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Abstract

In 1914, Ramanujan discovered 17 series for 1/π, 16 are rational and one is irrational.

They are classified into four groups depending on a variable � called the level, where

� = 1, 2, 3 and 4. Since then, a total of 36 rational series have been found for these

levels. In addition, 57 series have been found for other levels. Moreover, 14 irrational

series for 1/π were found. This thesis will classify the series that involve quadratic

irrationals for the levels � ∈ {1, 2, 3, 4}. A total of 90 series are given, 76 of which are

believed to be new. These series were discovered by numerical experimentations using

the mathematical software tool “Maple” and they will be listed in tables at the end of

this thesis.
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Chapter 1

Introduction

In 1914, Ramanujan [15] gave 17 extraordinary series for 1/π. Two of his best known

examples are
1

π
=

2
√
2

9801

∞∑
n=0

(4n)!

(n!)4
1

3964n
(1103 + 26390n), (1.1)

16

π
=

∞∑
n=0

(2n)!3

n!6
1

212n
(42n+ 5). (1.2)

These series have excellent convergence properties. They are relatively scarce, and

the numbers and the coefficients are striking. They are widely famous, nearly every

mathematician will recognize (1.1). The proofs of these series require sophisticated

number theory, such as modular equations and class invariants. The series (1.1) con-

verges very fast: each term contributes 8 digits of π.

The ratio test for the series (1.1) shows: if

tn =
(4n)!

(n!)4
(1103 + 26390n)

3964n
,

Then :

tn+1

tn
=

(4n+ 4)!

((n+ 1)!)4
(1103 + 26390(n+ 1))

3964n+4
· (n!)4

(4n)!

3964n

(1103 + 26390n)
,

=
(4n+ 4)(4n+ 3)(4n+ 2)(4n+ 1)

(n+ 1)4
1

3964
(1103 + 26390(n+ 1))

(1103 + 26390n)
.

Taking the limit:

lim
n→∞

tn+1

tn
= lim

n→∞
44

3964
,

=
1

994
,

� 10−8.
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In 1985, Gosper programmed (1.1) on a computer and got a world record of more than

17 million digits of π [14].

Baruah, Berndt and Chan (2009) wrote in the survey [1]: “The series (1.2) appeared

in the “Walt Disney” film High School Musical, starring Vanessa Anne Hudgens, who

plays an exceptionally bright high school student named Gabriella Montez. Gabriella

points out to her teacher that she had incorrectly written the left-hand side of (1.2) as

8/π instead of 16/π on the blackboard, After first claiming that Gabriella is wrong, her

teacher checks (possibly Ramanujan’s Collected Papers? ) and admits that Gabriella is

correct. Formula (1.2) was correctly recorded on the blackboard” (p. 568).

In the paper [6], the authors derived a general statement that encapsulates all known

rational analogues of Ramanujan’s series for 1/π.

In this thesis, I will classify new series for 1/π that involve quadratic irrationals. An

example of one of our series for 1/π from level 3 is given by:

1

π
= 2

√
1− 108x

∞∑
k=0

(3k)!(2k)!

(k!)5
(k + λ)xk,

with x = −1
6
+ 7

72

√
3 and λ = 5

22
− 1

22

√
3.

I include a list of all the known quadratic irrational series for 1/π. Of the 90 series

listed in Tables 3.1–3.10, 14 were known previously and 76 are believed to be new.

1.1 Literature Review

In 1914, Ramanujan published a paper entitled“Modular equations and approximations

to π” in England [15]. In the paper, he gave 17 series for 1/π. The first three are (1.2)

and :

4

π
=

∞∑
n=0

(2n)!3

n!6
1

28n
(6n+ 1), (1.3)

32

π
=

∞∑
n=0

(2n)!3

n!6

(
3−√

5

16

)4n (
(42

√
5 + 30)n+ (5

√
5− 1)

)
. (1.4)

He classified the 17 series into four types based on four functions:

q1 = exp

(
−2π

2F1(
1
6
, 5
6
; 1; 1− x)

2F1(
1
6
, 5
6
; 1; x)

)
, q2 = exp

(
− 2π√

2

2F1(
1
4
, 3
4
; 1; 1− x)

2F1(
1
4
, 3
4
; 1; x)

)

q3 = exp

(
− 2π√

3

2F1(
1
3
, 2
3
; 1; 1− x)

2F1(
1
3
, 2
3
; 1; x)

)
, q4 = exp

(
−π

2F1(
1
2
, 1
2
; 1; 1− x)

2F1(
1
2
, 1
2
; 1; x)

)
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where 2F1 is the hypergeometric function defined by:

2F1(a, b; c; x) =
∞∑
n=0

(a)n(b)n
(c)nn!

xn.

