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ABSTRACT 

Inbreeding coefficients at one and two loci are evaluated for 

recurrent selection and overlapping generations selection schemes. 

These mating schemes have found great use in plant and animal breeding. 

The inbreeding coefficients are derived in terms of probability 

measures that genes are identical by descent. The procedures 

demonstrated here can be applied to any regular system of mating 

between individuals or groups of individuals. 

For individual mating systems, two digametic individual measures 

are defined and employed in the derivation of a recurrence formula 

for the one-locus inbreeding coefficients. Two further classes of 

individual measures, trigametic and quadrigametic, are required for 

transition from one generation to the previous one to allow the 

calculation of the inbreeding coefficients for the two-locus case. 

This process is illustrated for the case of recurrent selection. For 

recurrent selection populations with various imposed assumptions, 

numerical values of the average inbreeding coefficients at the end of 

the breeding cycles are listed to demonstrate the effects of linkage 

and population size on the accrual of inbreeding and hence of 

homozygosity. 

For group mating systems, gametic set measures are needed in 

addition to the average individual measures. Transition equations 

relating values in successive generations of gametic set measures are 

established for the calculation of the group inbreeding coefficients. 

As an illustration of this process, the one- and two-locus inbreeding 

coefficients for populations with overlapping generations are 

evaluated. Both monoecious and dioecious populations of diploids 

are considered and family size is not restricted to being Poisson. 

Inbreeding effective numbers found by the exact treatment here are 

compared to various previous approximate results. 
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1 INTRODUCTION 

1 

Since SEWALL WRI GHT ( 1 9 2 1 )  introduced the concept of the inbreeding 

coefficient F 1 in  terms of the correlation between uniting gametes , 

population geneticists have found great use for such a measure as it 

summari zes information about the mating sys tem. Later , BARTLETT and 

HALDANE ( 19 34 )  using a generat ion matri x  of mating types and MALECOT 

( 1948 ) using probability arguments succeeded in providing alternative 

methods of calculating inbreeding coefficients . Of thes e ,  MALECOT's 

definition of the coefficient as the probability of i dentity by descent 

of homologous genes within an individual is more widely accepted because 

it leads to easier application . 

The reason for choosing the inbreeding coefficient F 1 as a basis 

for the analys is of one-locus systems is partly the ease with which it 

can be calculated.  WRI GHT ( 1 9 2 2 )  gave the formula for the inbreeding 

coefficient of an individual I in a given pedigree as 

n +n 1 + F 1 A = l: (_!) 
1 2

( ) 
2 2 

where A denot es an arbi trary common ancestor n 1 and n2 generations 

above the two parents of I .  The summation extends over all such 

di fferent pathways and ancestors . For regular systems of mating , 

MALECOT ( 1 948 ) showed that recurrence formulas can be establi shed for 

the evaluation of the inbreeding coefficients . His idea was extended 

by COCKERHAM ( 19 67) to include matings betw
.
een groups of individuals . 

The applications of the one-locus inbreeding coefficients have been 

well studied ( e . g . KEMPTHORNE 1 9 57 ). In  the first place , i t  indicates 

the effect of finite populat i on s i ze or a regular system of mat ing on 

a population of breeding individuals , thus allowing different systems 

to be compared. Secondly , a knowledge o f  the properties of the initial 

population together with the inbreeding coefficient allows the evaluation 

of the mean and the variance of a quantitative trait . The calculat ion 

of the covariance between the genotypic values of inbred individuals 

requires the introduction of the four-gene measures as discussed by 

WEIR and COCKERHAM ( 197 7 ) .  
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Many characters of plants and animals exh ibit continuous variation 

as a result of the s imultaneous segregation of many genes at many loci 

affecting the characters . On the other hand , a character controlled 

by certain loci may be affected by s election practise d  on other loci. 

The analysis o f  characters in these s ituations necess itates the study 

of multi-locus theory . While the one-locus quantitative theory involves 

the dependencies  between the action or frequenci es of allelic genes 

caus ed by dominance or inbreeding , the cons ideration of the effect of 

two or more loci involves the further comp lications of epistasis , 

linkage and linkage disequilibrium. 

As the analy s is of one-locus systems requires the knowledge of the 

inbreeding coefficient F 1 , it is natural that an analogous measure , the 

two- locus inbreeding coeffici ent F 1 1 should be of considerable help in 

the study of two-locus models . This quantity gives the probabi lity that 

two linked autosomal loci of a diploid individual carry genes identical 

by descent . COCKERHAM and WEI R  ( 1 968 ) and WEI R and COCKERHAM ( 1969a)  

were able to  establish an  algorithm by which the two- locus inbreeding 

coefficient can be calculated and they demonstrated the procedure for 

sib mating and for any pedigree mating of individuals . The algorithm 

requires the introduction of trigametic and quadrigametic measures in 

addition to the usual digametic ones , the one-locus inbreeding and 

coancestry coefficients needed for the one-locus theory . WEI R and 

COCKERHAM ( 19 69 b )  also used similar arguments in conj unction with 

those  of COCKERHAM ( 19 67 ) to develop a procedure for the evaluation 

of two-locus group inbreedin g  coefficients for systems of matings 

between groups of individuals .  

The two-locus inbreeding coefficient allows an identity disequi­

librium to b e  defined 

which measures the dependence of two genes at two loci and hence increases 

w ith linkage . This quantity i s  zero for any p edigree mating in the abs ence 
2 

o f  linkage as then the relat ionship F 11 = ( F1) always holds . For any 

regular system of mating , it i s  zero for a non�inbred initial population 

or when complete double identity i s  obtained and i s  positive for all 

other generations . 
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The two- locus inbreeding coefficient , though characteri zing the 

effects of linkage and mating system on the identity by descent of 

two pairs of linked genes , does not by itself provide the express ion 

of j oint genotypic frequencies at two loci . To offer complete solutions 

to two- locus problems , a complete set of four�gene parameters needs to 

be s et up . 

A pair of genes is said  to be equivalent by descent if both genes 

descend from genes on one initial gamete .  For two genes a ,  a '  at one 

locus and two genes b ,  b' at a second locus , a class of individual 

descent measures was defined which gives the probab i lities of the various 

arrangements of thes e four genes on gametes in the initial population 

( COCKERHAM and WEIR 1 97 3 ,  1977, WEI R and COCKERHAM 1973 , 1974 ) . The 

measures thus relate the structure of any generation to that of an 

initial populat ion . A s et of eight summary components of descent mea­

sures was chos en to work with as they are simpler to evaluate and to 

apply than the original s et of measures . General procedures for cal­

culating these summary measures have been established . When the structure 

of the initial population i s  known , these summary measures lead to 

expressions for two-locus genotypic frequencies and various disequilibria 

functions , and also to the means and variances of quantitative characters 

( WEI R and COCKERHAM 1977 ) .  The last paper also mentioned that some 

eight-gene descent measures would need to be defined in dealing with the 

problem of covariances between individuals . 

When two genes at each of two loci are simultaneously equivalent 

by descent , their identity by descent is ensured .  Therefore two com­

ponents of the summary measures are the one-and two- locus inbreeding 

oefficients. I n  particular , in the absence of initial linkage disequi­

librium, these two coefficients are sufficient to express the two-locus 

genetypic frequencies , means and variances in terms of the properties 

o f  an initial population . 

The two-locus inbreeding coefficient t hus contains a great deal 

of information about the two-locus s tructure of a p opulation as the 

one-locus coefficient does for the one- locus model .  It is the purpose 

of the present work to i l lustrate further the evaluation of the two­

locus i nbreeding coefficients in the cases of recurrent s election 
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and overlapping generations s election schemes . These are schemes 

des i gned to s low down .the rat e  of inbreeding in selection programmes 

and the inbreeding coefficients would give indications of the approach 

to homozygos i ty . The literature appropriate to the two mating schemes 

will be reviewed when they are introduced in Chapters 3 and 4 .  

Techniques developed for population genetics are thus being applied 

to quanti tative genetics . The mating schemes s tudied contain the com­

plication that speci fic rules are stated for the s election of members 

of a generation to serve as parents of the next generation .  An indication 

of the complexity is the fact that this thes is offers the first exact 

and correct evaluation of even the one-locus inbreeding coefficients . 

Just as inbreeding measures summari ze information about mating 

systems , effective numbers can be defined and summarize the behaviour 

of inbreeding measures . Such effective numbers will be discussed when 

appropriate throughout the thesis . 



2 REVIEW OF ONE- AND TWO-LOCUS I NBREEDING MEASURES 

2 . 1  One-Locus Individu�l Measures 

5 

For inbreeding at one locus , the identity status of pairs of genes 

a ,  a '  at the locus is neede d .  A probability measure X with two compo­

nents according to the identity relations is defined as : 

� ( a , a ' ) = 
[ Xl ( a , a ' )J = 

X0 ( a ,a ' ) 

r Prob ( a::a I� 

lProb ( a$a '  J 

where the equivalence sign :: means identity by descent . No restriction 

is placed on the number of alleles. 

X is a digametic measure as a and a' must be carried on two distinct 

gametes . When dealing with individual mating schemes , two types of the 

measure need to be dis t inguished according to whether or not the two 

gametes unite and these two are sufficient for the es tablishment of 

recurrence relations for the evaluation of the one-locus inbreeding 

coefficient : 

F = X( a a '  -I - ' 

�K = � ( a , a '  

Evi dently , F 11 is 

Fo1 is 

81JK i s  

a , a '  are o n  two gametes uniting t o  form 

individual I )  

a , a '  are on two gametes taken from 

individuals J and K respectively ) .  

the i nbreeding coefficient of I ,  

the p anmictic coefficient of I ,  

the coancestry coefficient of J and K, 
and F11 = 81JK i f  I is the offspring of J and K. 
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2 . 2  One-Locus Group Measures 

To study sys t ems of matings between groups of individuals , let 

I ,  J ,  K denote indivi duals belonging to groups i ,  j and k respectively . 

Tl1e coancestry between groups j and k is det ermined by the iden tity 

status of genes on two gametes taken randomly from the two gametic 

output sets provided by groups j and k respectively. It is referred 

to as a gametic set measure . To take account of the gametic sampling 

scheme , it is neces s ary to specify the groups that receive the gametes . 

'i'. 
k 

= � ( a , a' -J
P q 

a is on one gamete in the gametic s et that 

group p receives from group j and a' is on 

one gamete in the gametic set that group q 

receives from group k ). 

The inbreeding function of group i ,  F., i s  given by the average -l 
coancestry between its parental groups , j and k say 

= \}'. 
k -Ji i 

averages taken over all such pairs of gametes. Recurrence relations are 

then established between values in successive generat ions of a complete 

set of digametic set  measures for the evaluat ion of F .. -l 

A difficulty arises when one group acts as a donor of both gamet es 

for a gametic set measure , for example 'i'. . . The two gametes taken -Jp]q 
from the same group may have come from the same individual and there i s  

a possibility of the two genes being automatically i dentical by descent. 

This situation prohibits the expansion of gametic set measures back 

directly to gametic s et measures of the previous generation. Indivi dual 

measures need to be defined to i dentify cas es that the two gametes of 

interest  have come from the same or two distinct individuals : 

= X( a , a' a is on a gamete taken from individual J in 

group j and a' is on  a gamete from individual 

K in group k ) .  
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Primes are used to denote distinct individuals . For example, the 

average individual coancestry function for two distinct members of 
group j is written as � 

.
J !·' · The procedure is thus to express a gametic 

J J 
set measure as a linear combination of individual measures by using the 
gametic sampling probabilities, and then to expand these individual mea­
sures back to gametic set measures of the previous generation ( WEIR 
and COCKERHAM 1969b ) . 

2 . 3  Two-Locus Individual Measures 

The following work serves as an extension of Section 2 . 1 and 

is based on the work of WEIR and COCKERHAM ( 1 969a ) . For two loci with 

genes a and b respectively, the identity status of two pairs of genes, 
a, a' and b, b' is needed . The usual procedure is to define a four 
component vector for these gene pairs as 

X ( ab,a'b' ) = 

X 1 1 ( ab , a ' b ' ) 

X ( ab a'b' ) 1 0 ' 
X01 (ab,a'b') 

X00 ( ab,a'b' ) 

Prob ( a::a', b::b' )  

Prob( a::a', b$b' )  
= Prob( a$a', b::b' )  

Prob ( a$a', b$b' ) 

To evaluate such tWo-locus inbreeding measures, it is necessary to 
distinguish the cases where the pairs of genes are carried on two, three 
or four gametes . There are two digametic measures, just as there are 
in the one-locus case : 

FI = �( ab,a'b' 

�K = � (ab,a'b' 

ab,a'b' are on the two gametes uniting to 

form individual I ), 

ab,a'b' are on two gametes taken from 
individuals J and K, respectively ) .  

The trigametic and quadrigametic measures are written as land �' 
respectively : 

Yr·JK = �( ab,a'b' ' ab, a�b' are on three gametes taken from 
individuals I, J, and K, respectively) ,  



s = _X( ab , a ' b' � IJ ; KL 

8 

a , b , a' , b' are on four gametes taken from 

indivi duals I, J, K and L, respect1vely ) .  

The four components of each measure s um t o  unity . The fi rst and 

fourth component of �I' giving the probabi liti e s  of double identity 

and double non- identity by descent are termed the two- locus inbreedi ng 

and panmi ct i c  coeffi ci ents respectively for individual I .  

One locus measures may be found by summing appropriate components 

of two- locus measures as shown in Table 2 .1. 

Table 2 .1 Relationship between One- and Two- locus Measures 

F 1 1 I F 1 OI F1 'I=F1I 

Fo 1 I Fool Fo.1=Fo1 

F. 1I=F1I F. oi=Foi 1 

e 11JK 81 oJK 81 '_JK=8 1JK 

8o 1JK 8o oJK 8o. JK=8oJK 

8. 1JK=81JK 8.oJK=8oJK 1 

y 1 oi. JK ' 



Table 2 . 1  ( continued ) 

611IJ·KL ' 

Oo 1IJ ·KL ' 

8. 1JL =8 1JL 

61oiJ;KL 

OooiJ·KL . ' 

8.oJ1=8oJL 

9 

e1.IK=e1IK 

8o.IK=8oiK 

1 

For examp le , the one- locus coefficient of an individual I lS given by 

F1I = F 11I + F 1 OI = F11I + Fo1I 

with the assumpti on that both loci are equally inbred . Once the 

one- locus coeffi cients  are known , the tables demonstrate that only 

one component of each of the two- locus measures need be calculated 

in order to determine a l l  the measures . For convenience , the compo­

nent Xoo for double non- i dentity i s  usually chosen to work with . 

The linkage p aramet er is defined so that the gametic array 

produced by an individual with genotype ab I a'b ' lS : 

2 . 4  Two- Locus Group Measures 

In analys ing group mating syst ems at two loci , WEI R  and COCKE RHAM 

( 19 69b ) have define d  t hree c lass es of gametic set measures : 

�. k = �( ab , a'b '  -J P q 
ab are on one gamete in the gametic  set  

that group p receives from group j and a ' b' 

are on one gamete in the gametic s et that 

group q receives from group k ) , 

V· • k = �( ab , a'b ' -l ·] ab is on one gamete in  the gametic set  

that group p receives from group i ,  a' 

is on one gamete in the gametic s et t hat 

group q receives from group j and b '  i s  

o n  one gamete i n  the gametic set that 

group r receives from group k), 

P ' q r 

M • - ·r . ··••llT:.!TY 
t;;·"i.�.x 
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s = _X( ab , a ' b '  -i j •k £ a , b , a '  ,b ' are on four gametes in the 

gametic s ets that groups p ,q ,r , s p q' r s 

receive from groups i , j , k ,£ , respectively ) .  

The p ro cedure for the evaluation of the two- locus group inbreeding 

function F. is  to first  express i t  as the coancestry function between -l 
the parental groups , j and k say , 

F. 
-l = �

j . k . l l 

and then to establish recurren ce relations for a complete s et of gametic  

s et measures for the calculation of  �- k . -Ji i 

J ust  as in the one- locus cas e ,  whenever a group appears more than 

once as a donor in the subscript of a gameti c  s et measure , the expan­

sion procedure requires an intermediate stage of individual measures . 

Let I , J , K , L  denote members of group i , j ,k ,t , respect ively , three types 

of indivi dual measures are distinguished : 

y = �( ab , a ' b '  
-I . ; J . Kk l J 

ab , a ' b '  are on two gamet es t aken from 

individuals J ,  K in groups j and k ,  

respectively ) ,  

ab , a '  ,b ' are on three gametes taken 

from individuals I , J , K  in groups i , j  

and k ,  respe ctively ) ,  

a , b , a '  ,b ' are on four gametes taken 

from individuals I ,J , K ,L in groups i ,  

j ,k and i, respectively ) .  



3 ONE- AND TWO-LOCUS I NBREEDING FOR RECURRENT SELECT I ON 

3 . 1  I ntroduction 

1 1  

With the inbreeding measures defined generally , and the machinery 

developed by COCKERHAM and W E I R  ( 1 9 6 8 ) for the calculation of the two­

locus inbreeding coefficients ,  in this Chapt er a one- and two-locus 

analysis of inbreeding for a population undergoing recurrent selection 

is presente d .  

The use o f  recurrent s election ( RS )  procedures i n  p lant breeding 

is now wel l  es tablished . As PENNY , et al  ( 1 9 6 3 ) point out in their 

review� the recombination or crossing phas e in an RS programme s lows the 

rapid approach to homozygosity which limits s election under s elfing 

systems . To monitor the level of homozygosity in RS programme , it is  

convenient to calculate inbreeding coeffi cients . These coefficients 

indicate identity by des cent and so do not give a complete des cription 

of homozygosity . They do provide lower bounds , however , ( CAIN and 

H INKELMANN , 1 9 7 0 )  and the algebra needed to estab lish rec1�rence 

equations for inbreeding coefficients may also be applied direct ly 

to measures of homozygosity . 

A one- locus coeffi cient was cal culated by SPRAGUE , et al ( 1 9 5 2 )  

and a quite detailed dis cussion o f  one- and two- locus coefficients was 

given by CAIN and HINKELMANN ( 197 0 ,  1 972 ) .  These last two papers 

contain s ome errors and do not seem to follow the most natural develop­

ment of inbreeding measures . One difficulty with the papers of CAIN 

and H INKELMANN is that they are based  on the approach of SHIKATA ( e . g . , 

SHIKATA� 1 9 6 5 )  which is of limited application ( e . g . , W E I R ,  1 971 ) .  

3 . 2 Mating and S e lection S chemes 

The population consists of diploid individuals capable of both 

selfing and intercrossing . There is no restriction on the number of 

alleles at each of the loci s tudied .  A const ant number of progeny per 

indivi dual is assumed and possible viability effects are ignored . The 

development will be bas ed on one progeny per mating ( self or intercross ) .  
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Initially N non-inbred and unrelated individuals are drawn from 

a s ource population and s e lfed . The resulting N offspring are crossed 

in -all poss ible pairs and then another selfing phase entered . The 

populat ion size  would quickiy become unmanageable of course for there 

would be M = N ( N- 1 ) / 2  indivi duals at the end of the first i ntercross 

phas e , M ( M- 1 ) / 2  at the end of t he s econd , and so on . 

S election will be supposed to  be practised by s e lect ing N indivi­

duals at the end of each selfing phas e .  ·The basis for this sele ction 

wi ll  not be discussed , but note ( CAIN and HINKELMANN , 1 970 ) that this 

treatment includes such s chemes as s imple RS, reciprocal RS and RS for 

general and specific combining abi li ty . The calculati ons made will 

inc lude a ll of the M individuals at the end of each intercross phase . 

S election will  be supposed t o  be at random , so tnat it is necessary to 

make use of sampling probabi lities . Any mating scheme in which there 

i s  no choice of mates is express ly excluded from cons ideration here , 

but may be analysed by other methods ( e . g . ,  WEI R  and COCKERHAM , 1 9 6 9a ) . 

!1ost of the discussion will be for the case where N individuals are 

chosen quite at random from the M at the end of each s elfing phase , 

and so would be appropriate for a control populati on . Following 

CAIN and H INKELMANN ( 1970 ) ,  two s chemes of random selection with 

constraints will be cons idered . Thes e  are the so called "minimum" and 

"maximum" inbreeding s cheme s . I n  the former case , each of the selected 

i ndividuals contributes exactly two gametes to the next group of s e le cted 

i ndividuals . In the latter case , one of the sele cted individuals contri ­

butes N - 1  gametes , two contribute two gametes whi le the remaining N- 3 

individuals each contributes exactly one gamete to the next group of  

s e lected individuals . The mat ing and selection s chemes are i llustrated 

for N = 4 in Figure 3 . 1 .  Random s election is when the four individuals 

s elected in generation 1 of a cycle are s e lected without regard to game t i c  

contributions in th e previous cyc le .  

