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Abst ract 

The theory and technique of Pulsed Gradient Spin Echo (PGSE) Nuclear Magnetic 
Resonance (NMR) are presented. Particular attention is paid to the Fourier relation­
ship between the average propagator of motion and the echo attenuation function. 
Using the q-space formalism, existing PGSE theory for diffusing molecules trapped 
between parallel barriers is extended to include the effects of relaxation at the walls. 
Computer simulations have been performed to test this extension to the theory and 
also to investigate the effect of finite gradient pulses in such an experiment . 

PGSE experiments were performed on pentane inside rectangular microslides of 
1 00 pm width. Diffraction-like effects predicted by theory for such experiments were 
observed where the PGSE data has a minimum when the gradient wavevector q is 
equal to the reciprocal width of the microslides. Through the use of non-linear least 
squares fitting techniques the PGSE data is fitted to theories for perfectly reflecting 
walls, partially reflecting walls and wall with variable spacings. 

NMR microimaging experiments were performed on the microslide capillaries. 
The images revealed edge enhancement effects which can be explained through the 
signal attenuation expressions used in PGSE experiments. A brief theoretical dis­
cussion shows that the effect is due to the restricted diffusion of the molecules at 
the boundaries compared with the center of the sample. 

A pore hopping technique is presented which allows analytic expressions to be 
found for diffusion in porous media. PGSE experiments are performed on water 
diffusing in the interconnecting voids formed by close packed, monodisperse, micron 
sized polystyrene spheres. Diffraction-like interference effects predicted by theory 
are obsevered where the PGSE data has a maximum when q is equal to the recip­
rocal lattice spacing of the porous network. Using non-linear least squares fitting 
techniques the PGSE data is fitted to the pore hopping theory for a pore glass with 
some variation in pore spacing. The use of an appropriate structure function for 
the pore shape is analysed by modelling the true pore shape and comparing it to 
the structure function for a sphere. The parameters revealed by fitting t heory to 
data are consistent with the known dimensions and show that important structural 
information can be revealed by this technique. 

Electron Spin Resonance ( ESR) experiments are performed on the quasi-one­
dimensional organic conductor (FA)2PF6 . PGSE experiments on the conduction 
electrons show restricted diffusion effects. The PGSE data is analysed using both 
an impermeable relaxing wall model and a permeable pore hopping model . Fitting 
the data to these models show that a hopping model is  more consistent with the 
data. 

PGSE experiments are performed on semi-dilute solutions of high molecular 
weight polystyrene dissolved in CC14• The reptation model of diffusion is  reviewed 
and features of this model relevant to PGSE experiments are detailed. PGSE exper-
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i ments are performed and the mean square displacement of the entangled polymers 
is obtained as a function of diffusion time. Transitions from t to t112 scaling of 
the mean square displacement are found, and a region exhibiting t114 scaling is also 
observed, this region often being considered the signature for reptation. 

The PGSE-MASSEY technique, which pervides a method to correct for gradient 
pulse mismatch, is described. The details of the hardware and software implemen­
tation of this technique are also give. PGSE-MASSEY experiments are performed 
on the semi-dilute polymer solutions and enable structure functions to be acquired . 
These structure functions are compared to the primitive chain structure function 
enabling an estimate of the Doi-Edwards tube diameter to be made. 
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Chapt er 1 

INTRODUCTION 

1 . 1  Introduction 

The Pulsed Gradient Spin Echo (PGSE) experiment has been used to measure 
molecular self-diffusion since the 1950's, long before the advent of NMR imaging 
techniques in 1 973. In recent years, however, there has been a resurgence of interest 
in the PGSE experiment, the main reason for which was the suggestion that one 
could measure 'structure' inside a sample by observing the effect the 'structures' 
have on the self-diffusion of an interpenetrating liquid. 

Traditionally the PGSE experiment was used almost exclusively to measure the 
self-diffusion coefficient of some liquid (or gaseous) sample. It was realised recently 
though that this type of experiment actually contains far more information than just 
the self-diffusion coefficient . In fact PGSE closely resembles a dynamic incoherent 
scattering experiment when the gradient pulses are sufficiently narrow. Such a 
scattering experiment contains information about the self-propagator that describes 
a molecule's displacement as a function of t ime. In free diffusion, the propagator 
would be a simple Gaussian function of time and distance. For a sample containing 
restrictions (walls, pores or otherwise) to a molecule's motion, the propagator will 
be altered as a result of interactions between the molecules and the restrictions. 

In this thesis a q-space, or scattering, approach is used to analyse PGSE experi­
ments. In this approach, the PGSE data acquired from diffusing molecules trapped 
between parallel barriers is identical in form to the single slit diffraction pattern. A 
minimum is observed in the echo attenuation data when q is  equal to the reciprocal 
of the barrier spacing. This reciprocal space formalism is made apparent through a 
Fourier relationship between the echo attenuation function and the average propa­
gator mentioned above. 

The intention throughout this thesis has been to extend the ideas of a q-space 
approach to PGSE and to apply these ideas to real experiments performed on model 
systems. At the i nitiation of this thesis no PGSE experiment had been performed 
where the diffraction-like effects described above had been seen. In parti cular, no 
PGSE data had ever shown an increase in the echo signal with an increase in  gra­
dient strength. In analysing the data from experiments we have also fitted theory 
to data in an attempt to reveal quantitative parameters of i nterest to the system, 
demonstrating that such an approach may prove useful i n  samples where the struc­
ture dimensions were unknown. 

As well as completely restricted diffusion, where the molecules are confined to 
an enclosed region, porous systems have also been a strong focus of PGSE work. A 

1 



2 CHAPTER 1 .  INTROD UCTION 

q-space approach to model porous systems showed that the echo attenuation data 
would be similar to the pattern formed from multiple slit interference where a local 
maximum is observed at the reciprocal lattice distance. Again we have taken the 
approach of fitting the analytic theory derived to the PGSE data to reveal several 
important structural parameters pertaining to the model system under investigation. 

Restricted diffusion ideas apply in a completely different way to the motion 
of entangled polymers in solution. The theory of de Gennes and Doi and Edwards 
predicts a reptative mechanism for diffusion similar to the motion observed in a "can 
of worms" . As part of our effort to probe smaller distances with stronger gradients, 
we have implemented the PGSE-MASSEY technique. This technique enables any 
mismatch in the gradient pulses applied to be corrected. As this is the fundamental 
barrier to increased resolution in the PGSE experiment , and not signal-to-noise as 
is the case for NMR microimaging, any advances in this area are extremely useful . 

The use of computers and software in this thesis has been extensive. A significant 
problem concerns non-linear least squares fitting necessary in order to fit theory to 
data in PGSE experiments .  Computers have also been used to perform Monte Carlo 
simulations of molecules in PGSE experiments to test the extensions to PGSE theory 
shown here. The effects of finite gradient pulses were also of key interest as they are 
difficult to analyse theoretically and the effect on the echo attenuation function in 
restricted diffusion work was unknown. 

The majority of this thesis deals with experiments on several different model 
systems. The similarity is that all restrict the motion of the molecules and in the 
process alter the dynamic propagator in such a way that the structural features that 
restricted the molecular motion can be measured. As the characterisation of this 
technique on model systems is completed the possibility for use in real samples of 
interest increases. An exciting possibility is that the gradient strengths becoming 
available to PGSE NMR, combined with a q-space approach, will allow samples with 
features as small as 100 A to be studied. 

1 .  2 Organisation of thesis 

The theory for the work in this thesis is discussed initially. 

• Chapter 2 introduces the NMR phenomenon and discusses the basic theory 
needed to understand the concepts of free induction decay, spin and stimulated 
echoes, relaxation and signal-to-noise ratios. 

• Chapter 3 introduces the concept of magnetic field gradients and reviews the 
theory associated with imaging and diffusion measurements .  The concept of 
q is introduced to describe a scattering wave vector in the P GSE experiment. 
An overview of the hardware used to perform the experiments in this thesis is 
also detailed. 

• Chapter 4 details the q-space theories for several different sample geometries . 
The effect of finite gradient pulses is also investigated using computer simula­
tions .  

• Chapter 5 reviews the PGSE-MASSEY variation used to measure very small 
displacements with large field gradients. This technique was used in the work 
on polymer diffusion. 



1.2. ORGANISATION OF THESIS 3 

The experimental work carried out is then presented. 

• Chapter 6 presents the work carried out on the fully enclosing rectangular 
microslide system. The review of the extension to the theory presented in 
Chapter 4 to include the effects of relaxation at the walls is presented. Both 
PSGE experiments , and an imaging experiment , were performed on the mi­
croslide sample. Several computer simulations were also performed. Fitting of 
theory to the PGSE data enables structural parameters to be deduced. The 
microimaging experiments revealed an edge enhancement effect explained by 
restricted diffusion at the sample boundaries. 