All of Ramanujan’s examples above have the property a+ b = c = 1. The function q4

is the classical theory of Jacobi. While, q1, q2 and q3 are new theories of Ramanujan.

Of the 17 series, two are based on q1, ten are based on q2, two based on q3 and the

remaining three series are given by (1.2)–(1.4) above, are based on q4.

We define a series as a “rational” series for 1/π, if C/π can be expressed as a series of

rational numbers for some algebraic number C.

The main contributions to Ramanujan series for 1/π

Many books and survey papers have been written to discuss Ramanujan’s prominent

work. One example is the valuable survey done by Nayandeep D. Baruah, Bruce C.

Berndt and Heng Huat Chan [1].

Here is a summary of some of the main contributions to Ramanujan’s series for 1/π,

and the information in this section comes mainly from [6] and [1].

Fourteen years after Ramanujan’s work, Sarvadaman Chowla [8] proved the series (1.3)

of Ramanujan’s series for 1/π. In 1985, R. William Gosper programmed Ramanujan’s

series (1.1) which is based on q2 on a computer. He calculated 17,526,100 digits of π

which was at that time a world record. The problem with Gosper’s calculation was

the series had not been proved yet [1]. In 1987, David and Gregory Chudnovsky [9]

developed a theory and derived new series representations for 1/π and used one of

them, the following series which is based on q1:

1

π
= 12

∞∑
n=0

(−1)n
(6n)!

(n!)3(3n)!

1

(640320)3n+3/2
(13591409 + 545140134n),

to calculate 2,260,331,336 digits of π which was also a world record in 1989. The above

series yields 14 digits of π per term and is the fastest convergent rational series for 1/π.

In 1987, Jonathan and Peter Borwein [3] proved all 17 of Ramanujan’s series for 1/π

successfully, they were the first to give complete proofs. In [4] they listed all the series

for 1/π which are based on the function q1 that were discovered by the Chudnovskys.

They also gave one that is new. In 2001, Chan, Wen-Chin Liaw and Victor Tan [7]

found new identities helped them to prove the following series:
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1

π
=

1

1500
√
3

∞∑
n=0

(3n)!(2n)!

(n!)5
(−1)n

3003n
(14151n+ 827).

This series had not been discovered by Ramanujan and it corresponds to q3. In 2001,

Berndt and Chan [2] determined a series for 1/π that corresponds to q1 that is not

rational which yields about 73 or 74 digits per term that appears to be one of the fastest

known convergent series for 1/π. In 2012, Chan and Shaun Cooper [6] introduced

classification by level and stated a general theorem that is satisfied by 93 rational

series for 1/π, 40 of which were discovered by them. Also Cooper in [11], derived three

new series for 1/π. Some mathematicians, namely Takeshi Sato and Matthew Rogers

found series for 1/π based on different functions, these series can be found in [6], [16]

and [17].

1.2 Series for 1/π that involve quadratic irrationals

A series is a “quadratic-irrational” series for 1/π, if C/π can be expressed as a series

of quadratic irrational numbers for some algebraic number C. The first non-rational

series for 1/π is (1.4), it was given by Ramanujan in [15]. Also, the Borweins gave 14

non-rational series that involve quadratic irrationals which correspond to q1 and q2 [4].

These series are listed in Tables 3.1–3.5 denoted by “*”.
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Chapter 2

Background theory

2.1 Preliminary Results

In this section we present the definitions that will be used to find the series for 1/π.

Let q be a complex number that satisfies |q| < 1.

Ramanujan’s Eisenstein series and Dedekind’s eta function

Ramanujan’s Eisenstein series are defined by:

P = P (q) = 1− 24
∞∑
j=1

jqj

1− qj
, (2.1)

Q = Q(q) = 1 + 240
∞∑
j=1

j3qj

1− qj
, (2.2)

R = R(q) = 1− 504
∞∑
j=1

j5qj

1− qj
. (2.3)

Let

ηn = ηn(q) = qn/24
∞∏
j=1

(1− qnj). (2.4)

Another formula for the eta function given by Euler is [3]:

ηn = ηn(q) =
∞∑

j=−∞
(−1)j q(6j−1)2/24. (2.5)

This function, when n = 1, is Dedekind’s eta-function. The eta functions that will be

encountered in this thesis are:(
η2
η1

)24

,

(
η3
η1

)12

and

(
η4
η1

)8

.
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All these functions have leading term q, so there will be no ambiguity in the branch

of qn/24 in (2.4).

2.2 The Level

The function x defined in Theorem 1 in the next section satisfies an involution of the

form:

x
(
e−2π

√
t/�
)
= x

(
e−2π/

√
t�
)
, t > 0.

In this thesis, the positive integer � will be called the level. As stated before, Ramanu-

jan’s series are based on the four functions q�, � ∈ {1, 2, 3, 4}. For reasons to use the

level see [10].