The quantities to  be determined are the average inbreeding coeffi­

cients for the intercross and s elfed populations , so that all members of 

these populations must be considered whether or not they contribute to 

succeeding generat ions . 
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Mating and selection schemes for N = 4 .  Sele cted 

individuals are shown as solid circles . 
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n- 1 

n 

n- 1 
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3 . 3 One- Locus Case 

14 

The inbreeding coefficient of a random one of the M members, say 

A, o f  generat ion 2 ( intercrossed generation ) of cycle n can be written 

as F1A or as F 1 ( 2,n )" As not a ll members of this generat ion have the 

same pedigree, F 1 A is an average measure . F 1A lS first expressed as 

8 1BB', the coancestry of two of the N distinct individuals B and B' 

chosen at random from generation 1 ( s elected selfed generat ion ) of 

cyc le n .  The process of tracing gametes back in t ime cont inues unti l  

a s et o f  transition equations l S  established wh ich allow the calcula­

t ion of F 1A and of F 1B . 

3 . 3 . 1  Samp ling Probabilities for One- Locus Case 

If C and C' are the parents of B and B', respectively, they are 

dist inct members of the select ed int ercross populat ion ( generation 2 

o f  cycle n- 1 )  and 

( 3 . 3 . 1 )  

The s elected int ercross population refers to the parents  of the 

s el ected s elfed populat ion . Further expansion back in t ime requires 

a ccount to b e  taken of whether C and C' have a common parent, with 

probability P 21 1, or whether they have four dist inct parent s, with 

probability P 1111 . For both schemes in Figure 3 . 1, individual A has 

grandparents C, C' with a common parent D, whi le the grandparents of 

i ndividual A' do not have a common parent . I n  general, when a set of 

2m gametes recei ved by m members of generation 2 o f  cycle n is consi-

dered, P t is  the probabi l ity that these  gametes are from r t 1 2·· . tr 
individuals in generat ion 1 of cycle n and that the ith of these 

individuals contributed t . of the gametes . Thi s  requires that the 
l 

t .  s um t o  2m .  
l 

The four gametes received by dist inct individuals C, C' necessarily 

come from three or four individuals unless N ,  the s e lected populat ion 

s ize, i s  equal to 2 .  Thi s  provides 

p
2 1 1  + p

1111  = 1 ' N � 3; P 22  
= 1, N = 2 .  
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For the unrestricted random sampling s cheme , N � 3 ,  the sampling 

probabilities may be taken to refer to four gametes uniting to form 

any two of the M crossed offspring in generation 2 of a cycle . The 

number of such pairs of offspring i s  (
M

) and ,  since selection is 2 
random , the number of ways in which three distinct parents can be 

chosen for a pair i s  (U) Finally , the number of ways in whi ch one 3 
of the three parents can be chosen to contribute two gametes , and 

become the common parent to t he pair of individuals , l S  ( 3 ) s o  that 1 

p
1 1 1 1  = N- 3 , N � 3 N+ 1 ( 3 . 3 . 2 ) 

For the restricted random s elect ion s chemes , as in CAIN and 

HINKELMANN ( 1 97 0 ) , let a .  denote the number of gametes contribut ed by l 
the ith selected individual to the next generation of s elected indi-

vi duals . Thes e a .  must s atisfy 
l 

1 � a .  � N - 1 
l 

N 
L 

i = 1  
a . l = 2N 

and may be regarded as the number o f  gametes the ith s elected s elfed 

individual contributes to the following generation of s elected inter­

cross ed indiv iduals . Now P
2 1 1  

can be regarded as the probability that 

a pair of individuals from the s ele cted intercross populat ion have a 

common parent in the preceding s ele cted self populat ion . There are ( N) 2 
s uch pairs of individuals and L a . ( a . - 1 ) / 2  pairs of gametes from a 

i l l 

s ingle parent , so that 

= L a . ( a . - 1 )/N ( N- 1 )  
i l l 

Figure 3 . 1  s hows 

i nbreeding , a .  = 2 for i 
l 

the a . 's for the cas e N = 4 .  l 
= 1 , 2 ,  . . .  N so  that 

p
211 = 2/ ( N- 1 )  N � 3 

( 3 . 3 . 3 ) 

For minimum 

whi le for maximum inbreeding i t  is appropriate to write a1 = N-1 , 

a2 
= a3 

= 2 ,  ai 
= 1 for i = 4 , 5 ,  . . .  N and hence 

P
211  

= (N2 
- 3N+ 6 ) /N ( N - 1 ) N � 4 • ( 3 . 3 . 4 ) 
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Note that , a s  expected , P 2 1 1  for unrestricted random sele ct ion is  

greater than that for minimum inbreeding and less than that for maximum 

inbreeding for all  N � 4 .  

3 . 3 . 2 Recurrence Formulae for N � 4 for One- Locus Case 

I f  primes are us ed  to denote distinct random individuals , equat ion 

( 3 . 3 . 1 )  can be expressed as 

( 3 . 3 . 5 ) 

From the usual result for the coancestry of an individual with i tself 

8 1 DD = ( 1  + FlD ) / 2  

FlD = 8 1E E  = ( 1  + FlE ) / 2  ( 3 . 3 . 6 )  

and these express ions may be subs tituted into ( 3 . 3 . 5 )  whi ch , with 

8 1 DD' written as F 1 C , gives 

( 3 . 3 . 7 )  

Recal l  that D , D' are any two of the selected selfed individuals , whi le 

C in F 1 C refers to any of the M offspring obtained by crossing thes e .  

I n  general t hen , the average inbreeding for the whole of the 

intercross generation follows from ( 3 . 3 . 7 )  as 

Fl ( 2 , n )  = 3p
2 1 1

11 6  + ( 1-P 2 1 1/ 4 ) F 1 ( 2 , n- 1 )  

+ p
2 1 1

Fl( 2 , n- 2 ) / 16 

and that for the whole of the selfed generation 

as 

F 1 ( 1 , n )  = ( 1  + Fl ( 2 , n-1 ) ) / 2  

( 3 . 3 . 8 ) 

follows from ( 3 . 3 . 6 ) 

( 3 . 3 . 9 )  

Whil e  any initial conditions at all may be accommodated , it is usual 

to take F 1 ( 2 , 0 ) = F 1 ( 2 , 1 ) = 0 ,  where F 1 ( 2 , 0 )  is for the initial N 

individuals . 
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For unrestri cted random s ele ction , substitution of P 211  from 

( 3 . 3 . 2 ) into ( 3 . 3 . 8 ) gives 

F 1 ( 2 ,n )  = 
3 N . 1 F ...,...--;',..,--...,._- + -- F + 4 ( N+ 1 ) N+ 1 1 ( 2 , n- 1 )  4 ( N+ 1 )  1 ( 2 , n-2 ) ( 3 . 3 . 1 0 )  

which .corrects equations ( 3 . 1 ) ,  ( 3 . 2 )  of CAIN and H I N KE LMANN ( 197 0 ) .  

For r es tricted random selection , if P 211  from ( 3 . 3 . 3 ) is substituted 

into ( 3 . 3 . 8 ) , a result �s obtained similar to  that in equation ( 6 . 1 )  of 

CA IN and HINKELMANN ( 1 970 ) ,  who refer to this case as effective direc­

tional s e lection . 

I n  t he maximum inbreeding case there is the unusual result that 

average inbreeding increases with population size . This is becaus e , 

for N � .6 , P 211 is an in creasing function of N .  As N increases , there 

is a gre ater chance that any two members of the s elected inter cross 

generation have a common parent . This extreme case is less likely to 

o ccur by chance under unrestricted random selection as N increases , 

however . 

3 .  3 .  3 Recurrence Formulae for N < 4 for One-Locus Case 

For a population to  be maintained at size less than four , there 

can b e  no s election since M $ N and the situation is r eally outside 

the s cope of thi s  Chap t er .  For N= 1 the system becomes the simple s elfing 

cas e with no s cope for intercrossing . For N = 3 each individual always 

contrib utes exactly two gametes to succeeding generations , and , from 

either ( 3 . 3 . 2 ) or ( 3 . 3 . 3 ) ,  P 2 1 1  = 1 .  Equation ( 3 . 3 . 8 )  does reduce to  

F _ _]__ + � F + _!_ F 1 ( 2 , n )  - 1 6  4 1 ( 2 ,n- 1 )  1 6  1 ( 2 , n- 2 )  

as given in ( 6 . 1 )  of CAIN and HINKELMANN ( 1970 ) .  

( 3 . 3 . 1 1 )  

To maintain a population of size N = 2 ,  it would be neces sary for 

the pair of indivi duals in each intercrossing phas e to leave two off­

spring instead of one . The system then r educes t o  one of alternating 

s elfing and ful l  sib mating , for which the appropriat e  r e currence 



formula is 
Fl( 2 ,n )  

3 1 1 
= 8 + 2 F1( 2 , n-1 ) + 8 F1( 2 ,n-2 )" 

1 8  

( 3 . 3 . 1 2 )  

Equat ion ( 3 . 3 . 9 )  is still t9 be used in conj unction with ( 3 . 3 . 1 1 )  

and ( 3 .  3 .  12 ) .  

3 . 4 Two-Locus Case 

For inbreeding at two loci , the identity status of two pairs of 
genes , a ,a' at one locus and b , b' at another locus needs to be consi­

dered . The four genes may be carried on two , three or four distinct 
gametes and hence , in addition to the digametic measures sufficient 
for the one-locus analysis , two further classes of measures� trigametic 
and quadrigametic ,  are required for transition from one cycle to the 
previous one to allow the calculation of the two-locus inbreeding 
function . 

From Table 2 . 1 ,  it is evident that , to determine the four com­
ponents of the inbreeding function , the only information needed is 
one of the components in addition to the one-locus coefficients , as 
for example , F11= F00 + 2F 1 - 1 .  It will be convenient to work with 
the two-locus panmictic coefficient ,and the corresponding (fourth )  
components of other measures . 

For further convenience the following average measures are defined 

y I ·JK = ' 

iiJ ; KL = 

0IJ · KL = , 

C:ti · JK + r.I · KJ ) / 2 ' ' 

( .§_IJ·KL + .§_IJ ;LK ) / 2 ' 

( .§_IJ · KL + .§_IJ · LK ' ' 
+ �I ; KL + �I·LK) /4 

' 

Expansions of two-locus measures make use of the linkage parameter 

A which was defined on Page 9 .  The one�locus situation corresponds to 
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A= 1 , for then the two loci are completely linked and a and b are 
transmitted as one gene . Independent transmission of a and b occurs 
when A=O . 

3 . 4 . 1 Selfing Phase Expansions for Two-Locus Case 

The general method of calculating I for any generation follows 
that for the one-locus coefficient F 1 • Starting with a random member 
A of generation 2 of cycle n ,  � is expressed as the two-locus coancestry 
coefficient of its distinct parents 

( 3 . 4 . 1 ) 

The tracing of the genes received by A back through the selfing 
phase is now more complicated since the four genes may be carried on 
two , three or four gametes in that phase. In particular , if indivi­
dual B receives gametes acbc , a�b� from its single parent C and trans­
mits gamete �bB to individual A, then aBbB is traced back to the array 

and similarly for the gamete transmitted from B' to A. The two arrays 
may be written as the margins of a two way table , as in Table 3 . 1 ,  and 
the value of 800BB' in each of the sixteen cases written in the body 
of the table . 

Collecting terms ln this table shows that 

( 1+A ) 2 1-A 2 
= 4 80°CC' + --2-- Yooc;C'C' 

( 3 . 4 . 2 )  

where , once again , primes are used to denote distinct rather than 

particular individuals .  



Table 3 . 1  

1+1.. ac,bc, 4 

1+1.. ' b' 4 aC1 C1 

aB,bBI 
1-1.. -4- aclb� , 

1-1.. 
a� lbc, 4 

Expansion of 800BB' 

1+1.. 4 

eoocc' 

eooccl 

Yooc;C'C' 

Yooc ·clcl ' 

1+1.. 
4 

a'b' c c 

Boo cc• 

eooccl 

Yooc;C'CI 

Yooc;C'C' 

1-1.. 4 

a b' c c 

Y 0 °C' ;cc 

Yooc•;cc 

6oocc;C1C' 

0 0 0 CC; c I c I 

1-1.. 4 

a'b c c 

Y 0 °C1; cc 

y 0 0C I; cc 

20 

0oocC;C1C1 

00°CC;C1C' 

Further expansion , now through the intercross phase , will require 
the use of sampling probabilities as previously , followed by expansions 
through another selfing phase . These selfing expansions will evidently 
be for genes received by two , three or four individuals ( in generat ion 

1 of cycle n- 1 ) . 
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For the other digametic measure 800BB ' double non-identity 

is preserved only if the four genes on the two gametes from B 
descend from four distinct genes on the two gametes received by 
B from its single parent c: This occurs with probability ( 1+A2 ) /4 
and hence 

( 3 . 4 . 3 )  

When genes a' , b' , or when all four genes a , b , a' , b' ,  are on separate 
gametes from B ,  double non-identity is preserved with probability 
1/4 and 

Yo oB ; BB ( 3 . 4 . 4 ) 

1 
= 4 8o o cc . ( 3 . 4 . 5 ) 

The argument for the expansion of Yo oB · B'B' lS the same as that 
' 

for 800BB' except that the frequencies for the gametic array of a' b' 
are all equal to 1/4 .  Since genes a' ,b' are on separate gametes , 
linkage cannot affect these frequencies . The appropriate expansion is 
then 

Yo oB · B' B' ' 
1+A 1 = --4- 8 o o cc' + 2 Yo o c ;C'C' 

+ 1-A 
4 0 0 0 C C  ; C I C I 

( 3 . 4 . 6 )  

When genes a and b are also on separate gametes , linkage does not 
affect the gametic arrays of either ab or a' b'. The expansion for 

000BB B'B' is then obtained from ( 3 . 4 . 6 ) by removing A ' 

1 1 1 
= 4 80°CC' + 2 Yo o c ; C'C' + 4 8o o cc ; c'c'· ( 3·4 · 7 )  

To preserve double non-identity in expanding y00B·BB' , genes a ' 
and a' must be traced back to genes on distinct gametes received by 
B from C so that 

1 
Yo o B ; BB' = 2 Y o o c ;CC' 

By symmetry the expansion for Y o o B·B'B is 
' 

1 
= 2 Y o oc ;C'C 

( 3 . 4 . 8 ) 

( 3 . 4 . 9 )  
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Combining equations ( 3 . 4 . 8 )  and ( 3 . 4 . 9 ) leads to the expansion of 

the following average measure 

1 . 
= 2 Y o oc ;CC' ( 3 . 4 . 10 )  

Consider the expansion of y00B;B'B"' the gamete carrying ab may 
be a parental type or a recombinant type with probabilities ( 1+A ) / 2 
or ( 1-A ) / 2 respectively . Therefore 

1+A  1-A 
y 0 0 B ; B I B" = -2- y 0 0 c ; c I C" + -2- 0 0 0 cc ; c I C" ( 3 . 4 . 1 1 )  

When genes a , b  are carried on separate gametes , A may be removed from 
equation ( 3 . 4 . 11 ) giving 

000BB·B'B" ' 
1 1 

= 2 y 0 0 c ;  c I C" + 2 ° 0 0 cc ; c I C" ( 3 . 4 . 1 2 )  

For 000BB'·BB" , genes a and a' must be traced back to genes on 
' 

two gametes received by B to preserve double non- ident ity .  This occurs 
with probability 1/ 2 since a and a' are on separate gametes and hence 

1 
= 2 ° 0 0 cc I ; CC" ( 3 . 4 . 1 3 )  

By symmetry 

1 = 2 ° 0 0 c I c ; C" c ( 3 . 4 . 14 )  

When the same argument is  also applied to genes b and b' , the 

following expansion is obtained 

( 3 . 4 . 1 5 ) 

Equations ( 3 . 4 . 1 2 )  - ( 3 . 4 . 14 )  provide the expansion of the average 
quadrigametic measure 

( 3 . 4 . 16 )  

Finally 

6 = 0 OOBB' ;B"B'" ooCC' ;C"C'" ( 3 . 4 . 17 ) 
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These equations may be manipulated more easily in matrix form . 

For the selfed generation of cycle n , the twelve measures needed can 

be written as a vector u -( 1 ,n ) 

�C 1 , n )  = [eOOBB ; 8ooBB' ' YooB;BB ' YooB;B'B' ' YooB;BB' ' 

and the ten measures needed for the intercross generat ion of cycle n-1 
are written as v ) or as v r O ,n )  -( 2 ,n-1  --

v' �2 , n- 1 )  = [ e o_occ y 0 0 c; c I c I ' y 0 0 c; cc I ' y 0 0 c; c I C" 

6oocc;C'C' ' 6oocc' ;CC' 

0 0 0 cc I • C" C"' J . 
' 

6oocc;C'C" 

Equations ( 3 . 4 . 2 ) - ( 3 . 4 . 7 ) ,  ( 3 . 4 . 1 0 ) - ( 3 . 4 . 1 2 )  and ( 3 . 4 . 1 5 ) - ( 3 . 4 . 1 7 ) 

become 

� 1 , n ) = '¥�( 2 ,n- 1 )  = '*'�o , n ) ( 3 . 4 . 18 ) 

where the 12  x 10  matrix '¥ has elements defined by those equations . 

3 . 4 . 2 Sampling Probabilities for Two-Locus Case 

The previous section showed that account must be taken of gametes 

received by two , three or four individuals in generation 1 of a cycle . 
The four genes of interest on these gametes can be traced back to genes 
on up to four gametes received by individuals in generation 2 of the 

previous cycle . Sampling probabili ties are needed for these intercross 
gametes . To take proper account of the restrictions on mating in the 
intercross phase, sampling probabilities are defined forilll 2m gametes 
received by m individuals ( m = 2 , 3 , 4 ) . Appropriate sums of these pro­
babilities are then taken to give the required probabilities for up 
to four gametes . The sampling probabilities are given in Table 3 . 2 .  



Table 3 . 2 

Numbers of 

Gametes Parents 
( 2m ) ( r )  

4 3 

4 

6 3 

4 

4 

5 

6 

8 4 

4 

5 

5 

5 

5 

6 

6 

6 

7 

t 
Gametic Sampling Probabilities 

Symbol 

p2 1 1  

p 1 1 1 1  

p 222  

p 2211  

p 3 1 1 1  

p2 1 1 11 

p 1 1 1 1 1 1  

p 2222  

p 3221  

p 22211 ( i )  

p2221 1( ii )  

p 321 1 1  

p411 1 1  

p 3 1 1 1 1 1  

p 221 1 1 1 (  i )  

p 221 1 11 ( ii ) 

p 2 1 1 1 1 1 1  

Selection Scheme 

Unrestricted•'• Minimum•';;': 

( 3 ) 1 

( 3 ) 1 

1 

( 4 ) ( 2 ) 2 1 

( 4 ) 1 

( 5 ) ( 4 ) 1 2 

( 5 ) ( 3 ) 1 1 

( 3 ) 1 

( 4 ) ( 3 ) 1 1 

( 5 ) 3 

( 5 ) ( 3 ) ( 2 ) 3 1 1 

(5 ) ( 4 ) ( 3 ) 1 1 1 

( 5 ) 1 

( 6 ) ( 5 ) 1 3 

( q ) ( 4 ) ( 3 ) � 1 1 

( 6 ) ( 4 ) 2 2 

( 7 ) ( 6 ) ( 3 ) 1 2 1 

Inbreeding 

1 

1:_( N- 3 ) 2 1 

0 

1 

0 

( N- 4 ) 1 

�N-4 ) 3 2 

0( 1  if N= 4 )  

0 

0 

1 

0 

0 

0 

( N-5 ) 1 

�N- 5 ) 2 1 

( N- 5 ) 2 
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Maximum•'••'>•'• 
Inbreeding 

( N 2- 3N + 6 ) I 2 

( N-3 ) 1 

1 

2 (N- 3 ) 1 

( N-1 ) 3 

(N- 3 ) 2 

0 

0 

( N- 3 ) 1 

0 

0 

2 (N-3 ) 2 

( N- 1 ) 4 

( N- 3 ) 3 

0 

0 

0 



Table 3.2 (continued) 

Numbers of 

Gametes 
( 2m) 

Parents 
(r) 

Symbol 

8 p11111111 

' d' 'd b (M)/ (N) '' 1v1 e y m r 

'"'"divide by (N)/N m 

,..,,.,.,divide by (N) m 

Selection Scheme 

Unrestricted'" Minimum•'n'; 
Inbreeding 

tAssumes that N � r in any line and that N � 4 .  
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Maximum�':-.,':�': 
Inbreeding 

0 

The derivation of the sampling probabilities in Table 3.2 is 

illustrated by reference to P21111, the probability that the six 

gametes received by three of the N selected members of the intercross 

generation descend from five members of the selected self generation 

in the previous cycle in such a way that one of the five gives two 

gametes. For the unrestricted random selection case, the six gametes 

c�nsidered are received by any three of the M members of the whole 

intercross generation so that P21111 will have a denominator of (�). 

For the numerator , note that there are (�) ways of choosing the 

five members of the self generation and (�) ways of choosing one of 
4 them to give two gametes. There are then (2) ways of choosing two 

from the remaining four individuals to provide the gametes which unite 

with the two from the first individual chosen and so 

= 0 . 

N � 5 

N < 5 
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Although expressions were provided b y  CAIN and HINKELMANN ( 1 970 ) , 

it is not possible to express the probabilities for the restricted 

selection schemes in terms of ai' the numbers of gametes contributed to 

the selected intercross individuals by the ith selected selfed individual. 