• Chapter 7 reviews the theory for diffusion in a porous system. Experiments 
were carried out on a porous sample of close packed monodisperse polystyrene 
spheres. The fitting of theory to data again revealed important structural 
details. ESR experiments were performed on a one-dimensional conducting 
crystal in which the PGSE data showed restricted diffusion effects .  

• Chapter 8 reviews the theory for polymer reptation . The experiments per­
formed on semi-dilute, high molecular weight , monodisperse polymer solutions 
are presented. The enclosing network in an entangled polystyrene system 
presents a quite different type of restriction to the molecular diffusion. The 
PGSE-MASSEY technique is also used as part of these experiments .  

Chapter 9 concludes the thesis and discusses potential future work i n  this area. 
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Chapt er 2 

NMR Theory 

2.1 Quantum mechanical description 

The field of nuclear magnetic resonance (NMR) reveals an interesting relationship 
between classical and quantum mechanics. While the nature of the NMR phe­
nomenon is entirely quantum mechanical, it lends itself to a classical description 
with such ease that one can proceed far into the discipline without reference to the 
former. However there are occasions where the full quantum mechanical treatment 
is needed to explain effects observed in an NMR experiment [l ,  2, 3] . Bearing these 
points in mind a brief quantum description of the nature of nuclear magnetization 
will be given before proceeding with the more widely used classical macroscopic 
magnetization description which will be used liberally throughout this dissertation. 

2.1.1 Nuclear magnet ic moment 

The magnetic properties of atomic nuclei are related , like electrons, to their angular 
momentum[4] . A nucleus will possess a total magnetic moment J.t and a total angular 
momentum L. In fact these two vectors are parallel such that 

(2.1 )  

where 1 is called the gyromagnetic ratio and is specific to the nucleus in question. 
Whilst in the case of atomic electrons it is the orbital angular momentum of the 
electronic charge that is the foundation for any magnetic properties, in the case of 
the nucleus it is the intrinsic angular momentum or spin of the nuclei that generates 
nuclear magnetism. Although it is convenient to imagine a rotating lump of charge 
generating a magnetic moment in a classical way, this belies the true quantum nature 
of the angular momentum of a nucleus. 

In quantum mechanics J.t and L are treated as operators. A dimensionless angular 
momentum operator I is often defined so that 

L = ni (2.2) 

where 1i is Plancks constant divided by 27r. The magnitude of the angular momentum 
can be found by applying the operator 12 to a wave function and the resulting 
eigenvalue is found to have the value I(I + 1 ) , where I is a positive integer or 
h alf-integer for the case of intrinsic angular momentum. For the case of orbital 
angular momentum, such as an electron rotating around the nucleus, I can only 



6 CHAPTER 2. NMR THEORY 

be an integer due to the boundary condition that the particle wave function must 
be a well- behaved function of particle position. The number I is known as the 
spin quantum number or spin of a nucleus in the case of NMR. For example, a 1 H 
hydrogen (proton) or 13C nucleus has I= 1/2, whereas a 2H deuterium nucleus has 
I =  1 .  

Operators to find each cartesian component of angular momentum can be defined 
as Ix, Iy and Iz respectively, but these operators do not commute with each other. 
However each component operator does commute with 12 allowing one to measure 
both the magnitude of the angular momentum and the component in one direction 
simultaneously. The eigenvalue of the component (normally taken as Iz) has 2I + 1 
possible values, being m= I, I- 1 . . . , - 1 . For the example of a hydrogen nucleus 
where I= 1/2 the z component of angular momentum can have the values m= 1/2 
or m = -1/2. One can therefore use these well known angular momentum operators 
in eqn (2.1) and eqn (2.2) to determine the magnetic moment through relationships 
such as 

(2.3) 

The quantum state of a nucleus, I'll), can be described as a combination of basis 
states IJm). Because we often deal with similar nuclei for which I would be identical 
it is normal to label the basis states only by m. In other words 

(2.4) 
m 

where am represents the complex amplitude of each basis state lm) present in I'll). 

2.1.2 The Zeeman interact ion 

If the nucleus is placed in a magnetic field then the magnetic moment will interact 
with the field. The basis states llm) will no longer be degenerate and each will 
have a different energy level. This splitting is known as a Zeeman interaction. A 
magnetic dipole J.L in a magnetic field B has an interaction energy of -J-t ·B. From 
eqn (2.3) the Hamiltonian for the case of a field B0 = kB0 oriented along the z-axis 
lS 

(2.5) 

The eigenvalues of this Zeeman Hamiltonian are simply 

(2 . 6) 

where m= I, I- 1, . . .  , -I. A schematic representation of these energy levels are 
shown in Figure 2.1. 

Nuclear precession 

Time evolution of the nuclear wavefunction \ll(t) in the magnetic field is  described 
by t he Schrodinger equation using the Hamiltonian from eqn (2.5) 

in :
t 

Jw (t)) = Hlw(o)) (2.7) 
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Figure 2.1: Schematic representation of the energy levels for an I= 1/2  spin in a magnetic field 
Bo. The energy levels can be calculated from eqn (2 .6) and the populations from eqn (2 .20) 

which can be writ ten in terms of an evolution operator U(t) as 

l\ll(t)) = U(t) l\li(O)) 

where 
-i '}-{t 

U(t) = exp(-
1i
- ) . 

Using the Hamiltonian of eqn (2 .5) , one can express this as 

U(t) = exp( ifBolzt ) . 

(2 .8) 

(2 .9) 

(2 . 10 )  

This "exponential operator" formalism is  well known in quantum mechanics and i s  
utilised through the rule 

(2 . 1 1 ) 
where Rz ( rp) is a rotation of rp degrees about the z-axis. Eqn (2 . 10) therefore suggests 
that in a magnetic field all states precess at a frequency w0 around the z axis ,  given 
by 

(2.12)  

This precession frequency is known as the Larmor frequency and i s  the fundamental 
equation used in NMR. It is interesting to note that the rotation operators about 
different axes do not commute with each other, just as Ix, ly and Iz do not . 

To detect this "precession" of the wavefunction the nuclei have to be disturbed. 
In the simple picture described at this stage, this would involve the absorption of 
some energy equivalent to the transition between two levels . The most common way 
this energy is applied is through a transverse alternating magnetic field of frequency 
w = !lE j!i. If the perturbing field E1 is oscillating in the x direction then one would 
have a Hamiltonian of the form 

(2 . 1 3) 
The operator Ix has only finite matrix elements between states m and m' when 
m' = m± 1 .  Consequently transitions are allowable only between adjacent energy 
levels and would require the absorption or emission of energy 

!lE = !iw = 1liEo 

or in terms of the frequency of the applied transverse field 

w = w0 = 1Eo. 

(2 . 14) 

(2 . 1 5) 
Eqn (2 . 15) says that by applying an alternating field in the x (or y) axis ,  whose 
frequency is equal to the Larmor frequency, one can induce a transition between 
two adjacent energy levels. To discover the effect of this transition, a measurement 
would have to be made on the system. 
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2.1.3 The e nsemble average 

The result of a measurement on a nucleus in an admixture state described by 
eqn (2.4) would be given by 

(2. 1 6 )  
m 

This result is called the 'expectation value' of a measurement of Iz. For a single 
nucleus this gives the probability laml2 of returning a value m. For a large number of 
nuclei in the same state l\ll) this expectation value is the mean of eigenvalue results 
weighted by the probability of each occurring. 