2.3 The Main Result

In this section, we introduce the next result for each level which gives 90 quadratic-

irrational series for 1/π of 4 different types given by (2.7).

The results in this section are from [6].

Theorem 2.3.1 Let � ∈ {1, 2, 3, 4}. Let ω = ω(q) and (a, b) ∈ Z
2 be as in Table 2.1.

Let s(k) be the sequence defined by the recurrence relation:

(k + 1)2s(k + 1) = (ak2 + ak + b)s(k)

and initial conditions

s(−1) = 0, s(0) = 1.

Let

x = x(q) = ω(1− aω). (2.6)

Let N be a positive integer called the degree. Either: let ρ and q take the values:

ρ = 2π
√
N/� and q = exp (−ρ);

Or

ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π
√
N/4� if � ≡ 1 (mod 2),

2π
√

N/2� if � ≡ 2 (mod 4), and q = − exp(−ρ).

2π
√
N/� if � ≡ 0 (mod 4)

9



Then the identity:
√
1− 4ax

∞∑
k=0

(
2k

k

)
s(k)(k + λ)xk =

1

ρ
(2.7)

holds, provided the series converges.

In Tables 3.1–3.10 we give 90 sets of values of �,N, x and λ. All these values form

series for 1/π that involve quadratic irrationals.

The parameter λ is given by the following result of Chan, Chan and Liu [5]. First we

need the following definition [10]:

Definition 2.3.2 For 1 ≤ � ≤ 4, define z� = z�(q) by

z� = z�(q) =

⎧⎨
⎩

(Q(q))1/4 if � = 1,(
�P (q�)−P (q)

�−1

)1/2

if � = 2, 3 or 4.

Theorem 2.3.3 Let Z, x, u and h(k) be defined by:

Z = Z(q) = z2� ,

x = x(q) = ω(1− aω),

u = u(q) =
√
1− 4ax

and

h(k) =

(
2k

k

)
s(k).

Suppose t > 0. Suppose x = x(q), Z = Z(q) and u = u(q) satisfy the properties

tZ
(
exp−2π

√
t�
)
= Z

(
exp−2π

√
t/�

)
,

Z(q) =
∞∑
k=0

= h(k)xk(q),

and

q
d

dq
log x(q) = u(q)Z(q).

For any integer N ≥ 2, let

M(q) =
Z(q)

Z(qN)
.

Let λ, X and U be defined by

λ =
x

2N

dM

dx

∣∣∣∣
q=e−2π/

√
N�

,
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X = x(e−2π
√

N/�),

U = u(e−2π
√

N/�).

Then √
�

N

1

2π
= U

∞∑
k=0

h(k)(k + λ)Xk.

The identity (2.7) can be used to prove Ramanujan’s series for 1/π, provided that x

is defined by (2.6) can be evaluated for specific values of q for various N . The Table 2.1

contains the definitions of the modular forms in terms of the results 2.1–2.4, for each

level as well as the recurrence relations and their solutions in terms of the binomial

coefficients.
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� (a, b) ω(q) s(k) z� = z�(q) z� = z�(x)

1 (432,60) 1
864

(
1− R(q)

Q(q)3/2

) (
6k
3k

)(
3k
k

)
(Q(q))1/4 2F1

(
1
6
, 5
6
; 1; x

)
2 (64,12)

η242
η241 +64η242

(
4k
2k

)(
2k
k

)
(2P (q2)− P (q))1/2 2F1

(
1
4
, 3
4
; 1; x

)
3 (27,6)

η123
η121 +27η123

(
3k
k

)(
2k
k

) (
3P (q3)−P (q)

2

)1/2

2F1

(
1
3
, 2
3
; 1; x

)
4 (16,4)

η84
η81+16η84

(
2k
k

)2 (
4P (q4)−P (q)

3

)1/2

2F1

(
1
2
, 1
2
; 1; x

)

Table 2.1: for the level

Here is a summary for the results and definitions for each level:

2.3.1 Level 1

Let z1 be defined as in Table 2.1;

z1 = z1(q) = (Q(q))1/4,

then the branch of the root is determined by requiring z1 = 1 when q = 0.

Define the modular function ω to be:

ω = ω(q) =
1

864

(
1− R(q)

Q(q)3/2

)
.

By substituting the values of a = 432 and ω into (2.6) we define x for level 1 to be:

x = x(q) = ω(1− 432ω) =
1

1728

(
Q(q)3 −R(q)2

Q(q)3

)
.

Theorem 4.8 in [10] gives:

z1 = z1(x) = 2F1

(
1

6
,
5

6
; 1; x

)
.

The series (2.7) for � = 1 becomes:

√
1− 1728x

∞∑
k=0

(6k)!

(k!)3(3k)!
(k + λ)xk =

√
1/N

2π
, (2.8)

when q = exp (−2π
√
N). And when q = − exp (−π

√
N) it becomes:

√
1− 1728x

∞∑
k=0

(6k)!