When the probabilities involve a choice of more than one member of the 

self generation (in contrast to the one needed for P211 in the one-

locus case), knowledge of the mating pattern between members of this 

generation is needed. Such knowledge is not provided by the a . . l 

A restriction not mentioned by CAIN and HINKELMANN is made in the 

case of minimum inbreeding. It will be assumed that the minimum 

inbreeding scheme, in the intercross phase, is equivalent to circular 

mating (KIMURA and CROW, 1 9 63N for N individuals. This means, for 

example, that it is not possible to select two sets of N/2 offspring 

that have disjoint sets of N/2 parents. 

The sampling probabilities P21111 for the two restricted selection 

schemes will be derived with reference to the three selected intercross 

individuals as indicated by solid circles in Figure 3 . 2 . In each case, 

these three individuals receive six gametes satisfying the definition 

of p21111" 

Figure 3 . 2 .  

Minimum Inbreeding 

Maximum Inbreeding 

N selected 
intercross 
individuals 

N selected 
intercross 
individuals 

Mating in intercross phase for minimum and 

maximum inbreeding. 
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For either restricted selection scheme three intercross indi-
N viduals can be chosen 1n (3) ways. In the minimum inbreeding case 

twQ of these three can be chosen to have a common parent in N ways. 

The third can be chosen not· to have a parent in common with either 

of the first two in (N-4) ways so that 

p21111 = N(N-4)/(�) 

= 0 

N � 5 

N < 5 

In the maximum inbreeding case the common parent for two out of 

the selected intercross individuals must be the selfed individual 

which contributes (N-1) gametes. Two out of these (N-1) gametes 

must unite with gametes from the two selfed individuals which con­

tribute two gametes , which means that the two selected intercross 

individuals with a common parent can be chosen from (N-3) such indivi­

duals. The third individual for which P21111 is specified is then 

determined and 

p 
= (N-3)/(N) 21111 2 3 
= 0 

N � 5 

N < 5 

The notation for the sampling probabilities in Table 3.2 has 

been extended in two places to prevent ambiguities. P22211(i) and 

P22211 (ii) are used according to whether or not each of the three indivi­

duals giving two gametes mates with the other two. Similarly P221111(i) 
and P221111(ii) distinguish the cases of whether or not the two 

individuals giving two gametes mate. 

In Table 3.2 also , and for the remainder of this Chapter , attention 

will be restr�cted to the case of N � 4. When sampling probabilities 

involve gametes from r parents , it is assumed that N � r ,  or 
that the probability is zero if r >N. 
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3 . 4 . 3 I nt ercross Phas e Expansions for Two-Locus Cas e 

The intercross phase expansions amalgamate two steps . After 

expanding through the selflng phas e of cyc le n ,  a set of measures 

v ( 1 )  was obtained involving gametes from members of t he int ercross 
- 2 , n-
generat ion of the previous cycle . These gametes must first be 

related to gametes received by that intercross generation and then 

to gametes from the preceding s elf generation ( i . e . , to u ( 1 ,n- 1 )
) .  

The first s tep takes account of recombination and the s econd step 

of gametic s ampling.  

The simplest expansion is for the digametic measure 900cc· 
Double non- i dentity can be maintained only if the four genes on the 

two gamet es from C descend from four distinct genes on two gametes 

received by C .  This occurs wit h  probability ( 1+A 2 ) /4 and these last 

two gametes necessarily des cend from dist in ct individuals D , D' so that 

1+1.. 2 
= -4- 9 D 0DD' ( 3 . 4 . 1 9 )  

The two gametes for whi ch the other digameti c  measure 800CC' 
l S  defined trace back to two , three or four gametes received by C 

and C' , and then back to two , three or four distinct individuals D ,  

D 1 , D" and D"' When both gametes from C ,  C' are recombinant and 

trace back to four gametes from the parents of C and C' , the sampling 

probabilities in Table 3 . 2 may be us ed direct ly . I f  either or both 

of the gametes from C ,  C' are p arenta l  though , various sums of those 

probab i lities must be used . New notation is needed for these marginal 

probabi lities and Q m t 1t 2 
. . . .  t s 

i s  used for a subset of q of the 

2m gametes re ceived by m memb ers of generation 2 ( offspring ) of a cycle 

from generation 1 of that cyc le ( parents ) .  The q gametes are from 

s of the parents in such a way that the ith parent contributed t .  l 
gametes . This requires t hat the t .  s um to q and that q � m .  I n  those l 
cases cons idered here , there are never more than four genes , hence 

never more tha n four gametes , and so q � 4 .  All  of the marginal 

probab i lities required are shown in T able 3. 3 .  · 
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Table 3 .  3 Marginal Gameti c  S ampl ing Probabilities 

Gametic  Subs et Numbers of 

Offs_ering Gametes P arents 

2 2 1 
2Q 2 

2 
2Q1 1  

3 2 2Q 2 1  

3 2Q 1 1 1  

4 3 2Q 2 1 1  

4 2Q 1 1 1 1  

3 3 1 3Q 3 

2 3Q 2 1  

3 3Q 1 1 1  

4 2 3Q3 1  

2 3Q2 2 

3 3Q 2 1 1  

4 3Q1 1 1 1  

Marginal Probabi lities 

= l p 
4 2 1 1  

3 
= 4 

p 
2 1 1  + p

1 1 1 1  

= 1 
2 p

2 1 1  

1 = 
2 p

2 1 1  + p
1111  

= p
2 1 1  

= p
1 1 1 1  

1 = 8 p 
3 1 1 1  

l p 1 = + 4 P2 1 1 1 1  2 2211  

3 + 8 p 
3111  

p 3 = + - P  
1 1 1 1 1 1  4 21111  

1 + l_ P + 4 
p

222 2 3 1 1 1  

= l p 
4 3 1 1 1  

1 1 = 
4 

p
2 2 2  + - P  

1 2  2211 

3 + 4 
p 

2 2 2  

1 + - p 
2 2211  

l p 3 2 = + - p + - P 2 3 1 1 1  4 2 2 2  3 2 2 1 1  

: 5  + 12 p 
2 1 1 11 

l p + 1 p 7 = + 12 p 
2 1 1 1 1  4 3 1 1 1  4 2 2 1 1  

-t 
p

1 1 1 1 1 1  



Table 3 . 3 ( continued)  

Gametic Subset Numbers of 

Offspring Gametes Parents 

4 4 1 

2 

2 

3 

4 

3 0  

Marginal Probabilities 

= ___!_ p 
16 4 1 1 1 1  

= l:_ P 1 p 1 p 
8 3 2 2 1  + 8 2 2 2 2  + 16 3 2 1 1 1  

1 p + .l_ P + 16 22211 ( ii )  16  22111 1 ( ii )  

1 p + 8 3 1 1 1 1 1  

Q . = � p + 5 p + � p 
4 2 1 1  8 4 1 1 1 1  . 8 3 22 1  4 2 2 2 2  

1 p 3 + 2 3 2 1 1 1  
+ 4 p

22 211 ( i )  

5 p + � p + 8 2 2 2 1 1 ( i i )  8 3 1 1 1 11 

3 p + 2_ P + 8 2 2 1 1 1 1 ( ii ) 2 221111 ( i )  

1 + 4 p
2 1 1 1 1 1 1  

Q = � p + 1. p + 1 p 
4 1 1 1 1  16  41111  8 3 2 2 1  8 2 2 2 2  

5 p + 2. p + 16 3 2 1 1 1  4 2221 1 ( i )  

5 p + 2. p + 16 2 2 2 1 1 ( i i )  2 3 1 1 1 1 1  

9 1 + 16 p
2 2 1 1 11 ( ii )  

+ 2 p
2 2 1 1 1 1 ( i )  

3 p + p + 4 2 1 1 1 1 1 1  1 1 1 1 1 1 1 1  



The expansi on for 8 is  then o o cc ' 
2 

e = c 1+ A ) c o e + o e ) 0 0 CC 1 2 2 2 O O DD 2 1 1  0 0 DD 1 
1-f-2 + -2-

3 1  

( 3 . 4 . 20 )  

Use has been made here of some equalit ies among quadrigamet i c  measures 

Equation ( 3 . 4 . 20 )  also provides the e xpansions for Y o o c ; C 1 C 1 and 

0 0 0 CC ; C 1 C 1 •  For the trigametic measure the three recombination 

coeffi ci ents are ( 1+U /4 ., 1 / 2 and ( 1-A. ) / 4- whi le for the quadri game t i c  

meas ure they are 1/ 4 ,  1/ 2 and 1/4 .  

I n  expanding Y o o c ; CC 1 genes must be traced back to three gametes to 

pres erve doub l e  non-i dentity 

( 3 . 4 . 21 )  

For the final trigameti c measure genes are traced back t o  three o r  four 

gametes 

y 0 o c ;  c I C" 

+ 3Q11 1  y 0 O D ; D  I D" J ( 3 . 4 . 22 )  

+ ( 1 P + � P  + S P + � P  ) o  2 222  4 3 1 1 1  1 2  2211  4 2 1 1 1 1  0 0 DD ; D 1 D1 1  

( 1 
P + � P + 1 P + 2. P )o + 4 222 4 3111  4 2 2 11  6 21111  O O DD '  ; DD" 
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If  the recombination coefficients are changed from ( HA ) / 2,, 
( 1-A. ) / 2 , in ( 3 . 4 . 22 )  to 1/ 2 ,  1/ 2 then ( 3 . 4 . 22 )  provides the expans ion 

for: 0 o o cc ; C ' C" The expansions for the remaining three quadrigametic 

meas ures are now listed . 

0 o o cc ' ; CC '  ( 3 . 4 . 23 )  

O 0 0 CC I ; CC 1 1  
1 

= - [  Q 0 + Q 0 2 3 �1 O O DD ; DD '  3 22  o o DD ; D ' D '  

+ c 1 P + � P + � P + 1.. P ) o  2 222  2 31 11 2 2211  3 21 1 11 o o DD ;D ' D" 

+ c 1 P + � P + � P ) o 4 222  6 2211  12  211 1 1  O O DD ' ; DD" 

+ 3Q1 1 11 ° o O DD ' ; D" D'"  J . ( 3 .  4 .  24 ) 

o - o o + Q  o · -o o cc ' ; C" C"' - 4 4 0 0 DD ; DD 4 31 O O DD ; DD '  

( 3 . 4 . 2 5 )  

All  of the intercross e xpans ions may now be collected together 

as 

V ( 2 ,  n- 1 )  = Q 
� 1 ,  n- 1 )  ( 3 ': 4 .  26 ) 

Where . the 10  X 1 2  matrix Q has e lements defined by equations ( 3 . 4 . 19 )  

to ( 3 . 4 . 2 5 ) .  A s et of transition equations between successive self 

generat ions or between success ive  intercross generations is now very 

eas i ly obtained as 

u ( 1 , n )  = � n u ( 1 ,n- 1 )  ( 3 . 4 . 27 )  

� 2 , n) = n � v( 2 ,n- 1 )  ( 3 . 4 . 28 )  



3 . 5 Discuss i on 

3 3 

Numerical results obtained by us ing the transit ion equat ions 

( 3 . 4 . 2 7 ) , ( 3 . 4 . 2 8 )  are shown in Tables 3 . 4 , 3 . 5 and 3 . 6 . As men­

t ioned above , the initial generation is assumed to be non-inbre d 

and unrelated so  that for thes e initial individuals , prior to any 

s e lfing , 

2 
[ 1+.A I I I ] � 0 , 1 )  = 4 ' 1 , 1 , 1 2 ,  1 , 1 , 1 4 , 1 , 1 4 , 1 

and � 1 , 1 ) follows from equation ( 3 . 4 . 1 8 ) . 

As shown in thes e  tables , linkage has a complicat ed effect on 

inbreeding at two loci .  For comp lete linkag e ,  A = 1 ,  the equat ions 

( 3 . 4 . 27 ) , ( 3 . 4 . 2 8 ) do reduce correctly to the appropriate one-locus 

results . When A = 0 , and the loci s egregate independent ly , CAIN 

and HINKE LMANN ( 1 9 7 0 )  claimed that the i nbreeding coefficient F 1 1 ( .A= O )  

was the square of  the one- locus coefficient F 1 = F 1 1 ( .A= 1 ) .  · This is 

not the cas e here , or whenever there is a choice of mates , and for 

general A an ident i ty dis equilibrium n 1 1 ( .A ) , mentioned on Page 2 

was defined e arlier by WEIR and COCKERHAM ( 19 69b ) as 

Values for the ident ity dis equi librium are also shown in Tab les 3 . 4 , 
3 . 5 , and 3 . 6 . The quant ity is pos it ive in early generat ions , reaches 

a maximum , and decreas es to zero with comp lete inbreeding . For completely 

specifi ed pedigrees , however , such as afforded by the cas es of N = 2 
or N = 3 , there i s  no ident ity disequilibrium .  

I n  genera l ,  increased population s ize i s  seen t o  delay the accrual of 

inbreeding , and to  allow s e lection to  be practised for a longer period . 

As N increas es , the minimum and maximum i nbreeding s chemes become more 

extreme . As not ed above ,  the maximum inbree d ing s cheme actually permits 

inbreeding to in creas e with N .  The increas ing divergence · in inbreed ing 

levels between the minimum inbreeding s cheme and unrestrict ed random 

s ele ction shows that the latter s cheme falls further behind in exploiting 

fully the advantages o f  the intercross phas e i n  this respect . 



3 4  
As CAIN and HINKELMANN ( 1 9 7 0 , 1 9 7 2 )  point out , the  plant breeder 

is likely to be more concerned with homozygos ity than with measures of 

inbreeding . An individual is homozygous when its homologous genes are 

identical by des cent or when they are identical in state . The former 

i s  the effect of inbreeding and the probability of this occuring i s  

measured by the inbreeding coeffi cient . The latter depends on the 

chance of the union of genes having the same alleli c  form . Therefore 

the inbreeding coeffi cients , F 1 , F1 1 always provide lower bounds on 

the homozygos i ty at one and two loci respect ively . When initial gametes 

are taken randomly from an infinitely large random mating population 

and individuals are reproduced by a process without s elect ion , a 

knowledge of the population gene frequencies , p .  for allele a . , allows l . l 
the expression of population genotyp i c  frequencies in generation t as 

a .  
p l ( t )  = 

a . l 

a .  

2 
p .  + p . ( 1-p . )  F 1 ( t )  l l l 

P 1 ( t )  = [ 1-F 1( t ) ] p . p . , i "I j 
a . 1 J 

J 

and the total amount of homozy gos ity as 

1 - H ( t )  = 1 - [ 1-F 1 ( t ) ] H ( O ) 

where H ( t )  is the amount of heterozygosity in generation t .  Similar 

expressions in the two- locus case can be found in COCKERHAM and WEI R  

( 1 97 3 ) .  When initial individuals are taken from a heterozygous source , 

as in recurrent selection programmes , homozygosity can only be  caused by 

ident ity by des cent and identi ty in state of genes from different 

initial individuals . The homozygosity indicated by the inbreeding 

measures is then likely to be c lose to total homozygosity . A comp lete . 

dis cussion of this problem requires the knowledge of the initial 

genotypi c  frequencies and would need to take into a ccount the effects 

of the s election programme on gene frequencies . 



Table 3 . 4 

N 

2 

3 

A. 

1 .. 00 F 1 1  

n 1 1  

0 . 7 5  F 1 1 

n 1 1 

0 . 2 5  F 1 1 

n 1 1  

0 . 00 F 1 1  

n 1 1  

1 .  0 0  F 1 1 

n 1 1 

0 . 7 5  F 1 1  

n 1 1 

0 . 2 5  F 1 1  

n 1 1 

0 . 00 F 1 1 

n 1 1 

3 5  

Progres s o f  the Two-Locus I nbreeding Coefficient 

( F 1 1 ) in I ntercross Generat ion and the Corresponding 

Value of I dentity Dis equi librium ( n 1 1 ) under Random 

Selection S cheme for Vary ing Populat ion Sizes ( N ) and 

Varying Linkage P arameters ( A ) .  Individuals in the 

Source Populat ion are Non- Inbred and Unrelated . 

Recurrent Cycle N umber 

1 2 3 4 5 6 7 8 9 1 0  2 0  

. 000 . 37 5 . 56 3  . 703  . 79 7  . 8 6 1  . 90 5  . 93 5  . 9 56 . 9 70 . 99 9  

. 000 . 234  . 246  . 209  . 1 62  . 1 1 9  . 0 8 6  . 0 6 1  . 042 . 029  . 001 

. 000 . 2 32  . 394  . 549  . 671  . 764  . 833 . 8 8 2  . 91 8  . 9 43 . 99 9  

. 000 . 092  . 07 8  . 0 5 5  . 036  . 022  . 01 3  . 008  . 004 . 003  . 000  

. 000 . 14 5  . 3 20  . 49 7  . 6 3 6  . 743 . 820 . 8 7 5  . 9 1 4  . 941  . 9 99  

. 000 . 005  . 00 3  . 00 2  . 001 . 001  . 000  . o o o · . 00 0  . 000  . 000  

. 000 . 1 41 . 3 1 6  . 494 . 635 . 742 . 820 . 87 5  . 91 4  . 941 . 9 99  

. 000 . 000 . 0 00  . 0 00  . 0 00 . 000  . 000 . 00 0  . 000  . 000  . 0 00 

. 000 . 1 88 . 32 8  . 44 5  . 54 2 . 6 22  . 688 . 74 2  . 7 87 . 824 . 974  

. 000 . 1 52 . 2 2 1  . 24 7  . 248  . 23 5  . 2 1 5  . 1 9 1  . 1 6 8  . 1 45 . 0 2 5  

. 000  . 1 1 2  . 1 9 4  . 278  . 362  . 442 . 517 . 5 8 5  . 64 6  . 70 0  . 9 50 

. 000 . 077 . 086 . 080  . 068 . 0 55  . 044 . 0 34 . 0 27  . 0 20 . 001 

. 000 . 048 . 11 6  . 20 5  . 29 9  . 390 . 476 . 5 5 3  . 62 1  . 680 . 949 

. 000  . 0 13  . 009  . 00 7  . 00 5  . 0 03  . 0 03  . 00 2  . 00 1  . 0 01 . 000 

. 000  . 0 35  . 10 8  . 19 8  . 294  . 387  . 47 3  . 5 5 1  . 620  . 679  . 949 

. 000 . 000  . 00 0  . 00 0  . 0 00  . 000  . 000  . 00 0  . 00 0  . 000  . 000  

1 0 0  

1 .  000  

. 000  

1 .  000  

. 00 0  

1 .  0 00  

. 00 0  

1 . 0 00  

. 000  

1 .  0 0 0  

. 0 00  

1 . 00 0  

. 00 0  

1 . 0 00  

. 00 0  

1 .  0 0 0  

. 00 0  



Table 3 . 4 ( cont inued ) 

N >.. 

