) gametes
must unite with gametes from the two selfed individuals which con-
tribute two gametes, which means that the two selected intercross
individuals with a common parent can be chosen from (N-3) such indivi-
duals. The third individual for which P is specified is then

21111
determined and

d
i

N-3.,,N
21111 ( % )/(3) HE B

= 0 . N< 5

The notation for the sampling probabilities in Table 3.2 has

been extended in two places to prevent ambiguities. d

Pooo11(i) @@

P22211(ii) are used according to whether or not each of the three indivi-

duals giving two gametes mates with the other two. Similarly P221111(i)

and P221111(ii) distinguish the cases of whether or not the two

individuals giving two gametes mate.

In Table 3.2 also, and for the remainder of this Chapter, attention
will be restricted to the case of N 2 4. When sampling probabilities
involve gametes from r parents, it is assumed that N 2 r, or

that the probability is zero if r > N.
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3.4.3 Intercross Phase Expansions for Two-Locus Case

The intercross phase expansions amalgamate two steps. After
expanding through the selfing phase of cycle n, a set of measures
X(?,n—l) was obtained involving gametes from members of the intercross
generation of the previous cycle. These gametes must first be
related to gametes received by that intercross generation and then

).

to gametes from the preceding self generation (i.e., to Y01 0-1)
b
The first step takes account of recombination and the second step

of gametic sampling.

The simplest expansion is for the digametic measure GOOCC'
Double non-identity can be maintained only if the four genes on the
two gametes from C descend from four distinct genes on two gametes

received by C. This occurs with probability (1+A2)/H and these last

two gametes necessarily descend from distinct individuals D,D' so that

2
1+A 5

®o0cc = % Boopp

. (3.4.19)

The two gametes for which the other digametic measure e°°CC'
is defined trace back to two, three or four gametes received by C

and C', and then back to two, three or four distinct individuals D,
D', D" and D" . When both gametes from C, C' are recombinant and
trace back to four gametes from the parents of C and C', the sampling
probabilities in Table 3.2 may be used directly. If either or both
of the gametes from C, C' are parental though, various sums of those

probabilities must be used. New notation is needed for these marginal

probabilities and mQtth....tS is used for a subset of q of the
2m gametes received by m members of generation 2 (offspring) of a cycle
from generation 1 of that cycle (parents). The q gametes are from

s of the parents in such a way that the ith parent contributed ts
gametes. This requires that the t; sum to g and that @ =2 m. In those
cases considered here, there are never more than four genes, hence
never more than four gametes, and so q@ = 4. All of the marginal

probabilities required are shown in Table 3.3.



Table 3.3
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Marginal Gametic Sampling Probabilities

Gametic Subset Numbers of -

Offspring Gametes Parents

2 2 1

35111

211

371111

5 L
2

= &
m

Marginal Probabilities

%I P11
%P211 P11
% Pa11
%P211 P
P11
1111
% Pa111
%P2211 ! %P21111 ’ % P22
* % P3111
= Pl t %P21111 * %P2211
tyPopnt %P3111
% 3111
% Pogo ¥ 1—12 P11
Farnn ¥ %PQQQ ¥ %P2211
* 1_52 Pr1111
Pa111 * %P2211 ¥ % Po1111
+ P

111111



Table 3.3 (continued)
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Gametic Subset Numbers of

Offspring Gametes Parents

Y M 1 A
2 4222
2 4931
3 1211
ki 41111

Marginal Probabilities

1

16 P41111

1

1
a B 16 P32111

£
8

P01 T 8 P00 *

1 1
_— + —P
16 P22211(ii) 16~ 221111(ii)

k.
8

£l

1
Paoo1 T8¢

B +
1111 32111

1
* 8 Pa11111

®|w

5 3
+_ prniy
g Faoor T F

P
41111 2222

+ 1-P +‘§ B
2 732111 4 " 22211(1)

5 3
& R -
* 8 Pooo11¢ii) T 8 Fa11111

o]

3 bR
8 221111(ii) 2 " 221111(1)

NER
4 2111111

5 1 1
— P + = r
76 Tu1111 T 8 Faoo1 T8 Foooo

5 1
LB g Exp
16 T32111 T W T22211(4)

1
+ == cay TS
16 T22211(ii) ¥ 2 Ta11111

1
2

== + =P
16 P221111(ii) 221111(1)

m®p + P
42111111 11111111
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The expansion for e°°CC' is then
2
_ 1+
Bo0ccr = (5 Q) Boopp 54 Booppr?
2
1-A
5 (R Yoop. 557 * 5211 Yoop;prpn)
(3.4.20)
452
+ (=) [, (6 8 )/2

2 7 L2411 Coopp;prpr T Cooppr;ppr

*21111 Sooppr,prpm J -

Use has been made here of some equalities among quadrigametic measures

$ é =6

00VIW;YZ ~ COO0VZ;YW | CO00WV;ZY
Equation (3.4.20) also provides the expansions for Yoop.crer and
b
6°°CC'C'C" For the trigametic measure the three recombination
b
coefficients are (1+A)/4,1/2 and (1-A)/4 while for the quadrigametic
measure they are 1/4, 1/2 and 1/u.

In expanding Yooc.ooT &enes must be traced back to three gametes to
2

preserve double non-identity

1
Yooc;cer - E'[zin(YOOD;DD' * Yoop,prpr /2
(3.4.21)

% R

Q111 Yoop,prpn 1 -

For the final trigametic measure genes are traced back to three or four

gametes

_ 1+
Yoocserer T T2 ESQS'YUUD;DD * 391 (M oop. 557 Yoop, prpr?/3

i 3Q111 YOOD;D'D" ] (3-”-22)
+ E:l.[ Q. & R + 6 )/2
2 L3931 ®oopp;DDT T 3%22'C0opp;p'pt T Cooppt;pp!
1 1 5 1
=P — P + — + =
(G P * 7 P3111 T 12 Po211 T ¥ F21111° %000, 01 pm
1 1 1 1
+(= P + =P + =P + =P §
(& Po22 " %3111 ¥ 7 Po211 ¥ & P21111°%00ppr 5 ppr
* 5Q491 Sooppryprpm d -
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If the recombination coefficients are changed from (1+A)/2,
(1-)1)/2 in (3.4.22) to 1/2, 1/2 then (3.4.22) provides the expansion

for 6°0CC'C'C" . The expansions for the remaining three quadrigametic
bl

measures are now listed.

8 = €0

- b
Ogige" s CL" 4 "2°211 GUUDD;D'D" ¥ 2Q1111 6°°DD‘;D”D" ) (3 oY

1
-1 5
8s0ccr;ccm = 7 Lalar Sooppiopt T 3%2 Soopp,prp:

L = )6

1 1
+ (X5 B + =P + =BR + =P
(2 2 3111 2 2211 3 "21111°"°0DD;D'D"

222

1 1

1
+ (=P + =P =
(G Pooo "5 P2011 ¥ 12 P21111)600DD';DD”
+
39111 GOODD,;D”DM 1. (3.4.24)
= $ + § o
Goocc';c"c"' 12 00DD; DD 131 00DD; DD’
S + 8 3
t Q0 (Boop.pip oopp';pp' 2/
(3.4.25)
+
t Q011 (QGOUDD;D'D" 6°°DD';DD")/3
+ Q

471111 6°°DD';D"D” ’

A1l of the intercross expansions may now be collected together

as

A M (3.4.26)

where the 10 x 12 matrix  has elements defined by equations (3.4.19)
to (3.4.25). A set of transition equations between successive self
generations or between successive intercross generations is now very

easily obtained as

2(1,n) - Y1,n-1) (3.4.27)

]
o)
<

1(23“») B \y-(29n—1) (3.14.28)
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3,5 Discussion

Numerical results obtained by using the transition equations
(3.4.27), (3.4.28) are shown in Tables 3.4, 3.5 and 3.6. As men-
tioned above, the initial generation is assumed to be non-inbred
and unrelated so that for these initial individuals, prior to any
selfing,

2
+A
Yo,1) T (2 — 1, 1, 1/2, 1, 1, 1/4, 1, 1/4, 1]
b

and E( follows from equation (3.4.18).

1,1)
As shown in these tables, linkage has a complicated effect on
inbreeding at two loci. For complete linkage, A = 1, the equations
(3.4.27), (3.4.28) do reduce correctly to the appropriate one-locus
results. When A = 0, and the loci segregate independently, CAIN
and HINKELMANN (1970) claimed that the inbreeding coefficient F,,(A=0)
was the square of the one-locus coefficient F, = F, ,(A=1). -This is
not the case here, or whenever there is a choice of mates, and for
general X an identity disequilibrium n,,(A), mentioned on Page 2

was defined earlier by WEIR and COCKERHAM (1969b) as
2
N, (A) = F;,Q) - (F))" .

Values for the identity disequilibrium are also shown in Tables 3.u4,

3.5, and 3.6. The quantity is positive in early generations, reaches

a maximum, and decreases to zero with complete inbreeding. For completely
specified pedigrees, however, such as afforded by the cases of N = 2

or N = 3, there is no identity disequilibrium.

In general, increased population size is seen to delay the accrual of
inbreeding, and to allow selection to be practised for a longer period.
As N increases, the minimum and maximum inbreeding schemes become more
extreme. As noted above, the maximum inbreeding scheme actually permits
inbreeding to increase with N. The increasing divergence:.in inbreeding
levels between the minimum inbreeding scheme and unrestricted random
selection shows that the latter scheme falls further behind in exploiting

fully the advantages of the intercross phase in this respect.
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As CAIN and HINKELMANN (1970, 1972) point out, the plant breeder
is likely to be more concerned with homozygosity than with measures of
inbreeding. An individual is homozygous when its homologous genes are
identical by descent or when they are identical in state. The former
is the effect of inbreeding.and the probability of this occuring is
measured by the inbreeding coefficient. The latter depends on the
chance of the union of genes having the same allelic form. Therefore

the inbreeding coefficients, F.,, F. . always provide lower bounds on

1° "11

the homozygosity at one and two loci respectively. When initial gametes
are taken randomly from an infinitely large random mating population
and individuals are reproduced by a process without selection, a
knowledge of the population gene frequencies, P; for allele a;s allows

the expression of population genotypic frequencies in generation t as

a 2
pai (t) = p; + pi(l—pi) BL(E) 5
a4
paj (t) = [1—F1(t)]pipj ,» 1727

and the total amount of homozygosity as
1 - H(t) = 1 - [1-F (£)] H(0)

where H(t) is the amount of heterozygosity in generation t. Similar
expressions in the two-locus case can be found in COCKERHAM and WEIR
(1973). When initial individuals are taken from a heterozygous source,
as in recurrent selection programmes, homozygosity can only be caused by
identity by descent and identity in state of genes from different
initial individuals. The homozygosity indicated by the inbreeding
measures is then likely to be close to total homozygosity. A complete
discussion of this problem requires the knowledge of the initial
genotypic frequencies and would need to take into account the effects

of the selection programme on gene frequencies.
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Table 3.4 Progress of the Two-Locus Inbreeding Coefficient
(F,;,) in Intercross Generation and the Corresponding
Value of Identity Disequilibrium (n,,) under Random
Selection Scheme for Varying Population Sizes (N) and
Varying Linkage Parameters (A). Individuals in the
Source Population are Non-Inbred and Unrelated.
Recurrent Cycle Number
N A 1 2 3 4 5 6 7 8 9 10 20 100
2 1.00 Fll .000 .375 .563 .703 .797 .861 .905 .935 .956 .970 .999 1.000
n,, -000 .234 .246 .209 .162 .119 .086 .061 .042 .029 .001 .000
0.75 Fll .000 .232 .394 .549 .671 .764 .833 .882 .918 .943 .999 1.000
Ny, .000 .092 .078 .055 .036 .022 .013 .008 .004 .003 .000 .0O0O
0.25 Fll .000 .145 .320 .u497 .636 .743 .820 .875 .914 .941 .999 1.000
n,; -000 .005 .003 .002 .001 .001 .000 .000".000 .000 .000 .000
0.00 Pll .000 .141 .316 .494 .635 .742 .820 .875 .914 .941 .999 1.000
My .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .OOO
8 00 Fll .000 .188 .328 .4u5 .542 .622 .688 .742 .787 .824 .974 1.000
n,, .000 .152 .221 .247 .248 .235 .215 .191 .168 .145 .025 .000
0.75 Fll .000 .112 .194 .278 .362 .u4u2 .517 .585 .646 .700 .950 1.000
Ny, .000 .077 .086 .080 .068 .055 .0Ou44 .034 .027 .020 .001 .000
0.25 Fll .000 .0u48 .116 .205 .299 .390 .476 .553 .621 .680 .949 1.000
Ny, .000 .013 .009 .007 .005 .003 .003 .002 .001 .001 .000 .OOO
0.00 Fll .000 .035 .108 .198 .294 .387 .473 .551 .620 .679 .949 1.000
.000 .000 .000 .000 .000 .000 .000 .000 .00O0 .0OO0 .000 .0OO
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Table 3.4 (continued)
Recurrent Cycle Number
N 1 2 8 y 5 6 7 8 9 10 20 100
4 1.00 F , .000 .150 .270 .374 .462 .539 .604 .660 .708 .750 .946 1.000
n,, -000 .128 .197 .234 .249 .249 .239 .224 .207 .188 .051 .000
.75 F,, .000 .090 .156 .222 .289 .355 .420 .481 .539 .592 .897 1.000
n,, -000 .067 .083 .083 .075 .065 .055 .046 .038 .031 .002 .000
.25 F,, .000 .038 .086 .151 .223 .297 .370 .440 .505 .565 .835 1.000
n,, -000 .016 .014 .011 .009 .007 .006 .0O4 .003 .003 .000 .000
.00 F,, .000 .028 .077 .143 .216 .292 .366 .437 .503 .563 .894 1.000
nll .000 .006 .004 .003 .003 .002 .002 .001 .001 .001 .000 .000
10 -00 F,, .000 .068 .130 .188 .242 .293 .340 .384 .425 .463 .730 .999
n,,; -000 .064 .113 .153 .184 .207 .224 .237 .24y .249 .197 .001
WIS F,, -000 .041 .070 .096 .122 .1u8 J1755 208" . 232 .262 =551 ..998
n,, -000 .036 .053 .061 .063 .062 .060 .056 .052 .047 .018 .000
.25 F,, .000 .017 .031 .049 .071 .097 .126 .156 .189 .222 .536 .998
n,, -000 .013 .014 .014 .013 .012 .010 .009 .008 .007 .002 .000
.00 F,, .000 .013 .025 .043 .066 .092 .121 .152 .185 .218 .535 .998
n .000 .008 .009 .008 .007 .006 .006 .005 .005 .004 .001 .000