(k!)3(3k)!
(k + λ)xk =

√
1/N

π
. (2.9)

Both series (2.8) and (2.9) converge for |x| < 1
1728

. The series (2.8) holds for 7 values

of x and λ given in Table 3.1, while there are 4 series for 1/π satisfied by the series

(2.9) given in Table 3.2.
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2.3.2 Level 2

Let z2 be defined as in Table 2.1;

z2 = z2(q) = (2P (q2)− P (q))1/2,

then the branch of the root is determined by requiring z2 = 1 when q = 0.

Define the modular function ω to be:

ω = ω(q) =
η242

η241 + 64η242
.

By substituting the values of a = 64 and ω into (2.6) we define x for level 2 to be:

x = x(q) = ω(1− 64ω) =
η241 η242

(η241 + 64η242 )2
.

Theorem 4.8 in [10] gives:

z2 = z2(x) = 2F1

(
1

4
,
3

4
; 1; x

)
.

The series (2.7) for � = 2 becomes:

√
1− 256x

∞∑
k=0

(4k)!

(k!)4
(k + λ)xk =

√
2/N

2π
, (2.10)

when q = exp (−2π
√
N/2). And when q = − exp (−π

√
N), it becomes:

√
1− 256x

∞∑
k=0

(4k)!

(k!)4
(k + λ)xk =

√
1/N

π
. (2.11)

Both series (2.10) and (2.11) converge for |x| < 1
256

. The series (2.10) holds for 9 values

of x and λ given in Table 3.3 and Table 3.4, while there are 7 series for 1/π satisfied

by (2.11) given in Table 3.5.

2.3.3 Level 3

Let z3 be defined as in Table 2.1;

z3 = z3(q) =

(
3P (q3)− P (q)

2

)1/2

,

then the branch of the root is determined by requiring z3 = 1 when q = 0.

Define the modular function ω to be:

ω = ω(q) =
η123

η121 + 27η123
.

13



By substituting the values of a = 27 and ω into (2.6) we define x for level 3 to be:

x = x(q) = ω(1− 27ω) =
η121 η123

(η121 + 27η123 )2
.

Theorem 4.8 in [10] gives:

z3 = z3(x) = 2F1

(
1

3
,
2

3
; 1; x

)
.

The series (2.7) for � = 3 becomes:

√
1− 108x

∞∑
k=0

(3k)!(2k)!

(k!)5
(k + λ)xk =

√
3/N

2π
, (2.12)

when q = exp (−2π
√
N/3). And when q = − exp (−π

√
N/3), it becomes:

√
1− 108x

∞∑
k=0

(3k)!(2k)!

(k!)5
(k + λ)xk =

√
3/N

π
. (2.13)

Both series (2.12) and (2.13) converge for |x| < 1
108

. The series (2.12) holds for 12

values of x and λ given in Table 3.6, while there are 20 series for 1/π satisfied by (2.13)

given in Tables 3.7 and 3.8.

2.3.4 Level 4

Let z4 be defined as in Table 2.1;

z4 = z4(q) =

(
4P (q4)− P (q)

3

)1/2

,

then the branch of the root is determined by requiring z4 = 1 when q = 0. Define the

modular function ω to be:

ω = ω(q) =
η84

η81 + 16η84
.

By substituting the values of a = 16 and ω into (2.6) we define x for level 4 to be:

x = x(q) = ω(1− 16ω) =
η81η

8
4

(η81 + 16η84)
2
. (2.14)

Theorem 4.8 in [10] gives:

z4 = z4(x) = 2F1

(
1

2
,
1

2
; 1; x

)
.

The series (2.7) for � = 4 becomes:

√
1− 64x

∞∑
k=0

(2k)!3

(k!)6
(k + λ)xk =

√
1/N

π
, (2.15)

14



when q = exp (−π
√
N). And when q = − exp (−π

√
N), it becomes:

√
1− 64x

∞∑
k=0

(2k)!3

(k!)6
(k + λ)xk =

√
1/N

π
. (2.16)

Both series (2.15) and (2.16) converge for |x| < 1
64
. The series (2.15) holds for 8 values

of x and λ given in Table 3.9, while there are 9 series for 1/π satisfied by (2.16) given

in Table 3.10.Series for 1/π of other levels are discussed in the conclusion.
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Chapter 3

Methodology: Maple

In our search for series for 1/π, we performed numerical experiments using Maple to

compute the values of x and λ. For both cases q < 0 and q > 0, and for � = 1, 2, 3, 4,

we examined every degree up to N = 1000. Let x be defined by (2.6). As N is a

positive integer, it is known that x is an algebraic number [6]. Also, using the identity

(2.7), and by Theorem 2.3.1 λ is an algebraic number.