4 1 .  00  

0 . 7 5  

0 . 2 5  

0 . 00 

10 1.  00 

F 1 1  
n l l  
F 1 1 
n 1 1 
F 1 1 
n 1 1 
F 1 1 
n 1 1 

F 1 1 
n 1 1 

0 . 7 5 F 1 1 
n 1 1 

0 . 2 5 F 1 1 
n 1 1 

0 . 00 F 1 1 
n 1 1 

1 2 

. 000  . 1 50 

. 00 0  . 1 28 

. 000 . 090  

. 000  . 067  

. 000  . 038  

. 000  . 016 

. 000 . 028 

. 000  . 006  

. 00 0  . 068 

. 000  . 064 

. 00 0  . 041 

. 0 00 . 036 

. 00 0  . 0 17  

. 0 00  . 01 3  

. 000  . 013  

. 000  . 008  

3 4 

. 270 . 374  

. 197  . 2 34 

. 1 56 . 22 2  

. 083 . 083 

. 086 . 1 51  

. 014 . 01 1  

. 077 . 1 43 

. 004 . 003  

. 1 30 . 1 88 

. 113  . 1 5 3  

. 070 . 096  

. 0 53  . 061  

. 031 . 049  

. 014 . 014 

. 0 25 . 04 3  

. 009 . 00 8  

Recurrent Cyc le Number 

5 6 7 8 9 

. 462 . 5 3 9  . 604 . 660 . 70 8 

. 249 . 249 . 239  . 2 24 . 2 07  

. 289 . 3 5 5  . 420 . 481  . 5 3 9  

. 0 7 5  . 06 5  . 0 55  . 046 . 038 

. 223 . 297  . 370  . 440 . 5 0 5  

. 009  . 00 7  . 006 . 004  . 003  

. 216  . 29 2  . 366  . 4 3 7  . 50 3  

. 003 . 002  . 002  . 001  . 001  

. 242 . 2 93  . 340 . 384 . 42 5  

. 1 84 . 207 . 224 . 2 37  . 244 

. 1 22  . 1 48 . 17 5  . 20 3  . 2 3 2  

. 063  . 0 6 2  . 06 0  . 05 6  . 0 5 2  

. 071  . 0 97 . 1 26  . 1 5 6  . 1 89  

. 0 13  . 0 12  . 010  . 009  . 00 8  

. 0 66  . 09 2  . 1 21 . 1 5 2  . 18 5  

. 007  . 006  . 006  . 00 5  . 005  

10  

. 7 50 

. 1 8 8  

. 59 2  

. 0 31 

. 5 65  

. 003  

. 563  

. 0 01  

. 463  

. 24 9  

. 26 2  

. 04 7  

. 22 2  

. 00 7  

. 21 8  

. 004  

36  

20 100 

. 946 

. 051  

. 897  

. 002 

. 89 5 

. 000 

. 894 

. 000  

. 7 30 

. 19 7  

. 5 5 1  

. 01 8  

. 536 

. 00 2  

. 5 3 5  

. 001 

1 .  000 

. 000 

1 .  000 

. 000 

1 . 000 

. 000 

1 .  000 

. 000 

. 9 99 

. 001  

. 998  

. 00 0  

. 99 8  

. 000  

. 998  

. 000 
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Table 3 . 4 ( continued)  

Recurrent Cycle Number 

N 1 2 3 4 5 6 7 8 9 10  20  100  

2 5  1 .  00 F 1 1 . 000  . 029 . 0 5 7  . 084 . 1 10  . 13 5  . 1 60 . 1 84 . 207 . 230 . 424  . 943  

n 1 1 . 000  . 02 8  . 0 53 . 07 7  . 098  . 117  . 1 34 . 1 50  . 1 64  . 1 7 7  . 244  . 0 54 

0 . 7 5  F 1 1 . 000 . 0 17  . 0 2 9  . 0 39 . 047 . 0 5 5  . 063 . 071 . 079 . 0 88 . 2 0 3  . 8 9 0  

n 1 1  . 000 . 016  . 0 2 6  . 0 3 2  . 035  . 0 37 . 0 37 . 0 3 7  . 036  . 0 3 5  . 0 2 3  . 000 

0 . 2 5  F l l  . 000  . 007 . 00 1  . 01 5  . 020 . 026 . 033  . 041 . 0 50 . 0 5 9  . 1 83 . 890  

n 1 1 . 000 . 007  . 008  . 008 . 008 . 008  . 008 . 007 . 007 . 007 . 004  . 00 0  

0 . 00 F 1 1 . 0 00 . 005  . 00 9  . 0 1 2  . 0 1 7  . 023 . 030 . 0 38  . 047 . 0 57 . 1 82  . 890  

n 1 1 . 000  . 005  . 00 5  . 00 5  . 00 5  . 005 . 00 5  . 004 . 004 . 0 04 . 002 . 000  

100  1 .  00  F 1 1 . 000 . 007 . 01 5  . 02 2  . 029  . 037  . 044  . 0 51 . 0 58 . 06 5  . 1 32  . 521  

n 1 1 . 000 . 007  . 0 1 5  . 02 2  . 0 2 9  . 03 5 . 042 . 04 8 . 0 54 . 061  . 1 1 4  . 2 50 

0 . 75  F 1 1 . 00 0 . 0 04 . 0 08  . 010  . 011  . 01 3 . 01 4  . 01 5  . 0 1 6  . 017  . 0 29  . 27 5  

n 1 1  . 00 0  . 0 04 . 007  . 009 . 011 . 011 . 012 . 01 2  . 0 12 . 01 2  . 011 . 0 04 

0 . 25 F 1 1 . 000  . 002  . 003  . 00 3  . 004 . 004 . 00 5  . 00 5  . 006 . 007  . 0 2 0  . 272  

n 1 1  . 000  . 002  . 0 0 2  . 003 . 003  . 003 . 003  . 0 03  . 003  . 00 3  . 0 0 2  . 001  

0 . 00 F 1 1 . 000  . 00 1  . 0 0 2  . 002  . 003 . 003  . 004 . 004 . 00 5  . 0 06  . 019  . 27 2  

n l l . 0 00  . 00 1  . 002  . 00 2  . 002  . 002 . 00 2  . 00 2  . 002  . 00 2  . 00 1  . 00 0  



Table 3 .  5 

N 

4 1 .  0 0  F 1 1 
n 1 1 

0 . 7 5  F 1 1 
n 1 1 

0 . 2 5  F 1 1  
n 1 1  

0 . 0 0 F 1 1 
n 1 1 

10  1 .  0 0  F 1 1 
n 1 1  

0 . 7 5  F 1 1  
n 1 1 

0 . 2 5 F 1 1 
n 1 1 

0 . 00  F 1 1  
n l l  
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Progress o f  the Two-Locus I nbreeding Coeffic ient ( F 1 1 ) 
i n  I ntercross Generat ion and the Corresponding Value of 

I dent ity Dis equil ibrium ( n 1 1 ) under Min imum I nbreeding 

S elect ion S cheme for Varying Population S izes ( N ) and 

Varying Linkage P arameters ( A ) . Individuals in the 

Source Population are Non-Inbred and Unrelated.  

Recurrent Cycle Number 

1 2 3 4 5 6 1 8 9 1 0  20  

. 000  . 1 25  . 2 2 9  . 3 21  . 402 . 474 . 536 . 59 2  . 641 . 683  . 912  

. 0 00  . 109 . 1 7 7  . 2 18  . 240 . 249 . 249 . 242  . 230  . 21 6  . 0 81  

. 0 0 0  . 07 5 . 1 28  . 1 8 0  . 234 . 2 89 . 344 . 39 8  . 4 51 . 5 01  . 83 5  

. 00 0  . 0 59 . 07 6  . 0 7 7  . 072  . 065  . 0 56 . 048  . 041  . 0 34 . 00 5 

. 000  . 032 . 0 6 7  . 1 1 5  . 1 71 . 232  . 294 . 3 5 5  . 414 . 47 0  . 831  

. 00 0  . 016 . 01 4 . 01 2  . 009  . 007 . 006 . 00 5  . 004  . 00 3 . 00 0  

. 0 00  . 023  . 0 5 9  . 1 0 8  . 1 66  . 227 . 290 . 3 52  . 41 2  . 46 8  . 8 30 

. 00 0  . 008 . 00 6  . 00 5  . 0 04 . 003 . 002 . 002  . 0 01 . 00 1  . 000  

. 000  . 042 . 081  . 1 19 . 1 5 5  . 190  . 2 23 . 2 5 5  . 286  . 3 1 5  . 5 50  

. 0 0 0  . 040 . 07 5  . 10 5  . 1 31 . 1 54 . 173  . 19 0  . 2 04 . 21 6  . 248 

. 00 0  . 02 5  . 042  . 0 56 . 069  . 082 . 095  . 10 9  . 1 24  . 1 39  . 323 

. 00 0  . 023 . 0 36 . 042  . 045  . 046  . 045 . 044 . 0 42  . 040  . 021  

. 000  . 011  . 0 11  . 024 . 034 . 0 45  . 0 58 . 073  . 088 . 10 6  . 3 0 5  

. 00 0  . 0 0 9  . 01 0 . 010  . 010  . 0 09 . 008 . 0 08 . 0 0 7  . 00 6  . 003 

. 0 00  . 00 8  . 0 13  . 02 0  . 030 . 041 . 05 5  . 0 6 9  . 0 86  . 10 3  . 304 

. 000  . 006  . 007  . 006  . 006 . 005  . 00 5  . 005  . 004  . 004  . 002 

100 

1 . 000  

. 00 0  

1 .  000  

. 000 

1 .  000 

. 000 

1 .  000 

. 000  

. 984 

. 01 6  

. 969 

. 0 00 

. 969 

. 0 00 

. 969  

. 000  
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Table 3 . 5 ( cont inued )  

Recurrent Cycle Number 

N 1 2 3 ij 5 6 7 8 9 1 0  20 1 0 0  

2 5  1 .  0 0  F 1 1  . 0 0 0  . 016 . 031  . 046 . 0 61 . 07 5  . 09 0 . 104 . 11 8  . 1 3 2  . 2 58  . 7 88  

n 1 1  . 0 0 0  . 0 1 5  . 0 30 . 044 . 0 57  . 070  . 082  . 09 3  . 1 04  . 1 1 4  . 19 1  . 16 7  

0 . 75 F 1 1  . 000  . 009 . 01 6  . 0 2 1  . 0 24 . 0 28 . 031 . 0 34 . 037  . 040 . 0 84  . 62 3  

n 1 1 . 0 0 0  . 009 . 0 15  . 01 8 . 0 21 . 02 2  . 023 . 023 . 0 23  . 02 2  . 01 8  . 002 

0 . 2 5  F 1 1  . 00 0  . 004 . 006 . 007 . 0 09 . 01 1 . 01 3 . 01 5  . 0 1 8  . 02 2  . 069  . 621  

n 1 1 . 00 0  . 004  . 005  . 00 5  . 00 5  . 00 5  . 0 05 . 00 5  . 004  . 004  . 003 . 00 0  

0 . 00  F1 1  . 00 0  . 003 . 0 04 . 0 0 5  . 007 . 0 09 . 01 1  . 0 1 4  . 0 1 7  . 0 20 . 068  . 621  

n 1 1 . 00 0  . 003  . 003 . 00 3  . 003 . 0 03 . 003 . 003 . 0 03 . 00 3  . 00 2  . 000  

100  1 .  00 F 1 1 . 00 0  . 004  . 0 08  . 011 . 015  . 019 . 023  . 0 26 . 030  . 0 34 . 07 0  . 31 3 

n 1 1 . 00 0  . 004  . 008  . 011  . 01 5  . 01 8  . 022  . 0 26 . 02 9  . 0 32  . 06 5  . 21 5  

0 . 7 5 F1 1  . 0 00  . 002  . 004 . 0 0 5  . 006 . 006  . 0 07 . 007 . 007 . 008  . 011  . 10 1  

n l l . 0 00  . 002  . 004  . 005  . 006 . 0 06 . 006 . 006  . 0 07 . 007  . 006  . 004  

0 . 2 5  F 1 1 . 0 00  . 001 . 001  . 002  . 002 . 00 2 . 002  . 00 2 . 00 2  . 00 3  . 0 0 6  . 09 9  

n 1 1  . 000 . 0 01 . 001  . 0 01 . . 001 . 001 . . 0 0 1  . 0 0 1  . 0 0 1  . 001 . 0 01 . 001  

0 . 0 0 F 1 1  . 0 00 . 0 01 . 001 . 001 . 001 . 001 . 00 1  . 0 02 . 002  . 002  . 0 06  . 0 9 8  

n 1 1  . 00 0  . 001 . 001 . 001  . 001  . 001  . 00 1  . 001  . 001 . 00 1 . 00 1  . 000  



Table 3 .  6 

N 

4 

1 0  

1 .  00 F l l 
n 1 1 

0 . 7 5 F 1 1 
il l 1 

0 . 25 F 1 1 
n 1 1 

0 . 00 F 1 1 
n n  

1 .  00 F 1 1  
n l l 

0 . 75 F 1 1 
n l i  

0 . 2 5  F 1 1 
n 1 1 

0 . 00 F 1 1 
n 1 1 

40 

Progress of the Two- Locus Inbreeding Coefficient ( F 1 1 ) 
in Intercros s Generation and the Corresponding Value of 

Identity Dis equi librium ( n 1 1 ) under Maximum Inbreeding 

Selection S cheme for Varying Population S izes ( N )  and 

Vary ing Linkage Parameters ( A ) .  Individuals in the 

Source Populat ion are Non- I nbred and Unre lated . 

Recurrent Cycle Number 

1 2 3 4 5 6 7 8 9 10  20  

. 000 . 1 56 . 2 80 . 3 86  . 47 6  . 554 . 619 . 67 5  . 7 23 . 764 . 9 52 

. 000 . 1 32  . 202  . 2 37  . 249 . 247  . 236 . 219  . 2 00 . 1 80  . 046 

. 000 . 093  . 1 63 . 2 33  . 302  . 3 71  . 4 38 . 501  . 5 59  . 61 3  . 909  

. 000  . 0 69 . 085  . 0 84 . 0 75  . 0 65 . 054 . 0 4 5  . 036 . 0 29  . 003  

. 000 . 04 0 . 09 2  . 16 0  . 2 36 . 31 3 . 389 . 460 . 526 . 5 86 . 907  

. 0 00 . 01 5  . 0 13  . 0 11  . 0 09 . 007 . 0 05  . 004 . 0 03 . 003  . 000 

. 000  . 029  . 082 . 1 5 2  · . 229  . 308  . 385 . 4 5 7  . 524 . 584 . 906 

. 000 . 005  . 004 . 0 0 3  . 002  . 002 . 001  . 00 1  . 001 . 001 . 000 

. 000  . 1 58 . 28 3  . 390 . 481  . 558  . 6 24 . 68 0  . 7 2 8  . 7 69 . 9 54 

. 000 . 1 33 . 203 . 238  . 25 0  . 247 . 23 5  . 21 8 . 19 8  . 1 78  . 044 

. 000 . 09 5  . 1 69  . 242  . 31 4  . 3 84 . 4 51  . 51 3 . 571  . 624 . 91 3  

. 000  . 069 . 089 . 09 0  . 08 3  . 07 2  . 0 61 . 0 51  . 041 . 033 . 003  

. 000 . 040 . 096 . 16 6  . 24 3  . 3 21 . 39 7 . 469 . 5 3 5  . 5 9 4  . 910  

. 000  . 015  . 01 5  . 014  . 0 1 2  . 01 0  . 008  . 006  . 005  . 004 . 00 0  

. 0 00  . 030  . 08 5  . 1 56 . 2 34 . 314  . 39 2 . 464 . 5 3 1  . 5 92  . 91 0  

. 000 . 00 5  . 004 . 004 . 003  . 0 0 2  . 002  . 002  . 001  . 001 . 000 

1 0 0  

1 . 000 

. 000  

1 .  000  

. 000  

1 .  0 00  

. 000  

1 .  000  

. 0 00  

1 .  000  

. 000  

1 . 000  

. 000  

1 .  000  

. 00 0  

1 . 000 

. 0 00  
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Table 3 . 6 ( cont inued ) 

Recurrent Cycle Number 

N 1 2 3 4 5 6 7 8 9 1 0  2 0  100  

25  1 .  00 F 1 1  . 0 00 . 174 . 307 . 420 . 514  . 5 93  . 6 59  . 7 1 5  . 7 61 . 8 00 . 96 6  1 . 0 00  

n 1 1  . 000  . 1 44 . 2 1 3  . 244 . 2 5 0  . 241 . 225 . 204 . 1 82  . 1 6 0  . 0 3 3  . 000 

0 . 75 F . 000 . 1 0 4  . 1 86 . 267 . 346  . 4 22 . 492  . 5 57  . 616  . 669  . 9 3 5  1 .  0 0 0  1 1 
n 1 1 . 000  . 074 . 09 2 . 091 . 08 2  . 070 . 058 . 047 . 037 . 0 29  . 00 2  . 000 

0 . 2 5  F 1 1  . 0 00  . 044 . 1 09 . 1 89 . 2 7 5  . 360  . 441 . 516  . 583  . 643  . 9 33 1.  000 

n l l . 0 00  . 0 14  . 0 1 4  . 01 3  . 01 0  . 008 . 007 . 00 5  . 004 . 00 3 . 00 0  . 00 0  

0 . 00 F 1 1  . 0 00 . 033 . 097  . 17 8  . 2 6 6  . 3 5 3  . 4 36 . 51 1  . 580 . 640 . 933  1 .  000  

n 1 1 . 00 0  . 002 . 002 . 00 2  . 002  . 001 . 0 01 . 00 1  . 001  . 0 01 . 00 0  . 000  

100  1 .  00  F 1 1 . 00 0  . 1 84 . 32 3  . 439 . 5 3 5  . 614 . 6 80 . 7 35  . 7 80  . 818  . 97 2  1 .  000  

n 1 1 . 0 0 0  . 1 50  . 219  . 246 . 249 . 237 . 21 8  . 19 5  . 1 71  . 1 49 . 02 7  . 000  

0 . 7 5 F 1 1 . 0 0 0  . 11 0  . 19 7  . 283  . 366  . 445  . 5 16  . 584 . 643 . 69 6  . 947 1 .  000  

n 1 1  . 00 0  . 0 7 6  . 09 3  . 091  . 0 8 0  . 0 6 7  . 0 5 5  . 044 . 0 34 . 027  . 00 2  . 00 0  

0 . 25 F 1 1 . 00 0  . 047  . 1 1 7  . 204 . 295  . 3 85  . 469  . 545  . 612  . 671  . 94 5  1 . 00 0  

n 1 1 . 00 0  . 013  . 0 13  . 0 11  . 0 09  . 007  . 00 6  . 004 . 003 . 003  . 00 1 . 00 0  

0 . 00 F 1 1  . 00 0  . 03 5  . 10 5  . 19 3  . 2 86 . 3 78  . 463 . 541 . 609  . 66 9  . 94 5  1 .  000 

n 1 1  . 00 0  . 00 1  . 001  . 001  . 001 . 0 0 0  . 00 0  . 000 . 000 . 00 0  . 0 0 0  . 000 



4 ONE- AND TWO-LOCUS INBREEDING IN POPULATI ONS 

WITH OVERLAPPING GENERATIONS 

4 . 1  Introduction 

4 2  

In  this Chapter , a s tudy of  the inbreeding levels in populations 

with overlapping generat ions is presented with a view to quantifying 

the effects of age s tructure in altering the genet i c  progress of 

populations . Relative to populations of the same size with j ust one 

age class , it is known that inbreeding and hen ce homozygos ity is delayed 

in populations with several age clas ses . It  is also known that the 

cont inued pres ence of indivi duals , generally females , over several 

years in breeding programmes can delay the spread of favourable genes . 

In  another direction , human populations do not have dis crete generations , 

and this should be reflected in models of thes e populat ions . This 

Chapter offers some novel features and presents some new results for 

models of populations with overlapping generations . 

Most previous work has concentrated on the evaluation of inbre eding 

and varian ce effective numb ers . Previous authors include MORAN ( 19 6 2 ) , 

KI MURA and CROW ( 19 63a ) , NEI  ( 19 7 0 ) , NEI and I MAI ZUMI ( 19 66 ) ,  GIESEL 

( 1 969 ) , TURNE R and YOUNG ( 19 6 9 ) , FELSENSTEIN ( 197 1 ) ,  CROW and KIMURA 

( 197 2 )  and H I LL ( 1 972a ,  1 9 7 2b ) .  Effective numbers offer a very con­

venient one-parameter des cription of the mating structure of a popula­

tion . As such they are often us ed as a basis for comparison of different 

populations . I n  populations other than ideali zed ones , however , effec­

tive numbers are defined as limiting values ( over time ) of rates of  

increas e of inbreeding or dri ft variance . Most populations do  not 

maintain the s ame characteri s t i cs for such long time p eriods , and in 

breeding programmes interest is likely to be centered on early genera­

tions . For this reason the following study concentrates also on 

inbreeding levels in early generations , as did that of  JOHNSON ( 1 97 7 ) , 

rather than solely on the limit ing values of rates of change of 

inbreeding . This s tudy differs from that of JOHNSON , h owever , in  

restricting attention to exact inbreeding levels . 

This work follows H I LL ( 19 72a ,b ) in broadening the scope of s ome 

previous enquiri es by cons ideri ng both monoecious and dioe cious 

populations , and not restri cting attention to Poisson family s i ze .  



The study of di fferent gametic s ampling plans points out another 

restriction in the exclusive concentration on effective numbers . 
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I t. has been shown ( KI MURA and CROW 1 9 6 3b ,  COCKERHAM 1 9 7 0 )  that 

populati ons that avoid early inbreeding may have high final rates 

of inb reeding. The ranking of populations on the bas is of such final 

rat es may be opposite to a ranking on the bas is of early inbreeding . 

Other matters such as the assumpt ions of constant overall popu­

lation s i ze ,  stable age distributi on and age-specific b irth and death 

rates follow from convent ional mode ls . 

The one entirely new feature of this work on overlapping gene­

rations is the treatment of inbreeding at two loci . The treatment is 

based on the g eneral methodology of WEIR and COCKERHAM ( 19 69b ) . In 

the abs ence of linkage disequilibrium and s elect ion , the two- locus 

inbreeding coeffi cient evaluated here allows two- locus genotypic 

frequencies to be s tudi ed .  Under the same condit ions , a s  might hold 

in control populat ions , it has recently be en shown (WEIR  and COCKERHAM 

19 7 7 )  how the two- locus inbreeding coe ffi ci ent is used in the predi ct ion 

of means and variances of quantitative traits . Simi lar work to that 

presented here allows the evaluation of other two-locus parameters 

which can be used to predict linkage dis equilibrium ( COCKERHAM and 

WEIR 197 7 ) . 

4 . 2  Monoecious Diploids 

4 . 2 . 1  Mating S cheme 

In all y ears t the population consists of N individuals b elonging 

to various age classes . 

and n clas s es , so that 

There are N .  individuals in the ith clas s ,  
l 

n 
L 

i= 1 
N .  = N . 

l 

Age i s  measured in years . Each year N
1 

n ewborn are added to the popu­

lation , all N n-year- olds die ,  whi le a random sample of N . -N .  
1 

of 
n l l +  

the i-year-olds die . 
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The mat ing scheme is random union of gametes and is speci fied by 

two sets of parameters . S ampling b etween age classes is accommodated 

by .parameters pi , where pi is the probability that a random gamete 

rece ived by the newborn individuals in any year came from the ith age 

class in the previous year .  

n 
l: 

i = 1  
p . = 1 . l. 