37

Table 3.4 (continued)

Recurrent Cycle Number

N A 1 2 3 4 5 6 7 8 9 10 20 100

25 1.00 F .000 .029 .057 .084 .110 .135 .160 .184 .207 .230 .424 .9u3
n,, -000 .028 .053 .077 .098 .117 .134 .150 .164 .177 .2u44 .054

0.75 F,, .000 .017 .029 .039 .047 .055 .063 .071 .079 .088 .203 .890

n .000 .016 .026 .032 .035 .037 .037 .037 .036 .035 .023 .000

0.25 F,, .000 .007 .001 .015 .020 .026 .033 .0O41 .050 .059 .183 .890

n,, -000 .007 .008 .008 .008 .008 .008 .007 .007 .007 .004 .000

0.00 F;; .000 .005 .009 .012 .017 .023 .030 .038 .047 .057 .182 .890

n,, -000 .005 .005 .005 .005 .005 .005 .004 .0O4 .0O04 .002 .000

100 1.00 F .000 .007 .015 .022 .029 .037 .0u44 .051 .058 .065 .132 .521
n,, -000 .007 .015 .022 .029 .035 .042 .048 .054 .061 .114 .250

0750 B .000 .004 .008 .010 .011 .013 .014 .015 .016 .017 .029 .275

n,, -000 .004 .007 .009 .011 .011 .012 .012 .012 .012 .011 .0O4

0925 K .000 .002 .003 .003 .004 .0O04 .005 .005 .006 .007 .020 .272

n,, -000 .002 .002 .003 .003 .003 .003 .003 .003 .003 .002 .001

.000 .001 .002 .002 .003 .003 .004 .004 .005 .006 .019 .272

n,, -000 .001 .002 .002 .002 .002 .002 .002 .002 .002 .001 .000
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Progress of the Two-Locus Inbreeding Coefficient (F,,)

in Intercross Generation and the Corresponding Value of

Identity Disequilibrium (n,,) under Minimum Inbreeding
Selection Scheme for Varying Population Sizes (N) and
Varying Linkage Parameters (A). Individuals in the

Source Population are Non-Inbred and Unrelated.

Recurrent Cycle Number

1 2 3 b 5 6 A 8 9 10 20

100

.00

875

205

.00

.000 .125 .229 .321 .402 .u474 .536 .592 .641 .683 .912

.000 .109 .177 .218 .240 .249 .249 .242 .230 .216 .081

.000 .075 .128 .180 .234 .289 .3u44 .398 .u51 .501 .835

.000 .059 .076 .077 .072 .065 .056 .0u48 .0u41 .034 .005

.000 .032 .067 .115 .171 .232 .294 .355 .414 .470 .831

.000 .016 .014 .012 .009 .007 .006 .005 .004 .003 .000

.000 .023 .059 .108 .166 .227 .290 .352 .412 .u468 .830

.000 .008 .006 .005 .004 .003 .002 .002 .001 .001 .000

.000

.000

.000

. 000

.000

. 000

.000

.000

10

.00

87

320

.00

.000 .042 .081 .119 .155 .190 .223 .255 .286 .315 .550

.000 .040 .075 .105 .131 .154% .173 .190 .204 .216 .2u8

.000 .025 .042 .056 .069 .082 .095 .109 .124 .139 .323

.000 .023 .036 .042 .045 .0u6 .0O45 .Ou4 .0u42 .04O .021

.000 .011 .017 .024 .034 .0u45 .058 .073 .088 .106 .305

.000 .009 .010 .010 .010 .009 .008 .008 .007 .006 .003

.000 .008 .013 .020 .030 .041 .055 .069 .086 .103 .30u

.000 .006 .007 .006 .006 .005 .005 .005 .004 .004 .002

. 984

.016

. 969

.000

. 969

.000

. 969

. 000
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Table 3.5 (continued)

Recurrent Cycle Number

N A 1 2 3 g 5 6 7 8 9 10 20 100

25 1.00 F .000 .016 .031 .o0ou6 .061 .075 .090 .104 .118 .132 .258 .788
s .000 .015 .030 .O44 .057 .070 .082 .093 .104 .114 .191 .167

0.75 F .000 .009 .016 .021 .024 .028 .031 .034 .037 .04O .084 .623

n,, -000 .009 .015 .018 .021 .022 .023 .023 .023 .022 .018 .002

0.25 F .000 .004 .006 .007 .009 .011 .013 .015 .018 .022 .069 .621

n,, -000 .oo0k .005 .005 .005 .005 .005 .005 .004 .004 .003 .000

0.00 F .000 .003 .004 .005 .007 .009 .011 .014 .017 .020 .068 .621

n .000 .003 .003 .003 .003 .003 .003 .003 .003 .003 .002 .000

100 1.00 F .000 .004 .008 .011 .015 .019 .023 .026 .030 .034 .070 .313
n,, -000 .oo4 .008 .011 .015 .018 .022 .026 .029 .032 .065 .215

Orf75 B .000 .002 .004 .005 .006 .006 .007 .007 .007 .008 .011 .101

n,, -000 .002 .00k .005 .006 .006 .006 .006 .007 .007 .006 .0Ou

0.25 F .000 .001 .001 .002 .002 .002 .002 .002 .002 .003 .006 .099

n,, -000 .001 .001 .001 .001 .001..001 .001 .001 .001 .001 .001

0.00 F .000 .001 .001 .001 .001 .001 .001 .002 .002 .002 .006 .098

n;, -000 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000
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Table 3.6 Progress of the Two-Locus Inbreeding Coefficient (F,,)
in Intercross Generation and the Corresponding Value of
Identity Disequilibrium (n,,) under Maximum Inbreeding
Selection Scheme for Varying Population Sizes (N) and
Varying Linkage Parameters (A). Individuals in the
Source Population are Non-Inbred and Unrelated.
Recurrent Cycle Number
N A 1 2 3 4 5 6 7 8 9 10 20 100
L .00 F,, .000 .156 .280 .386 .476 .554 .619 .675 .723 .764 .952 1.000
n,, -000 .132 .202 .237 .249 .247 .236 .219 .200 .180 .046 .000
.75 F,, .000 .093 .163 .233 .302 .371 .u438 .501 .559 .613 .3809 1.000
ﬁll .000 .069 .085 .084 .075 .065 .054 .0u45 .036 .029 .003 .000
025 F,, -000 .040 .092 .160 .236 .313 .389 .460 .526 .586 .907 1.000
”11 .000 .015 .013 .011 .009 .007 .005 .004 .003 .003 .000 .00O0
.00 Fl) .000 .029 .082 .152'.229 .308 .385 .u457 .524 .584 .906 1.000
n,, -000 .005 .004% .003 .002 .002 .001 .001 .001 .001 .000 .000
10 .00 Fll .000 .158 .283 .390 .u481 .558 .624 .680 .728 .769 .954 1.000
g .000 .133 .203 .238 .250 .247 .235 .218 .198 .178 .044 .000
.75 F,, -000 .095 .169 .242 .314 .384 .451 .513 .571 .624 .913 1.000
nll .000 .069 .089 .090 .083 .072 .061 .051 .041 .033 .003 .000
23] Fl] .000 .040 .096 .166 .243 .321 .397 .469 .535 .594 .910 1.000
n,, -000 .015 .015 .014 .012 .010 .008 .006 .005 .004 .000 .000
.00 F,, .000 .030 .085 .156 .234 .314 .392 .u64 .531 .592 .910 1.000
N, .000 .005 .004 .004 .003 .002 .002 .002 .001 .001 .000 .000
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Table 3.6 (continued)
Recurrent Cycle Number

N A 1 2 3 4 5 6 7 8 9 10 20 100
25 .00 F , .000 .174% .307 .420 .514 .593 .659 .715 .761 .800 .966 1.000
N, .000 .144 .213 .244 .250 .241 .225 .204 .182 .160 .033 .000
/1D Fll .000 .104 .186 .267 .346 .422 .u492 .557 .616 .669 .935 1.000

n,, -000 .074 .092 .091 .082 .070 .058 .047 .037 .029 .002 .000

IS Fll .000 .O44 .109 .189 .275 .360 .441 .516 .583 .643 .933 1.000

N, .000 .014 .014 .013 .010 .008 .007 .005 .004 .003 .000 .000

.00 F,, .000 .033 .097 .178 .266 .353 .436 .511 .580 .640 .933 1.000

N, .000 .002 .002 .002 .002 .001 .001 .001 .001 .001 .000 .0OO0O

100 1.00 F,, .000 .184 .323 .439 .535 .614 .680 .735 .780 .818 .972 1.000
n,, -000 .150 .219 .246 .249 .237 .218 .195 .171 .148 .027 .000
.75 F,, .000 .110 .197 .283 .366 .445 .516 .584 .643 .696 .947 1.000
n,, -000 .076 .093 .091 .080 .067 .055 .0O44 .034 .027 .002 .000
_J25 Fl1 .000 .047 .2117 .204 .295 .385 .469 .545 .612 .671 .945 1.000
nll .000 .013 .013 .011 .009 .007 .006 .004 .003 .003 .001 .000
.00 F,, .000 .035 .105 .183 .286 .378 .463 .541 .609 .669 .945 1.000
U .000 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .0OOO
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4 ONE- AND TWO-LOCUS INBREEDING IN POPULATIONS
WITH OVERLAPPING GENERATIONS

4.1 Introduction

In this Chapter, a study of the inbreeding levels in populations
with overlapping generations is presented with a view to quantifying
the effects of age structure in altering the genetic progress of
populations. Relative to populations of the same size with just one
age class, it is known that inbreeding and hence homozygosity is delayed
in populations with several age classes. It is also known that the
continued presence of individuals, generally females, over several
years in breeding programmes can delay the spread of favourable genes.
In another direction, human populations do not have discrete generations,
and this should be reflected in models of these populations. This
Chapter offers some novel features and presents some new results for

models of populations with overlapping generations.

Most previous work has concentrated on the evaluation of inbreeding
and variance effective numbers. Previous authors include MORAN (1962),
KIMURA and CROW (1963a), NEI (1970), NEI and IMAIZUMI (1966), GIESEL
(1969), TURNER and YOUNG (1969), FELSENSTEIN (1971), CROW and KIMURA
(1972) and HILL (1972a, 1972b). Effective numbers offer a very con-
venient one-parameter description of the mating structure of a popula-
tion. As such they are often used as a basis for comparison of different
populations. In populations other than idealized ones, however, effec-
tive numbers are defined as limiting values (over time) of rates of
increase of inbreeding or drift variance. Most populations do not
maintain the same characteristics for such long time periods, and in
breeding programmes interest is likely to be centered on early genera-
tions. For this reason the following study concentrates also on
inbreeding levels in early generations, as did that of JOHNSON (1977),
rather than solely on the limiting values of rates of change of
inbreeding. This study differs from that of JOHNSON, however, in

restricting attention to exact inbreeding levels.

This work follows HILL (1972a,b) in broadening the scope of some
previous enquiries by considering both monoecious and dioecious

populations, and not restricting attention to Poisson family size.
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The study of different gametic sampling plans points out another
restriction in the exclusive concentration on effective numbers.

It. has been shown (KIMURA and CROW 1963b, COCKERHAM 1970) that
populations that avoid early inbreeding may have high final rates

of inbreeding. The ranking of populations on the basis of such final

rates may be opposite to a ranking on the basis of early inbreeding.