In a real sample, one would no longer be dealing with one nucleus but with many 
identical nuclei , but where each can occupy a different state l\ll). To calculate the 
expectation value of lz, one has to modify eqn (2. 16)  to allow for the case where 
spins can be in different states l\ll). The "average" ensemble expectation value for 
Iz would now be 

(\llllzl\ll) = LPw(WilziW} (2. 1 7) 
q, 

where pq, is the proportion of spins in a state l\ll). For the simple case of I = 1/2 at 
thermal equilibrium, some spins will be in the higher energy state m= +1/2 while 
the rest will be in the lower energy state m= -1/2. The expectation of the angular 
momentum will be 

(2. 18)  

This tells us simply that the expectation value of the z component of angular mo­
mentum is the population difference between the two levels . The populations at 
thermal equilibrium will be given by the Boltzmann factor, and the two levels will 
have the populations 

-- exp (±,1iBo/2ksT) 
la±t 12 = 

exp ( {1iB0/2k8T)  + exp ( -{1iBo/2ksT) · (2. 19 )  

At room temperature the factor ksT will be many orders of magnitude larger than 
the energy difference 11iB0 and hence the populat ions can be rewritten as 

The population difference will then be 

la 1 12- la 1 12 = 
{1iBo

. 2 -2 2k8T 

(2.20) 

(2.2 1 )  

For protons at room temperature this factor i s  around 5 x 10-6 for a field of 1 .4 T 
(60 MHz) .  This population difference is what allows the NMR phenomenon to be 
detected. Using eqn (2. 18) one gets 

(2.22) 
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In fact , the state for an ensemble of spin I = 1/2 nuclei is completely defined by the 
quantities (Ix), (Iy) and (Iz). A macroscopic classical magnetization vector M can 
be defined such that 

M = N11i [ (Ix)i + (Iy)j + (Iz)k] (2 .23) 

where N is the number of spins per unit volume. When the spins are at thermal 
equilibrium in a magnetic field this magnetization vector will be aligned along the 
z-axis with magnitude 

(2 .24) 

which can be recognised as Curie's law for magnetization. This can be generalised 
for all values of I by recalculating eqn (2 . 18) and leads to 

(2 .25) 

The magnetizat ion vector M is a most useful description of the NMR phenomenon 
as it allows a classical picture of what is happening to be used. However the "vector" 
approach breaks down for cases when I> 1 /2 where a tensor of higher rank would 
be needed to provide a full description of the spin system. 

2 . 2  The semi-classical description 

2.2.1 The rotating frame 

It is now possible to use our macroscopic magnetization vector M to describe the 
effect of disturbing the spins using an alternating magnetic field as described by 
eqn (2. 13 ) .  Classically a magnetic field B exerts a torque M x B on the magneti­
zation vector M. The equation of motion for M can easily be written down. From 
rotational mechanics, the torque is equal to the rate of change of angular momentum, 
so 

oL 
=M X B 

at 

and from eqn (2. 1 )  

aM . at =M X (IB). 

(2 .26) 

(2.27) 

This equation holds regardless of the t ime dependence of B. The motion of the 
magnetization vector M is solved by finding solutions to this equation. For constant 
B the equation is identical to the precession equation of a spinning top implying 
as stated before that the nuclear magnetization rotates around the magnetic field. 
In fact eqn (2.27) can also be derived quantum mechanically for JL giving the same 
result [2). 

A useful trick is to use a rotating coordinate system. If a coordinate system is 
defined that rotates with fixed angular velocity n then eqn (2 .27) t ransforms to 

8M 
-=M x (IB+n) 
8t 

(2 .28) 
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Bo 

281 cos (J)t 

Figure 2.2: An alternating field 2B1 coswt represented by two counter rotating field components 
with magnitude B1. 

where oMj Ot is the rate of change of M with respect to the new rotating coordinate 
system. The equation of motion for M is the same as in the laboratory (non-rotating) 
frame, if B is replaced by an effective field Beff, such that 

n Beff = B + - . (2.29) 
I 

This implies that for a fixed field B = B0 k and a rotating coordinate system 
n = -1 B0 k that the magnetization vector M will appear to remain fixed in time. 
In other words, rotating our reference frame at the Larmor frequency makes it appear 
that B0 has disappeared and 8M/ Ot = 0. Of course the bulk magnetization of the 
spins remains fixed. 

2 . 2 . 2  Resonant excitation 

The effect of an alternating field B1 along the x direction with magnitude 2B1 is  now 
considered. A coil around the sample has an r.f. current applied to it and therefore 
generates an oscillating r.f. field on the sample. This field can be represented by 
the sum of two counter rotating components each of magnitude B1 as shown in  
Figure 2.2. In  the rotating frame, only the component rotating i n  the same direction 
need be considered; the other component would fluctuate at 2w0 and would have 
little effect on the spins. In the lab frame one can write 

B1 (t) = B1 (coswt i - sinwt j) 

so eqn (2.27) becomes 

aM 7ft =M x 1(B0 + B1(t)) 

which would give 

dMx 
dt 

dMy 
dt 

dMz 

dt 

(2.30) 

(2.31 )  

(2.32) 
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Figure 2 . 3 :  (a) The laboratory frame evolution of the magnetization vector M about B0 and Bt. 
(b) The rotating frame evolution of M about Bt. 

Under the initial condition that the magnetization is aligned along the z-axis one 
gets solutions 

Mx Mo sin w1 t sin wot 

Mo sin w1 t cos wot 

M0 coswot (2.33) 
which implies that the magnetization simultaneously precesses about B0 at a rate 
wo and about B1 at a rate w1 as shown in Figure 2.3a. By switching to a frame of 
reference rotating with B1 about B0, eqn (2.28) becomes 

5M M B. bt = X I 11 . 

The solution of which under the same initial conditions as before gives 

M0 cosw1t 

(2 .34) 

(2.35) 
a rotation about B1 . In rotating frame coordinates, the vector M will precess 

about the x axis at a rate w1 = 1B1• If B1 is applied as a pulse of duration t, it will 
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cause the magnetization to rotate an angle <P = 1 E1 t about the x axis as shown in 
Figure 2 .3b .  In the laboratory frame i t  is also simultaneously rotating around the z 
axis at the Larmor frequency. 

Quantum mechanical excitation 

It is interesting to briefly consider the effect of the E1 field quantum mechanically. 
If one is applying alternating magnetic fields to the sample one has to consider the 
effect of a time dependant Hamiltonian on our spins. The Hamiltonian contains a 
static term from eqn (2 .5)  and a time dependant term from eqn (2 .13)  and can be 
written 

(2 .36) 

Using the idea discussed above one can transform to the rotating frame where 

and at the resonant frequency where n = 1Bo one gets 

Hrot = -�nB1 Ix. 

From eqn (2 .9)the evolution operator for the wavefunction can be written as 

(2 .37) 

(2 . 38) 

(2 .39) 

which is from eqn (2. 1 1 )  a rotation about the x axis at a rate w1 = 1B1 identical 
to the classical prediction. In fact eqn (2 .38) has a subtle difference to the classi­
cal picture. It can be shown that a rotation of 27r about B1 does not return the 
wavefunction Ill to its original value. A rotation of 47r is needed to return Ill to its 
initial value, this general property is known as the "spinor'' property[2] of 'll. How­
ever, ingenious NMR experiments are needed to demonstrate this property which is 
mentioned here purely for interest . 

2 . 2 . 3  Relaxation 

We return now to the classical picture of our magnetization vector M rotating around 
the z axes at a rate w0• If we apply an r.f. field E1 then M also rotates about that 
field at a rate w1 such that i t  gets "tipped" away from its equilibrium position. An 
r .f. pulse of duration t such that w1 t = 7r /2 is called a 90° pulse. In our picture so 
far M would continue to precess around the z axis after the r .f. field was turned off 
endlessly. In reality there are mechanisms that return M to its equilibrium position 
along the z axis. 

The equilibrium is restored by a process known as spin-lattice or longitudinal 
relaxation. The mechanism for this relaxation is a coupling between the spins and 
their surrounding thermal reservoir. As t ime progresses the z component of M will 
be restored to its thermal equilibrium value M0. This effect can be incorporated i n  
eqn (2.27) by writing 

dMz 
_ (M B) Mo - Mz 

dt - I X z + Tl 
(2 .40) 

where T1 is a characteristic relaxation time peculiar to the sample. For the 
x and y components of M, the effect of relaxation will be to decay them back 
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to zero as M returns parallel to the z axis. However the relaxation rate will be 
increased by additional spin-spin interactions. The time constant for this transverse 
relaxation, T2 , reflects the rate at which the spins come into thermal equilibrium 
with themselves. This means T2 will always be equal to or shorter than T1, although 
in liquids the two are nearly always similar. Thus 

dMx 
dt 

dMy 
dt 

!(M x B)x- �: 
i(M x B)y - �:. 

(2.41 )  

(2.42) 

In the rotating frame, these equations yield a set of relationships which are known 
as the Bloch Equations. 

dMx 
dt 

dMy 
dt 

dMz 
dt 

!(MzBl sinwot + MyBo)- �: 
My 

i(MzBl cos wot- MxBo)-
T2 

( 
. 

) 
Mz- Mo 1 -MxB1 smwot - MyBl coswot -

Tl 
(2.43) 

The relaxation times T1 and T2 can be used to extract useful information about the 
state of the nucleus because they are sensitive to terms in the Hamiltonian coupling 
spins to other spins and the thermal reservoir. 