For within age classes s ampling , arb itrary distribut ions are allowed 

for the numbers of gametes from individual members of the class . The 

usual approach is to ass ume that these numbers , or family s izes , are 

independently Poisson distributed sub j ect to the numbers adding to the 

total gametic  output from that class . The set of N .  gamet i c  numbers l. 
from the ith age class are then mult inomi ally distributed.  An  analysis 

of the different - distributions will b e  given in Sections 4 . 4  and 4 . 5 .  

At present it is assumed that the gametic numbers h ave the same distri­

but ion for every member of  an age class , so that there is a need for 

the use of gametic sampling probabilities ( WE I R  and COCKERHAM 1969b ) 

P
2

( i ) and P
1 1

( i ) . The se are the probabilities that two gametes from 

age class i are from one or two individuals respectively with in that 

age class , and 

It  is common ( e . g .  JOHNSON 19 7 7 )  to restrict attention to  the case where 

any output gamete from an age class is equally likely to have come from 

any individual within the age class . In this nequal-chance" case , 

There is a need in two-locus models for trigametic and quadrigametic 

sampling probabilities in addit ion to these digametic probabi lities . 

4.2.2 One-Locus Case 

The quantity to be determined is th� average inbreeding coefficient 

F 1 ( t )  of members of age class 1 in year t .  This is the average of the 
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probabilities o f  identity by descent o f  pairs of genes drawn from 

individuals in the previous year , and each member of a pair has 

probability p . of coming from an i-year-old , so that l. 
n n 
l: l: P · P · t h  . . ( t )  

i=1  j = 1  l. J l.J  ( 4 . 2 . 1 ) 

The gamet i c  s et meas ure � 1 • •  ( t )  is the probability of identity by l.J 
descent of a gene from age class i and a gene from age class j in 
year t ,  and it will be necessary to es tablish transit ion equat ions 
for these gametic set  measures . 

When two gamete s  are from the s ame age class , there is a chance 
that they are both from one individual in that class , and genes on the 

gametes may be copies of the same gene in that individual . I dent ity 
by descent is then assured �  and to keep track of such cas es the average 
coancestry 8 1 I . J .

( t )  has been defined in Section 2 . 2 as the probability 
l. J 

of ident ity by descent of a gene from a random member I .  of  age c las s i l. 
and a gene from a random member J . of age J class j ,  both in year t .  The 
measure is averaged over all I .  and J . . l. J 

I f primes denote distinct individuals in the same age class then , 

� l i i ( t+ 1 )  = P2 ( i ) 6 1 I . I . ( t+1 ) + P
11 C i )  6 1 I . I ! ( t+1 ) , 

l. l. l. l. 

� l ij C t+ 1 )  = e 1 I . J . < t+ 1 ) , 
l. J 

and there are the obvious symmetries 

e 1 r . J . C t )  
l. J 

= e 1 J . r . C t )  
J l. 

( 4 . 2 . 2 ) 

( 4 . 2 . 3 ) 

Now an individual of age i in year t+1  was of age 1 in year t-i+2 , 
so gametes from such individuals descended from parents in year t -i+1 . 
I dentity-by-descent relations in equat ions ( 4 . 2 . 2 ) and ( 4 . 2 . 3 ) are 
preserved if they are written as 



1ji l • •  ( t+1 ) = 
� �  

1ji l . . ( t+1 ) = � ]  

p2 ( i ) e 1 1 1 ( t - i+2 ) 
1 1 

e 1 1 J < t-i+2 ) ,  
1 j -i+ 1  
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+ p1 1 ( i ) e 1 1 1 , < t -i+2 ) ,  
1 1 

1 ::;: i s: n  ( 4 . 2 . 4 ) 

1 ::;: i < j s: n  . ( 4 . 2 . 5 ) 

Genes from individuals in age class 1 may have descen ded from any of 
the age classes in the previous year , and two genes from the same 
individual are equally likely to be  copies of the s ame gene or of 
different genes rece ived by that individual , hence 

1 
e l r r ( t- i+2 ) = - +  2 1 1 

n 
e 1 1  1 , < t-i+2 ) = I 

1 1 i= 1 

e 1 1 J ( t-i+2 ) = 
1 j - i+1  

1 D n 
I I p .p . 1ji l  • .  ( t-i+ 1 )  2 i=1  j = 1  � J �J 

n 
L p . p . 1ji l  . . ( t-i+ 1 )  , � J �] j = 1 

n 
L pk 1jJ 1 k . . ( t-i + 1 )  , 

k= 1  , ] - �  

' ( 4 . 2 . 6 )  

( 4 . 2 . 7 ) 

( 4 . 2 . 8 ) 

Equat ions ( 4 . 2 . 2 ) to ( 4 . 2 . 8 ) may now be comb ined to give the 
des ired transition equations for the gametic s et measures 

1ji l • .  ( t+1 ) ��  

n n 
L L p]

. pk WI ]· k ( t-i+ 1 )  + � P2 ( i ) , 
j = 1  k= 1  

n 
1jJ 1 • • ( t + 1 ) = 2: pk 1jJ 1 k . . ( t -i + 1 ) , 1 ::;: i < j � n • 

�J k= 1  , ] -� 

( 4 . 2 . 9 )  

( 4 . 2 . 10 )  

These equat ions allow the determinat ion of gametic set  measure s , and 

hence inbreeding coefficients , in all years but are not in a part icu-
larly convenient form for comput ing as they require the storing of 
measures for the previous n years . This is  in contrast  to the s ituat ion 
with discrete generat ions , where sets of measures always �est only on 
values in the previous generation . However , e quat ions ( 4'. 2 .  9 )  and ( 4 .  2 . 10 )  
can be re-arranged to obtain equations which do span j us t; consecutive 

pairs of years : 



ljl l 1 1 ( t+1 )  
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1 2 n n 1 2 = [ 1 - 2 P ( 1 ) ]  E E p . p . lJ\ . . ( t )  + "2 P ( 1 ) , ( 4 . 2 . 11 )  
i= 1 j = 1  � J � ]  

( 4 . 2 . 12 )  

ljl l . .  ( t+1 )  = �� 1 - �2 ( i-1 ) 2 

1 < i .$ n  ( 4 . 2 . 1 3 )  

1 < i < j � n . ( 4 . 2 . 1 4 )  

In the case o f  equal chance gamete format ion , this set reduces to 
that given by FELSENSTE IN ( 19 7 1 )  and is an exact alternative to the 
set gi ven by JOHNSON( 1 9 77 ) .  

I f. there was only one age class per generat ion , n= 1 ,  equat ions 
( 4 . 2 . 1 1 )  to ( 4 . 2 . 14 )  provide 

or 

whi ch is the usual result for discrete generat ions . 

I f all initial individuals ( year 0 ) are not inbred and are unrelated , 
then the init ial values of the measures are 

ljll . .  ( 0 )  = 0 ' �]  

F ( 0 )  = 0 . 1 

and then equat ions ( 4 . 2 . 1 )  and ( 4 . 2 . 11 )  to ( 4 . 2 . 14 )  provide 



1 n 
= 2 L 

i= 1 
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1 ( 2 [ 
F / 2 ) = 2 p1 1 1 2  n 

2 2  n 2 .  - P · ( 1 ) ]  + 1 } L p . P ( i )  + p1 L p . p . 1P ( � -1 ) . 
2 i = 1  � i=2  � �-

Later values will generally require numerical iterat ion of equat ions 
( 4 . 2 . 9 )  and ( 4 . 2 . 1 0 ) , or ( 4 . 2 . 1 1 )  to ( 4 . 2 . 14 ) , but this is also a feature 
of approximate treatments such as those of JOHNSON ( 1 9 7 7 ) . 

It is common to compare populations on the bas is of e ffective 
numbers . The inbreeding e ffective number is related  to the asymptotic 
rate of increase r of F 1 ( t ) .  This rate i s  the limiting value , as t ime 
increases , of 

r( t )  = 
F 1 ( t )  - F 1 ( t-1 )  

F 1 (oo) - F 1 ( t -1 )  

where F 1 (oo)  = 1 .  Since r = 1/2N for an ideal monoecious population of 
s ize N ,  the annual inbreeding e ffe ct ive number can be set  as 

N = y 
1 

2r 

Note that the s ame rate of inbreeding and effective number would be 

obtained if 

r( t )  = 
F (oo)  - F ( t-1 )  0 0 

is used .  This rat io uses the  complement of  the inbreeding coefficient , 
F0 = 1 - F 1 ,  and F 0 (oo)  = 0 • 

The generation length L for the populat ion is defined as the average 

age of the parents of newborn individuals 

L = 
n 
L 

i=1  
i p . 

� 

and the generat ion inbreeding e ffect ive number N is N /L . g y 
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Several authors ( e . g . FELSENSTEIN 1 971 , HILL 1 9 7 2a ,  1 9 7 2b ,  

and JOHNSON 1 97 7 )  have given analytical expres sions whi ch approximate 

N or N . 
y g 

Exact values in specific cas es can be  obtained by iteration 

of the trans i tion equations above , b ut in any real s ituation int erest 

is more likely to center on early generations when the concept of 

effective numbers is of less  relevance . 

4 . 2 . 3 Two-Locus Case 

For inbreeding at two loci the identity status of two pairs of 

genes needs to be considere d .  For two genes a,  a '  and b ,  b '  at the 

A and B loci resp ective ly , the general identity measure �( ab ,a ' b ' )  

has been defined on Page 7 .  When ab , a ' b '  are uniting gametes , the 

measure is written as F and the one- locus inbreeding coefficients , 

ass umed to b e  the same at each locus , are F 1 = F 1 1  + F 1 0 = F 1 1  + F0 1 • 

I f  ab , a ' b '  are gametes taken from age classes i and j in year t ,  

the meas ure _X( ab ,  a ' b ' ) is writ ten as ljJ • •  ( t ) , so that -1 ]  

n n 
F( t+1 )  = L: L: p . p . ljJ • •  ( t )  

i = 1 j = 1 
1 J -1 J 

( 4 . 2 . 1 5 )  

This vector equation is analogous to ( 4 . 2 . 1 ) , and adding the first 

and third rows of ( 4 . 2 . 1 5 )  in fact gives ( 4 . 2 . 1 ) . Two other gametic 

set measures V . '
k 

, 1:. .  ,, n are needed ( see Section 2 . 4 ) .  
-1 ; J -1 J ; lUI 

Just as in  the one- locus cas e , whenever more than one gamete is 

drawn from a s ingle age class , there i s  a chance that two or more gametes 

may originate from one individual in that age class , and an accompanying 

chance of identity by des cent for genes at each locus on those gametes . 



50 

Hence two-locus average individual measures are needed ( see Sect ion 
2 . 4 ) . For instance , let i denote age clas s i ( i  = 1 , 2 ,  . . .  ,n ) and I .  . l. 
denote a random member of age class i ( I .  = 1 , 2 ,  . . .  ,N . ) ;  the digametic l. l. 
measure �I . J .  is then defined as 

l. J 

8 : ab , a ' b '  on two gametes from individuals I . ,J . ,  respect ively . -I . J . l. J l. J 

Measures are averaged over all such random members . Determinat ion of 

the inbreeding measure requires an evaluat ion of gameti c  set measures , 
and hence of average individual measures . A general procedure has b een 

established ( WEIR  and COCKERHAM 1969b )  and details are given here for 

the digametic  measures .  As before , primes denote distin ct individuals 

within age classes , and subscripts i , j ,k , L , s  range over the integers 1 

to n .  

Gametic sampling probabilities are needed t o  express  gametic s et 

measures as average individual measures . The analogues of equations 

( 4 . 2 . 2 ) , ( 4 . 2 . 3 ) are 

!ii ( t+ 1 )  = P2 ( i )  �I . I . ( t+1 )  + p
1 1 ( i ) �I I ' ( t+ 1 ) , 

l. l.  i i  

lj! • . ( t+ 1 )  -l.J = �I J ( t+1 ) , 
i j 

1 s: i < j s: n  

( 4 . 2 . 16 )  

( 4 . 2 . 1 7 ) 

E xpression of average individual measures as gametic s et measures 

involves the mat ing s cheme via the probabilities p . as in the one-locus l. 
case , but also involves recombinat ion b etween the loc i .  

For s implicity attent ion will b e  restricted t o  the fourth , double 

non-identity , component of all measures . The one-locus inbreeding 

coefficient then allows other components of the inbreeding measure to 

be recovere d ,  as for example F 1 1 = F 0 0 + 2F 1 - 1 .  

T o  preserve double non-identity , genes on two gametes  from a s ingle 
indivi dual must have descended from genes on the two gametes  received by 

that indivi dual , but there is no restriction for genes  on gametes from 

different indivi duals . Gametes received by age class 1 may be from any 



of the age classes in the previous year : 

B o o r . I . ( t+1 )  
1 1 

B o o r 1 , ( t+1 )  . . 1 1 

e o o r  . J . ( t+ 1 )  
1 J 

= 

= 

2 1+1. L: 4 . 
J 
2 

( 1+1. ) 2 

L: pj pk �0 0 j k ( t-i+ 1 ) , 1 :s: 
k 

L: L: Pj Pk �o o j k ( t-i+ 1 )  
j k 

1 :S: i :s: n 
= 1+

2
A L: pk �o o k . . ( t- i+ 1 ) 

k , J - 1  

i :s: n  

1 :s: i < j  :s: n . 
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( 4 . 2 . 1 8 )  

( 4 . 2 . 19 )  

( 4 . 2 . 20 )  

The transition equat ions for the digametic set measures now follow 

from combining equat ions ( 4 . 2 . 16 )  to ( 4 . 2 . 20 ) : 

1 +1. 2 J. 2 . 
� o o · . ( t + 1 ) = [ ( -2- )  - -2 p ( 1 ) ] L:  L: p . pk 1jJ o o · k ( t- i+ 1 )  1 1  j k J J 

I)J o o ·  . ( t+ 1 )  l J 

1 s: i· s: n 

1-J. ( ) + - L: L: Py.e, v 0 0 J· -i ·,k..e t- i+ 1 , 
2 k .e. 

( 4 . 2 . 2 1 )  

( 4 . 2 . 22 )  
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Just as in the one- locus situat ion ,numeri cal work will  require the storing 

of measures for n years when equations ( 4 . 2 . 21 )  and ( 4 . 2 . 22 )  are used . 

Unlike the one- locus cas e however , these equations cannot be re-arranged 

to arrive at a set of equations which span only pairs of cons ecutive 

years unless the sampling probabi lities P
2

( i )  are the same for every 

age class . This can be the cas e when every age class is the same s i ze .  

Equal P
2

( i )  values for i = 1 , . . .  , n  lead to 

� o o · . ( t+ 1 ) = �o o · 1 . 1
( t ) ' 

l ]  l - , ] -
1 < i , j :s; n ( 4 . 2 . 23 )  

and the cas es for i= 1 follow dire ctly from ( 4 . 2 . 21 )  and ( 4 . 2 . 22 ) .  

Further samp ling probabi lities are needed · for the evaluation of 

trigameti c and quadrigameti c  measures . These probab i li ties all refer 

to the origins of gametes taken from age class i :  

three gametes from one individual 

two gametes from one individual and one from a 

different individual 

one gamete from each of three different individuals 

four gametes from one individual 

three gametes from one individual and one from a 

different individual 

two gametes from one individual and two from a 

different individual 

two gametes from one individual and one from each 

of two different individuals 

one gamete from each of four different individuals . 

Following the general procedure of WEI R and COCKERHAM ( 19 69b ) , trigamet i c  

and quadrigametic  s et measures are first express ed a s  average individual 

measures , whi ch in turn are expanded back to gameti c  s et measures . Listed 

below is the resulting s et of transition equations for gametic s et 

measures in the special case of equal age-class s ampling probabilities 



\) 0 0 1 . 1 1  ( t+ 1 ) 
' 

5 3  

+ [! P21 ( 1 ) + 1+A  P111 ( 1 ) ] � � � p . p . pk v o o l· ·,J· k
( t ) 2 . 2  i j k l ]  

= [l P2 ( 1 )  + 1+A p1 1 ( 1 ) ] � � ( t )  2 2 p . pk V o o · . k . 1 i k l l ,  , ] -

1 < j s n 

( 4 . 2 . 24 )  

( 4 . 2 . 2 5 )  

( 4 . 2 . 26 )  

1+A � ( ) 1-A  = 2 p .  V o o · . · 1 k 1 t + --2- � � p . p� s o o i� ; ]· - 1 , k- 1 ( t )  
i l l , ] - ' - i � l 

1 < j , k s n ( 4 . 2 . 27 )  

\) 0 0 j ; 1k ( t+ 1 ) = � p .  V o o · 1 . k 1 ( t )  ' 
i l ] - ; l ,  -

1 < j ,k s n ( 4 . 2 . 2 8 )  

1 < i , j ,k s n 

= 1
4 [P

4 ( 1 )  + �3 P22 ( 1 ) ] � � p . p . �o o · . ( t )  . . l J l] 
l J 

� � � p . p . pk V o o · . k ( t ) } . .  k l J l ; ] . 
l J 

� � � � p . p . pkp� s o o · · . � ( t ) } 
i j k � l J l] , 

( 4 . 2 . 29 )  

( 4 . 2 . 3 0 ) 



s o o 11 ., 1J. ( t+ 1 )  = [� P
3

( 1 )  + � P 21 ( 1 ) ] I I p
1.

pk V 0 0 • • k . 1 ( t )  
2 3 i k 

l ,  , ] -

s o o 1 1 ; j k ( t+ 1 )  = � P
2

( 1 )  I p . ( ) 2 Vo o · . . 1 k 1 t :i l l , ] - ' -

I p . s o o ·  . 1 · k 1 ;_ 1 ( t ) ' 
l 

l l , ] - ' - ' -

1 < j , k  � n 

1 < j ,k � n 

1 < j , k ,!- s; n 
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( 4 . 2 . 31 )  

( 4 . 2 . 3 2 )  

( 4 . 2 . 3 3 )  

( 4 . 2 . 3 4 )  

s o o · 1 . 1 · k 1 n , ( t )  ' 
l- , ] - , - , ,.o:, - ]_ 1 < i , j ,k ,£ � n . ( 4 . 2 . 35 )  

Since equal inbreeding i s  assumed at each locus , the following 

equalities hold 

1 � i , j , k s; n 

1 � i ,  j , k ,1- � n 

so that equations ( 4 . 2 . 21 )  to  ( 4 . 2 . 3 5 )  are sufficient for all ( not 

d . . ) 2 . . 3 . . d 4 . . 1st1nct n d1gamet1 c ,  n tr1gamet1c  an n quadr1garnet1 c  measures . 

The numbers of distinct measures  are n ( n+ 1 ) / 2 digameti c ,  n2 ( n+ 1 ) / 2  

trigameti c  and n ( n
3
+ 1 8n2- 1 3n+ 1 8 ) / 24 quadrigameti c .  



s s  

I n  the discrete generation case , n = 1 ,  only equations ( 4 . 2 . 24 ) , 

( 4 . 2 . 30 ) , and ( 4 . 2 . 21 )  with i = 1 are needed . These reduce to  the 

equations given previ ous ly (WEIR and COCKERHAM 1969b ) . 

4 . 2 . 4  Numeri cal Results 

The smallest population for whi ch a ll possible types of  two-locus 

measures are required is one with four age c las ses , each with four indivi­

duals . Table 4 . 1  d isplays the two- locus i nbreeding coefficients in  thi s 

cas e for equal chance gamete formation . Each of the mating probabilities 

p . , and each of the probabilities P
2 ( i )  of drawing two gametes from the l 

same member of  an age c lass has been s et equal to 1/4 . 

When A= 1 ,  F 1 1 ( t )  = F 1 ( t ) .  Alongside the column for this one- locus 

inbreeding coe ffi cient is a column of values obtained by the method of 

JOHNSON ( 1 9 77 ) . Thi s  approximate method ,  des i gned for early generations , 

assumes that ( 2N .  - 1 ) / 2N .  � 1 .  l l 

Table 4 . 1  als o  shows the identity di sequilibrium coeffi cient s  

n 1 1 ( t )  = F 1 1 ( t ) - [ F 1 ( t ) ] 2 for A= O .  These small values represent the 

identity associati on between unlinked genes caus ed by the mating systems . 

The limit i ng inbreeding rates , r ,  a lso given in  Table 4 . 1  are 

defined in t erms of  the doub le non-ident i ty measure : 

r = l im 
t� 

F 0 0 ( t )  - F 0 0 ( t- 1 ) 

with F 0 0 (oo)  = 0 .  The homogeneous form of the transition equat i ons shows 

that F0 0  can eventually be written as 

F 0 0 ( t )  � [ s ( A )] t 

with s ( A )  the largest e igenvalue of the system of equations . The l imiting 

i nbreeding rat e  is evidently 1 - s ( A ) .  Thes e  final rates at which double 

non- identi ty is  decr easing give a better p i cture of the populat i on than 

would rates defined in t erms of F 1 1 ( t ) . These latter rates would b e  

functions of both s (A )  and s ( 1 ) , whi ch t ends t o  obs cure the effects of: 

linkage . As mentioned abov e ,  both approaches g ive the s ame result  for 

A = 1 ,  the one- loc us cas e .  
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The inbreeding rate shown for the approximate F 1 values is the 

, : mitin g  value of the difference between F 1 values in success ive years . 

This is because JOHNSON ' s  method lineari zes the inbreeding coefficient : 

JOHNSON ' s  effective number· N is such that 
y 

t F 1 ( t )  = 2N y 

Table 4 . 1  Inbreeding Coeffi cients for Monoecious Populat ions . 