Example 3.0.4

If � = 4, q = e−π
√
N , and N = 5,

then x =
9

64
− 1

16

√
5, (3.1)

and λ =
1

4
− 1

20

√
5. (3.2)

To determine x and λ in Maple, we use the command identify to give the corre-

sponding algebraic numbers. Simply, if the input is a floating-point constant, then

the identify command searches for an exact expression for the number. For example, if

x = 1.732050808, using identify command determines that this is the constant x =
√
3.

> x := 1.732050808;

> identify(x);

(1/2)

3

For the identify command to succeed, enough digits must be provided to approximate

the number.

For finding x in Example 3.0.4: we define the eta function by (2.5) and x for level 4 is

16



given by (2.14). Then we convert the x as series of q into polynomial and substitute

q = −π
√
5 into x. For this example, 46 digits were needed to determine x, at less than

46 the identify command does not give the quadratic irrational number (3.1).

In Maple, we write the code:

> e := proc (n) local i;

sum((-1)^i*q^((1/24)*(6*i-1)^2*n), i = -20 .. 20) end:

> x := convert(series

(e(1)^8*e(4)^8/(e(1)^8+16*e(4)^8)^2, q, 200), polynom);

> Digits := 46;

> evalf(subs(q = exp(-Pi*sqrt(5)), x));

0.0008707514062631439744266457042952352849613525244

> identify(%);

9 1 (1/2)

-- - -- 5

64 16

Although there is a theoretical formula for λ, it’s too complicated—indeed, impractical—

to use in practice. Therefore, it is computed last, by summing the series. From (2.7),

we can write λ as

λ =

( √
�/N

2π
√
1−4ax

)
− s1

s2
,

where

s1 =
∞∑
k=0

(
2k

k

)
s(k) k xk,

and

s2 =
∞∑
k=0

(
2k

k

)
s(k) xk.

For finding λ in Example 3.0.4, we only need 15 digits of x to determine λ. Using less

than 15 digits, does not identify the quadratic irrational expression for λ in (3.2). The

following code is used in Maple to compute λ:

17



> Digits := 15;

> l := 4;

> n := 5;

> x := 0.000870751406263149;

> s1 := 0;

> s2 := 0;

> k := 0;

> t := 1;

> while abs(t) > 10^(-15) do

s1 := evalf(s1+t*k):

s2 := evalf(s2+t):

t := t*x*(2*k+1)^3*2^3/(k+1)^3:

k := k+1:

do:

> k;

11

> evalf((sqrt(l/n)/(2*Pi*sqrt(1-64*x))-s1)/s2);

0.138196601125012

> identify(%);

1 1 (1/2)

- - -- 5

4 20

Numbers of digits and the terms in the series are modified depending on the speed

of the convergence of the series. Some values of x and λ are easily computed using

identify with a small number of digits, for instance, Example 3.0.4; we need 46 digits

to identify x and 15 digits to identify λ. However some series need bigger numbers of

digits to be identified. These series have much slower convergence.

For example: The series of 1/π of level 4 and q = −e−π
√
N that corresponds to N = 7

needed only 30 digits to identify x and λ. While the series of level 3 and q = −e−2π
√

N/3

that corresponds to N = 13 needed 200 digits to identify x and λ.

In some cases the command identify does not work for finding the algebraic number

of λ, and the command PSLQ can be used. Simply, when given a list (or a Vector) v

18



of n real numbers, the PSLQ(v) command outputs a list (or a vector) u of n integers

such that
∑n

i=1 uivi is minimized. Thus the PSLQ function finds an integer relation

between a vector of linearly dependent real numbers if the input has enough precision.

To find λ we take the numerical value of λ and include it in a vector with 1, and

the same square root in x. This PSLQ command produces a minimal polynomial for

λ that can be solved to give a quadratic irrational value of λ.

Example 3.0.5 The series of 1/π of level 3 and q = e−2π
√

N/3 that corresponds to

N = 3 was found by using PSLQ.

We used this code in Maple:

> Digits := 20:

> lambda := .14854314511050557756:

> with(IntegerRelations);

[LLL, LinearDependency, PSLQ]

> v := [lambda, 1, sqrt(3)]:

> u := PSLQ(v);

[22, -5, 1]

The PSLQ produces the vector u, and
∑

ui vi ∀ i = 1, 2, 3 is minimized. If λ is a

relation linear combination of 1 and
√
3, then since PSLQ produces the minimum, we

have:

22λ− 5 +
√
3 = 0, solving for λ gives λ = 5

22
− 1

22

√
3.

Another way to determine the values of x and λ, is to use the modular equations of

degree N that is satisfied by x. This method is illustrated in [6]. However, this method

was only practical for small degrees of N .

