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Abst ract 

The theory and technique of Pulsed Gradient Spin Echo (PGSE) Nuclear Magnetic 
Resonance (NMR) are presented. Particular attention is paid to the Fourier relation­
ship between the average propagator of motion and the echo attenuation function. 
Using the q-space formalism, existing PGSE theory for diffusing molecules trapped 
between parallel barriers is extended to include the effects of relaxation at the walls. 
Computer simulations have been performed to test this extension to the theory and 
also to investigate the effect of finite gradient pulses in such an experiment . 

PGSE experiments were performed on pentane inside rectangular microslides of 
1 00 pm width. Diffraction-like effects predicted by theory for such experiments were 
observed where the PGSE data has a minimum when the gradient wavevector q is 
equal to the reciprocal width of the microslides. Through the use of non-linear least 
squares fitting techniques the PGSE data is fitted to theories for perfectly reflecting 
walls, partially reflecting walls and wall with variable spacings. 

NMR microimaging experiments were performed on the microslide capillaries. 
The images revealed edge enhancement effects which can be explained through the 
signal attenuation expressions used in PGSE experiments. A brief theoretical dis­
cussion shows that the effect is due to the restricted diffusion of the molecules at 
the boundaries compared with the center of the sample. 

A pore hopping technique is presented which allows analytic expressions to be 
found for diffusion in porous media. PGSE experiments are performed on water 
diffusing in the interconnecting voids formed by close packed, monodisperse, micron 
sized polystyrene spheres. Diffraction-like interference effects predicted by theory 
are obsevered where the PGSE data has a maximum when q is equal to the recip­
rocal lattice spacing of the porous network. Using non-linear least squares fitting 
techniques the PGSE data is fitted to the pore hopping theory for a pore glass with 
some variation in pore spacing. The use of an appropriate structure function for 
the pore shape is analysed by modelling the true pore shape and comparing it to 
the structure function for a sphere. The parameters revealed by fitting t heory to 
data are consistent with the known dimensions and show that important structural 
information can be revealed by this technique. 

Electron Spin Resonance ( ESR) experiments are performed on the quasi-one­
dimensional organic conductor (FA)2PF6 . PGSE experiments on the conduction 
electrons show restricted diffusion effects. The PGSE data is analysed using both 
an impermeable relaxing wall model and a permeable pore hopping model . Fitting 
the data to these models show that a hopping model is  more consistent with the 
data. 

PGSE experiments are performed on semi-dilute solutions of high molecular 
weight polystyrene dissolved in CC14• The reptation model of diffusion is  reviewed 
and features of this model relevant to PGSE experiments are detailed. PGSE exper-
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i ments are performed and the mean square displacement of the entangled polymers 
is obtained as a function of diffusion time. Transitions from t to t112 scaling of 
the mean square displacement are found, and a region exhibiting t114 scaling is also 
observed, this region often being considered the signature for reptation. 

The PGSE-MASSEY technique, which pervides a method to correct for gradient 
pulse mismatch, is described. The details of the hardware and software implemen­
tation of this technique are also give. PGSE-MASSEY experiments are performed 
on the semi-dilute polymer solutions and enable structure functions to be acquired . 
These structure functions are compared to the primitive chain structure function 
enabling an estimate of the Doi-Edwards tube diameter to be made. 
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