Four I ndividuals in Each of Four Age Clas ses 

t F 1 1 ( t )  F 1 ( t )  n 1 1 ( t )  

(year ) A= O f- = 1 / 4  A = 1 / 2  A= 3/4 f- = 1  ( approx . )  A = O  

0 0 . 0000 0 . 0000  0 . 0000  0 . 0000 0 . 0000  0 . 0000 0 . 0000  

1 0 . 0156  0 . 0166  0 . 019 5 0 . 0 244 0 . 0 3 1 3  0 . 0313  0 . 0146  

2 0 . 0193  0 . 0213  0 . 0 2 59 0 . 0336  0 . 0447 0 . 0449 0 . 017 3 

3 0 . 0231 0 . 0263  0 . 0330  0 . 0441 0 . 0607  0 . 0614 0 . 0194  

4 0 .  0272  0 . 0 316 0 . 0406 0 . 0 558 0 . 0794  0 . 0810  0 . 0209  

5 0 . 0 317 0 . 0 37 3  0 . 0486 0 . 0684  0 . 1 01 0  0 . 1041  0 . 021 5 

10 0 . 0547 0 . 0620  0 . 0783  0 . 1 13 3  0 . 1 8 7 2  0 . 2025  0 . 0 197 

15 0 . 0880 0 . 0949 0 . 1 11 6  0 . 1 537 0 . 2 6 6 5  0 . 3025  0 . 0 1 7 0  

20 0 . 1 286 0 . 1 347 0 . 1 50 1  0 . 19 3 5  0 . 3 3 8 0  0 . 40 2 5  0 . 0 144 

50 0 . 4177  0 . 4200  0 . 4263 0 . 4496 0 . 6 4 2 3  1 .  0025  0 . 0 0 51 

100  0 . 7608  0 . 7 6 1 3  0 . 7 6 24 0 . 7674 0 . 8 7 1 8  2 . 0025  0 . 0009 

r 0 . 0400 0 . 0 3 9 9  0 . 0 3 9 5  0 . 0 3 80 0 . 0 2 0 3  0 . 0200  



57 

4 . 3  Dioecious Diploids 

4 . 3 . 1 Mating Scheme 

Consider a diploid population which consists o f  M males and F 

females , wi th m male and f female age classes . "Age class i"  will 

refer to male age class i i f  1 � i � m and to female 

rn+ 1 � i ::;; m+f . The si zes of age classes are written 

males and females respectively , so that 

m 
2:: 

i = 1 
M . = M 

l 

m+f 
2:: 

i:::m+ 1 
F .  = 

l 
F • 

age class i-m if 

as M .  and F .  for 
l l 

E ach year M1+ Fm+ 1 newborns ent er the population , while death claims 

all M m-year-old males , all F f f-year-old females , and a random sample m m+ 
of M . -M . ( 1  � i � m- 1 ) i-year-old males and F . - F  . 1 ( 1 ::;; i � f- 1 )  1 1 + 1  m+1 m+1+ 
i-year-old females . 

Since newborn males and females may have different parental age 

distributions , sampling of gametes b etween age class es is accommodated 

by two s ets of parameters p 1j ' pm+ 1 ,  j where p . .  ( i= 1 ,m+ 1 ; 1 ::;; j � m+f )  
l ]  

l S  the probab i li ty that a random gamete re ceived by a newborn individual 

i n  age class i in any year came from the j th age class in the previous 

year . B ecaus e half of the genes for an individual came from its mother 

and half from its father 

m m+f 1 I: p . .  = 2:: p . .  = i = 1 ,  m+ 1 
j = 1 l ]  j = rn+ 1  l ]  2 

For samp ling of gamet es within age classes , a combined samp ling 

plan ( WE I R  and COCKERHAM 1 9 69b ) is assumed . Thi s means that any s et 

of gametes from a given age class are a random samp le from the total 

gamet i c  output from that class . Two gametes have the same chan ce of  

coming from the  same individual member of the age class whether they 

each go to male or female offspring for e xample . failure to assume 

the combined s amp ling s cheme would require the identification of gameti c  

sampling probabilities and gametic set  measures according t o  the age 

clas s es that r eceive the gametes as well as t hose that give them ( see 

S ecti ons 2 . 2 and 2 . 4 ) . I n  this treatment the same type of s ampling 

probabilities P ( i ) within age class es can be used as i n  the monoecious 

cas e .  
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4 . 3 . 2 One-Locus Cas e 

The average inbreeding coeffi cient F 1 i ( t+ 1 ) ,  i = 1 , m+ 1 , for 

members of age class i in year t+ 1 is defined as the probab ility of 

i d e�tity by des cent of genes on p airs of gametes from year t received 

by group i .  Thes e pairs of gamet es are chosen at random subj ect to 

the condition that one mus t  be from a male and one must be from a female . 

Given that a random gamete received by age class i ( i= 1 , m+ 1 )  is  male , 

there is probab ility 2p . .  ' 1 :S: j :S: m ,  that it is from male age class j .  l J  
Given t hat such a gamete is female there is a probabi lity 2Pik ' 

m + 1 :S: k � m + f ,  that it is from female age class k ,  so that 

m m+f 
F 1 . ( t+ 1 )  = 4 L: L: p . .  p . k 1Ji l j k( t )  ' i = 1 , m+1 ( 4 . 3 . 1 )  l 

j = 1  k=m+ 1  l J  l 

The calculat ion of F 1 . ( t )  now rests on the establishment of a l 
set of transition equations for the gametic s et measures 1Ji 1 • •  ( t ) . As l J  
before these s et measures refer to random gametes from age classes i 

and j .  The simplest s ituations are those for which the measures refer 

to game tes from different age c las s es .  A gene from an individual in 

age clas s 1 of either s ex may have des cended from any age class in the 

previous year , while  identi ty relations for a gene from any other age 

class may as we ll  be made about genes from the one-year-younger age 

class in the previous year : 

m+f m+f 
1Ji l 1 ,m+ 1 ( t+ 1 )  = L: L: p1 . p  1 . 1Ji l  . .  ( t )  

i= 1 j = 1 l m+ , J  l J  

w l . .  < t+1 ) = l J  
m+f 

L: pik 1Ji 1k , J. _ 1 ( t ) ,  i= 1 ,m+ 1 ;  
k= 1 2 ::: j :S: m+f 

( 4 . 3 . 2 ) 

j f. m+ 1 ( 4 . 3 . 3 )  

1Ji l  . .  ( t+ 1 ) = 1Ji l . 1 . 1 ( t ) ' l J  l- , ] -
2 ::: i , j  :S: m+f; i , j  f. m+ 1 ;  i f.  j .  

( 4 . 3 . 4 )  

As in the monoecious case ,  equation ( 4 . 3 . 4 ) can be taken back unti l  

members o f  the first age class i n  either s ex are involved . For e xampl e  

m+f 
1Ji 1 • • ( t+ 1 ) = L: P 1k 1Ji 1 k . . ( t -i + 1 ) lJ  k= 1 , ]  -l 

but it i s  more convenient to  use ( 4 . 3 . 4 ) . 
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Two gamet es from the same age class require the introduct ion of 

average individual meas ures again . Corresponding to equations ( 4 . 2 . 2 ) 

and ( 4 . 2 . 4 ) 

� 1 ii ( t+ 1 )  = P
2 ( i )  8 1 1 . 1 .

< t+ 1 )  + P1 1 C i )  8 1 I . I ! ( t+ 1 ) , 1�i�m+ f  ( 4 . 3 . 5 ) 

where 

l l l l 

= P
2

( i )  8 1 I *I * ( t-i+i*+ 1 ) + P 1 1 ( i )  8 1 I . I � 1 ( t-i+i*+ 1 ) ,  
i i l l 

1 � i � m+f 

i <': = 1 if 

= mt 1 if m+1 � i � m+f . 

When two gametes are drawn from one individual in the first age 

clas s of either s ex ,  there is probability one-half that they are copies 

of the s ame gene and so identi cal by des cent , and there i s  probability 

one-half that they descend from two individuals of di fferent sex  in the 

previous year 

e l r . r . ( t+ 1 )  
l l 

m m+f 
= [ 1  + . 4  E E P · � · P · �k � 1 . k ( t -i+i * )] / 2  , 

j = 1 k=m+ 1  l n ] l n J 

1 � i � m+f • ( 4 . 3 . 6 )  

There is no restri ction though on parental age clas s es for genes from 

di stinct individuals : 

e l i . I � ( t+ 1 )  = 
l l 

m+f m+f 
" " lk ( • • ... ) 1 � . � + f L... [., p . .•. . p . ·'·k 'I' 1 . k t - l + l n ' l m • 

j = 1  k= 1  l n ] l n J ( 4 . 3 . 7 ) 

Combining equat ions ( 4 . 3 . 5 )  to  ( 4 . 3 . 7 ) gives the remaining gameti c  set  

measure transition equation 

m m+f 
� 1 . •  ( t+ 1 )  = 2P 2 ( i )  E E P · � · P · �k � 1 . k ( t -i+i * )  

l l  
j = 1 k=m+ 1  l n ] l n J 

1 � i � m+f . ( 4 . 3 . 8 ) 



As in the monoecious cas e ,  simplifi cation results when sampling 

probabi lities are the same for every age class . Then ( 4 . 3 . 8 ) is 

appropriate as it stands for i = 1 ,  m + 1 but otherwis e can be 

rep laced by 

6 0  

The set of  equations ( 4 . 3 . 2 )  t o  ( 4 . 3 . 4 ) and ( 4 . 3 . 8 ) generalize 

those of JOHNSON ( 1 9 7 7 )  and in the dis crete-generat ion case of  m = f = 1 

reduce to 

with the usual equat ion for F 1 ( t )  = 1)J 1 1 2 C t- 1 )  : 

When the initial individuals , in year 0 ,  are not inbred and are 

unre lated , the initial values of the measures are 

1jJ l • •  ( 0 ) = 0 ' 1 ] 

F . ( O ) = 0 , 1 

1 ::;; i ::;; "(Jl+ f  

1 ::;; i < j ::;; m+f 

i = 1 ,  m+ 1 . _ 

Equations ( 4 . 3 . 1 )  to  ( 4 . 3 . 4 ) , ( 4 . 3 . 8 ) then provide 

F 1 . ( 1 ) = 0 , i = 1 , m+ 1 -

1 
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m+ f 2 m+f 2 = 2[p . 1p . 1 
l: p

1
. p  + 1  J. P  ( j ) + p .  L: p . .  p . 1p ( j - 1 )  1 . 1 ,  m+ J. __ 1 J m , 11 . 2 lJ 1 , J -J =m+ 

m 
+ P . 1 L: P . .  P 1 . 1P 2 ( j - 1  ) ] 

1 ,m+ 
j = 2  lJ m+ , ] -

i = 1 , rn+ 1 . 

Average inbreeding levels for the male and female in the same 

year can differ becaus e of different parental age distributions for 

the two sexes . I t  i s  conveni ent to  define an average inbreeding 

coeffi ci ent F1 ( t )  for the newborn in year t as a weighted average of  

the coefficients in  each s e x  : 

An inbreeding effective number may be defined , as in  the monoecious 

cas e ,  by reference to an ideali zed population without age structure . An 

ideal dioecious populat ion of effective s i ze N accrues inbreeding e 
according to 

1 

2N 
e 

N - 1  1 
+ --f- F 1 ( t+ 1 ) + W F 1 ( t )  

e e 

whi ch , for large t and N , leads to e 

2N - 1 
= 1 _ ( e ) t 

2N e 

as in  the monoecious cas e .  Y ears and generations are the same here . 

In the pres ent cas e  the per-year effective populat ion s i ze i s  

then defined as 

N = y 
1 

2r 

where r is the limiting value , as t ime increases , of 

r ( t )  = 
F

/ t )  - r1 C t- 1 ) 

1 - r1 C t- 1 ) 
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For dis cre te genera t i ons this b e comes 

The generat i o n  length L i s  now d e f i n e d  t o  be the average age o f  

p ar ent s w h e n  pro geny are born , a v erag e d  over the four p ar ent-pr og e ny 

types ( ma l e -male , ma l e - female , fema l e - male and fema le- fema le ) . 

4 . 3 . 3 

m m + f  
L =  12 [ L: i ( p1 . + p 1 . ) + L: ( j - m ) ( p1 . + p 1 . ) ] . 

l. __ 1 l m+ , l . 1 J m+ , J 
J = m+ 

T-wo- Locus Cas e 

Two- locus me as ures are de f i n e d  as in t h e  monoe c i ous c as e ,  and 

the two- lo c us i nbreeding func t i on for n ewborn indi v i duals i n  year t 

lS 

F . ( t+ 1 ) = 4 -l 

m m+ f 
L: L: p . . p . kljJ . k ( t ) ' i = 

j = 1  k = m+ 1 lJ 1 -J 1 ,  m+ 1 . ( 4 . 3 . 9 )  

For game t e s  from di fferent age c l as s es , ( 4 . 3 . 2 ) to ( 4 . 3 . 4 ) n ee d  

t o  b e  mod i f i e d  t o  t ake ac count o f  re comb in at i on . P arental g amet es from 

members o f  the fir s t  age c lass 1 n  e it h er s e x  c an come fr om parents of 

either sex and any age in th e pr e vi ous y ear , b ut re cornb inant gamet e s  

mus t carry one g ene from a ma l e  p arent and one from a female . 

lj! o o 1 , rn+ 1 ( t+ 1 ) = 1 , 2 m+f m+ f 
( _

+
_/\. ) " " , , ,  ( ) 2 L, L, p 1 ip rn+ 1 , ]. '+' O O i J. 

t 
i =  1 j = 1 

1 _ /.. 2 m+ f m m+f 
+ --4- L: L: L: 4 ( p1 ipm+1 , ]. pm+ 1 , k i = 1 j = 1  k = m+ 1  

+ p 1 . p 1kp + 1  . ) V o o · . k ( t ) J m , 1 l ; J  

m m+ f m m+ f 
L: � L L ( 1 6p 1 . p 1 . p 1 kp 1 i, )  X i = 1  j = rn+ 1  k = 1 t = m+ 1  1 J m+ ' m+ ' 

I;; 0 0 • . ;-:-;;-( t ) l J  ; � 
( 4 . 3 . 1 0 ) 



1);0 0 i j ( t+ 1 )  = 

l = 1 , m+ 1  2 $ j $ m+f 

j i- m+ 1 

1);oo · 1 . 1 ( t ) , 1 <  i <  j $ m+ f 1 - ' J -

i ,  j t- m+ 1 . 

6 3  

( 4 . 3 . 1 1 )  

( 4 . 3 . 1 2 )  

Note that the above expans ions have made use of the symmetries 

and the average 

soo· n • . ( t ) = Soo · · . n k ( t ) K..:. ; 1 J ] 1 , ..:. , 

Jus t  as with equation ( 4 . 3 . 4 ) ,  equat ion ( 4 . 3 . 1 2 )  could be expanded 

back unt i l  members of the first age class in either s e x  were involve d , 

but equation ( 4 . 3 . 1 2 )  is in the more convenient form for comput ing . 

For gametes from the s ame age class , as previously 

1j;O O ii ( t+ 1 )  = P 2 ( i )  8 o o r . I . ( t+ 1 )  + p 1 1 ( i )  8 o o r . I ! ( t+ 1 )  
1 1 1 1 

m m+f 
l: 

j = 1  
l: 4 P · � · P · �k 1);0 0 J. k( t-i+i* ) 

k=m+ 1  
1 " ] 1 .. 

' 2 m+f m+f 
+ P

11 ( i ) [ ( 1+ A. ) l: l: . 2 . 
j = 1  k= 1  

P · � · P · �k 1j;O O " k ( t-i+i* ) 
1 "] 1 � J 

1
'
-A 2 m+f m m+f 

+ --2-- l: l: l: 4p
1
. *J. p

1
. *kp

1
. * n v . ( t- i+ i * )  

j = 1  k= 1  £=m+ 1  
"' 0 " J  ; k£  



2 
+ ( 1 - A ) 2 

m m+f m m+ f 
E E E E ( 16p . � · P · �kP · �£P • &  ) X 

j = 1 k=m+ 1  £= 1 u=m+1 
l " J l "  l "  · l "U 

Z::: o o j k ;R t - i+ i �
'
: ) J 

1 $ i $ m+f • 
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( 4 . 3 . 1 3 )  

For equal wi thin-age-class samp ling probab i lities in the two sexes , 

if 

if m+1 s i s m+f 

equation ( 4 . 3 . 1 3 )  can be replaced by 

� 0 0 ii ( t+ 1 )  = � 0 0 i- 1 , i- 1 ( t )  when 2 � i � m+f , i 1 m+ 1 . 

I n  the discrete generat ion cas e ,  m =  f = 1 ,  ( 4 . 3 . 1 0 )  and ( 4 . 3 . 1 3 )  

reduce t o  the res ults given by W E I R  and COCKERHAM ( 19 6 9b ) . The met hods 

established by thos e authors also allow the tri gametic and quadrigametic  

e xpans ions to  be found . The complete s et of transition equations for 

gameti c  s et measures is listed b elow , for the special cas e  of equal 

within-age- clas s  s ampling probabilities . 



V o o · . . ( t+ 1 ) 1. ; 1. 1. 

V o o · . . ( t+1 ) 1. ; ] ]  

6 5 

= P 3 ( i ) Y o o i . ; I . I .  ( t + 1 ) + � p2 1 ( i ) [Yo o r . ; I ! I ! ( t+ 1 ) 
1. 1. 1. 1. 1. 1. 

+ 2 Y o o r . ;I."Y0 t+ 1 ) ]  + P 1 1\ i ) Y o o r . ; I ! r •.• ( t+ 1 ) 
1. 1. 1. 1. 1. 1. 

m m+f 
E E 4 pi ]. p ik � O O ]' k( t ) 

j = 1 k=m+ 1 

m+ f m+ f 
+ � p2 1 ( 1.' ) f 1+ 1.. ... ... , ,, ( t )  3 t 4 [_, [_, p . .  p . k'�' o o  ' k 

1 + -2 

. 
j = 1  k= 1  1. ] 1. J 

m+f m m+ f 
E E E 4p . .  p .  kp .  J., V o o · ki ( t )  

j = 1  k= 1  i=rn+1 l. J 1. 1. ] ; 

m m+ f m m+ f 
+ 1

4
-A. E E E E 1 6p . .  P . kp .  nP . Z:: o o · k -;;-( 

t )  l.J  1. l. ..t- 1.u J ; .t-u j = 1  k=m+ 1 i= 1  u=m+ 1 

+ 
m m+f m+f 1 1 · E E E 4p . .  p . kp . n [ -2 v o o · . k n ( t )  +-2 V o o k . · 1, ( t )] } � : 1 1. J 1. 1. ..t. J > .,t, > J j = 1  k=m+ 1 "' 

1 1 1  1+1.. m+ f m+ f m+ f 
+ P ( 1.' ) [ - E E E . p p p " ' ( t ) 2 . . ' k · n "' o o · k n 

j = 1  k= 1  }.,: 1 l.J  1. l...t. J ;  ..t. 

m m+ f m+ f m+ f 1- A. J + -2- E E E E 4p . . p . kp . J.,p .  Z:: o o J· k � iu ( t )  
j = 1  k= m+ 1  i= 1  u= 1 l.J 1. 1. 1.u • 

i = 1 , m+ 1 

= P 2 ( J' ) ( ) + p 1 1 ( J' ) ( l )  Y o o r . ; J . J . t+ 1  Y o o r . ; J . J !  t+ 
1. J J 1. J J 

2 1+1.. m+ f m+ f 
= p ( j ) [ -4- E L pikp ' J., �O O kJ., ( t ) k= 1  i= 1  J 

( 4 . 3 . 14 ) 

m+f m m+f [ i+A l - A.  + E L E ( -4-) 4p l. kp .  nP · u+ ( --4-) 4p l. J.,p .  p . k] V o o k J., ( t )  
k= 1  t= 1 u=m+ 1 J ..t- J 1.u J ; u 

1_1.. m m+f m m+f 
+ 4 E E E E 1 6p . kp . J.,p . p . Z:: o o ki ·,� t ) } 

k= 1  i-=m+ 1 u= 1 r=m+1 1. 1. J U Jr 

1 1  . 1+1.. m+f m+ f m+ f 
+ p ( J )  [ -2- L L E , p ikP · J.,P · u V o o k · iu( t ) 

k= 1  i= 1  u= 1  J J ' 

1_1.. m m+ f m+ f m+ f · 
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4 . 3 . 4  Numeri cal Results 

To i llustrate the progress of inbreeding for dioecious populat ions 

with age structure , cons ider the situation present in a control flock 

of sheep at Mass ey Univers ity . In each year there are twenty indi vi duals , 

in five equal-s i zed age classes . There is one class of males and four 

classes of females so that m =  1 ,  f = 4 ,  and M1 = Fi = 4 ,  2 � i � 5 .  

A multinomial distr ibut ion is as sumed for the progeny 
1 
2 ' p

i j  

numbers , both 
1 f . = = B , or 1 1 , 2  between and within age class es , so that pi 1  = 

and 2 � j � 5 whi le P 2( i )  = � for 1 � i � 5 .  All the individuals in the 

initial ( t  = 0 )  population are assumed to be not inbred and unrelated .  