Example 3.0.6 The values of x and λ for the series of level 2 and degree N = 3 is

found by using the modular equations

Consider the level � = 2 and degree N = 3. Then x = x(q) and v = x(q3) satisfy the

modular equation:

x4 + v4 + 49152(x4v + xv4) + 905969664(x4v2 + x2v4) + 7421703487488

(x4v3 + x3v4) + 22799473113563136x4v4 − 19332(x3v + xv3) + 526860288

(x3v2 + x2v3)− 918519021568x3v3 + 312(x2v + xv2) + 362266x2v2 − xv = 0.
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For the value q = e−2π
√

3/2 , � = 2 and N = 3 we have:

v = x(q3) = x
(
e−2π

√
3/2

)
= x

(
e−2π/

√
6
)
= x,

and the modular equation simplifies and factorizes to:

x2(144x+ 1)(2304x− 1)(1024x+ 1)2(−1 + 256x)2 = 0. (3.3)

We deduce that:

x ∈ {0, −1

44
,

1

2304
,
−1

1024
,

1

256
}.

By using numerical approximation to x to determine which root of (3.3) to select, we

have:

x
(
e−2π

√
3/2

)
= x

(
e−2π/

√
6
)
=

1

2304
.

Using Theorem 2.3.2 we have:

M(q) =
Z(q)

Z(q3)
=

u(q3)

u(q)

q d
dq
log x(q)

q d
dq
log x(q3)

,

=3

√
1− 256v√
1− 256x

v

x

dx

dv
.

The derivative dx/dv can be calculated by differentiating the modular equation im-

plicitly and therefore M(q) becomes an algebraic function of x and v. Differentiating

M(q) with respect to x and substituting q gives:

dM

dx

∣∣∣∣
q=(−2π/sqrt6)

= 1728.

Using the formula for λ from Theorem 2.3.2 gives:

λ =
1/2304

6
× 1728 =

1

8
.
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3.1 Results

In this section we first present tables of all the values of x and λ for series of 1/π. A

total of 90 series are included, 76 of which are believed to be new. In the discussion

section, we analyze these results and observe the important points and patterns.

Tables

This section contains tables of values of the parameters x and λ. Tables 3.1–3.10

with values of x and λ that give series for 1/π are organized according to the level

� ∈ {1, 2, 3, 4} and according to q > 0 or q < 0. Entries within each table are organized

according to the degree N . An asterisk “*” next to the degree indicates that the series

was already given in [4]; there are 14 of these series and they belong to the levels

� ∈ {1, 2}. The other 76 series are believed to be new.
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q N x λ

6∗ 1399
8489664

− 247
2122416

√
2 25

276
− 5

276

√
2

8 209
97336

− 18473
12167000

√
2 78

713
− 375

9982

√
2

10∗ 4927
210720960

− 51
4077880

√
5 83

1116
− 1

93

√
5

12 389
1706850

− 20213
161716500

√
3 2938

35673
− 250

11891

√
3

13 − 3193
525614400

+ 41
24334000

√
13 103

1548
− 125

20124

√
13

e−2π
√
N 15 10968319

90769370526
− 122629507

2269234263150

√
5 1052

13629
− 20

1239

√
5

16 − 190338695
34106789907

− 19939227
5052857764

√
2 10

99
− 10

231

√
2

22∗ 2914279
14627903313600

− 95403
677217746000

√
2 1013

19908
− 125

10428

√
2

28 8145698488
79267303539275

− 570145303
14679130284125

√
7 90352

1274007
− 59000

3822021

√
7

37 − 9180598102
36565937573779944000

144743
3687948

− 2054375
955178532

√
37

+ 27940649
67714699210703600

√
37

58∗ 1399837865393267
68847549597949709007000000

6117973
195168708

− 4314395
2223529209

√
29

− 1203441508269
318738655546063467625000

√
29

Table 3.1: Irrational Series of level l = 1 for q = e−2π
√
N
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q N x λ

35 9
20480

− 161
819200

√
5 873

8246
− 96

4123

√
5

75 − 36983
588791808

+ 18377
654213120

√
5 6965

92158
− 800

46079

√
5

91 2927165
2173353984

− 60137
160989184

√
13 15

154
− 160

9009

√
13

-e−π
√
N 99 9487199

28334096384
− 18166603

311675060224

√
33 2085

22078
− 120

11039

√
33

235∗ − 2796157855
81160240398336

+ 578925837
37574185369600

√
5 1425191

22391082
− 214720

11195541

√
5

267∗ − 1423834769537
76885078511663972352

2012743871
51659265306

− 33230537000
16091861142819

√
89

+ 18865772964857
9610634813957996544000

√
89

427∗ − 26514389807073851
526643727429777408000

1594143977
25145035062

− 14138201440
2300770708173

√
61

+ 251468129201653
39010646476279808000

√
61

Table 3.2: Irrational Series of level l = 1 for q = −e−π
√
N
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q N x λ