2 . 2 .4 Bloch equations 

Equations (2.40) ,  (2.4 1 )  and (2.42) can be solved for many situations and are a 
useful reference point in describing many of the NMR phenomena discussed in this 
work. If a B1 field is applied to the equilibrium magnetization for a time t such that 
the vector M is rotated 90 degrees onto the transverse plane one can observe the 
full evolution of the spin system. The solution to the Bloch equations for M = M0j , 
1.e. directly after the 90° r .f. pulse, are 

M0 sin w0t exp( -tjT2) 

Mo cos wot exp( -tjT2 ) 

Mo(l- exp( -tjTI)) (2.44) 

This oscillating and decaying signal is know as a Free Induction Decay (FID) and 
the My and Mx components are detected by the r.f. coil around the sample. A 
typical FID is shown in  Figure 2.4. 

The Fourier transform of the detected signal is a Lorentzian of half width lj1rT2 
in the frequency domain, of which an example is  shown in Figure 2.5. In the usual 
heterodyne detection scheme the peak will appear at an offset frequency .6w = 
w0 - Wr where Wr i s  the reference frequency of the mixing stage. 

The integral of the peak in the frequency domain gives the amplitude of the 
signal immediately after the 90° pulse. 

2 . 2 .5 Signal-to-noise ratio 

The e.m.f. voltage typically induced in the r.f. coil is of the order of microvolts .  This 
voltage has to compete with the Johnson noise arising from the thermal motion of 
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Figure 2 . 4 :  A typical Free Induction Decay (FID) following a 90° r.f. pulse where the filled 
squares represent the real part and the open squares the imaginary part of the signal. The real 
and imaginary parts are acquired by mixing the receiver signal with an in-phase and quadrature 
reference frequency respectively. 
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Figure 2.5: Fourier transformation of the FID shown in Figure 2 .4  gives the real absorption and 
imaginary dispersion spectra shown here. 
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electrons in  the coil .  The ratio of the signal voltage to the noise voltage ( the signal­
to-noise ratio) is an important consideration in any NMR experiment . The signal 
strength is proportional to the size of the magnetization, which is increased by 
using large magnetic fields and higher gyromagnetic ratio nuclei . The signal is also 
proportional to the volume of the sample and the "filling factor", the fraction of 
the r.f. coil volume that contains sample. In the following short calculation, the 
example numbers given are for the r.f. coil, probe and spectrometer used for the 
NMR experiments in this thesis . 

The r.m.s .  noise voltage of an r .f coil is given by[5] 

(2.45) 

where kB is Boltzmann's constant , Tc the coil temperature, �� the receiver band­
width, R the coil resistance and F the spectrometer noise figure. One must take into 
account the skin depth [6] when calculating resistances at r.f. frequencies although 
inductive losses can be ignored for small samples. The resistance is then 

(2.46) 

where l is the conductor length, p its circumference, J.LRJ.Lo the conductor permeability 
and p its resistivity. An additional factor 0' allows for a reduction in the skin depth 
due to the close proximity of other conductors and is approximately 5 for a solenoid 
coil . Hoult and Richards [7] have shown that a solenoidal coil r.f. coil has optimal 
homogeneity if 2a = L where L is the length of the coil . For a coil with Nt turns 
they show that l = 6 .3Nt a  and p = 4.2a/N1• A five turn copper coil of length 5 
mm and radius 2.5 mm therefore has a resistance of 0.4 n at 60 MHz . Eqn (2.45) 
therefore implies about 0.04 J.L V of noise with our spectrometer, which has a noise 
figure of around 12. 

The signal induced in the coil i s [7] 

(2.4 7) 

where (Bdi)xy is the transverse component of the magnetic field at the center of 
the receiver coil and is approximately J.LoNt/ J2L for a solenoid. Assuming a pure 
water sample with volume, Vs, is about 1/3 of the r.f. coil volume, our 60 MHz 
solenoid coil gives about 20 J.LV peak signal for water at room temperature, where 
the magnetization per unit volume, M0, is calculated from eqn (2.25 ) .  A signal to 
noise ratio of around 500 is therefore indicated for the r.f. coil i n  our probe. 

2 .3 Nuclear interactions 

The dominant interaction of the nucleus is the Zeeman interaction which has an 
interaction energy in frequency units of 1B0• This frequency is typically in  the 
tens to hundreds of MHz range. However, due to the unusually long coherence 
times exhibited by spin systems, it is possible to observe weaker nuclear i nteractions 
present in the Hamiltonian down to only a few Hz. A brief summary of some of 
these finer interactions is  given here. 
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2 . 3 .1 Magnet ic field inhomogeneity 

Although NMR magnets are designed to provide a homogeneous magnetic field 
region around the sample space, there is inevitably some variation i n  B0• Shim 
coils which provide first , second and higher order corrections to the field are used to 
minimise these inhomogeneities , but may not be enough, especially where additional 
field gradients are induced by susceptibility variations from structures in the sample. 
This is, of course, more likely to occur in microimaging type samples rather than 
the traditional liquid samples used in the chemistry applications of NMR. The field 
variations typically lead to a broadening of several Hz in the NMR spectrum. This 
results in a a decay of the FID more rapid than due to T2 effects alone. 

The resultant decay t ime is often labelled T; and may be significantly smaller 
than T2 • However, the coherence loss due to field inhomogeneity is essentially ordered 
and given the appropriate pulse sequence, such as the spin-echo sequence discussed 
below, can be reversed . Coherence loss due to relaxation is inherently random 
and irreversible and therefore cannot be refocused by a pulse sequence. This is 
distinguished by the label 'homogeneous broadening', as opposed to the reversible 
inhomogeneous broadening due to magnetic field variations. In structural PGSE 
experiments, which are the focus of this thesis, there is  often significant broadening 
of this type which must be taken into consideration. 

2 . 3 . 2  C hemical shift 

The nuclei under observation in NMR are surrounded by atomic or molecular elec­
tron clouds which interact with the nuclear spin angular momentum. These interac­
tions lead to a shift in Larmor frequency of the nuclei , enabling a kind of chemical 
fingerprinting used extensively in organic chemistry since the 1950's . This change 
in frequency, known as the chemical shift , results from magnetic shielding by the 
surrounding electrons. The shift can be used in PGSE to chemically distinguish dif­
ferent parts of the sample, for example the solvent peak can often be separated from 
a polymer peak when trying to measure diffusion of semi-dilute entangled polymers . 
In this way the motion of polymer molecules can be measured separately from the 
faster diffusing solvent molecules. 

2 .4 Pulse sequences 

In NMR, an experiment can consist of one or many r .f. pulses applied at certain 
times before signal acquisition. The simplest pulse sequence is the 90° lx-acquire 
sequence described above. However, many other pulse sequences exist , all with a 
different experimental effect . In this section a brief description of the two varieties 
of NMR spin echo pulse sequence, used in this thesis, will be described, as well as 
two simple techniques used to increase the signal-to-noise ratio. 

2 .4.1 Signal averaging 

The signal acquired from a single NMR experiment , in most cases, would have a 
signal-to-noise ratio too small to enable the extraction of meaningful data. For this 
reason the NMR experiment is repeated N times and the signals acquired are eo­
added. The signal strength is then proportional to N while the noise amplitude is  
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proportional to N112. As a result ,  the signal-to-noise ratio increases as N1/2 . The 
l imiting factor in this process is the repetition time of the experiment compared to 
the longitudinal relaxation t ime T1 . The spin system must be given enough time to 
fully recover its z-axis magnetization between experiments. Normally a t ime period 
of 2-3 times T1 i s  long enough. The T1 value for protons in  liquids is typically less 
than a second,  allowing many accumulations to occur in an experiment of only a 
few minutes . However there are situations where experiments lasting several hours 
are required to accumulate a detectable signal. 

In PGSE work, signal averaging is essential due to the i nherent nature of the 
experiment where data is collected by deliberate attenuation of the signal. In some 
experiments in this thesis up to 8000 transients were averaged i n  order to accumulate 
enough signal to make a meaningful measurement. 

2.4 . 2  P hase cycling 

Because the signal detected in NMR is relatively weak, any possible decrease in 
background noise is advantageous . One primary method of coherent noise cancella­
t ion is through r.f. phase cycling. Inverting the phase of the r .f. transmitter by 1 80° 
will invert the NMR signal but leave any outside signal unaffected. Inverting the 
phase of the receiver will cause the signal to be subtracted from the data in memory, 
which, if the signal is inverted, will actually eo-add the NMR signal, but subtract 
background interference. This simple phase cycling can also be modified to cancel 
any artifacts due to differences between the two quadrature channels. A phase shift 
of 90° (or 270° ) will effectively swap the real and imaginary channels, allowing both 
phase and magnitude errors between the channels to be cancelled. This four-step 
CYCLOPS [8] phase sequence of Hoult and Richards is so useful that it forms the 
basis for most other phase cycling schemes in NMR pulse sequences. 