Some values o f  the two- locus inbreeding coeffi cients F 1 1 ( t )  for various link­

age p arameter values , and of the identi ty di sequilibrium coeffici ent n 1 1 ( t )  

for free recombination ( A = 0 ) ,  are displayed in Table 4 . 2 .  Limiting 

rates of inbreeding ( or decreas e of F 0 0 ) ,  r ,  are also shown . The 

approxj mate values are thos e wh i ch follow from the method of J OHNSON 

( 1 9 7 7 ) ,  and the r value i n  that column is the  limi ting value of the 

difference betwe en successive values of the approximate F 1 values . 

Table 4 . 2  Inbreeding Coeffici ents for Dioecious Populati on .  Four 

Individuals in Each of One Male and Four Female Age C lasses 

t F 1 / t )  F 1 ( t )  n 1 1 C t )  

(year ) A=O  A = 1/ 4  A = 1 / 2  A= 3/4 A= 1 ( approx . )  A= O 

0 0 . 0000 0 . 0000  0 . 0000  0 . 0000  0 . 0000  0 . 0000  0 . 0000  

1 0 . 0000  0 . 0000 0 . 0000  0 . 0000  0 . 0000 0 . 0000  0 . 0000  

2 0 . 0043 0 . 0060  0 . 0 0 9 0  0 . 0139  0 . 0 2 1 5  0 . 0 2 1 5  0 . 0 0 3 8  

3 0 . 0064 0 . 0092  0 . 0 1 4 2  0 . 0233  0 . 0386  0 . 0 3 9 6  0 . 0 04 9  

4 0 . 0085  0 . 0120  0 . 0 1 8 8  0 . 0319  0 . 0 5 57 0 . 0 5 82 0 . 00 5 4  

5 0 . 0 1 1 2  0 . 0 1 52 0 . 0 2 3 6  0 . 0408  0 . 0749 0 . 0 7 9 5  0 . 00 5 6  

10  0 . 0313  0 . 0358  0 . 047 0 0 . 0768  0 . 1614  0 . 1 8 1 7  0 . 00 5 3  

1 5  0 . 0621  0 . 0662 0 . 0 7 6 8  0 . 1 1 03 0 .  239 8  0 . 2 83 7  0 . 0046  

20 0 . 1006  0 . 1041 0 . 1 1 3 6  0 . 1 464 0 . 3108  0 . 3 8 5 8  0 . 0040  

5 0  0 . 3829  0 . 3 843 0 . 3 8 8 1  0 . 4038  0 . 6174  0 . 9 9 80 0 .  0017  

1 0 0  0 . 7340  0 . 7343 0 . 7 3 5 0  0 . 7 3 84 0 . 8566 2 . 0 1 8 4  0 . 0 0 0 3  

r 0 . 0384  0 . 0383  0 . 0 3 8 1  0 . 0 373 0 . 0194 0 . 0 2 0 4  
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A general and exact treatment has been given for the determinat i on 

of inbreeding coefficient s at one or two loci in populat ions with over­

lapiJ..i.fJg generations . Two typ es of identity measures are required .  One 

type is defined for genes as they are located in set s  of gametes and 

the other type for genes identified by the individuals from whi ch they 

are drawn . I n  the one- locus case , only digametic measures are needed , 

but in the two- locus cas e digameti c ,  trigametic and quadrigameti c  

measures are required . 

Linear trans ition equations between gametic set measures are 

established , and this s uggests that standard matrix t echniques could 

be employed to discuss the behaviour of these measures , whi ch include 

the inbreeding coeffi cients . In fact , the number of measures required 

is too large for analy t i cal work [ n ( n+ 1 ) / 2  measures for the one- locus 

monoecious s it uation and ( m+f ) ( m+f+ 1 ) / 2  for the one-locus dioecious 

s ituation ] ,  but it i s  a simp le matter to cod e the transition equati ons 

for computer iteration . The formal elegance of approximate methods 

such as thos e  of J OHNSON ( 19 7 7 ) is  thereby lost . In practi ce however , 

the calculation of  inbreeding coefficients by approximate methods als o  

required numeri cal treatment , so  there i s  no real loss . 

I t  is therefore s uggested that the exact transition equation s  be 

it erated numeri cally if levels of inbreeding are required for populati ons 

with overlapping generations . This is particularly important in  early 

generations , when values based on effe ctive numbers are not appropri ate . 

I f  the long- t erm behaviour of such populations is required , then effective 

numbers may be suffi cient and in some cases approximate values of s uch 

numbers may be us ed . I t  is  therefore appropriate to turn to a consi­

deration of exact and approximate effective numbers . 

4 . 4 . 1 I nbreeding E ffective Numb ers for Poisson Fami ly S i ze s  

Monoecious Cas e 

It  has already been demonstrated how the transition equat i ons for 

gametic set measures lead to numerical values of e xact inbreeding 

effective numbers . I t  would be des irable if analytical values for 
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such numbers could b e  used , even if they gave only approximate values . 

The exact res ults are used  here to check on such approximat ions . I n  

parti cular , cons i der the following general rule o f  HILL  ( 1 9 7 2b ) .  

" The effect ive sizes of random mating populations of constant 

size and s e x  rat io with overlapping g enerations are equal to 

the effect i ve sizes of populations wi th discrete generat ions 

whi ch have the same numbers of indi vi duals entering the 

populat ion each generation and the same variance of lifet ime 

family number . "  

Thi s  rule refers to generation effective numbers . 

For monoecious random mating populat ions , HILL  ( 1 97 2b )  gives 

Ng = ( 4N 1 - 2) L/ ( cr� + 2 )  ( 4 . 4 . 1 )  

when cr2 is the vari ance of lifetime fami ly s l ze ( total gametic output n 
per indivi dual ) .  S uppose that the j th newborn in any year contributes 

g . .  gametes to newborn individuals i years later ( 1  � j � N 1 , 1 � i � n ) .  
l J 

The lifetime family size of the j th newborn in any year is then 

g .  = 
J 

n 
l: 

i = 1 
g . .  l J 

For "Poisson" lifet ime family sizes , the g . ' s  are multinomia lly 
J 

distributed , and 

so that 

2 cr n 

N = N L2 
y 1 

= 2 ( 1  - 1 ) 
� 

When gametes are drawn wi th equal probabilities from each age clas s  in 

each year , p . = 1/n , and L = ( n+1 ) / 2 ,  therefore l 
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Now equation ( 4 . 4 . 2 )  is  for the case referred t o  a s  equal chance 

gamete format ion . In the numeri cal example  i n  S ect ion 4 . 2 . 4 , n = N
1 

= 4 ,  

s o  that ( 4 . 4 . 2 )  gives N = 2 5  while the exact result , from Table  4 . 1 ,  y 
is  N = 24 . 62 .  y There lS very good agreement between exact and approxi-

mate effective numbers for Poi sson fami ly s i zes . Thes e  approximate 

results als o follow from the work of FELSENSTE I N  ( 19 7 1 ) .  

4 . 4 . 2 I nbreeding Effective Numbers for Constant Family Si zes 

Monoecious Cas e 

Now consider the cas e where there i s  no variance among lifetime 

fami ly s i zes . The dis crete result , H I LL ( 1 9 7 2b ) ,  provides 

( 4 . 4 . 3 )  

For exact inbreeding levels and effect ive si zes however , i t  i s  not 

suffi cient to consi der only l i fe-time fami ly s i zes . It  was shown that 

gametic set measure trans ition equat ions required knowledge of wi thin­

age- class s ampling probabilities , whi ch means that a knowledge of the 

annual family s i zes is needed . 

To i llus trate the situation with non-Poisson family s i zes , consider 

three cases where the lifetime fami ly s i ze is exactly two for every new-

born individual in any year . All cas es h ave n = 4 ,  N .  = 4 for i = 1 , 2 , 3 , 4 .  
l 

I n  the first cas e ,  each age class is a ls o  constrained to provi de exactly 

two gametes ln any year . This is ach ieved by numbering the newborn 

individuals in year t in such a way that individuals give gametes in 

the following years 

Individuals 

1 

2 

3 

4 

Y ears 

t+ 1 , t+ 4  

t+ 2 , t+ 3  

t+ 3 , t+ 2  

t+ 4 , t+1 

The e ight ' gametes each year are combined at random . 
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I n  the second cas e , gametes are provided only by the younges t 

and oldest age classes in any year . I n  other words , each newborn 

gives one gamete at age 1 and one at age 4 .  Random gametic union 

is pres erved .  

Finally , a maximum avoidance scheme i s  use d .  Every newborn 

indi vi dual has a 1-year-old parent and a 4-year- old parent . Gametes 

are provided by youngest and oldest age clas s es only as in the second 

case ,  but there is no longer random union of gametes . Matings are 

speci fied .  

The  following annual effect ive numbers are found 

two gametes per age class N = 46 . 5 8 y 
oldest and younges t  age clas s  N = 45 . 9 8 y 
maximum avoidance N = 8 . 9 1  y 

Details of the appropriate transition equat ions are given ln S e ct ion 

4 . 5 .  With a generation length of 2 . 5 ,  equati on ( 4 . 4 . 3 )  gives 

approximate result N = 43 . 7 5 . y 

Note that in s i tuations where mat ings of gametes are specifi ed , 

the inbreeding and variance effective numbers are not the same . There­

fore it is not appropriate to compare the maximum avoidance exact 

inbreeding result to the approximate value whi ch was derived for 

predicting variance of gene frequency changes .  With the random union 

of gametes there i s  s till some agreement between exact and approximat e 

effect ive numbers , but thi s  disguises the quite real differences in 

inbreeding levels in early generations . Table 4 . 3 displays the exa ct 

inbreeding coeffi cients , and they are compared to the approximate values 

F 1 ( t ) ( approx . ) = 1 -
2N - 1  

( y )t 
2N y 

Thi s  Table also shows that exact inbreeding coefficients do not alway s  

rank i n  the same order as inbreeding effective numbers . I t  is  not unt i l  

generation five that the inbreeding for the maximum avoidance s ch eme 

exceeds that of  the equal chance s cheme for examp le .  The revers e rela­

tionship in the first four generations goes against  the relationship of 
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the inbreeding effe ct ive numbers . 

Table 4 .  3 Exact and Approximat e One- Locus I nbreed ing Coefficient s : 

Year 

0 

1 

2 

3 

4 

5 

10 

15 

20 

50 

100  

N 
y 

Monoecious P opulat ion with Four I ndividuals in Each 

of Four Age Clas s es 

Two gametes per parent 

Equal Two gametes Oldest and Maximum 
Chance p er age class Youngest Avoidance 

Exact Approx . E xact Approx . Exact Approx . Exact ApEro x .  

0 . 0000  0 . 0000  0 . 0000  0 . 0000  0 . 0000  0 . 0000  0 . 0000  0 . 0000  

0 . 0 31 3  0 . 0 2 0 3  0 . 0000  0 . 0107  0 . 0000  0 . 0 1 09 0 . 0000  0 . 0 5 6 1  

0 . 0447 0 . 0 4 0 2  0 . 0089 o .  0214 0 . 0000  0 . 0216  0 . 0000  0 . 1 09 1  

0 . 0607 0 . 0596  0 .  011 5 0 . 0319  0 . 0000  0 . 0323  0 . 0000  0 . 1 59 1  

0 . 0794  0 . 07 8 6  0 . 0295  0 .  0423  0 . 0089  0 . 0428  0 . 0 62 5  0 . 2 0 6 3  

0 . 1010  0 . 0971  0 . 0399 0 . 0 52 5  0 . 0 287 0 . 0 5 32  0 . 1 87 5  0 . 2 5 0 8  

0 . 1 8 7 2  0 . 1 8 3 8  0 . 089 2 0 . 1 0 2 3  0 . 0762  0 . 1036  0 . 3760  0 . 4 3 8 7  

0 . 2665  0 . 2649  0 . 137 1  0 . 1 49 5  0 . 1 2 2 8  0 . 1 51 3  0 . 5242  0 . 5 7 9 5  

0 . 3 3 8 0  0 . 3305  0 . 1824  0 . 1941  0 . 1 6 9 1  0 . 1 9 64 0 . 6433  0 . 6 85 0  

0 . 6423  0 . 641 5 0 . 4085  0 . 41 70 0 . 401 5 0 . 4 2 1 1  0 . 9 3 7 0  0 . 9443  

0 . 8 7 1 8  0 . 8 7 1 5  0 . 6 5 5 2  0 . 6601  0 . 6 5 36 0 . 6649  0 . 9 9 6 5  0 . 9 9 6 9  

24 . 6 2 46 . 5 8 45 . 9 8  8 . 9 1 
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Inbreeding Effective Numbers for Poisson Fami ly Si zes 

Dioecious Cas e ��--�------------------------------------------

For dioecious populat ions with equal chance gamete formation , H I LL 

( 19 72b ) gives 

N = y ( 4 . 4 . 4 )  

I n  the numeri cal example in Section 4 . 3 . 4 . , M 1 
= F

1 
= 4 and L = 1 . 7 5 

to give the approximate value N = 24 . 50 while , from Table 4 . 2 ,  the y 
exact value i s  N = 2 5 . 7 7 .  Agreement is still good for Poisson life­y 
time fami ly s i zes . 

4 . 4 . 4  I nbre eding Effective Numbers for Constant Family S i zes 

Dioecious Cas e 

For fixed equa l family s i zes , H I LL doubles the value in ( 4 . 4 . 4 ) 

and points out that the approximate effective numb er depends on the 

lifet ime fami ly s i ze and not on annual fami ly s i zes . The exact effec­

tive numbers however do not follow this rule , and depart from it as in 

the monoecious cas e .  The departures are illus trated by the previous 

aas e of one male and four female age c lasses , each with four individuals . 

Cons idered be low are two cases where every individual has a lifet ime 

contribution of one male gamet e  and on e female gamete .  

The first case is where each female age class  l S  also restricted 

to  provi ding one male and one female gamete in any year . Thi s  i s  

accomplished b y  numbering the newborn females i n  year t in  s uch a way 

that they g ive gametes in the following years 

Individual 

1 
2 
3 

4 

Gamete to Males ln Year 

t + 1 

t + 2 
t + 3 

t + 4 

Gamete t o  Females in Year 

t + 4 

t + 3 

t + 2 
t + 1 
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In the s econd case , the firs t two females in age c las s two (youngest ) 

and the last two in age class five ( oldest ) give male gametes , while the 

other females in these two class es give female gametes . In  both these 

examples , random union of gametes is preserved and details of trans ition 

equations  are given in Section 4 . 5 .  The exact and approximate effe ctive 

numbers are : 

two gametes per age clas s : N = 46 . 81 y 
oldest and youngest age classes N = 47 . 02 y 
approximate effect ive s i ze : N = 49 . 0 0 y 

Table 4 . 4  shows the exact inbreeding coefficients together with the 

va lues bas ed on inbreeding effe ct ive numbers . 

Table 4 . 4 Exact and Approximate One- Locus I nbreeding Coeffi cients : 

Y ear 

0 

1 

2 

3 

4 

5 

1 0  

15  

20  

50  

100  

N y 

Dioecious Populations with Four I ndividuals in One Male 

and Four Female Age Clas s es 

Two gametes per parent 

Two gametes per age c lass Oldest and Youngest 

Equal Chance E xact E xact 

E xact Approx . Males Females ApJ2rox i. Males Females AJ2J2rox .  

0 . 0000  0 . 0000  0 . 0000 0 . 0000  0 . 0 0 0 0  0 . 0000  0 . 0000 0 . 0000  

0 . 0000  0 . 0 1 9 4  0 . 0000 0 . 0000  0 . 0 1 0 7  0 . 0 0 00 0 . 0000  0 . 0106  

0 . 0 2 1 5  0 . 0385  0 . 007 8 0 . 0234 0 . 0 2 1 2  0 . 0 1 5 6  0 . 0156  0 . 0 2 1 2  

0 . 0 3 86 0 . 0 5 7 2  0 . 0159  0 . 0 3 1 5  0 . 0 3 1 7  0 . 0 1 9 5 0 . 0195  0 . 0316  

0 . 0 5 5 7  0 . 0 7 5 5  o .  026 0 0 . 0433 0 . 0 4 2 0  0 . 0 2 7 6  0 . 0 334 0 . 0419 

0 .  07 49 0 . 0934  0 . 0375  0 . 0 54 8  0 . 0 52 3  0 . 0442  0 . 0501  0 . 0 5 2 1  

0 . 1 6 14 0 . 1 7 8 2  0 . 0 8 7 5  0 . 1 040  0 . 1 0 1 8  0 . 0944  0 . 1 000 0 . 1 0 14 

0 . 239 8 0 . 2 5 9 4  0 . 1 3 5 2  0 . 1 509 0 . 1 4 8 8  0 . 1 4 1 5  0 . 1468  0 . 1 4 82 

0 . 3108  0 . 3 246  0 . 1 804 0 . 1 9 5 3  0 . 1 9 3 3  0 . 1 8 6 1  0 . 1912  0 . 1925  

0 . 6 1 7 4  0 . 6 2 51 0 . 4061  0 . 4169  0 . 4 1 5 5  0 . 4 0 9 4  0 . 4131 0 . 4 141 

0 . 8 5 6 6  0 . 8594 0 . 6529  0 . 6592  0 . 6 5 8 3  0 . 6540  0 . 6561  0 . 6567  

2 5 . 77 46 . 81 47 . 02 
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4 .  4 .  5 Varian ce Effective Numbers 

I f  genetic drift is of more interest than inbreedin g ,  the variance 

effective numbers should b e. used . The simplest way of obtaining thes e  

numbers , and the variance i n  gene freque ncies due to dri ft , is  by use 

of group coancestry coeffic ient s  ( COCKERHAM 1 96 9 ) .  I f  8.e is the g roup 

coances try coeffi cient of a population , then COCKERHAM showed that the 

variance of the sample gene frequency p when the populat ion frequency 

is p ( so that p has an expected value of p )  i s  

2 (jp = 8 .e p ( 1- p ) 

Furthermore , i f  gametes unite at random every pair of gametes received 

by the group carries genes with the same probab i lities of identity 

by des cent . The inbreeding and variance effect ive numbers are the 

same . The annual change of gene frequency variance follows : 

2 cr"' ( t )  = [ 1  -
p 

2N - 1  
( y )

t
] p ( 1-p )  2N y 

Cases such as maximum avoidance of i nbreeding with non-random union of 

gametes were discuss ed by COCKERHAM ( 1 9 6 9 , 1 9 7 0 ) .  

4 . 5  Appendix Two Gametes Per Parent 

When individuals provide exact ly two gametes per li fet ime , a 

stri ct accounding must be kept of annual gamet i c  contributions . The 

sampling probab i lities P ( i )  and gametic s et measures are not appropriate , 

and a new type of individual measure is used . For the one-locus case 

it i s  s ufficient to define the digametic measur e  

�( i , j ; k ,i. ) t = � ( k ,i. ; i , j ) t 

as the probabili� of identity of a gene from the j th member of age 

class i and the i.th member of age c lass k in  year t .  The notat ion is 

deliberately different from that used previously to  emphasi ze that � 

is :different from the digametic  measures 8 and ljJ.  F 1 ( t )  st ill refers to 

the inbreeding coefficient in year t .  The n ecessary trans ition equat ions 

for the cases i llus trated in Tables 4 . 3 and 4 . 4  are pres ented here . 
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There is an  obvious ext ension to more general cas es . 

In each cas e studied , the fol lowing init ial conditions apply 

cp ( i , j ; k , . O  = o i -1 k or j -1 .t 
= 1 / 2  i = k '  

Monoecious : Tw� ga�etes per age clas s 

j = .t 

There are four age classes of  s ize four . In any year one gamete 
is provi ded by individuals i and 5 - i in  each age clas s i .  Gametes  
unite at random. 

4 3 4 
2 8F 1 ( t+ 1 ) = l: cp ( i , i ; i , 5- i \ + l: l: [ 9 ( i .� i ; j , j ) t i = 1  i= 1 j = i+ 1  

+ cp ( i , i ; j , 5- j ) t + cp ( i , 5- i ; j , j )t + cp ( i , 5-i ; j , 5- j \] 

2:.p ( 1 , i ; 1 , i ) 1 = t+ 1 + F 1 ( t+ 1 ) ' 1 � i � 4 

cp( 1 , i ; 1 , j ) t+ l  
= F 1 ( t+ :::. ) � � i < j � 4 ..L 

4 
8:p ( 1 , i ; j ' k  ) t+ 1 = l: 

£ = 1  
[ cp (i, •' .t ; j - 1 , k \ + cp (£ , 5-.t ; j - 1 , k ) t] 

1 � i , k � 

cp( i , j ; k ,.t ) t+ 1  = cp ( i- 1 ,  j ; k - 1  ,£ ) t , 2 � i ,k � 

Monoe cious : Oldest and Youngest Age Classes 

L• r '  2 � j � 

4 ,  1 � j ,.t 

, 

4 

� 4 

There are four age class es of size  four . I n  any year one gamete 
is provided by each individual i n  age classes one and four . Gametes 
unit e at random . 