Other matters such as the assumptions of constant overall popu-
lation size, stable age distribution and age-specific birth and death

rates follow from conventional models.

The one entirely new feature of this work on overlapping gene-
rations i1s the treatment of inbreeding at two loci. The treatment is
based on the general methodology of WEIR and COCKERHAM (1969b). In
the absence of linkage disequilibrium and selection, the two-locus
inbreeding coefficient evaluated here allows two-locus genotypic
frequencies to be studied. Under the same conditions, as might hold
in control populations, it has recently been shown (WEIR and COCKERHAM
1977) how the two-locus inbreeding coefficient is used in the prediction
of means and variances of quantitative traits. Similar work to that
presented here allows the evaluation of other two-locus parameters
which can be used to predict linkage disequilibrium (COCKERHAM and
WEIR 1977).

4.2  Monoecious Diploids

4,2.1 Mating Scheme

In all years t the population consists of N individuals belonging
to various age classes. There are Ni individuals in the ith class,

and n classes, so that

Age is measured in years. Each year N1 newborn are added to the popu-

lation, all Nn n-year-olds die, while a random sample of Ni-Ni+1 of

the i-year-olds die.
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The mating scheme is random union of gametes and is specified by
two sets of parameters. Sampling between age classes 1is accommodated
by .parameters Ps» where p. is the probability that a random gamete
received by the newborn individuals in any year came from the ith age

class in the previous year.

n
gl A

For within age classes sampling, arbitrary distributions are allowed
for the numbers of gametes from individual members of the class. The
usual approach is to assume that these numbers, or family sizes, are
independently Poisson distributed subject to the numbers adding to the
total gametic output from that class. The set of Ni gametic numbers
from the ith age class are then multinomially distributed. An analysis
of the different distributions will be given in Sections 4.4 and 4.5.
At present it is assumed that the gametic numbers have the same distri-
bution for every member of an age class, so that there is a need for
the use of gametic sampling probabilities (WEIR and COCKERHAM 1969b)
P2(i) and Pll(i). These are the probabilities that two gametes from
age class i are from one or two individuals respectively within that

age class, and

p2(i) + PP H(i) = 1 .
It is common (e.g. JOHNSON 1977) to restrict attention to the case where
any output gamete from an age class is equally likely to have come from
any individual within the age class. In this "equal-chance" case,

p2(1) = 1N, .

i

There is a need in two-locus models for trigametic and quadrigametic

sampling probabilities in addition to these digametic probabilities.

4.,2.2 One-Locus Case

The quantity to be determined is the average inbreeding coefficient

F,(t) of members of age class 1 in year t. This is the average of the
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probabilities of identity by descent of pairs of genes drawn from
individuals in the previous year, and each member of a pair has

probability Py of coming from an i-year-old, so that

n
B Bgp] W) (4.2.1)

Fl(t+1) =
] G=d

i

nmM3

The gametic set measure wlij(t) is the probability of identity by
descent of a gene from age class i and a gene from age class j in
year t, and it will be necessary to establish transition equations

for these gametic set measures.

When two gametes are from the same age class, there is a chance
that they are both from one individual in that class, and genes on the
gametes may be copies of the same gene in that individual. Identity
by descent is then assured, and to keep track of such cases the average

coancestry 6 (t) has been defined in Section 2.2 as the probability

IIiJj
of identity by descent of a gene from a random member Ii of age class 1
and a gene from a random member Jj of age class j, both in year t. The

measure is averaged over all Ii and Jj.

If primes denote distinct individuals in the same age class then,

Y- 11,
by (t+1) = PR(L) 6yp 7 (t+1) + PTT(L) GII.I!(t+1)’
11 plg Sl
1 =% &8 (4.2.2)
wlij(t+1) = elIiJj(t+1), 1si<i<€n (4.2.3)

and there are the obvious symmetries

wlij(t) = wlji(t)’ elIiJj(t) = eleIi

Now an individual of age i in year t+1 was of age 1 in year t-i+2,
so gametes from such individuals descended from parents in year t-i+1.
Identity-by-descent relations in equations (4.2.2) and (4.2.3) are

preserved if they are written as
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= . 11, .
by, (t+1) = PO(A) 11 1 (t-i+2) + P77(1) 8,0 [, (t-1+2),
171 1
1sisn (4.2.4)
Y. .(t+1) = 6, (t-i+2), 1<i<j sn. (4.2.5)
' 1195 141

Genes from individuals in age class 1 may have descended from any of
the age classes in the previous year, and two genes from the same

individual are equally likely to be copies of the same gene or of

different genes received by that individual, hence

8, (=i2) = =+ = I T Peps Wi g(&581) (4.2.6)
I, 2" 2.8 joq 13 TH]
n n
G y(t-i+2) = T I p.p. p,..(t-it+1) (4.2.7)
1111 i=1 §=1 alllp| 1]
n
8 (t-i+2) = Z p,_ ¥, . .(t-i+1)
1 1 4 s
1195 141 k=1 K HI-E
i2i<3iEna (4.2.8)

Equations (4.2.2) to (4.2.8) may now be combined to give the

desired transition equations for the gametic set measures

n n
_ i . - -
by (t41) = [1—§-P ()] .§ § P3Py wljk(t-1+1) + Bep Gn,
j=1 k=1
1<is<n (4.2.9)
n
wlij(t+1) = L p ¥, j_i(t—i+1), 1si<js=n. (4.2.10)
k=1 >

These equations allow the determination of gametic set measures, and

hence inbreeding coefficients, in all years but are not in a particu-
larly convenient form for computing as they require the storing of
measures for the previous n years. This is in contrast to the situation
with discrete generations, where sets of measures always rest only on
values in the previous generation. However, equations (4.2.9) and (4.2.10)
can be re-arranged to obtain equations which do span just consecutive

pairs of years
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n n

¥y, (tr1) = (1 - —P el B B iP5 gy (0 + —P 2(1),(4.2.11)
i=1 j=1
n
wllj(t+1) = .8 P wll (t) s 1<3'<n (4.2.12)
-
" _ degEidd p2(i) - P2(i-1)
111(t41) = T2 Vigog,3-4(8) * 17
1 -8 (i-1) ? 2[1 - 5F (i-1)]
1<i<n (4.2.13)
U)lij(‘t+1) = wli-i,j-l(t)' il < H < §Em . (4.2.14)

In the case of equal chance gamete formation, this set reduces to
that given by FELSENSTEIN (1971) and is an exact alternative to the
set given by JOHNSON(1977).

If there was only one age class per generation, n=1, equations

(4.2.11) to (4.2.14) provide

v, (t+1) = [1 - %P%)] Vo (1) + _p (1)

111 111

or
Fy(t) = ¥yp,(e-1) = 1 - [1 - 7 P20, 1 F,(0) =
which is the usual result for discrete generations.

If all initial individuals (year 0 ) are not inbred and are unrelated,
then the initial values of the measures are
1

wlii(o)'EP(’“)’ 1si=sn

P, ..(0) =0

113 s p R i (|

B(0) =10

and then equations (4.2.1) and (4.2.11) to (4.2.14) provide
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n

1 22

F(1)=—‘ z p.P (i) s
' 2321t
n n
1,2 1.2 22 2,
= = 1 = = P€ . _

F,(2) = 5 {p] [1 - 3 P5(D)] + 1]} i§1 py P7(1) + piizzpipi_lP (i-1).

Later values will generally require numerical iteration of equations
(4.2.9) and (4.2.10), or (4.2.11) to (4.2.14), but this is also a feature
of approximate treatments such as those of JOHNSON (1977).

It is common to compare populations on the basis of effective
numbers. The inbreeding effective number is related to the asymptotic
rate of increase r of Fl(t). This rate is the limiting value, as time
increases, of

Fo(e) - F(t-1)
r(t) =

Fy(®) - F,(t-1)

where F,(®) = 1. Since r = 1/2N for an ideal monoecious population of

size N, the annual inbreeding effective number can be set as

Note that the same rate of inbreeding and effective number would be

obtained if

F,(t) = Fplt=-1)

r(t) =
Fo(o) - Fo(t-1)

is used. This ratio uses the complement of the inbreeding coefficient,
F, =1 - F;, and Fo(») = 0 .

The generation length L for the population is defined as the average

age of the parents of newborn individuals

and the generation inbreeding effective number Ng is Ny/L'
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Several authors (e.g. FELSENSTEIN 1971, HILL 1972a, 1972b,
and JOHNSON 1977) have given analytical expressions which approximate
Ny or Ng' Exact values in sSpecific cases can be obtained by iteration
of the transition equations above, but in any real situation interest
is more likely to center on early generations when the concept of

effective numbers is of less relevance.

4.2.3 Two-Locus Case

For inbreeding at two loci the identity status of two pairs of
genes needs to be considered. For two genes a, a' and b, b' at the
A and B loci respectively, the general identity measure X(ab,a'b')
has been defined on Page 7. When ab, a'b' are uniting gametes, the
measure 1s written as F and the one-locus inbreeding coefficients,
assumed to be the same at each locus, are F, = F,; + F;, = F;; + Fg,.
If ab, a'b' are gametes taken from age classes i and j in year t,

the measure X(ab, a'b') is written as yij(t), so that
F(t+1) = T I p.p; ¥..(t) . (4.2.15)

This vector equation is analogous to (4.2.1), and adding the first
and third rows of (4.2.15) in fact gives (4.2.1). Two other gametic

set measures !i;jk 5 Eij;kz

are needed (see Section 2.4).

Just as in the one-locus case, whenever more than one gamete is
drawn from a single age class, there is a chance that two or more gametes
may originate from one individual in that age class, and an accompanying

chance of identity by descent for genes at each locus on those gametes.
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Hence two-locus average individual measures are needed (see Section
2.4). For instance, let i denote age class i (i = 1,2,...,n) and Ii
denote a random member of age class i (Ii = 1,2,...,Ni); the digametic

measure g{ J is then defired as
il 5

g{_J_ : ab, a'b' on two gametes from individuals Ii’Jj’ respectively.
i3

Measures are averaged over all such random members. Determination of

the inbreeding measure requires an evaluation of gametic set measures,

and hence of average individual measures. A general procedure has been

established (WEIR and COCKERHAM 1963b) and details are given here for

the digametic measures. As before, primes denote distinct individuals

within age classes, and subscripts i,j,k,£,s range over the integers 1

to n.

Gametic sampling probabilities are needed to express gametic set
measures as average individual measures. The analogues of equations

(4.2.2), (4.2.3) are

7). 11,
_lp_ii(t+1) = P7(i) QI.I,(Hl) + PT(1) Q_I_I!(Hl),
1 1 1 1
1<i=<n (4.2.16)
by5(tr1) = inJj(t+1), IHd= j S8 (4.2.17)

Expression of average individual measures as gametic set measures
involves the mating scheme via the probabilities p; as in the one-locus

case, but also involves recombination between the loci.

For simplicity attention will be restricted to the fourth, double
non-identity, component of all measures. The one-locus inbreeding
coefficient then allows other components of the inbreeding measure to

be recovered, as for example F,, = Fy4 + 2F; - 1.

To preserve double non-identity, genes on two gametes from a single
individual must have descended from genes on the two gametes received by
that individual, but there is no restriction for genes on gametes from

different individuals. Gametes received by age class 1 may be from any
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of the age classes in the previous year:

2
_ 1+ ) .
Boop g (t+1) = =5~ I PPy woojk(t—1+1), 1=<isn (4.2.18)
1l 1 3 k
e ( 1+A
oo p1(t+1) = (=) I Z pspy Voo k(t i+1)
1-)2
+ Y L3 PaBB, Vg mett=itl)
2 ik £ 137k™ 4 jike
: (
+(dh zxz3 P:PP P Loos t-i+1),
5 jk 4s k'2's iksts
1<i=<n (4.2.19)
v (te1) = Mg p g (t-i+1)
007.4J. 2 k Y00k, g-1
i) k
, 1A _
2 i Z pkp.ﬁ Vouj_i;kx(‘t-li‘l),
y)
1< f= 3 Ein) . (4.2.20)

The transition equations for the digametic set measures now follow

from combining equations (4.2.16) to (4.2.20):

1+)\2)\

Yooy (Etl)= [ (== <> 2¢i)1r Zp. 5Py Woo (t-i+1)
j k
1- 7\
+P()H——-—2 EZprkp‘e (t1+1)
k4 3
115 1-A.,2 g
$PTUL) =) L Z L I p.pPb. Cgomy.plt=1¥1) ,
2 jkﬁsjkzs jkils
1sisn (4.2.21)
1+A
1-A .
+ Ti ipkpz \)00] X (t-i+1) ,

181 €] <D - (4.2.22)
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Just as in the one-locus situation,numerical work will require the storing
of measures for n years when equations (4.2.21) and (4.2.22) are used.
Unlike the one-locus case however,these equations cannot be re-arranged
to'arrive at a set of equations which span only pairs of consecutive

years unless the sampling probabilities P2(i) are the same for every

age class. This can be the case when every age class is the same size.