2 .4 . 3  S pin echo 

In any NMR magnet there will always be some degree of i nhomogeneity in the 
magnetic field. If there is a spread 6.B0 in field across the sample, spins on one side of 
the sample will precess fractionally faster than spiDB on the other side. The coherence 
between spins will only last for a time 1 / (16.B0) before they become dephased with 
respect to each other. Each group of spins for which B0 i s  essentially constant 
is often referred to as a "spin isochromat" for which an individual magnetization 
vector can be assigned, the bulk magnetization being found by summing over all 
i sochromat vectors. 

Observed from a rotating frame at w0 some spin isochromats will "fan out" away 
from their initial orientation. This dephasing or fanning out can reduce the bulk 
magnetization vector at a rate faster than the inherent 1 /T2 relaxation rate. However 
this phase loss is inhomogeneous and inherently reversible. Applying a 1 80° pulse at 
time r will i nvert the phase of all the spins. Now the fast spin i sochromats will be 
lagging and the slow isochromats leading. At a time 2r after the initial 90° pulse all 
spins will be back in phase and a Hahn, or Spin, echo[9] will occur. The magnitude 
of the echo will depend only on the transverse relaxation rate ,  

(2 .48)  
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Figure 2 . 6 :  The spin echo sequence showing the r .f. pulse sequence and a typical spin echo signal . 
The decay envelope of the FID is due to T2 relaxation whereas the height of the echo is dependent 
only on T2 relaxation. 

The phase of the 180° r.f. pulse will affect the sign of the echo. A 180° Jy pulse 
produces a positive echo whilst a 180° lx produces a negative echo. This can be 
utilised to implement a phase cycling scheme as detailed above. The full pulse 
sequence could be written, 90° lx - T - 180° I Y - r-acquire. 

2.4.4 St imulated echo 

In many samples, especially the slow moving or viscous samples, the transverse 
relaxation t ime T2 is considerably longer than the longitudinal relaxation time T1 • 
In such cases the stimulated echo sequence shown in  Figure 2. 7 is often used. This 
stimulated echo sequence[9) allows the transverse magnetization to be stored along 
the z-axis for a finite time before being tipped back to the transverse plane for signal 
acquisition. The advantage of this method is that the magnetization only suffers the 
less severe T1 relaxation while aligned along the z-axis. This can allow the formation 
of echoes over time intervals that would be impossible with the spin echo sequence. 

A further problem with long time spin echoes on electromagnet systems is that 
the main field stability is often insufficient to allow phase coherence over t ime in­
tervals longer than about 100 ms. However, for the stimulated echo sequence, the 
absolute stability of the main field is unimportant while the magnetization is stored 
along the z-axis .  The method does have disadvantages, only half the magnetization 
is stored along the longitudinal axis, and hence only half the signal is available at the 
echo. Also additional spin echoes can be formed from the pulses after the stimulated 
echo, but these can be removed by using a homospoil gradient pulse to dephase any 
unwanted transverse magnetization. 

The magnitude of the echo is given by 

(2.49) 

In this thesis, a stimulated echo sequence was used to collect all the data where 
the echo time was above 1 00 ms. In some cases, where T2 was particularly short , 
stimulated echoes were used for echo t imes smaller than this. The spin echo sequence 
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Figure 2 .  7: The stimulated echo sequence showing the r .f. pulse sequence and a typical signal . 
The labels "extra echo" indicate the position of possible extra spin echoes resulting from pairs of 
pulses. The first occurs at a time 2r1 from the first two r .f. pulses and the second occurs at r1 + 2r2 
from the second two r .f. pulses. A gradient homospoil pulse is often applied in the interval r2 to 
remove unwanted transverse magnetization. 

showed phase instabilities and artificially large attenuation if an echo t ime over 
1 00 ms was used. 
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Chapter 3 

P G SE T heory 

3 . 1  Magnetic field gradients 

In the domain of NMR Spectroscopy many techniques are used to ensure that the 
polarising magnetic field is as uniform as possible. Several layers of shim coils and 
many ingenious techniques are used to ensure minimal interference to the acquired 
NMR spectrum from magnet inhomogeneities . However, in order to extract the 
spatial dependence of molecules in our sample, it is necessary to deliberately vary 
the magnetic field across the sample and observe the difference in the resulting 
Larmor frequencies . These magnetic field gradients are added to the main field by 
using specially designed gradient coils through which large switchable currents can 
be passed. In this chapter I shall review the central role of gradients in measuring 
spin motion and outline the hardware and software used in this thesis to perform 
such experiments. 

3 .1 .1 Effect of gradients 

The magnetic field that i s  added by the gradient coil is normally much smaller than 
the magnitude of the main polarising field B0• Because of this difference i n  the size 
of the fields, only components of the gradient which are parallel to B0 will affect the 
magnitude of the resulting effective field. The gradient field can be defined as 

G = 'VJBo J (3 . 1 )  

or in terms of specific components when B0 is along the z-axis 

G Gxi + Gyj + Gzk (3 .2) 

Gx fJBz (3.3) ox 
Gy fJBz (3.4) oy 
Gz 

fJBz (3.5) - oz 

The effect of the gradient is to change the Larmor frequency of nuclear spins in  the 
sample, due to the field magnitude B0, depending on their spatial position r such 
that 

w(r) = 1Bo + 1G · r. (3.6) 

21  
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Eqn (3.6) provides the basis for NMR imaging[10, 1 1 ]  as well as all the pulsed 
gradient experiments contained in this thesis .  Although gradients were used to 
measure diffusion coefficients[9, 12] well before the first NMR image was published, 
i t  is appropriate to discuss the later briefly before the former. 

3 .1 . 2  k-space imaging and t he Fourier transform 

In  a normal free induction decay, i f  the effects of relaxation are ignored, the acquired 
signal from an element of volume dV can be written as 

dS = exp [iw0t]p(r)dV (3 .7)  

where w0 is the Larmor frequency of the spins. If  however a gradient is applied then 
the Larmor frequency of each spin is affected by its spatial position, hence 

dS(G, t) = exp [iw(r)t]p(r)dV. (3 .8 )  

By using eqn (3.6) the signal from this element can be written as 

dS(G, t) = exp[i (IB0 + 1G · r)t]p(r)dV. (3 .9 )  

No phase factor i s  introduced in eqn (3 .9) because fixed phase offsets are nearly 
always removed by either autophasing the image or taking the magnitude at the 
end of processing. The absence of relaxation in eqn (3.9) is unimportant if the 
dephasing due to gradients is stronger than dephasing due to T2 . In fact this is a 
necessary condition for obtaining a 'high-resolution' image. A further simplification 
can be made by utilising the 'on-resonance' condition , where the acquired signal 
is mixed with the original 1Bo frequency. This is called heterodyne mixing and 
is employed in all high frequency spectrometers today, although often one or more 
intermediate frequencies are used to step the signal down to the 'audio' range. The 
volume integral of eqn (3 .9) yields 

S(G, t) = j j j p(r) exp [iJG · rt]dr. (3 . 10 )  

In fact this equation i s  no  more than a Fourier transform between r and some 
reciprocal space. A reciprocal space vector k can be defined as [13]  

1 
k =  -1Gt 

27r 

then eqn (3 . 10) can be written as 

S(k) = j j j p(r) exp [i27rk · r]dr 

(3 . 1 1 )  

(3 . 12 )  

which shows clearly the Fourier relationship between r and k. The inverse transform 
can easily be shown to be 

p(r) = j j j S(k) exp (-i27rk · r]dk. ( 3 . 1 3) 

Therefore one can reconstruct the original image from S(k) by applying eqn ( 3 . 1 3) 
and obtaining p(r) as shown in Figure 3 . 1 .  

In effect, the gradient "spreads" out the signal from the sample in t he frequency 
domain .  For a single gradient strength and direction, the frequency profile is the one 
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Figure 3 . 1 :  Diagram showing the NMR time domain signal acquired for a uniform cylindrical 
sample with the gradient direction as indicated above. The frequency spectra obtained by Fourier 
transforming the time domain signal corresponds to the spin density function projected along the 
direction of the gradient G. 
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dimensional density projection of the sample along the gradient direction. As the 
gradient is increased, the profile is more "spread out" across the frequency spectrum, 
revealing finer details. However, the maximum resolution is limited, because the 
larger spectral bandwidth would include more noise. Eventually the signal is so 
spread out , that the noise dominates over the whole spectrum. Often other 'signal­
decreasing' effects come into play before this situation occurs. Some of them are 
discussed further in Section 6 .5 . 

3 .2  Gradients and spin motion 

In direct contrast to NMR imaging, where it is the static position of molecules that 
is of interest , we are instead interested i n  the dynamic movement of molecules over 
a certain time interval . The specific starting and finishing position of the molecules 
are unknown but any displacement can be detected. 