3 4 
l: l: 

i = 1  j = i+ 1 
4 4 

[cp ( 1 , i ; 1 , j ) + cp ( 4 , i ; 4 , j ) J ' t t 

+ i� 1 ] � 1 
cp ( 1 , i ; 4 , j ) t 



� ( 1 , i ; 1 , i ) t+ l = 1 + F 1 ( t+ 1 )  , 

� ( 1 , i ; 1 , j )t+ 1 = F 1 ( t+ 1 )  

4 
8:p ( 1 , i ; j , k ) t+ 1 

= � [q: ( 1 ,£ ; j - 1 , k )  + � ( 4 ,J. ; j - 1 , k ) ] 
£= 1 t t 

1 � i , k � 4 ' 2 � j � 4 
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� ( i , j ; k ,£ ) t+ 1 = � ( i- 1 , j ; k- 1 ,£ ) t ' 2 � i , k  � 4 ' 1 � j ,£ � 4 . 

Monoecious : Mdximum Avoidance 

There are four age classes of size four . In any year , newborn 

individual i has as parents individual i in  each of age classes 1 and 

4 .  All gameti c pairings are speci fi ed . 

4 
4F 1 ( t+ 1 )  = � � ( 1 , i ; 4 , i )  

i= 1 

� ( 1 , i ; 1 , i )  1 = 1 + F 1 ( t+ 1 ) , t + _ 

�( 1 , i ; 1 , j ) t+ 1  
= � ( 1 , i ; 1 , j ) t + � ( 1 , i ; 4 , j ) t + � ( 4 , i ; 1 , j ) t 

( 4  . 4 " )  1 � l. < ]. � 4 + � , l ;  , ] t ' 

2p ( 1 , i ; j , k ) t+ 1 = � ( 1 , i ; j - 1 , k )t + � ( 4 , i ; j - 1 , k ) t ' 

1 � i , k  � 4 ' 2 � j � 4 

� ( i , j ; k ,£ )t+ 1 = � ( i- 1 , j ; k - 1 ,t ) t ' 2 � i , k  � 4 ' 1 � j ,£ � 4 . 

Dioecious : Two Gametes Per Age Class 

There is one male age class and four female age c lasses , all  with 

four members . I n  any year , every male ( age class 1 )  g ives one male and 

one female gamete . : In female age class i ( 2 � i � 5 ) , female i - 1  gives 

a male gamet e  and female 6- i gives a female  gamete .  Gametes from males 

and females combin� at random . F 1 1 ( t )  and F 1 2 ( t )  s t i l l  refer to the 

inbreeding coeffi cients for newborn males and females respectively . 



4 
1 6 F 1 1 ( t+ 1 )  = L: 

i = 1  
4 

1 6F 1 2 ( ::+ 1 )  = L: 
i=1  

2:.p ( 1 ' i ; 1 ' i )  
t+ 1 = 

2:.p ( 2 , i ; 2 , i ) t+ 1  = 

5 
L: cp( 1 , i ; j , j - 1 )  

. 2 t ] = 
5 
L: q5 ( 1 ' i  ; j ' 6- j ) 

. 2 t ] = 

1 + F ( t+ 1 )  , 1 2 
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t.ql ( 1 , i ; 1 , j ) t+ 1  
1 3 4 

= - L: L: [cp ( 1 ;, k ; 1 ,£. \ + cp ( i<:+ 1 , k ;£.+ 1 ,£. )  J 6 k= 1  £. =k+ 1 t 

1 4 5 
+ 16 r. L: [ cp ( 1  .' k ; £. ' £. - 1 ) t + cp ( £. '.e - 1  ; 1 ' k ) t] 

k= 1 £ = 2  

t.ql ( 2 ' i ; 2 ' j ) t+ 1 
1 3 4 

= - L: L: [cp ( 1 ? k ; 1 ,.e )t + cp ( k+ 1 , 5-k ;£+ 1 , 5-.e ) t] 6 k= 1 £ =k+ 1 

6 � ( 1 , i ; 2 , j )t+ 1  = 

� ( 1 , i ; j ,k )t+ 1  = 

ap ( 2 '  i ; j , k ) t+ 1 = 

A 4 5 
+ 1-'-6 L: L: [cp 0 ,, k ; £ , b-£ ) t + cp (£ , 5-i. ; 1 , k \] ' 

k = l £ = 2  

4 5 
L: L: 

k= 1  £ = 2  
[cp ( 1 , k ; 1 ,£ - 1 ) + c:p ( 1 , k ;£ , 5-£ ) �  I t L 

+ cp( k+ 1 , k ; 1 ,! - 1 ) t + cp( k+ 1 , k ,.£. , 6-£ ) 1:] ' 

1 S i , j :S: 4  

4 
L: [cp ( 1 ,..e. ; j - 1 , k ) t + cp(.e+ 1 ,£ ; j - 1 , k )t] 

£ =1 

5 
L: 

£ = 2 

1 :s; i , k :s; 4 ' 

[cp ( 1 ,£ - 1 ; j - 1 , k )  + cp ( £ , 6-£. ; j - 1 ,k )  J 
> t t 

1 :s; i , k :s; 4 , 

cp ( i , j ; k ,  . .e )t+1 = cp( i- 1 , j ; k- 1 ,£ ) t , 3 s i ,k s 5 ' 1 :s; j ,..e :s; 4 • 
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Dioecious : Oldest and Youngest  Age Clas s es 

There is one male age class and four female age clas ses , all with 

four memb ers . I n  any year ; every male ( age class 1 )  gives one male 

and one female gamete .  I n  female age class 2 , female 1 and 2 give a 

male gamete and females 3 and 4 give a female gamete .  I n  female age 

clas s 5 ,  females 1 and 2 give a female ga ete and females 3 and 4 give 

a male gamete . Gamet es from males and females combin e  at random . 

4 
16F1 1 ( t+ 1 )  = E 

i= 1  
4 

1 6Fl 2( t+ 1 )  = I 
i = 1 

2 
I 

j = 1 

2 
E 

j =1 

[cp ( 1 , i ; 2 , j ) + cp ( 1 , i ; S , j t 2 ) ]  . t t 

[cp ( 1 , i ; 2 , j + 2 ) + cp( 1 , i ; 5 , j ) ]  ' t t 

3 4 
4:p ( 1 , i ; 1 , j ) t + 1  = _!_ L L cp( 1 , k ; 1 ,i ) 6 k= 1  ..e = k+ 1  't 

4:p( 2 , i ; 2 , j \+ 1  = 

1 + 6 [ cp ( 2 , 1 ; 2 , 2 ) t + cp( 2 , 1 ; 5 , 3 ) t + cp ( 2 , 1 ; 5 , 4 )t 

+ cp ( 2 , 2 ; 5 , 3 ) t + cp ( 2 , 2 ; 5 , 4 ) + cp ( 5 , 3 ; 5 , 4 )t] 

1 4 2 
+ 1 6  

I E [cp ( 1 , k ; 2 . 1 ) t + cp ( 1 , k ; 5 ,1 + 2 )t k= 1  1 = J.. 

+ cp ( 2 ,1 ; 1 , k ) + cp ( 5 ,1+ 2 ; 1. ,k )t] 

1 3 4 
I I cp( 1 , k ; 1 ,1 ) t 6 k �1 .£ ::: k+ 1  

1 + 6 [ cp ( 2 ·' 3 ; 2 ' 4 \ + cp ( 2 ' 3 ; 5 ' 1 \ + cp ( 2 ' 3 ' 5 ' 2 \ 

+ cp ( 2 , 4 ; 5 , 1 ) t + cp ( 2 , 4� 5 , 2 ) t + cp ( 5 , 1 ; 5 , 2 ) t] 

4 2 
+ -� E E [cp C 1 ,,

k ; 2 ,1+ 2 \  + cp ( 1 ,k ; 5 ,..e ) t 16 k= 1  1 = 1  . 
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6 � ( 1 , i ; 2 , j ) 1 = L L � ( 1 , k ; 1 ,� ) t+ _ k= 1 � -= 1  t 

2 2 
+ . L L 

k= 1 � = 1 
[� ( 2 , k ; 2 ,�+ 2 ) + � ( 2 , k ; 5 ,� ) . t t 

+ �( 5 , k+ 2 ; 5 ,� ) t + � ( 2 , k+ 2 ; 5 ,�+ 2 ) t] 

4 2 
+ L L [�( 1 , k ; 2 ,� )  + � ( 1 , k ; 5 , � + 2 ) 

k= 1 � = 1  . t t 
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+ � ( 1 ,k ; 2 ,� + 2 ) t + � ( 1 , k ; 5 ,� \] ' 1 ::;; i , j ::;; 4 

4 
8:.p ( 1  ' i ; j ' k  \+ 1 = 

8:p ( 2 ' i ; j . k ) t+ 1 = 

L � ( 1 ,� ; j - 1 , k )  
� = 1  t 

2 
+ L [� ( 2

_
,� ; j - 1 , k \ + � ( 5 ,�+ 2 ; j - 1 , k \] , 

�= i 

1 ::;; i , k  ::;;4 

4 
L � ( i ,� ; j - 1 , k ) t � = 1 

2 
+ L 

� = 1  
[� ( 2 ,� + 2 ; j - 1 , k )  + � ( 5 ,� ; j - 1 , k ) J ' ' t t 

1 ::;; i , k ::;; 4 , 

�( i , j ; k ,� ) t + 1  = � ( i- 1 , j ; k- 1 ,� ) ' 1 ::;; j ,� ::;; 4 ' 3 ::;; i , k ::;; 5 . 
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I n  a population o f  finite s i ze , individuals are related to each 

other by ancestry .  Compared to infinite random mat ing populat ions , 

this raises the chance of an individual carrying genes i dent i cal by 

des cent and thereby increases the frequency of homozygotes in the 

population . This process ,  known as the inbreed ing effect of a finite 

population , is conventionally and convenient ly des cribed in terms of 

the inbreeding coeffic ients . In breeding programmes , usually with a 

finite number of breeding individuals , the inbreeding effect can to 

s ome extent be manipulated by various s elect ion s cheme s . Thi s  thesis  

has dealt with  this problem and has sought to  develop a general method 

by whi ch the magnitude of the j oint effect of finite populat ion s i ze ,  

th e s elect ion and mat ing schemes in altering the gen etic  content of a 

population can be ass essed . 

Recently there has been a demand for the maintenance of control 

populations to provi de standard material for the evaluat ion of the 

effi ciencies of s e le ct ion experiments . The merit of a control 

populati on is therefore j udged by the abi lity of the s election 

s cheme to  minimiz e  gene frequency dri ft as well as inbreeding . 

It  is  known that s ch emes whi ch give high levels of inbreeding may 

not be applicable if  the control popul ation is  to be used for traits 

showing much inbreeding depres s ion . Tradit ionally , the comparison 

between the inbreeding effects of alternative des i gn s  for controls has 

been made in terms of inbreeding effective numbers . These numbers , 

defined as the reciprocal of the limit ing rat e  of increase of 

inbreeding , are useful for approximating asymptot i c  i nbreeding 

levels . Some populati ons do not maintain the same characterist i cs 

for a long time p eriod and the effective numbers t hen may not reflect 

the true inbreeding levels in early generations . As shown i n  some 

examp les , populations that avoid initial i nbreeding by mat ing the 

least related indivi duals may have a high final rat e of  i nb reedin g .  

I n  this regard , i t  i s  more appropriate to  compare populations 

on the basis  of their exact inbreeding levels . Thi s  i s  particularly 

important i n  practi:cal s i tuations . Most bre eding programmes are 

maintained for only a small number of generations and therefore only 



early inbreeding levels are of interest , and the se may not be 

accurate ly predi cted by the effective numbers . 
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Following MALECOT ( 194.8 ) and W E I R  and COCKERHAM ( 19 6 9a ,  1 9 6 9b ) ,  

the determinat ion o f  the one- and two- locus inbreeding coefficients 

makes us e of inbreeding measures , whi ch are probabi lity stat ements 

concerning the ident ity status of genes on gametes . For one- locus 

syst ems , the two genes of interest are necessarily carried on two 

di stinct gamet es and the informat ion on their identity relations 

is provided by the two digamet ic  measures , the inbreeding and the 

coancestry functions . Genes for two loci may be carried on two , 

three or four gamete s . The analysis  of two- locus sys t ems thus 

depends on digameti c ,  trigame t i c  and quadrigametic meas ures . 

With the re curring nature of  the regular mating syst ems , the 

determination of the exact inbreeding coeffi cients re lies on the 

establishment of a set of trans ition equations relat ing the necessary 

measures ( including the inbreeding coeffic ient ) in any two successive 

generat ions . The numb er of equat ions may be large for numerical 

iteration , but with the universal availab i lity of comput ers , this 

is no great disadvantage . 

Apart from their concern about inbreeding levels , breeders are 

also concerned about the amount of random gene frequen cy drift ari s ing 

from the s ampling of a fini t e  number of genes in each generation . I t  

is  known that a select ion s cheme that min imi zes one of  the s e  proces se s  

may not minimi ze the other . Many authors have been s eeking meas ures 

of this gene frequency dri ft , usually in terms of variance effect ive 

numb ers . COCKERHAM ( 1 969 ) s howed that , in any generat ion , the total 

variance in gene frequencies due to drift can be found from a knowledge 

of the inbreeding and coancestry coefficients . There is then no real 

advantage for the traditional use of variance effective numbers , whi ch 

are relat ed to the limiting rat e  of increas e in varian ce of gene 

frequency . For a populat ion maint ained with constant s i ze and random 

union of gametes , the asymp totic rates of change of inbreeding and 

dri ft are the s ame , and so are the inbreeding and variance effect ive 

numbers . S ome inbreeding values obtained here under these condit ions 

can therefore be used  to check on various approximate values obtained 

from the consideration of variance changes . 
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The inbreeding co effi cient s have been found to contain a great 

deal of information about the charact eri s t i cs of a populat ion . They 

ar� use d  in conj unction with other des cent measures as well as the 

initial linkage disequi librium and gene frequencies to provide 

e xpress ions for two- locus genotypic frequencies . With no ini tial 

linkage disequi librium only the c �e- and two- locus inbreeding 

coeffj ,� ients are s uffi c !  ent ( COCKERHAM and WE I R  197 3 ) . Hence the 

inbreeding coe ffi cients provi de lower bounds as well as exact measures 

of homozygos ity . Furthermore , in the abs ence of initi al linkage 

disequilibrium , the inbreeding coefficients provide express ions for 

the means and variances of quant itative traits ( WE I R  and COCKERHAM 

1 977 ) and hence they quantify the effe cts of linkage and inbreed ing 

on inbreeding depress ion and on the genetic variance among individuals . 

The one- locus inbreeding coeffi ci ents have been us ed in recent 

res earch to correlate changes ln isozyme frequencie s with quant itat ive 

traits . Allelic  frequencies for some marker genes may be affected by 

s ele ction on other genes . A measure of such an effect may be provided 

by the departure of the isozyme frequency data from those expected on 

the basis of random drift under the parti cular mating syst em.  Us ing 

the variance effe ctive number as a measure of drift , SCHAFFER et al 

( 19 7 7 )  were ab le to  cons truct stat isti cal t es ts to decide whether the 

obs erved isozyme frequency variation i s  consistent with that whi ch 

would h ave been predicted by the null hypothesis of drift acting alone , 

and to decide i f  there exists any linear trend in i sozyme frequency 

over generat ions due to  s e lection . Thi s  method was later emp loyed 

by STUBER et al ( 1 9 7 8 )  to analys e the data obtained from th eir s e lect ion 

experiments for increas ed grain y ield in mai ze . Making us e of the 

effective numbers for the selecti on s chemes , these authors suggest ed 

that the eight different loci under study were influenced by select ion . 

They then obtained correlations between the isozyme frequenci es of 

these loci with accumulated s election gain in grain yiel d .  The 

effective numbers used in  thes e studi es were based on inbreeding 

coefficient trans i ti on equations of  the type presented in  this thesis . 

One- locus theory is  appropri ate for the study of the progress of 

a gene when the gene is obs erved i n  i s olation and it exist� in random 

combination w ith other genes . I t  i s  very often desirable to s tudy 
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the progress  of two genes together a s  might  be t h e  s ituat ions when 

two genes control some characters of interes t .  

As the one-locus inbreeding coeffi ci ents have been found useful 

in the an alys i s  of isozyme frequency data at a single locus , it 

seems natural that the corresponding two- locus quant ities should be 

us eful in the study of two- locus data . 

However , the analy s i s  of two- locus data i s  often made complicated 

by the fact that two genes do not always act independently . It is of 

common interest to study the effect of the interaction between two 

loci on genotypi c  frequencies  as well as the . extent to which the 

interaction is the result of linkage or the constraints of finite 

population s i ze or the sys t em of mat ing . A classical measure of 

thi s interaction is provi ded by the l inkage disequilibrium .  I f  

alleles A and B at two different loci occur i n  the populat ion with 

frequencies pA and pB respect ive ly while the chromosomes carry ing 

them together have frequency pAB ' the linkage disequi librium 6AB i s  

defined as 

I t  h as been shown that linkage disequi librium values in late generat ions 

are determined entire ly by the ini tial disequilibrium and the parental 

des cent measure , written as F1 ( COCKERHAM and WEI R  1 97 3 ) . A poss ible 

extens ion of the work in this thesis is therefore to evaluate the 

parental des cent measures and h ence the link age di s equilbrium values 

for the parti cular populations studi e d .  

T o  characteri ze a n  effect o f  linkage on the identity of two pairs 

o f  linked genes , an identi ty disequi librium was used . Unlike the 

linkage dis equilibrium thi s  quant ity depends only on linkage and mating 

system and not on the frequencies of parti cular a llele s . Thi s  quantity 

has been discussed by WEI R  and COCKERH AM ( 1 969a ) . I t  increases with 

the amount of linkage ; i t s  value is always small and is zero in a 

non-inbred initial populat ion , increases to  a maximum , then decreases 

to  zero when complete double identity is obtained . 
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The effect o f  linkage is s een t o  increase the frequency of 

doub le homozygotes over that expected for genes wh ich combine 

f�eely . However , linkage effects do not increas e linearly with the 

amount of linkage . Numeri cal  results show that i t  is  on ly for high 

values of A that linkage produce s  significant effects , and even then 

the effects are not as great as those o f  populat ion s i ze .  

The thesis is primar i ly concerned with the analysis  of genet i c  

properti es i n  control populations . Attention has therefore been 

restri ct ed to those s elect ion s chemes which att empt to maintain 

genetic  cons tancy in populat ions . 

Two select ion s chemes , the recurrent s elect ion and overlapping 

generations s el ect ion s chemes , wh i ch have found great use in p lant 

and animal breeding , were chosen for the purpose of i llustrating 

the technique o f  obtaining exact inbreeding levels for any regular 

mat ing sys tem . For thes e two s chemes , no correct methods have 

previously b een given for the calculation of the exact one- and 

two- locus inbreeding coeffi cients or the inbreeding effe ct ive numbers . 

For the determination of the i nbreeding coefficients in syst ems 

o f  matings among indivi duals , the general procedure i s  first to expres s 

the inbreeding coeffi ci ent of a random member in generat ion t+1 as  the 

coancestry of its parents . This coancestry measure in generation t+1 

i s  then expanded back into measures of the previous generat ion . The 

types of additional measures introduced on the right hand s ide of this 

equat ion are noted , and trans ition equations establi shed re lat ing the ir 

values in generation t +1 to measures in generation t .  Thi s  pro cess is 

continued unt il no new types of measures are introduced 1n the expansions 

and was i llustrated for the case of recurrent s elect ion 1n Chapter 3 .  
Trans ition equat ions were established for measures concerning gametes 

drawn from indi vi duals . These  measures are t ermed the individual 

measures . 

For systems of matings among groups of individuals , trans ition 

equations are established for gametic set measures as gametes are 

drawn from groups of individuals . The quantity to b e  determined i s  
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the group inbreeding coefficient wh i ch i s  the average of  the inbreeding 

coeffi cients for all memb ers in the group of int erest .  To identify 

the individuals from whi ch the gametes are drawn , average individual 

measure s need to be used in add ition to the gametic  set measures . The 

usual procedure is to expres s the gamet ic  set measures as linear 

comb inations of average indivi dual measures , and then to express 

thes e  average individual measures back to gamet i c  s et measures of the 

previous generat ion . Such a procedure was demonstrated for the 

overlapping generations s election scheme in Chapter 4 .  

The thes is has gi ven a general and exact treatment of the 

de termination of inbreeding coefficie nts at one and two loci in 

populations with regular syst ems of mat ing . I ts generalization 1n 

n- locus sys tems requires the use of x-gametic  me asures , x= 2 , 3 ,  . . . , 2n ,  

subj ect to x � 2N for a population o f  s i ze N .  Once again , transi tion 

equat ions could be estab li shed and exact inbre eding coeffi ci ents 

could be found by numerical iterat ion of thes e equations . It i s  

doUbtful if the cons iderat le · �ffort involved i n  such ext ensions 

i s  worthwh i le however . This thesis  has demonstrated the great 

complexity of even two- locus analys is . Real progres s towards a 

mult i-locus theory of inbreeding i s  likely to depend on an adequate 

set of approximate meas ures . A start in this direct ion has been made 

by CHEVALET et al ( 19 7 7 ) .  The exact two- locus results presented 1n 

this thesis wi ll allow some evaluation of the adequacy of any approximate 

measures . 
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