Equal P2(i) values for i=1,...,n lead to

wooij(t+1) = (t) , i SIEFIE o (4.2.23)

Vooj_1,5-1

and the cases for i=1 follow directly from (4.2.21) and (4.2.22).

Further sampling probabilities are needed for the evaluation of
trigametic and quadrigametic measures. These probabilities all refer

to the origins of gametes taken from age class 1i:

Pa(i) three gametes from one individual

P21(i) two gametes from one individual and one from a

different individual

Plii(i) one gamete from each of three different individuals
Pu(i) four gametes from one individual
P31(i) three gametes from one individual and one from a
different individual
P22(i) two gametes from one individual and two from a
different individual
211 T
P (i) two gametes from one individual and one from each
of two different individuals
1111 ., . e e
P (i) one gamete from each of four different individuals.

Following the general procedure of WEIR and COCKERHAM (1969b), trigametic
and quadrigametic set measures are first expressed as average individual

measures, which in turn are expanded back to gametic set measures. Listed
below is the resulting set of transition equations for gametic set

measures in the special case of equal age-class sampling probabilities

p2(1) = P(1) for 151 sm .



58

1+A 21
\)001;11(t+1) [—-P (1) + (1)] f § PyPs 4’001 t)
1 1+A
+[5 (1) + —5—-P (1)] ) ; ) pipjpk °°i;jk(t)
i3jk
1-A (1 _21 111
= [P W+ P LI LI pippPy Logpq.44(t) »
1 g k&
(4.2.24)
. Bl =2 1+A pl1
Voogyq3(tHL) = 5P + (1] fi P3Py Yooz x,3-1(1)
+ 21y 32 2 ppp, T (1)
2 ik L "%hks48,7-1 :
ik
1< 3 <n (‘4.2.25)
Voo 11(t+1) = %.P?(l) by Woige o 1(t)
J i oE T (4.2.26)
1 .
t[1-3F (1)] LI PPy Vyoyoq;iklt) » 153 =0
ik
1+ 1-A
Veugeqt &) 1= Tf P; Voozqo1,k-1't) + 5 f i PiPy %o0ig;q-1,k-1(P)
1< 3j,k<n (4.2.27)
Voos, g (t+1) = f P; Voos .11 (t) > 1< 3k s (4.2.28)
Vuoi;jk(t+1) = v““i—l;j—i,k—l(t) s 1<1i,j,k=n (4.2.29)
2
= = —-P
Cnoli;li(t+1) [P (1) + (1)] i § P;P4 ¢ool] t)
1 31 1 .22 1 211
+{[—- (1) + §-P (1) + E'P (1)] x
? 25 B; P;Py v°°l,3k(t)}‘
ijk
+{[1 22(1) 4+ %-P211(1) % Pllll(l)] ”
ILLZL P;PsP Py Loogs kL(t)} (4.2.30)
i3kae *3 15
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. alga¥ T, —
Cooqg. 45(tt1) = [ZP(1) + 5 PTO(L)] ? i PiPy Voos,y,5-1(t)
1 24 111
+[=P _ _ _
[ 86 + 2] ? i i PiPyPy Toogy.g 51(t)
1<3j<n (4.2.31)
T . (t+1) = £ P2(1) 2 ks M (t)
0011;3k 2 ! 003:5-1,k-1
+[1-2PP1zzop,p, ¢ (t)
2 i .2 T4 PRt k=l s
1< j,k<n (4.2.32)
Cooaz (t+1) = [1 - 1-P2(1)] EE p.p: E (t)
0 1353k o i 4 i¥g oui,j-i;ﬁ,k—l 3
I SERE a (4.2.33)
cuolj ;k£(t+1) = ? Pi Cooi,j—lgk—l,ﬁ-l(t) Py 1 < j,k,,c < n (!4-2-314)
C0054,.0 t1) = Zoos g 5 1;k-1,0-1(F) > 1<1i,j, k.6 <n . (4.2.35)

Since equal inbreeding is assumed at each locus, the following
equalities hold

= Voo ? 15i,j,k5n

V003 ;5K 13k]

o0igk T C005gskg T Bookjyig T S00kesig T Buogijax T 0049k

- g”jk',.ﬁi - Con£k;ji # 1 =<1i,j,k,£ =n

so that equations (4.2.21) to (4.2.35) are sufficient for all (not
SO 2 .. . 3 . . 4 . .
distinct) n” digametic, n~ trigametic and n quadrigametic measures.
o I s . 2
The numbers of distinct measures are n(nt1)/2 digametic, n (nt1)/2

. . 3 . .
trigametic and n(n +18n2—13n+18)/2u quadrigametic.
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In the discrete generation case, n = 1, only equations (u4.2.24),
(4.2.30), and (4.2.21) with i = 1 are needed. These reduce to the
equations given previously (WEIR and COCKERHAM 1969b).

4.2.4 Numerical Results

The smallest population for which all possible types of two-locus
measures are required is one with four age classes, each with four indivi-
duals. Table 4.1 displays the two-locus inbreeding coefficients in this
case for equal chance gamete formation. Each of the mating probabilities
P:>» and each of the probabilities P2(i) of drawing two gametes from the

same member of an age class has been set equal to 1/4.

When A=1, F,;,(t) = F;(t). Alongside the column for this one-locus
inbreeding coefficient is a column of values obtained by the method of
JOHNSON (1977). This approximate method, designed for early generations,
assumes that (2Ni - 1)/2Ni S

Table 4.1 also shows the identity disequilibrium coefficients
Ny, (t) = By (2) - [Fl(t)]2 for A=0. These small values represent the

identity association between unlinked genes caused by the mating systems.

The limiting inbreeding rates, r, also given in Table 4.1 are
defined in terms of the double non-identity measure:

lim Foo(t) - Foo(t"l)

-t—)oc‘

Foo(®) - Fgo(t-1)

with Fyqe(®) = 0. The homogeneous form of the transition equations shows

that F , can eventually be written as
Fool(t) = st

with s(A) the largest eigenvalue of the system of equations. The limiting
inbreeding rate is evidently 1 - s(A). These final rates at which double
non-identity is decreasing give a better picture of the population than
would rates defined in terms of F,;(t). These latter rates would be .
functions of both s(A) and s(1), which tends to obscure the effects of.
linkage. As mentioned above, both approaches give the same result for

A = 1, the one-locus case.
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The inbreeding rate shown for the approximate F, values is the
'‘miting value of the difference between F, values in successive years.
This is because JOHNSON's method linearizes the inbreeding coefficient:

JOHNSON's effective number'Ny is such that

ot
Fl(t) = 5N
y
Table 4.1 Inbreeding Coefficients for Monoecious Populations,

Four Individuals in Each of Four Age Classes

t F,,(t) F (1) Ny, ()
(year) A=0 A=1/4  A=1/2  A=3/4 =1 (approx.) A=0

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0156 0.0166 0.0195 0.0244 0.0313 0.0313 0.0146

2 0.0193 0.0213 0.0259 0.0336 0.0447 0.0449 0.0173

8 0.0231 0.0263 0.0330 0.0441 0.0607 0.0614 0.0194

L 0.0272 0.0316 0.0406 0.0558 0.0794 0.0810 0.0209

5 0.0317 0.0373 0.0486 0.0684 0.1010 0.1041 0.0215

10 0.0547 0.0620 0.0783 0.1133 0.1872 0.2025 0.0197

15 0.0880 0.0949 0.1116 0.1537 0.2665 0.3025 0.0170

20 0.1286 0.1347 0.1501 0.1935 0.3380 0.4025 0.0144

50 0.4177 0.4200 0.4263 0.4496 0.6423 1.0025 0.0051

100 0.7608 0.7613 0.7624 0.7674 0.8718 2.0025 0.0009

B 0.0400 0.0399 0.0395 0.0380 0.0203 0.0200
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4.3 Dioecious Diploids

4.3.1 Mating Scheme

Consider a diploid population which consists of M males and F
females, with m male and f female age classes. 'Age class i'" will
refer to male age class i if 1 < i < m and to female age class i-m if
mt1l < 1 < m+f. The sizes of age classes are written as Mi and Fi for

males and females respectively, so that

m m+f
T M. =M by Fi SR
=1 i=zm+1

Each year M1+Fm+ newborns enter the population, while death claims

1

all Mm m-year-old males, all F f-year-old females, and a random sample

m+f

- < 3 S im=rle)n = _ ) : < Fo
of Mi Mi+1(1 i = m-1) i-year-old males and Fm+i Fm+i+1(1 20 f-1)

i-year-old females.

Since newborn males and females may have different parental age
distributions, sampling of gametes between age classes is accommodated

by two sets of parameters plj’ o) where pij(i=1,m+1 0 A =15 £ Raf)

is the probability that a randomm;;;gte received by a newborn individual
in age class i in any year came from the jth age class in the previous
year. Because half of the genes for an individual came from its mother
and half from its father

mt+f 1
PHA._ = 2 Pri: == o i=1,mt1 .
R R

ISR

j
For sampling of gametes within age classes, a combined sampling
plan (WEIR and COCKERHAM 1969b) is assumed. This means that any set
of gametes from a given age class are a random sample from the total
gametic output from that class. Two gametes have the same chance of
coming from the same individual member of the age class whether they
each go to male or female offspring for example. Failure to assume
the combined sampling scheme would require the identification of gametic
sampling probabilities and gametic set measures according to the age
classes that receive the gametes as well as those that give them (see
Sections 2.2 and 2.4). 1In this treatment the same type of sampling
probabilities P(i) within age classes can be used as in the monoecious

case.
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4.3.2 One-Locus Case

_ The average inbreeding coefficient Fli(t+1), i=1,m1, for
members of age class i in year t+1 is defined as the probability of
identity by descent of genes on pairs of gametes from year t received
by group i. These pairs of gametes are chosen at random subject to
the condition that one must be from a male and one must be from a female.
Given that a random gamete received by age class i(i=1,m+1) is male,
there is probability 2pij’ 1 < j =< m, that it is from male age class j.
Given that such a gamete is female there is a probability 2pik,
m+ 1< k=m+ f, that it is from female age class k, so that

m m+f
F,.(t+1) = 4 I Z p..P. Y. (1), 1=1,m+l (4.3.1)
* ] e e

The calculation of Pli(t) now rests on the establishment of a
set of transition equations for the gametic set measures wlij(t). As
before these set measures refer to random gametes from age classes 1
and j. The simplest situations are those for which the measures refer
to gametes from different age classes. A gene from an individual in
age class 1 of either sex may have descended from any age class in the
previous year, while identity relations for a gene from any other age
class may as well be made about genes from the one-year-younger age

class in the previous year

mtf m+f
Vig mea(tFD) = I L Dby g Bagy(t) CHEeL2)
i=1 J=1
m+f
wlij(t+1) = k§1 Piy wlk,j—l(t)’ i=1,mt+1;
- 2<jsmf ; J 7 mtl (4.3.3)
wlij(t+1) = wli—l,j-l(t)’ 2<i,] smtf; 1,] # mtl; 1 # 3.

(4.3.4)

As in the monoecious case, equation (4.3.4) can be taken back until

members of the first age class in either sex are involved. For example

m+f
wlij(t+1) = I p

_i(t-i+1) s 1=i<j=<m
k=1

1k Y1y, 3

but it is more convenient to use (4.3.4).
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Two gametes from the same age class require the introduction of
average individual measures again. Corresponding to equations (4.2.2)

and (4.2.4)

D ' B .
= <i< .
Yrgp (b41) = PO(E) 6, o (1) + PTO(L) 6, [, (t+1), 1sismtf (4.3.5)
11 171
= P2(i) 6 (t-i+i®+1) + Pli(i) 8 (t-i+i®*+1)
1TETH 11,18 ’
1 1 1 1
1 <1< mtf
where i* = 1 if A4 =4i=m

= m+1 if mtl < 1 = m+f .

When two gametes are drawn from one individual in the first age
class of either sex, there is probability one-half that they are copies
of the same gene and so identical by descent, and there is probability
one-half that they descend from two individuals of different sex in the

previous year :

m m+f
6,7 ; (t+1) = [1+.4 T I  p...p.. V. (t-i+i¥®)]/2 ,
it g1 kemer 1TTTATRO UK
1< i< mtf . (4.3.6)

There is no restriction though on parental age classes for genes from

distinct individuals

mtf m+f
Sy qo(B0L) = o8 T PyasPray ¥ug

k(t_i+i*), 1 <1< mtf .
171 j=1 k=1

(4.3.7)

Combining equations (4.3.5) to (4.3.7) gives the remaining gametic set
measure transition equation

m mt+f
g (/) = 2% T I p
j=1 k=m+1

i*jpi*k wljk(t_l+lh

11 mf mtf

+ P () L I p.

e . 102
o1 g Poen Vg (FeER) R 5 B,

1 < i smtf . (4.3.8)
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As in the monoecious case, simplification results when sampling
probabilities are the same for every age class. Then (4.3.8) is
appropriate as it stands for i = 1, m + 1 but otherwise can be

replaced by

wlii(t+1 (v) .