In Section 3 . 1 .2 it was noted that any motion of the molecules along the gradient 
direction can lead to fluctuations in the Larmor frequency and some distribution of 
residual phase shifts. In fact Hahn [9] noted the effect of self-diffusion on spin echoes 
in his original 1950 paper. The Carr and Purcell sequence [12] utilising multiple 
echoes was proposed in order to minimise such effects. 

In this thesis we are concerned with measuring the motion of molecules. It turns 
out that the effect that the diffusion process has on the NMR signal, in the presence 
of a gradient , is both measurable and useful. 

3.2.1 Gradients and diffusion 

Self-diffusion can classically be characterised in one dimension as a series of hops of 
distance e with a time Ts between steps. The hops have equal probability of being 
to the left or right so that the displacement is [12] 

n 

Z(nTs) = I: eai (3 . 14) 
i=l 

after a time t = nT3• The variable ai is a number equal to ±1 to represent a jump 
to the left or right. By squaring and taking the ensemble average i t  can be shown 
that for t = nT3 

Z2 (t) = 2Dt (3 . 1 5) 

where 

D = e j2Ts (3 . 1 6) 

If one introduces a magnetic field gradient along the z diffusion direction, a phase 
shift will be acquired due to the changing precession frequency as the spin moves. 
If we assume that Z(t) = 0 at t = 0 and ignore the constant Larmor precession due 
to B0, then the change in frequency of the molecules, from eqn (3 .6) , will be 

�w(t) = 1GZ(t) (3 . 1 7) 
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and the phase shift, Llcp, acquired by the spin after a time t = nr5 ,  using eqn (3 . 14)  
will be[12] 

Llcp( t) 
m=l i=l 

n 

1Grse 2:) n + 1 - i)a; . 
i=l 

The ensemble average 

(3 . 18 )  

When dealing with a real sample with an Avogadro's number of  spins we need 
some technique for calculating the final signal . Typically there is an echo sequence 
involved and so, with the exception of the steady gradient case which follows, the 
echo signal is labelled E. Because the diffusion process is random each spin will 
acquire a different phase shift .  To calculate the final result of adding all the spin 
vectors, ei!:J.4> , together, each with a phase shift .6.cp, an ensemble average over the 
whole sample is used. 

In order to find the coefficient by which the ensemble-averaged transverse mag­
netization will be attenuated we need to calculate exp(illcp ) ,  additional attenuation 
due to T2 relaxation effects will be ignored. Therefore 

exp(illcp) = j_: P( Ll<P) exp(illcp )d( Llcp) (3 . 19 )  

where P(Ll<P) is the distribution of phase shifts Ll<P(t) . This integral is most simply 
done by assuming that the distribution of phase shifts P(.6.cp) will be Gaussian [ 14] 
which makes eqn (3. 19) yield 

exp(i.6.cp) = exp( -flcp2 /2) 

By squaring eqn (3 . 18) and taking an ensemble average one obtains 

n 

flcp2 = ,2G2rs2e 2:)n + 1 - i )2 
i=l 

n 

,2G2rs2e L J2 
j=l 

1 
3'2G2r;en3 

(3 .20) 

(3 .21 )  

where 'Lj=1 p = �n3 i s  evaluated by assuming that n is large. Substituting this 
result and eqn (3. 16 )  into eqn (3.20) one finds the signal attenuation due to diffusion 
in the presence of a steady gradient is [12] 

(3 . 22) 

Often in NMR there are i nhomogeneities in  the local field throughout the sample, 
as discussed in Section 2 .3 . 1 ,  and these can be refocused though the use of a spin 
echo. If a 180° pulse is applied at a time t after the initial 90° excitat ion pulse then 
an echo will form at 2t. 



26 CHAPTER 3. PGSE THEORY 

90x 
echo 

f' 
center 

d. '"'"" � � 
• 

0 r 2-r time 
11 

� & + 

gradient n n • 

signal 

Figure 3 . 2 :  The pulsed gradient spin echo sequence (PGSE) with the r.f. and gradient pulses 
shown on separate time lines. The attenuation of the echo acquired at time 2r due to the presence 
of the gradient pulses is given by eqn (3 .25). 

The signal attenuation of the echo occurring at 2t in the presence of a steady 
gradient is then [12] 

S(2t) = exp(i�4>) exp( -�--/G2 Dt3 ) 

1 
exp( -

12  
'"·/G2 D(2t)3 ) 

3 .2.2 P ulsed field gradient s  

(3 .23) 

A major inconvenience of the steady gradient method[15, 16] is that the gradient is 
applied to the sample for the whole experiment . In particular for the times when the 
r.f. pulses are being applied, and when the signal is being acquired. The resultant 
spread of the Larmor spectrum and the effective bandwidth of the receiver and 
transmitter will limit the maximum strength of gradient that can be applied to the 
sample. It is however easy to modify the hardware so that the gradients can be 
applied as pulses at the appropriate time, and a spin echo sequence can be used to 
form an echo at an appropriate time when the gradients are off. This modification, 
called Pulsed Gradient Spin Echo (PGSE) , first suggested by McCall, Douglas and 
Anderson[16] in 1963, was demonstrated by Stejskal and Tanner( 17] in 1 965, and is 
shown in Figure 3.2 .  If the gradient pulses have a duration 8 and a separation .6. 
then the mean square phase shift is given by[18, 17 ,  19] 

(3 .24 )  

The echo amplitude at 2r  will be  attenuated by both relaxation and the gradient . 
The effects of any T2 relaxation can be removed by normalising the echo signal to 
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its value with no gradient applied. The ratio S(g)/ S(O) is often labelled E (g) .  The 
signal strength of the echo at 2r is therefore given by 

(3.25 )  

which i s  the well known Stejskal-Tanner equation [l 7] .  A plot of the natural loga­
rithm of the echo against 12g282(!:l - 8/3) will give a straight line with a slope of 
-D for a sample exhibiting unrestricted Brownian diffusion . This type of graph is 
often referred to as a S tejskal-Tanner plot and has been used extensively to measure 
self-diffusion coefficients from PGSE experiments[20, 21 , 22] . The effect of any relax­
ation can be removed by normalising the echo signal to the value when no gradient 
is applied. 

Eqn (3 . 25) has also been derived by Stepisnik[23] using a density matrix formal­
ism that is especially useful for finding expressions for E( q) for oscillating rather 
than pulsed gradients. 

3.2 .3  Stimulated echo 

The PGSE experiment can be altered to take advantage of the stimulated echo 
sequence[24] of Section 2.4.4 as shown in Figure 3 .3 .  The echo attenuation is still 
given by eqn (3 .25)  but the normal reduction of signal by a factor of two is still 
present. However the spins now only suffer T2 relaxation during the two periods r1 • 
During the longer period r2 the spins suffer the normally less severe T1 relaxation. 
However the gradient pulses can only be applied during the intervals where the 
magnetization is in the transverse plane which often limits the duration of r1 . In 
some recent experiments, utilising the fringe field of superconducting magnets[25] 
to obtain large field gradients, this pulse sequence has been used to define narrow 
gradient pulses . Five pulse variations[26] of the stimulated echo sequence are used 
in the fringe field experiments to remove relaxation dependance of the echo signal. 

3.3 P GSE, scattering and q-space 

In order to discuss diffusion in PGSE experiments certain tools are needed to describe 
the motion of the particles. A molecule i can be characterized by a function ri (t)  
which describes its position at any time t .  By taking an ensemble average over all 
particles we can find the probability of the particle moving from an initial position 
r to a position r' a time t later. These probabilities form the Van Hove correlation 
function[27] P(rJr', t )  a well known function in scattering theory. This function tells 
the probability of finding any scattering center at (r' ,  t) if there was one at (r, 0 ) .  
However this function describes relative motion between particles as  well as the self­
motion. The correct function for use in PGSE is the self-correlation function [28] 
Ps (rJr', t) which gives the probability of a molecule initially at r moving to r' after 
a time t. This inherent labelling of the molecules by P GSE NMR is only shared by 
the incoherent fraction of polarised neutron scattering. All other forms of dynamic 
measurement , such as dynamic light scattering, measure the Van Hove correlation 
function. 
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Figure 3.3:  The stimulated echo variation of the PGSE sequence. The attenuation of the echo is 
given by eqn (3 .25) . 

3 . 3 .1 The conditional probability function and the average 

propagator 

Fick's law 

The probability of finding a particle at position r' at a time t , w (r', t ) , i s  given by 

w (r', t) = j w (r, O )Ps (r ir', t)dr (3 .26) 

The diffusion process can be described by Fick's law[29] which sets the particle 
concentration gradient proportional to the particle flux per unit area per unit t ime. 
Although there is no net concentration gradient for self-diffusion, a description using 
w (r', t) is possible as it describes a sort of ensemble-averaged probability concen­
tration for a single particle. Fick's law can therefore be written i n  terms of Ps 
as 

(3 .27) 

where the constant of proportionality, D, is the self-diffusion coefficient . The i nitial 
condition required is. 