4 − 457
19208

+ 325
19208

√
2 6

35
− 3

70

√
2

6 373
263538

− 425
527076

√
3 14

115
− 2

115

√
3

7 249
12544

− 11
784

√
2 9

56
− 3

56

√
2

8 − 221
194481

+ 209
259308

√
2 626

4991
− 162

4991

√
2

e−2π
√

N/2 14 102376
855036681

− 38675
855036081

√
7 4528

50995
− 552

50995

√
7

15 6449
5531904

+ 95
115248

√
2 29

280
− 9

280

√
2

17 2177
20736

− 11
432

√
17 31

208
− 81

3536

√
17

21∗ 150889
300259584

− 1925
9383112

√
6 13

140
− 1

56

√
6

Table 3.3: Irrational Series of level l = 2 for q = e−2π
√

N/2
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q N x λ

35∗ 18287
11757312

− 1265
2571912

√
10 1543

16120
− 147

8060

√
10

39∗ 243407089
5108829513984

− 3585725
106433948208

√
2 5983

83720
− 2097

83720

√
2

41 54600721
5802782976

− 88825
60445656

√
41 79

592
− 1863

121360

√
41

e−2π
√

N/2 51 − 13062107489
1026527766038784

− 33000275
10692997562904

√
17 10735

171080
− 2763

363545

√
17

65∗ 86801836241
242945341583616

+ 112150445
2530680641496

√
65 9887

123830
− 5184

804895

√
65

95∗ 427925331521
5029625975060736

+ 6303935495
104783874480432

√
2 50572309

741263320
+ 23655969

741263320

√
2

Table 3.4: Irrational Series of level l = 2 for q = e−2π
√

N/2
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q N x λ

17 103
32768

− 25
32768

√
17 3

20
− 3

170

√
17

21 −97
9216

+ 7
1152

√
3 53

364
− 4

91

√
3

33 − 1867
1179648

+ 325
1179648

√
33 73

620
− 37

3410

√
33

49 85
36864

− 253
290304

√
7 773

5828
− 48

1457

√
7

−e−π
√
N 57 − 542267

2832334848
+ 71825

2832334848

√
57 157

1820
− 101

17290

√
57

73 152107
4718592

− 160225
42467328

√
73 4511

32660
− 14073

1192090

√
73

85 − 22861961
10809345024

+ 231035
450389376

√
17 1531

13780
− 7614

409955

√
17

177∗ − 38480821035067
86466866929622581248

3562829
74444860

− 3950637
2196123370

√
177

+ 964131876175
28822288976540860416

√
177

253∗ - 12633605109401
680849241375744

+ 158715635975
28368718390656

√
11 7152017

57366140
− 995652

31551377

√
11

Table 3.5: Irrational Series of level l = 2 for q = −e−π
√
N
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q N x λ