)= V139,51

The set of equations (4.3.2) to (4.3.4) and (4.3.8) generalize
those of JOHNSON (1977) and in the discrete-generation case of m = f =

reduce to

Yy (tH1) = {Pll(l)[¢111(t3 + w122(t)] + leig(t) + 2P2(1)]/4

Uy, (tr1) = (P20, (1) + ¥y, (D] + 20y, (£) + 222(2)}/n

wllz(t+1)

1]

()44 (0) + 0y, (8) + 29, (£)] /1

with the usual equation for F,(t) = w112(t—1)

2 2 2 2
Eiletd) = [4 = o kok (2)] By (Ctl) + P (1) + P (2)

7 5 LE, (23 4 13,

When the initial individuals, in year 0, are not inbred and are

unrelated, the initial values of the measures are

1 o2 .
wlii(o) = E'P (i) . 1 < i< mtf
wlij(o) =0 , 1<i<i smf
F.(0) = 0, i=1, mt1

Equations (4.3.1) to (4.3.4), (4.3.8) then provide

Baeald) = O p iye Ly mhd
1
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m+f mtf

2 2
P09 = 2lp..p. L p,.p <B 1050 B B % P..P, - P (3-1)
1 il 3 . -
i 1171, mtl 5-4 13" mt+1,] i1 e 1,)-1
) 2
. . P7(3-1 il = +1 .
t Py et j§2 PisPri1,3-1 (3-1)] , i =1,m

Average inbreeding levels for the male and female in the same
year can differ because of different parental age distributions for
the two sexes. It is convenient to define an average inbreeding
coefficient ?l(t) for the newborn in year t as a weighted average of

the coefficients in each sex :

F g + F + F .

EakE [MlFM(t) Fmi 1m+1(t)]/(M1 m+1)

An inbreeding effective number may be defined, as in the monoecious
case, by reference to an idealized population without age structure. An
ideal dioecious population of effective size Ne accrues inbreeding

according to

1 N -1
+

e
2N N
e e

e

F,(t+2) = N
e

F,(t+1) + Fp(id)

which, for large t and Ne’ leads to

2N -1
Fy(t) = 1 - ()
e

t

as in the monoecious case. Years and generations are the same here.

In the present case the per-year effective population size is

then defined as

where r is the limiting value, as time increases, of

F (1) - F (t-1)
r(t) = - .
1 - Fplt=1)
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For discrete generations this becomes

1 1 2 2
= ae [P ¥ P2 -
e
The generation length L is now defined to be the average age of

parents when progeny are born, averaged over the four parent-progeny

types (male-male, male-female, female-male and female-female).

L==[Z% i(p,. +p D+ L (3-m)(p,. + P D]
+
2 i-1 11 mtl,1 3=m+1 13 mtl,]
4.3.3 Two-Locus Case

Two-locus measures are defined as in the monoecious case, and

the two-locus inbreeding function for newborn individuals in year t

is
m m+f
P.(t+1) = 4 I T p..p.. Y. (t),i=1, m1 . (4.3.9)
* j21 k=myq 1) AKOIK

For gametes from different age classes, (4.3.2) to (4.3.4) need
to be modified to take account of recombination. Parental gametes from
menbers of the first age class in either sex can come from parents of
either sex and any age in the previous year, but recombinant gametes

must carry one gene from a male parent and one from a female.

122 om+f m+f
_ 1
ll)001,m+1(t+1) =G 2 E PP ll’“’ij(t)
1=1 j=1
1 AQ mtf m m+f
ATy .
* L . z 4(p1ipm+1’]pm+1,k

i=1 3=1 k=m+1
t Py3PyPrie, ) Voos . 5y (t)

1-) o m mtf m mtf
o 5

) x
i=1 j=mt1 k=1 g=m+1 '

m+1,kPm+1,4

Cooij;iz(t)
(4.3.10)
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1+ b
Yoo j(t+1) ST k§ Pik lp°°k . 1(t)
=1
1} ™ m+f
$:2= L B Pey Vepsoaaptt)s
2 S — ikv ik j-1;kL
I =1,m21 3 2 < J =< mtf
j 7 mtl (4.3.11)
wOOij(t+1) = wooi—l,j—l(t) s 1<i<j=smf;
i,j # mtl1 . (4.3.12)

Note that the above expansions have made use of the symmetries

lpuoi]‘(t) S tI"oujj_(t)

veni;jk(t) = vooi;kj(t)
- = + = A f
= Boogissk T ® Poogisai(t) = Boogy;:lt)
J ] 3]

and the average
Sooig;ig (8 = LB0055,00(8) + Boo54, 0 (001/2 -

Just as with equation (4.3.4), equation (4.3.12) could be expanded
back until members of the first age class in either sex were involved,

but equation (4.3.12) is in the more convenient form for computing.

For gametes from the same age class, as previously

. =20y 11,.
Vooq;(tt1) = PT(L) 844, ; (t41) + PT7(1) ooy 1 (tt1)
171 o,y
2 m m+f
2 +A o 8
= P°(1) 1 ) L 4D Voo k(t_l+lh)
j:l k=m+1 ] l
1+A 2 m+tf m+f
iy [(== I I p...p., i Yooy (t-1t1%)
521 k=1 ingriw 005k
i—lQ mtf m  mtf

+

I I L Up.y. 3PPy o, (E=iti®)
j=1 k=1 £=m+1 R AR
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2 m mt+f m m+f

+ (lél) # % B B s

‘4':°p",': p'-,'; p-;‘: ) x
j=1 k=m+1 £=1 u=m+1 1%]7 1%k 1747 1%u

COOjk;IE(t_l+l“) ]

1<ismf ., (4.3.13)
For equal within-age-class sampling probabilities in the two sexes,

p2(i) = P2(1) iF 1E9%m

Pg(m+1) if mtl € i < mtf

n

equation (4.3.13) can be replaced by

WOOii(t+1) = wooi—l,i—l(t) when 2 =i <smtf , i # m+1 .

In the discrete generation case, m = f = 1, (4.3.10) and (4.3.13)
reduce to the results given by WEIR and COCKERHAM (1969b). The methods
established by those authors also allow the trigametic and quadrigametic
expansions to be found. The complete set of transition equations for
gametic set measures is listed below, for the special case of equal

within-age-class sampling probabilities.
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3,. iy =200 5
PT(1) Y°°Ii;I  ieed) H PEIE) [Yooli;lili(t+1)

+ 2 Yoo, .—={t+1)] + P
Ii’IiIi

L(t+1)

v°°i;11
I'I”(t+1)
i1

111, .
(1) Yooy .
3
i

m m+f
P &L
j=1 k=m+1
m+f m+f
21 1+A
A pljplkwaojk( t)

& %'P (i) [ _E—
j=1 k=1

U
% PPy Poogpl®)

m+tf m m+f
2 B I 4p..P.,P., Voozs.v,(t)
ol ot e | Ok h gl

12 m m+f m m+f
# == 3 z z z 16p .P..P.,P:. Coo -(t)
4 j=1 k=m+1 £=1 u=m+1 1374k 14 1u gk sk

+
N[~

m m+f m+f 1 1
' jzi k §+1 =, "P1iP1kPig [3 Vooy;kalt*7 Vooy;54(t)]]
— = x=
f mtf mtf |
p111 142 ™
" E B .9, .t
e 2 j=1 k=1 £=1 pi]pikplL vou];kﬁ( :

m+f m+f m+f
z D) z upljplkplzplu Cou,k < Bl

1 k=m+1 £=1 u=1
i=1, me1 . (4.3.14)

(t)]

-2 T
+ == §

(t+1) + Pll(j) Yoor . .g g1 (1)
5 Rl N

2
P7(3) Yoor..
1333595

.. (t+1)
J

Vooi:9

A m+f m+f
L P kPJL WOokﬁ(t)

P (5 kB k 1 £=1

m+f m m+f J
+ I L 1 [(-——0 T T )up D, Voo

k=1 £=1 u=m+1 ik 3”F3“ 4P 1Py k;4u

4oy ™ mtf m  m+f ' |
% k=1 Z=m+1 u=1 r=m+1 ik¥it ]u Jr

142 m+f m+f m+f
g i Z- PixP4P5y Voox;, Iu(t)

+ Pll(j) [ = ~5—
k=1 £=1 u=1

1_) T mtf m+f m+f
* §1 4= i+1 uzi rzl 1kp1£pju jr C°°k£ ur(t)]
] . (4.3.15)

i,j=1,ml ;177



66

v°°i-ij(t+1) = P2(i) Yoor .1.g (t+1) + pl (1) Y°°I (t+1)
3”4 § 1 j

m m+f m+f

1 2y 1 1
= — P ol st
7 P (1) kzl £=i+1 uzi 4P Ps Py (5 Yooy, ()45 Voo iy (1]
f m+f m+f
142 ™
(l) [ _5_-k21 221 3 plkplﬁp °°k;£u(t)
4oy M m+f m+f m+f ]
+ =~ I z £ I Up, p.,P. Bt (t)
2 yi1 gemet ueg pmg D6 LETTOTIR TO%kkiur
i,j = 1,m+1 5 1 # 3 . (4.3.16)
v (t+1) = P2(1) v (t+1) + PT1(4) v (t+1)
00315 °°Ii;IiJj LU IiJj
1 2 m m+f 1
= =Py ¥ % W , L ,
g e k=1 f=m+1 PikPis [2 Voo, g,5-1¢8)%3 v°°£;k,3—1(t)]
142 1 m+f m+f
(1) ( . T3 L 221 PiPig Vooy. 2’]_1(t)
m m+f m+f
+-l:l ) z I Up. p.,p AR (t) ]
2 ik if iu 200k f:u,j-1

k=1 L=m+1 u=1

i=1,m1 3 1<j <m+tf ;3 j #m1 . (u4.3.17)

V°°j;11(t+1) = P2(1) Yooy 1,1 (t+1) + P* Y1) YouJ o, 1 (t+1)
j s gl |
= P2(1) [ s "5 " (t)

T A
1 m m+f

+ = I L HpaPuy Vige (t) ]
2 o B ik"iL "993-1;k£

11 mt+f m+f
+ P i z )
() o, g TR Y 004153’

i=1,m1 ;1<j<mtf 3 j #ml . (4.3.18)



67

1
™~ +
M
'O
=
'O

\)00... ('t+1) = 5
133k 2 =i st 1L Ju
m+f m+f

m
tem I L D Py P Boogp ke (E)
=1 u=m+1 r=1

i,j 1,m+1 3 1 # 3 3

1<Vt <mf 3 k#Zml . (4.3.19)

m+f m+f
AV 1) =
00y, 35 (t¥1) 251 u§1 P tPyy V00ko1;0,(T)
i, = 1,mt1 3 i # 3 3
1<k Smtf 3 k # mt1 . (4.3.20)
nt+f
14 e
Vigy el EH) = 55 £§1 Pig Voog.5_q x-1(t)
4y M m+f
+ — I I  4p.,p.. Coo7. = (t)
2 £=1 u=m+l i4%1u fu;i-1,k-1
i=1,m1 3 1<,k smtf 3 J,k # m#1 . (4.3.21)
m+f
Uooj;ik(t+1) . El Piy V°°j—1;£,k—1(t)
i=1,m1 3 1<3j,k smtf ;3 j,k #mt1l . (4.3.22)
V°°i;jk(t+1) = V°°i-1;j—1,k—1(t)

1 <i,j,k <=mtf 5 i,J,k Z m+l (4.3.23)

Ay - pHys 31,.
COOii;ii(t+i) = P (1) 5001,1,;1,1,(t+1) + P77(1) 6°°I_I,;I.I!(t+1)
11 11 11 11

1 .22,
+ 3 PO 6°°I.IZ;I.IE(Y+1) - 6°°I!I!;I.I€t+1) J
iti*7ivi 11 11

1211, ,
* 3 P D8oop pyyp qultD) #2800y gy pa(trD) ]
1 1 1 1 1 1 11

1111, .
P (1) dooI ' I (t+1)
i7i’7iTi

1y m  m+f
= =P (i) I z Up..p. Yoo (t)
* jo1 keme1 | Bd ik TUJK



68

m m+f m+f

3=1 k=m+1 £=1

m m+f m m+f
) z 2 16p.
j= 1 k=m+1 £=1 u=m+1

[COO j23ku (t)+2 Tyo- k32 t)]

1 22 i
€ { 1jp1kp1£p1u

1l
+= ¥ I I 4Py P (t) 11}
% 421 k=1 g=m+1 P1Pis 70033k
m m+f m+f m+f
w244 1
— P 3 = B X
23 EoR 5 T I I up, jplkpizpiu

j=1 k=m+1 £=1 u=1
(2003 430002 Boogy; 4y ()]

mtf m+f m+f
+ z z L p.
j=1 k=1 £=1

m+f m+f m+f m+f
FBREHEY F 3§ % T ow
j=1 k=1 £=1 u=1

13P1KPig V00353l }

1]p1kp1£p1u COO]R,L (t)

i=1,m1 . (4.3.24)