Ps (r ir' , 0 )  = b(r' - r) (3 .28 )  

Unrestricted self-diffusion 

A solution to eqn (3.27) can easily be obtained for the special case of unrestricted 
self-diffusion [ 18] . The initial boundary condition of eqn (3.28) combined with the 
condition that Ps --t 0 as r' --t oo gives 

, 1 (r' - r)Z 
Ps(r lr ' t ) = (47rDt)3/2 exp[- 4Dt ] (3 .29) 
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Notice Ps is independent of the initial position r and depends only on the net 
displacement ( r' - r) . The vector r' - r can be referred to as R, the dynamic dis­
placement. A useful function to describe is  the averaged propagator[30] Ps (R, t) 
which gives the probability of any particle having a displacement R over a time t .  
This function can be  evaluated by 

Ps (R, t ) = j Ps(r ir + R, t )p(r)dr (3.30) 

For the case of unrestricted self-diffusion it can then be written that 

(3 .31 )  

In PGSE the dynamic measurement is only made along the gradient (z) direction 
and hence we are only concerned with motions in one dimension. Integrating over 
the other two dimensions eqn (3 .3 1 )  becomes 

(3.32) 

The ensemble averaged mean-square dynamic displacement can also be evaluated 
from the averaged propagator and yields 

as expected. 

I: Z2 Ps(Z, t)dZ 

2Dt 

3 . 3 . 2  The narrow-pulse approximation 

(3.33) 

If the gradient pulse is applied to the sample over a short enough time period 8 
such that the molecules do not move significantly over the period 8 then a useful 
approximation can be made. For a spin at position r when the first gradient pulse 
is applied, a phase shift 18g · r will be acquired. This phase shift will be inverted 
by the 180° r.f. pulse. Suppose the molecule moves to a position r' at the t ime the 
second gradient pulse is applied. The net phase shift acquired by the spin due to 
the gradient pulses would then be 18g · (r' - r). To calculate the ensemble averaged 
echo signal the phase term exp[i18g · (r' - r)] must be weighted by the probability 
for a spin to start at r, namely p(r) , and the probability for it to move from r to r ' ,  
namely Ps(r lr' ,  t ) .  The echo signal will therefore be[18] 

E(g) = j p(r) j Ps (rir', �) exp[iJog · (r' - r)]dr'dr (3 .34) 

assuming any relaxation effects are normalized out . In the static imaging discussed 
earlier a vector k was introduced to describe a reciprocal space to the molecular 
positions. For P GSE, as well, a vector q can be used to describe a reciprocal space 
to displacement where[31]  

log q =-211' 
(3 .35) 



30 CHAPTER 3. PGSE THEORY 

This allows eqn (3 .34)  to be rewritten 

E(q) = 
j 

p(r) 
j 

Ps(r lr', �) exp[i27rq · (r' - r)]dr'dr (3 .36)  

It i s  interesting to note that eqn (3.36) is equivalent to the neutron scattering func­
tion of the incoherent fraction, namely 

Sincoherent = N-1 :L exp [i27rq · (ri (t) - ri (O) )] 

This is in contrast to the coherent neutron scattering function 

Scoherent = N-2 :L :L exp[i21l'q · (rj (t ) - r;(O) )] 
i j 

(3 .37) 

(3 .38) 

which is sensitive to relative motions between molecules as discussed before. The 
ability of PGSE to measure the self-motion of molecules is of major importance to 
the technique. 

The concept of reciprocal q-space can easily be seen by making the substitution 
r' = r + R allowing eqn (3 .36) to be rewritten[18, 31 ]  

E( q) = 
j 

Ps (R, �) exp[i21rq · R]dR (3.39) 

Eqn (3 .39) represents a simple Fourier relationship between E( q) and Ps (R, �) [32 , 
3 1 ] .  In fact q is the reciprocal space to R. By acquiring signal in q-space we can 
image Ps (R, �) ,  just as acquiring signal in k-space allows one to image p( r) . 

For the one dimensional case where q is aligned along the z-axis eqn (3 .39) is 

E(q) = 
j 

Ps ( Z, �) exp[i21rqZ]dZ 

By combining eqn (3 .40) and eqn (3 .32) one gets 

joo 1 z2 
E(q) = ( D )1!2 

exp[- -] exp[i27rqZ]dZ 
-oo 411' t 4Dt 

The Fourier transform of a Gaussian is itself a Gaussian giving 

E(q) exp[-47r2q2 D�] 
exp[-·l82l D�] 

(3 .40) 

(3 .41 )  

(3 .42) 

as in the Stej skal-Tanner equation, except (� - 8/3) is replaced by � as one would 
expect if 8 � �. Using eqn (3.33) this result can be expressed in terms of the 
mean-squared displacement of the molecules as [18] 

E(q) exp[ -21r2q2 Z2] 
exp[-t!2b2l Z2] (3 .43)  

Throughout this thesis the echo attenuation function will be referred to as E(q) , 
although strictly speaking, i t  is a function of � as well. This is done deliberately 
to emphasise the q-space approach, taken by this author, in analysing PGSE data, 
where q is varied and � held constant. This approach is in contrast to the traditional 
approaches that were taken by other workers in this field. 
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3 .4 Hardware 

3 .4.1 FX-60 

All the PGSE experiments performed in this thesis were carried out on the JEOL 
FX-60 spectrometer in our laboratory. A home-built sequencer was added to the 
machine as a result of developing an NMR imaging system[33, 34, 35] . The high 
gradient PGSE probe was also home-built and features a quadrupolar gradient coil 
capable of producing 1 .21 T m-1 A -1 . A modified KEPCO current supply[35] is 
capable of supplying up to 15 A to the gradient coil with nominally less than 0 .006% 
noise. For currents less than 10 A the gradient pulses are generally well matched, but 
for experiments requiring greater currents the PGSE-MASSEY technique described 
later must be used. 

The r . f. coil is a solenoid of length 5 mm providing excellent signal-to-noise for 
most samples . The sample tube sits directly inside the r .f. coil and has a 4 mm 
outside diameter and a 3.2 mm internal diameter providing good volume filling of 
the r.f. coil space. A 70 W r.f. power amplifier enables short 90° pulse times of 
around 7 J.LS. An external deuterium lock keeps the water-cooled electromagnet 
stable, although for echo times greater than 100 ms a stimulated echo sequence is 
normally used. 

Temperature control was available but generally not used, the ambient temper­
ature inside the probe of 28 oc was stable enough for most experiments. 

A TI-980A computer provides the means for controlling the spectrometer and 
runs a variety of factory supplied and home-modified software to implement the 
various pulse sequences required. The PGSE version enables the user to specify all 
timing parameters for a series of experiments which are then run sequentially with 
the data being transferred to another computer between each run. Additionally an 
"ngain" parameter can be specified for each experiment increasing the number of 
acquisitions for the particular run as required. Good use of this feature dramatically 
reduces the time required to perform some of the experiments performed in the 
experimental sections of this thesis .  

The signal data is acquired on a single A-D converter and so a time-sharing 
feature was added to enable quadrature acquisition. While this feature is adequate to 
enable coherent noise cancellation through the techniques outlined in Section 2 .4 .2 ,  
i t  was a limiting aspect when trying to implement P GSE-MASSEY which requires 
simultaneous quadrature acquisition. 

The time domain data is transferred via a serial port to an external computer, 
initially a Hitachi PC clone, and later a Macintosh II ,  to facilitate automated analysis 
of the spectra. On the Macintosh version of this software, written by the author, 
the data is Fourier transformed and the necessary peak integration performed to 
reveal the echo signal strength as required. The data is saved in a file for use by 
the PGSEPLOT analysis program developed as part of this thesis. This software 
allows the user to view the data and perform various linear and non-linear fits to 
the data. Not only is the Stej skal-Tanner equation available for fitting, but also a 
full range of the various restricted diffusion equations found in  this thesis .  Spurious 
data points can easily be removed from the fit by the user, with the final graph 
including all fit parameters. This software was used extensively throughout this 
thesis .  Source code can be obtained for viewing by contacting the author through 
e-mail at A.Coy@massey.ac.nz 
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At the time of writing the TI-908A computer has been replaced by a separate 
TECMAG LEOfJ sequencer run from a Macintosh computer. However none of the 
experiments in this thesis were performed on this new hardware . . 