3 −1
6
+ 7

72

√
3 5

22
− 1

22

√
3

6 463
125000

− 91
62500

√
6 33

230
− 3

230

√
6

7 − 17
2916

+ 13
5832

√
7 1

6
− 1

42

√
7

8 −265
108

+ 17
12

√
3 29

138
− 3

46

√
3

e−2π
√

N/3 10 223
157464

− 35
78732

√
10 11

90
− 1

90

√
10

11 − 97
71879

+ 25
31944

√
3 43

330
− 3

110

√
3

13 17743
39366

− 4921
39366

√
13 10

51
− 22

663

√
13

19 − 4261
22781250

+ 3913
91125000

√
19 49

510
− 73

9690

√
19

20 205694
47832147

− 13195
5314683

√
3 128

1065
− 12

355

√
3

31 − 684197
33215062500

+ 245791
66430125000

√
31 1007

13530
− 1877

419430

√
31

34 3555313
278957081304

− 152425
69739270326

√
34 2033

28710
− 197

48807

√
34

59 − 730612447
1641786993734274

+ 187475575
729683108326344

√
3 5472653

101652870
− 351123

33884290

√
3

Table 3.6: Irrational Series of level l = 3 for q = e−2π
√

N/3
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q N x λ

2 −265
108

− 17
12

√
3 the series diverges

3 −1
6
− 7

72

√
3 the series diverges

4 − 18551
421875

− 561
31250

√
6 the series diverges

7 − 17
2916

− 13
5832

√
7 the series diverges

11 − 97
71874

− 25
31944

√
3 43

330
+ 3

110

√
3

−e−π
√

N/3 13 23
1458

− 7
1458

√
13 2

9
− 2

117

√
13

19 − 4261
22781250

− 3913
91125000

√
19 49

510
+ 73

9690

√
19

31 − 684197
33215062500

− 245791
66430125000

√
31 1007

13530
+ 1877

419430

√
31

33 − 523
8192

+ 91
8192

√
33 96

493
− 93

5423

√
33

59 − 730612447
1641786993734274

− 187475575
729683108326344

√
3 5472653

101652870
+ 351123

33884290

√
3

65 − 649
1728

+ 5
48

√
13 83

435
− 64

1885

√
13

Table 3.7: Irrational Series of level l = 3 for q = −e−π
√

N/3
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q N x λ

73 1555
46656

− 91
23328

√
73 73

207
− 202

15111

√
73

97 33161
5971968

− 3367
5971968

√
97 16

99
− 103

9603

√
97

121 24323
221184

− 1725
90112

√
33 8

45
− 1

45

√
33

145 − 1769693
161243136

+ 146965
161243136

√
145 314

2115
− 523

62335

√
145

−e−π
√

N/3 169 14339
1259712

− 12925
4094064

√
13 941

5865
− 64

1955

√
13

185 − 14983669
3061257408

+ 68425
85034928

√
37 12079

91635
− 3392

226033

√
37

241 489978007
729000000

− 15781129
364500000

√
241 22051

124785
− 273526

30073185

√
241

265 − 30814033
20155392000

− 1892891
20155392000

√
265 53662

498249
− 119771

26407197

√
265

409 77088425801
5971968000000

− 3811777333
5971968000000

√
409 1094279

7115265
− 18207572

2910143385

√
409

Table 3.8: Irrational Series of level l = 3 for q = −e−π
√

N/3
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q N x λ

2 −7
8
+ 5

8

√
2 2

7
− 1

14

√
2

4 −35 + 99
4

√
2 2

7
− 2

21

√
2

5 9
64

− 1
16

√
5 1

4
− 1

20

√
5

e−π
√
N 9 97

64
− 7

8

√
3 1

4
− 1

12

√
3

13 649
64

− 45
16

√
13 1

4
− 7

156

√
13

15 47
8192

− 21
8192

√
5 3

22
− 4

165

√
5

25 51841
64

− 1449
4

√
5 1

4
− 1

12

√
5

37 1555849
64

− 63945
16

√
37 1

4
− 101

3108

√
37

Table 3.9: Irrational Series of level l = 4 for q = e−π
√
N
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q N x λ

6 −17
64

+ 3
16

√
2 1

4
− 1

12

√
2

7 −2024 + 765
√
7 16

57
− 8

133

√
7

10 −161
64

+ 9
8

√
5 1

4
− 1

15

√
5

12 − 13
512

+ 15
1024

√
3 13

66
− 2

33

√
3

−e−π
√
N 16 35

512
− 99

2048

√
2 3

14
− 2

21

√
2

18 −4801
64

+ 245
8

√
6 1

4
− 1

14

√
6

22 −19601
64

+ 3465
16

√
2 1

4
− 17

132

√
2

28 −253
512

+ 765
4096

√
7 25

114
− 8

133

√
7

58 −192119201
64

+ 4459455
8

√
29 1

4
− 37

957

√
29

Table 3.10: Irrational Series of level l = 4 for q = −e−π
√
N
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3.2 Discussion

In Tables 3.1-3.10 the values of x and λ were presented to give a total of 90 series for

1/π. These series were obtained from the identity (2.7). It is obvious that the values of

x and λ in the quadratic irrational forms share the same square roots for each degree.

In most cases, it was a square root of the level, the degree or a divisor of the degree.

There are 4 examples where the conjugate series (i.e., the series obtained by replacing

each quadratic irrational with its conjugate) also gives a series for 1/π, but the con-

vergence is much slower. These series are from level 3 and correspond to the degrees

N = {11, 19, 31, 59}, where these values of N satisfy the condition N ≡ 3 (mod 4). As

for the convergence, all series found are convergent except for 4 series. These series are

from level 3 and correspond to N = {2, 3, 4, 7}. They diverge because x > 1
108

; and 1
108

is the radius of convergence for � = 3.

3.3 Conclusion

We have listed 90 Ramanujan-type series for 1/π that involve quadratic irrationals of

the levels � ∈ {1, 2, 3, 4}. Of the 90 series, 76 are believed to be new and 14 were

previously known. There are series of higher levels; � ∈ {5, 6, 7, 8, 9, 10}. The main

difference is that, instead of the 2-term recurrence relations in Theorem 2.3.1, the

underlying sequences satisfy three-term relation. Heun functions appears instead of

hypergeometric functions. Only six examples are known, and these are for levels 5,6 (3

cases), 8, and 9. For more details on rational series for 1/π of the levels � ∈ {5, 6, 8, 9}
see [6]. In addition, there are series of level � = 7, 10, 18, not investigated in this thesis

but details are in [12] and [13]. It is not known if there other series for 1/π that can

be obtained from the identity (2.7). Future work could involve rational and irrational

series for 1/π of other levels.
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