Tooe. «(t+1) = PO(i) 6 (t+1)

. 00 .
1o 58] IiIi’IiJj

il 248
+ =i (1) [ 6°°IiI;;I.J.(t+1) + 26“°I.I.;I£Jj(t+1) ]

+ PH¢1) 6 (t+1)

OOI I' J
iy

3 m m+f m+f
P (i) I z L Uup,
k=1 £=m+1 u=1

[1

§U°°k;£

N |-

111 4P 5 (t)+—voo (t)]

m m+f m+f m+f
+ %.P21(i) T A Py P x
k=1 £=m+1 u=1 r=1 1£°5u°§r

EC°°ku;£r(t)+2c°°kt;ur(t)]

m+f mtf m+f

+ I I L pyPe,Pe Voo, (t) }
k=1 =1 u=1 1K 1473 k34u



69

111 m+f m+f m+f m+f
+P(i) Tz I I . P E . (1)
k=1 g=1 u=1 p=1 plkp plu jr 7%%¢;ur

dgi™= tumtl § 2 F § - (4.8.25)

2, .
Eooll,]j(tﬂ) P (i)P"(3) 6°°I.I.;J.J.(t+1)
17127353
I |
+ P(1)P7(3) 6001,1.;J.J!(t+1)
i7i°7973
+ P (l)P (]) (SOOI I!: J J('t+1)
i7i*7 373
+ Pll(i)Pll(j) aUDI Ve J1(t+1)
T g Rl )
f m+f
g .. 8. . 40
= P7(1)P7(3) { r 2 plkp P w””kt(t)
k 1 £=1
1 m+f m m+f
+ = 2z 0% z 4 . t4p.. pP..,D. Vv .
N o el R m+1[ Pi1P5 P50 pjkplelU] 003 ; fu(t)
4 M m+f m m+f }
+ = 2 2 z I 16pyipioPe P.. Too ——(t)
Y k=1 gem#d u=1 pemsa A dL JuJr TUkdgw
1 m+f m+f m+f 11
o DT BT IR b [P(:.)P (3)p.,P.,P.
2 1=1 g=1 u=1 R E b
1T v Zya
P PUEIP Py P I Yooy, (1)
m m+f m+f m+f 2
+= I T by E[uP(l)P (j)ppp
i k=1 £=m+1 u=1 r=1 . Ju I
i B [ T
+4PTT(1i)P (])pjkpjlpluplrj °°k£;ur(t)
11 11 m+f m+f m+f m+f
PP I E I I L p..p.n Too (t)
R 1k1.£3u:|r k£ jur
i,j=1,m#1 3 i #3 . (4.3.26)
27 B 20
z;OOij,ij(tﬂ) = PY(PT(I) 8ggp 5 .19 (THD)
’ 173173

% B2GEMET NG S0y T J,(t+1)
j° ]

T n2s ..
+ PT7(i)P (]) Gqu J.:I'J (t+1)
birly B



70

1 B el [
P (l)P (]) 6001 5 'I'J'(t+1)
i s
1 .m m+f m m+f

= 2P I I I I 16p,
k=1 £=m+1 u=1 r=m+l

ikPigPuPyr C°°ku3£r(t)

m+f m+f m+f

m
1 2
+ = I > 7 |z [o8 (1)P (])P P. P,
2 k=1 g=m+l u=1 r=1 1kP14°3uPir

s Lo I
4P p* t
m+f m+f m+f m+f
s ™ T 5 £ 3 p P 4Ps
k=1 £=1 u=1 p=1 =

JU jr E““ku Lr ve

1,9 = 1,m+1 3 1 #3 . (4.3.27)

Coo0y3. lj(‘t+1) = P (1) 5001 I 1 (t+1)

e 2B ) |B Soop 1ryp.g, (TH1) + 26 (t+1) ]
. 11

3 ) OONT sy s
173 171771 ]
111,
+ P (l) 60()I Il.InJ (t+1)
i7i’7i]
1 3 m m+f 1
= =P7(i) I T U4p.,.p. [—voo (04500, o4 (8)]
2 2 pth g ikPig k34,3 2700g:x,5-1
m m+f m+f
T S COLIE N S T

2

PP
k=1 £=m+1 u=1 1k 1k 1u

(o0, g, 12O+ F00gg, 5 4 (0)]

m+f m+f
+
k=1 £=1
111 m+f m+f m+f

+ P (i % X B .
1) P i g PixPigPiu i‘:"°]<£,;u,:|—1

PixPig Vooy, g, 5-1(F) }

(t)

i=i,mtl 3 1 <3j <smtf 3 j #mt1 . (4.3.28)

D s B
Cooii;jk(t+1) =P (l? BOGIiIi;Jij(t+1) + PT(1) GOUIiI..J (t+1)

§39:K



71

m+f m+f
= P2(i) El z 1

(t)
) TR

f,pju 00f3u,k-1
4 m m+f m+f
£=1 u=mt+l1 r=1

1£p1u jr €°°£u,r k- 1(t)J

11 mtf mtf m+f
+ PGl 12 % P.,P:
£=1 u=1 r=1

P ijia CUOEu K — 1( t)

1,0 =2.mtl 31 #£3 3

1<k <mtf ; k # m+l . (4.3.29)

(t+d) = P2(1) & (t+1)

11,.
TFETE 00 I (t+1) + P77(1) &,
1js1k IiJj’ iKk IlJJ H k
1 9 m mtf m+f

= =P(1i) I 3 T G T S !
g o e Bl it iujr Lriu,k-1

(t)
11 m+f mtf mtf

+ PT(i) I 2 2 pE
£=1 u=1 r=1

4
lz 1u jr Coo,@r;u,k—l\t)

i, = 2.mtl § 1 # 3 &

1<ksmfj; k #ml . (4.3.30)

207 Al
P Suogyn sy CEFD) + BUED Sgqr g g (660
1 1

Cmroreny qespet © k)
1133k j 'k ME > ] K

5 mt+f
AT £§1 Pig Voogsy-1,k-1F)
m mt+f

+ %- 3 3
£=1 u=m+1

% P;gPiy Coogm;so1,k-1(t)]
11 m+f m+f

+ P(i) I E P P Coopoit
2=1 u=1 L iu Luzj-1,k-1

(t)

i=1,m1 ;3 1< 3j,k = mt+tf 3

o,k # mtl . (33

2,. 11,.

(t+1)

m m+f
=%¥u)z )
£=1 u=mt1

% PigPiy Boog 4-15u,k-1"T)



COOij;kﬁ(t+1)

(t+1)

00ik;jL

(t+1)

Cooij;kﬁ-

COOij;kz(t+1)

1

il R

m+f

u=1

E“[I(.'!

11 mtf mtf
Lt I,El u§1 PigPiu Foog,j-1,u,k-1F
i=1,m1 ; 1<j,k<s mtf ;
jok # m+l .
mt+f
? piupjr g00ur;k—1,£—1(t)
r=1
i,J = 1,mtl 5 i # 3 3
1< k,8 S mtf 5 k,& # mtl .
mtf
_ piupjr C°°u,k—1;r,£—1(t)
r=1
i,j =1,mt1 : i # 3 3
1<k, £ smtf ; k, & # mtl .
p (t)

iu COOu,j—l;k—l,Z—l

= 1ombl g 1< JokadE mef 3

Jok,4 # mtl .

1-1,5-15%-1,8-21

1< 1i,5,k,4 s mf

i,jak,z ? m+1 .

72

(U4

(4

(4

(4

(u

.3.32)

.3.33)

.3.34)

13p35!)

.3.36)



73

4.3.4 Numerical Results

To illustrate the progress of inbreeding for dioecious populétions
with age structure, consider the situation present in a control flock
of sheep at Massey University. In each year there are twenty individuals,
in five equal-sized age classes. There is one class of males and four
classes of females so that m = 1, f = 4, and M1 = Fi =4, 2s<1is 5,
A multinomial distribution is assumed for the progeny numbers, both
between and within age classes, sO that pil = %-, pij = %—, for i = 1,2
and 2 < j s 5 while P2(i) =-% for 1 = 1 < 5. All the individuals in the
initial (t = 0) population are assumed to be not inbred and unrelated.
Some values of the two-locus inbreeding coefficients F ,(t) for various link-
age parameter values, and of the identity disequilibrium coefficient n,,(t)
for free recombination (A = 0), are displayed in Table 4.2. Limiting
rates of inbreeding (or decrease of Foo), r, are also shown. The
approximate values are those which follow from the method of JOHNSON

(1977), and the r value in that column is the limiting value of the

difference between successive values of the approximate F, values.

Table 4.2 Inbreeding Coefficients for Dioecious Population. Four

Individuals in Each of One Male and Four Female Age Classes

t Fa(w) F (t) Ny, (t)
(year) =0 A=1/4  X=1/2 A=3/4 A=1 (approx.) A=0

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0043 0.0060 0.0090 0.0139 0.0215 0.0215 0.0038

3 0.0064 0.0092 0.0142 0.0233 0.0386 0.0396 0.0049

b 0.0085 0.0120 0.0188 0.0319 0.0557 0.0582 0.0054

5 0.0112 0.0152 0.0236 0.0408 0.0749 0.0795 0.0056

10 0.0313 0.0358 0.0470 0.0768 0.1614 0.1817 0.0053

15 0.0621 0.0662 0.0768 0.1103 0.2398 0.2837 0.0046

20 0.1006 0.1041 0.1136 O0O.1u64 0.3108 0.3858 0.0040

50 0.3829 0.3843 0.3881 0.4038 0.6174 0.9980 0.0017

100 0.7340 0.7343 0.7350 0.7384 0.8566 2.0184 0.00083

r 0.0384 0.0383 0.0381 0.0373 0.0194 0.020u4
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4.y Discussion

A general and exact treatment has been given for the determination
of inbreeding coefficients ét one or two loci in populations with over-
lapping generations. Two types of identity measures are required. One
type is defined for genes as they are located in sets of gametes and
the other type for genes identified by the individuals from which they
are drawn. In the one-locus case, only digametic measures are needed,
but in the two-locus case digametic, trigametic and quadrigametic

measures are required.

Linear transition equations between gametic set measures are
established, and this suggests that standard matrix techniques could
be employed to discuss the behaviour of these measures, which include
the inbreeding coefficients. In fact, the number of measures required
is too large for analytical work [ nﬂn+1)/2 measures for the one-locus
monoecious situation and (m+f)(mt+f+1)/2 for the one-locus dioecious
situation J, but it is a simple matter to code the transition equations
for computer iteration. The formal elegance of approximate methods
such as those of JOHNSON(1977) is thereby lost. In practice however,
the calculation of inbreeding coefficients by approximate methods also

required numerical treatment, so there is no real loss.

It is therefore suggested that the exact transition equations be
iterated numerically if levels of inbreeding are required for populations
with overlapping generations. This is particularly important in early
generations, when values based on effective numbers are not appropriate.
If the long-term behaviour of such populations is required, then effective
numbers may be sufficient and in some cases approximate values of such
numbers may be used. It is therefore appropriate to turn to a consi-

deration of exact and approximate effective numbers.

4.4.1 Inbreeding Effective Numbers for Poisson Family Sizes :

Monoecious Case

It has already been demonstrated how the transition equations for
gametic set measures lead to numerical values of exact inbreeding

effective numbers. It would be desirable if analytical values for
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such numbers could be used, even if they gave only approximate values.
The exact results are used here to check on such approximations. In

particular, consider the following general rule of HILL (1972b).

"The effective sizes of random mating populations of constant
size and sex ratio with overlapping generations are equal to
the effective sizes of populations with discrete generations
which have the same numbers of individuals entering the
population each generation and the same variance of lifetime

family number."
This rule refers to generation effective numbers.
For monoecious random mating populations, HILL (1972b) gives
N, = (W, - 2) L/(a2 + 2) (4.4.1)

when ci is the variance of lifetime family size (total gametic output
per individual). Suppose that the jth newborn in any year contributes

gij gametes to newborn individuals i years later (1 < j <N 1<1<n).

1,
The lifetime family size of the jth newborn in any year is then

For "Poisson' lifetime family sizes, the gj's are multinomially

distributed, and

1 2 1
gj ~ B(QNi,r) . Un = 2(1 - T)
1 1
so that
2
= =N .
Ng NlL 5 Ny 1L

When gametes are drawn with equal probabilities from each age class in

each year, p. = 1/n, and L = (nt+1)/2, therefore
i

. % 2 i
Ng = (n+1) N1/2 . Ny = (nt1) leu : (4.4.2)
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Now equation (4.4.2) is for the case referred to as equal chance
gamete formation. In the numerical example in Section 4.2.4, n = N1 =y,
so that (4.4.2) gives Ny = 25 while the exact result, from Table 4.1,
is Ny = 24.62. There is very good agreement between exact and approxi-
mate effective numbers for Poisson family sizes. These approximate

results also follow from the work of FELSENSTEIN (1971).

4.4,2 Inbreeding Effective Numbers for Constant Family Sizes

Monoecious Case

Now consider the case where there is no variance among lifetime

family sizes. The discrete result, HILL (1972b), provides
N = (2N, - 1)L . (4.4.3)
g 1

For exact inbreeding levels and effective sizes however, it is not

sufficient to consider only life-time family sizes. It was shown that
gametic set measure transition equations required knowledge of within-
age-class sampling probabilities, which means that a knowledge of the

annual family sizes is needed.

To illustrate the situation with non-Poisson family sizes, consider
three cases where the lifetime family size is exactly two for every new-
born individual in any year. All cases have n = 4, Ni =4 for 1 = 1,2,3,4.
In the first case, each age class is also constrained to provide exactly
two gametes in any year. This is achieved by numbering the newborn
individuals in year t in such a way that individuals give gametes in

the following years

Individuals Years
! t+1,t+4
2 t+2,t+3
3 t+3,t42
4 t+u, t+l

The eight gametes each year are combined at random.
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In the second case, gametes are provided only by the youngest
and oldest age classes in any year. In other words, each newborn
gives one gamete at age 1 and one at age 4. Random gametic union

is preserved.

Finally, a maximum avoidance scheme is used. Every newborn
individual has a 1-year-old parent and a 4-year-old parent. Gametes
are provided by youngest and oldest age classes only as in the second
case, but there is no longer random union of gametes. Matings are

specified.

The following annual effective numbers are found

two gametes per age class N = 46.58
oldest and youngest age class Ny = 45.98
maximum avoidance Ny = 8.91

Details of the appropriate transition equations are given in Section

4.5. With a generation length of 2.5, equation (4.u4.3) gives
approximate result Ny = L43.75 .

Note that in situations where matings of gametes are specified,
the inbreeding and variance effective numbers are not the same. There-
fore it is not appropriate to compare the maximum avoidance exact
inbreeding result to the approximate value which was derived for
predicting variance of gene frequency changes. With the random union
of gametes there is still some agreement between exact and approximate
effective numbers, but this disguises the quite real differences in
inbreeding levels in early generations. Table 4.3 displays the exact
inbreeding coefficients, and they are compared to the approximate values
2N -1
F,(t)(approx.) = 1 - (—5%——)t .
y
This Table also shows that exact inbreeding coefficients do not always
rank in the same order as inbreeding effective numbers. It is not until
generation five that the inbreeding for the maximum avoidance scheme
exceeds that of the equal chance scheme for example. The reverse rela-

tionship in the first four generations goes against the relationship of
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Table 4.3 Exact and Approximate One-Locus Inbreeding Coefficients:
Monoecious Poﬁulation with Four Individuals in Each
of Four Age Classes
Two gametes per parent
Equal Two gametes Oldest and Maximum
Chance per age class Youngest Avoidance
Year Exact Approx. Exact Approx. Exact Approx. Exact Approx.
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
il 0.0313 0.0203 0.0000 0.0107 0.0000 0.0109 0.0000 0.0561
2 0.0447 0.0402 0.0089 0.0214 0.0000 0.0216 0.0000 0.1091
3 0.0607 0.0596 0.0115 0.0319 0.0000 0.0323 0.0000 0.1591
4 0.0794 0.0786 0.0295 0.0u423 0.0089 0.0u428 0.0625 0.2063
5 0.1010 0.0971 0.0399 0.0525 0.0287 0.0532 0.1875 0.2508
10 0.1872 0.1838 0.0892 0.1023 0.0762 0.1036 0.3760 0.4387
15  0.2665 0.26u9 0.1371 0.1495 0.1228 0.1513  0.5242 0.5795
20 0.3380 0.3305 0.1824 0.1941 0.1691 0.1964 0.6433 0.6850
50 0.6423 0.6415 0.4085 0.4170 0.4015 0.4211 0.9370 0.94u43
100 0.8718 0.8715 0.6552 0.6601 0.6536 0.66u49 0.9965 0.9969
N 24.62 46.58 45.98 8.91
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4.4.3 Inbreeding Effective Numbers for Poisson Family Sizes

Dioecious Case

For dioecious populations with equal chance gamete formation, HILL
(1972b) gives
b2 F
Ny = —F ’ (4.4.4)
s s |

In the numerical example in Section 4.3.4., M1 = Fl = 4L and L = 1.75
to give the approximate value Ny = 24.50 while, from Table 4.2, the
exact value is Ny = 25.77. Agreement is still good for Poisson life-

time family sizes.

b4y Inbreeding Effective Numbers for Constant Family Sizes

e

Dioecious Case

For fixed equal family sizes, HILL doubles the value in (4.4.4)
and points out that the approximate effective number depends on the
lifetime family size and not on annual family sizes. The exact effec-
tive numbers however do not follow this rule, and depart from it as in
the monoecious case. The departures are illustrated by the previous
case of one male and four female age classes, each with four individuals.
Considered below are two cases where every individual has a lifetime

contribution of one male gamete and one female gamete.

The first case is where each female age class is also restricted
to providing one male and one female gamete in any year. This is
accomplished by numbering the newborn females in year t in such a way

that they give gametes in the following years

Individual Gamete to Males in Year Gamete to Females in Year
il L t + 4
2 t + 2 =+
3 t sk 3 t + 2
L t + 4 tH & A
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In the second case, the first two females in age class two (youngest)

and the last two in age class five (oldest) give male gametes, while the

other females in these two classes give female gametes.

I

n both these

examples, random union of gametes is preserved and details of transition

equations are given in Section U4.5.

numbers are

two gametes per age class

oldest and youngest age classes

approximate effective size :

Il

The exact and approximate effective

46.81
47.02
49.00

Table 4.4 shows the exact inbreeding coefficients together with the

values based on inbreeding effective numbers.

Table 4.4  Exact and Approximate One-Locus Inbreeding Coefficients:
Dioecious Populations with Four Individuals in One Male
and Four Female Age Classes
Two gametes per parent
Two gametes per age class Oldest and Youngest
Equal Chance Exact Exact
Year Exact  Approx. Males Females Approx. Males Females Approx.
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0194 0.0000 0.0000 0.0107 0.0000 0.0000 0.0106
2 0.0215 0.0385 0.0078 0.0234 0.0212 0.0156 0.0156 0.0212
3 0.0386 0.0572 0.0159 0.0315 0.0317 0.0195 0.0195 0.0316
4 00557 1050755 0.0260 0.0433 0.0420 0.0276 0.0334 0.0u419
5 0.0749 0.093Y4 0.0375 0.0548 0.0523 0.0442 0.0501 0.0521
10 0.1614 0.1782 0.0875 0.1040 0.1018 0.0944 0.1000 0.1014
15 0.2398 0.2594 0.1352 0.1509 0.1u488 0.1415 0.1468 0.1482
20 0.3108 0.3246 0.1804 0.1953 0.1933 0.1861 0.1912 0.1925
50 0.6174 0.6251 0.4061 0.4169 0.4155 0.4094 0.4131 0.4141
100 0.8566 0.859Y4 0.6529 0.6592 0.6583 0.6540 0.6561 0.6567
N 22 o T} 46.81 47.02
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u.4.5 Variance Effective Numbers

. If genetic drift is of more interest than inbreeding, the variance
effective numbers should be used. The simplest way of obtaining these
numbers, and the variance in gene frequencies due to drift, is by use
of group coancestry coefficients (COCKERHAM 1969). If ez is the group
coancestry coefficient of a population, then COCKERHAM showed that the
variance of the sample gene frequency p when the population frequency

is p (so that P has an expected value of p) is
2 _
cf) = 62 p(1-p)

Furthermore, if gametes unite at random every pair of gametes received
by the group carries genes with the same probabilities of identity

by descent. The inbreeding and variance effective numbers are the
same. The annual change of gene frequency variance follows

2N -1

2 _ y t
Uﬁ(t) = [1- ¢ 2Ny ) ] p(1-p)

Cases such as maximum avoidance of inbreeding with non-random union of

gametes were discussed by COCKERHAM (1969, 1970).

4.5 Appendix : Two Gametes Per Parent

When individuals provide exactly two gametes per lifetime, a
strict accounding must be kept of annual gametic contributions. The
sampling probabilities P(i) and gametic set measures are not appropriate,
and a new type of individual measure is wused. For the one-locus case

it is sufficient to define the digametic measure
Pli,i5k,8) = @lk,L31,3)

as the probability of identity of a gene from the jth member of age

class i and the £th member of age class k in year t. The notation is
deliberately different from that used previously to emphasize that @

is different from the digametic measures © and Y. F,(t) still refers to
the inbreeding coefficient in year t. The necessary transition equations

for the cases illustrated in Tables 4.3 and 4.4 are presented here.
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There is an obvious extension to more general cases.

In each case studied, the following initial conditions apply :

0 i#Xkorij#4
1/2 i=k, 35=4 .

P(i,isk,L)

Monoecious: Tw2 gametes per age class

There are four age classes of size four. In any year one gamete
is provided by individuals i and 5 - i in each age class i. Gametes

unite at random.

4 3 Y

28F ,(t+1) = L o(i,i;i,5i)_ + I I [o@i,i33,3)
e t . ke h t
i=1 i=1 J=1i+1

+ Cp(i)i;j,s_j)t + Cp(i,S—i;j ,j)t + cp(i,S—i;j,S—j )tJ
2p(1,i51,4), = 1+ F,(t+1) , 15 45§

P(1,131,3),, = Fylerl) 1=si<jsuy

I o™ME

&p(l’l;j’k)t+1 = [CP(JZ)J;]‘lak)t & CP(sz—f/;]—l,k)t] 5

£=1

1siksuy, 2s3su

P(1,35%,8) ) = Pli-1,33k-1,4) , 2S i,k S 4, 1S 3,<u.

Monoecious: Oldest and Youngest Age Classes

There are four age classes of size four. In any year one gamete
is provided by each individual in age classes one and four. Gametes

unite at random.

3 M
28F (t+1) = I T (op(1,i31,3). + @u,izu,3j). ]
1 = Fi; , 1 t
i=1 j=1i+1
4 oy

Sl T ) cp(1,i;l+,j)t
i=1 j=1
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2p(1,131,1) 4 = 1+ F(x+1) 1252y
P(1,i31,3),,, = F (e+1) 1si<jsH

8;0(1,i;j,k)t+1 =

[Cp(laff;j—lsk) +CP(”J'§j—1ak) J -]
2 t t

i

n ™M FE

1<i,ksuy, 2s3jsuy

CP(i,j;k,L)H1 = w(i—i,j;k—1,z)t A= iR AN , HE I =S| .

Monoecious: Maximum Avoidance

There are four age classes of size four. In any year, newborn
individual i has as parents individual i in each of age classes 1 and

4. All gametic pairings are specified.

4F,(t+1) = & o(1,i34,1) ,
i=1

2p(1,131,1) ., = 1+ F (1), 1<€4=4

kp(1,i51,3)

eeq - (L, 11,3) +(1,150,3) + P(h,151,3)

+ cp(u,i;u,j)t , 1si<jsuy

Zp(l,l;j,k)t+1 @(1,1;]-1,k)t + @(N,l;]—l,k)t >

1<i,ks4 ,2=<3s4

cp(i,j;k,.e)t+1 = w(i—l,j;k-l,ﬂ)t , 2siks4 ,1<9,8sy

Dioecious: Two Gametes Per Age Class

There is one male age class and four female age classes, all with
four members. In any year, every male (age class 1) gives one male and
one female gamete.  In female age class i (2 S i s 5), female i-1 gives
a male gamete and female 6-1 gives a female gamete. Gametes from males
and females combine at random. Fll(t) and F12(t) still refer to the

inbreeding coefficients for newborn males and females respectively.
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4 5
16F, (t+1) = I I o(1,i33,3-1)
1 . 3 t
1=1 j=2
4 5
16F12(t+1) = .§ .é @(1,1;],6-])t
i=1 j=2
Zp(i,1;1,l)t+1 =1+ F11(t+1) 5 T =4 = 4
Xp(z,l;z,l)t+1 =1+ F12(t+1) 3 1si<uy
, B n 0
kp(1,i31,3) == I T P(1,k31,8), + p(k+1,k;£+1,4) ]
t1 6 4 ok » & t
. 4 5
tg b I [@(l,k;L,L—l)t + @(ﬂ,ﬂ—l;l,k)t] ;
k=1 £=2
1S4 €4 0
, 3 n
4p(2,i;2,j)t+1 ol ) z [m(lﬁkgl,Z)t + @(k+1,5-k3£+1,5-2) ]
k=1 £=k+1 t
, & 5 .
* 1_6 z‘ L [Cp(i)ak;zab_z)t + Cp(las-ﬁ';lak)tJ 5
k=31 £=2
P24 &9 &h
: 4 5
64p(1,132,3) = T [o(1,k31,8-1), +5(1,k;£,6-2),
t+1 k=1 £=2 ) t W

+ @(k+1,k;1,£—1)t + @(k+1,k,£,6—2)t] "

il = A

4
z [cp(1,z;j-1,k)t . @(E+1,£;j—1,k)t]

gp(1,i33,k)
w1 o,

1<i,ksu, 3=

el
A
w

1)
" ™Mo

23.;.3- 1,8-153- £33~
(2353, K) [o(1,2-153-1,1)  + 9(£,6-£33-1,0),] ,

1 2

£
1<i,ksh, 323955

P(i,35kL) 4 = p(i-1,35k-1,4)  , 3sik<5, 1<3j4hs<uy.
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Dioecious: Oldest and Youngest Age Classes

There is one male age class and four female age classes, all with

four members. In any year, every male (age class 1) gives one male

and one female gamete.

In female age class 2, female 1 and 2 give a

male gamete and females 3 and 4 give a female gamete. In female age

class 5, females 1 and 2 give a female ga ete and females 3 and 4 give

a male gamete. Gametes from males and females combine at random.

I
16F11(t+1) = B
i=1
I
16F; (t+1) = I
2 3
1=1

Qﬁ(j,i;l,i)t+1

2;0(2,1;2,1)1:+1

“P(l,l;l,J)t+1

(2,i;2,7 =
d 2 ’])t+1

2

g lp(1,152,3), + @(1,135,3+2) ]
j=1 . t t

2

1+ Fp,(t+1)

[y

+ F12(t+1)

3 u
z L op(1,k31,4)
k=1 £=k+1 t

o

-+

1
6'[ cp(2,1;2,2)t + cp(2,1;5,3)t + cp(2,1;5,1+)t

t9(2,2;5,3) + ©(2,2;5,4) + w(5,3;5,4)t]

42
mel: B B [p(1,k32.£) + ©(1,k35,£+2)

16 ) t &

k=1 £=1

+@(2,£51,k) + @(5,£+2;1,k)t] s LEEieaR g
; 3 4
G ). z CP(l,k;i,E)t

k=1 £=k+1

1
+ g-[@(Q,a;Q,u)t + cp(2,3;5,1)t + cp(2,3,5,2)t

+

P(2,435,1) + ®(2,435,2)  + 9(5,135,2) ]

b2 ;
e T [op(1,k;2,8+2), + @(1,k;5,4)
o j t %
k=1 £=1

<+

P(2,4+2;1,k), + @(E,E;i,k)t] , 1si<jsuy.,

-+
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TR
6Up(1,i32,3) ., = Z I @(1,k;1,8)
Tl g1 4-1 t

2 2
+ .2 Z [m(2,k;2,z+2)t + @(2,k;5,£)t
k=1 £=1

tP(5,kt2;5,4) + w(z,k+2;5,z+2)t]
b2

B 3 18 [@(1,k;2,£)t + (1,k35,4+2)
k=1 &=1 '

+ cp(1,k;2,17,+2)t + cp(l,k;S,ﬂ)t] , 1=si,j=<uy

I
ap(1,133,k) 4 = T @(1,453-1,))
£=1
2
+ T [p(2,£35-1,k), + ®(5,4+235-1,%).] ,
. t t
£=1
1si,ks4, 3=<js5
I
(2,.;.. _ A Le
&p(2,i;3 k)t+1 2? P(i,£3] 1,k)t
=1
2
+ T [p(2,842;3-1,k),_ + ¢(5,£3;3-1,k) ] ,
=1 5 t t

i=i,k=y, J2F£E5

w(i,j;k,z)t+1 = @(i-1,j3k-1,£) , 1S j,4su4, 3si,ks5.
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5 GENERAL DISCUSSION

In a population of finite size, individuals are related to each
other by ancestry. Compared to infinite random mating populations,
this raises the chance of an individual carrying genes identical by
descent and thereby increases the frequency of homozygotes 1in the
population. This process, known as the inbreeding effect of a finite
population, is conventionally and conveniently described in terms of
the inbreeding coefficients. In breeding programmes, usually with a
finite number of breeding individuals, the inbreeding effect can to
some extent be manipulated by various selection schemes. This thesis
has dealt with this problem and has sought to develop a general method
by which the magnitude of the joint effect of finite population size,
the selection and mating schemes in altering the genetic content of a

population can be assessed.

Recently there has been a demand for the maintenance of control
populations to provide standard material for the evaluation of the
efficiencies of selection experiments. The merit of a control
population is therefore judged by the ability of the selection
scheme to minimize gene frequency drift as well as inbreeding.

It is known that schemes which give high levels of inbreeding may

not be applicable if the control population is to be used for traits
showing much inbreeding depression. Traditionally, the comparison
between the inbreeding effects of alternative designs for controls has
been made in terms of inbreeding effective numbers. These numbers,
defined as the reciprocal of the limiting rate of increase of
inbreeding, are useful for approximating asymptotic inbreeding
levels. Some populations do not maintain the same characteristics
for a long time period and the effective numbers then may not reflect
the true inbreeding levels in early generations. As shown in some
examples, populations that avoid initial inbreeding by mating the

least related individuals may have a high final rate of inbreeding.

In this regard, it is more appropriate to compare populations
on the basis of their exact inbreeding levels. This is particularly
important in practical situations. Most breeding programmes are

maintained for only a small number of generations and therefore only
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early inbreeding levels are of interest, and these may not be

accurately predicted by the effective numbers.

Following MALECOT (1948) and WEIR and COCKERHAM (196%9a, 1969b),
the determination of the one- and two-locus inbreeding coefficients
makes use of inbreeding measures, which are probability statements
concerning the identity status of genes on gametes. For one-locus
systems, the two genes of interest are necessarily carried on two
distinct gametes and the information on their identity relations
is provided by the two digametic measures, the inbreeding and the
coancestry functions. Genes for two loci may be carried on two,
three or four gametes. The analysis of two-locus systems thus

depends on digametic, trigametic and quadrigametic measures.

With the recurring nature of the regular mating systems, the
determination of the exact inbreeding coefficients relies on the
establishment of a set of transition equations relating the necessary
measures (including the inbreeding coefficient) in any two successive
generations. The number of equations may be large for numerical
iteration, but with the universal availability of computers, this

is no great disadvantage.

Apart from their concern about inbreeding levels, breeders are
also concerned about the amount of random gene frequency drift arising
from the sampling of a finite number of genes in each generation. It
is known that a selection scheme that minimizes one of these processes
may not minimize the other. Many authors have been seeking measures
of this gene frequency drift, usually in terms of variance effective
numbers. COCKERHAM (1969) showed that, in any generation, the total
variance in gene frequencies due to drift can be found from a knowledge
of the inbreeding and coancestry coefficients. There is then no real
advantage for the traditional use of variance effective numbers, which
are related to the limiting rate of increase in variance of gene
frequency. For a population maintained with constant size and random
union of gametes, the asymptotic rates of change of inbreeding and
drift are the same, and so are the inbreeding and variance effective
numbers. Some inbreeding values obtained here under these conditions
can therefore be used to check on various approximate values obtained

from the consideration of variance changes.



89

The inbreeding coefficients have been found to contain a great
deal of information about the characteristics of a population. They
are used in cdnjunction with other descent measures as well as the
initial linkage disequilibrium and gene frequencies to provide
expressions for two-locus genotypic frequencies. With no initial
linkage disequilibrium only the c¢ne- and two-locus inbreeding
coeffirients are suffic’ent (COCKERHAM and WEIR 1973). Hence the
inbreeding coefficients provide lower bounds as well as exact measures
of homozygosity. Furthermore, in the absence of initial linkage
disequilibrium, the inbreeding coefficients provide expressions for
the means and variances of quantitative traits (WEIR and COCKERHAM
1977) and hence they quantify the effects of linkage and inbreeding

on inbreeding depression and on the genetic variance among individuals.

The one-locus inbreeding coefficients have been used in recent
research to correlate changes in isozyme frequencies with quantitative
traits. Allelic frequencies for some marker genes may be affected by
selection on other genes. A measure of such an effect may be provided
by the departure of the isozyme frequency data from those expected on
the basis of random drift under the particular mating system. Using
the variance effective number as a measure of drift, SCHAFFER et al
(1977) were able to construct statistical tests to decide whether the
observed isozyme frequency variation is consistent with that which
would have been predicted by the null hypothesis of drift acting alone,
and to decide if there exists any linear trend in isozyme frequency
over generations due to selection. This method was later employed
by STUBER et al (1978) to analyse the data obtained from their selection
experiments for increased grain yield in maize. Making use of the
effective numbers for the selection schemes, these authors suggested
that the eight different loci under study were influenced by selection.
They then obtained correlations between the isozyme frequencies of
these loci with accumulated selection gain in grain yield. The
effective numbers used in these studies were based on inbreeding

coefficient transition equations of the type presented in this thesis.

One-locus theory is appropriate for the study of the progress of
a gene when the gene is observed in isolation and it exists in random

combination with other genes. It is very often desirable to study
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the progress of two genes together as might be the situations when

two genes control some characters of interest.

As the one-locus inbreeding coefficients have been found useful
in the analysis of isozyme frequency data at a single locus, it
seems natural that the corresponding two-locus quantities should be

useful in the study of two-locus data.

However, the analysis of two-locus data is often made complicated
by the fact that two genes do not always act independently. It is of
common interest to study the effect of the interaction between two
loci on genotypic frequencies as well as the extent to which the
interaction is the result of linkage or the constraints of finite
population size or the system of mating. A classical measure of
this interaction is provided by the linkage disequilibrium. If
alleles A and B at two different loci occur in the population with
frequencies Py and Pg respectively while the chromosomes carrying
them together have frequency Pap» the linkage disequilibrium AAB is

defined as

Bpp * Pap " PpPp -

It has been shown that linkage disequilibrium values in late generations
are determined entirely by the initial disequilibrium and the parental
descent measure, written as F' (COCKERHAM and WEIR 1973). A possible
extension of the work in this thesis is therefore to evaluate the
parental descent measures and hence the linkage disequilbrium values

for the particular populations studied.

To characterize an effect of linkage on the identity of two pairs
of linked genes, an identity disequilibrium was used. Unlike the
linkage disequilibrium this quantity depends only on linkage and mating
system and not on the frequencies of particular alleles. This quantity
has been discussed by WEIR and COCKERHAM (196%9a). It increases with
the amount of linkage; its value is always small and is zero in a
non-inbred initial population, increases to a maximum, then decreases

to zero when complete double identity is obtained.
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The effect of linkage is seen to increase the frequency of
double homozygotes over that expected for genes which combine
freely. However, linkage effects do not increase linearly with the
amount of linkage. Numerical results show that it is only for high
values of A thgt linkage produces significant effects, and even then

the effects are not as great as those of population size.

The thesis is primarily concerned with the analysis of genetic
properties in control populations. Attention has therefore been
restricted to those selection schemes which attempt to maintain

genetic constancy in populations.

Two selection schemes, the recurrent selection and overlapping
generations selection schemes, which have found great use in plant
and animal breeding, were chosen for the purpose of illustrating
the technique of obtaining exact inbreeding levels for any regular
mating system. For these two schemes, no correct methods have
previously been given for the calculation of the exact one- and

two-locus inbreeding coefficients or the inbreeding effective numbers.

For the determination of the inbreeding coefficients in systems
of matings among individuals, the general procedure is first to express
the inbreeding coefficient of a random member in generation tt+l as the
coancestry of its parents. This coancestry measure in generation t+1
is then expanded back into measures of the previous generation. The
types of additional measures introduced on the right hand side of this
equation are noted, and transition equations established relating their
values in generation t+1 to measures in generation t. This process is
continued until no new types of measures are introduced in the expansions
and was illustrated for the case of recurrent selection in Chapter 3.
" Transition equations were established for measures concerning gametes
drawn from individuals. These measures are termed the individual

measures.

For systems of matings among groups of individuals, transition
equations are established for gametic set measures as gametes are

drawn from groups of individuals. The quantity to be determined is
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the group inbreeding coefficient which is the average of the inbreeding
coefficients for all members in the group of interest. To identify

thé individuals from which the gametes are drawn, average individual
measures need to be used in addition to the gametic set measures. The
usual procedure is to express the gametic set measures as linear
combinations of average individual measures, and then to express

these average individual measures back to gametic set measures of the
previous generation. Such a procedure was demonstrated for the

overlapping generations selection scheme in Chapter 4.

The thesis has given a general and exact treatment of the
determination of inbreeding coefficients at one and two loci in
populations with regular systems of mating. Its generalization in
n-locus systems requires the use of x-gametic measures, x=2,3,...,2n,
subject to x = 2N for a population of size N. Once again, transition
equations could be established and exact inbreeding coefficients
could be found by numerical iteration of these equations. It is
doubtful if the considerable offort involved in such extensions
is worthwhile however. This thesis has demonstrated the great
complexity of even two-locus analysis. Real progress towards a
multi-locus theory of inbreeding is likely to depend on an adequate
set of approximate measures. A start in this direction has been made
by CHEVALET et al (1977). The exact two-locus results presented in
this thesis will allow some evaluation of the adequacy of any approximate

measures.
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