3 .4.2  AMX- 300 

The NMR images in Section 6.4 and Section 6.5 were acquired on the Bruker 
AMX300 system in our laboratory. Routine pulse sequences supplied by the manu­
facturer were used with the final data being transferred to Macintosh computers to 
enable further analysis and hard copy output . 

3.4 . 3  GX-270 

The JEOL GX-270 spectrometer was used to provide simultaneous quadrature ac­
quisition for the PGSE-MASSEY experiments in this thesis and its specific use is 
described in Section 5.2. 
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P G S E  and restrict ed diffusion 

In  many samples a diffusing liquid will encounter boundaries to  its motion. These 
may be hard walls impermeable to the molecule, walls with relaxation sinks, walls 
with holes or softer boundaries through which a molecule diffuses at a slower rate. 
In any case the conditional probability function Ps (r Jr', �) will be altered . Since 
the echo attenuation function E( q) in PGSE is related to the conditional probability 
function through eqn (3 .36)  we can often determine structural parameters associated 
with the boundaries from E(q) . In this chapter we will discuss the PGSE theory 
associated with fully enclosing boundaries which restrict diffusion. By using the 
narrow-gradient-pulse formalism presented in Section 3.3 it has been shown[3 1 J that 
PGSE is an imaging experiment in its own right. This q-space imaging principle is 
a fundamental feature of the work presented in this thesis. 

It is important to remember that the PGSE method collects signal from the whole 
sample and that a real sample is made up of one particular heterogeneous structure 
repeated homogenously through the full sample space. In fact this feature allows a 
form of signal averaging not possible in NMR microscopy. One acquires the signal 
from tens or millions of samples in one experiment . As long as the fundamental 
structure is homogeneous then the signal acquired would be the same as if there 
were only one instance of the structure. 

4.1 Long t ime limit case for average propagator 

The concept of q-space imaging is best introduced by considering the long time 
limit case when � --+ oo. If the molecules are contained by some boundaries to 
their motion then the long time limit case implies that they would no longer have 
any memory of their starting position. In effect , the multiple collisions with the 
boundaries mean that the molecule is equally likely to be found anywhere inside 
the container irrespective of its initial starting position. If the dimensions of the 
container is a then the long time limit case can be estimated as when � � a2 /D.  
In this case the molecules have an equal probability of moving to any position in 
the container. Therefore, Ps (r Jr', oo) is equivalent to the starting density p(r' ) ,  and 
the average propagator can be written from eqn (3 .30) as 

Ps (R, oo) = j p(r + R)p(r)dr ( 4 . 1 )  

This equation can be recognised as the autocorrelation function of the molecular 
density. For this special case the echo attenuation function takes on a special form 
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when the narrow pulse approximation is used. By using p(r') for the conditional 
probability function in eqn (3.34)  we can write 

Eoo(q) j j p(r)p(r') exp[i27rq · (r' - r))dr'dr 

- j p(r) exp[i27rq · r)dr j p(r') exp[i27rq · r')dr' 

S*(q)S(q) 
I S(q) l 2 (4 .2) 

where E00(q) represents the long t ime limit of E(q) . 
The expression S ( q) is in fact the reciprocal lattice acquired by a conventional 

k-space imaging experiment . This relationship is remarkable because i t  says the 
long time limit echo attenuation function is the same as the modulus squared of the 
reciprocal lattice. This tells us that it is possible to image a sample using P GSE, 
however, with the disadvantage that phase information is lost .  The relationship 
between the Fourier transform of the autocorrelation function and the frequency 
power spectrum is known as the Wiener-Khintchine theorem[36) . Its use i n  PGSE 
was initially pointed out by Cory and Garroway[32] who inverted the echo atten­
uation data to reveal the average propagator and hence the autocorrelation of the 
density function of the sample, in this case yeast cells, that they were observing. 
PGSE q-space imaging does have one advantage over conventional NMR microscopy, 
the resolution is not limited by signal-to-noise considerations because the signal is 
collected from the whole sample, not just a single voxel. The only limitation is 
the size of the gradient pulses and the condition that they are well matched . In 
this thesis experiments have been performed where structural information has been 
obtained at resolutions beyond the capabilities of NMR microscopy to date. 

4.1.1 Parallel plane pore 

For molecules trapped between two parallel planes in the gradient direction with 
separation a, the density function p(z) is a hat function of width a. The Fourier 
transform of a hat function gives S(q) , a sine function[12) ,  as shown in Figure 4. 1 .  ja/2 1 

S( q) = - exp(i27rqz) dz -a/2 a 
sin(1rqa) . ( ) = smc 1rqa 

7rqa 
Thus from eqn ( 4 .2)  one gets[32) 

E ( ) I . ( ) ! 2 2[1 - cos (27rqa)) 
00 q = Sine 1rqa = 

2 7rqa 

( 4 .3)  

(4.4) 

which is the Fourier transform of the long time limit average propagator Ps ( Z, oo ) . 
Of most interest in  eqn ( 4.4) is the null at q = a-1 analogous to the optical diffraction 
pattern of a single sli t .  These "diffraction-like" effects in PGSE, where the echo 
signal passes through a minimum, was first observed during the experimental work 
for this thesis in  both the parallel plane case(37] and for the more complicated 
porous case[38] discussed later. It is also important to notice that Eoo ( q) is now 
time independent as expected. The autocorrelation of the hat function gives 

p (Z oo) = { (a + Z)/a2 -a :::; Z :::; 0 
(4.5) s ' (a - Z)fa2 o :::; z :::; a 
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Figure 4. 1 :  Diagram, adapted from Figure 7 .4 ,  ref [3 1] ,  showing the relationship between the 
density function, p(z ) ,  and the echo attenuation function, E(q) of a sample. p(z) is shown top left 
for molecules confined to rectangular box, with the corresponding Fourier transform S( q ) ,  a sine 
function, the signal that would be acquired in an imaging experiment on the sample . Top right 
shows the long time limit averaged propagator P, (Z, oo) , equivalent to the autocorrelation of p(z) . 
The Fourier transform of P, (Z, oo) gives E(q) ,  a sinc2 function shown bottom right. Through the 
Wiener-Khintchine theorem it can be seen that E(q) is the power spectrum of S(q) ,  or, by analogy 
to diffraction , the diffraction pattern of a single slit described by p(z) .  
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The mean squared displacement of this autocorrelation function would then be 
- joo - 1 2 Z2 = Ps (Z, oo)dZ = -a 

-oo 6 (4.6) 

which would imply that for q � a-1 the molecules would seem to have an apparent 
diffusion coefficient of 

Z2 a2 
Dapp = 26. = 12.6. 

which would lead to an initial echo attenuation of 
4 

Eoo(q) � exp( -47r2q2 Dapp.6.) � exp( - 12 7r
2q2a2) 

1 2 � 1 - 12 (27rqa) 
Expansion of eqn (4.4) to fourth order, where 1rqa � 1 gives 

2 1 2 1 4 J sinc(7rqa) i 1 - 12 (27rqa) + 90 (27rqa) - · ·  · 

1 
� exp( -47r2q2 (-a2) ) 12 

(4 .7) 

(4 .8) 

(4 .9) 
an identical result . Taking the initial slope on a Stej skal-Tanner plot will always 
yield Z2 /26. in the narrow gradient pulse limit . 

4 .1 . 2  Cylinders 

The normalised density function for a cylindrical sample of radius a with the gradient 
directed perpendicular to the longitudinal axis of the cylinder is 

p(z) = ( 7r
�
2
) (a2 - z2 ) 1

/
2 for - a :::; z :::; a (4. 10 ) 

Fourier transforming this function gives S(q), the signal that would be acquired by 
an imaging experiment on the sample[12] 

S(q) ja (�) (a2 - z2 )112 exp(i27rqz) dz -a 1ra 
211 (27rqa) 

21rqa ( 4. 1 1 )  

where J1 ( x ) is the first-order Bessel function. The echo attenuation function in the 
long time limit is simply the modulus squared of S(q) and gives 

E ( ) = JS( ) 1 2 = 4(JI (27rqa))
2 

oo q q (27rqa )2 ( 4. 12) 

This function has a null close to qa � 0 .61 and has a less pronounced diffraction 
peak than the parallel plane case. Expansion of eqn ( 4 . 12) to fourth order gives 

4(JI (27rqa))2 1 2 5 4 1 - -(27rqa) + -(21rqa) - · · · (27rqa)2 4 192 
1 

� exp( -47r2q2 ( -a2 ) ) 4 (4. 1 3) 

which implies a mean square displacement in the long time limit of Z2 = a2 /2. On 
a Stejskal-Tanner plot the initial slope in the long time limit will yield an apparent 
diffusion coefficient 

( 4. 14) 
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The normalized density function for a sphere projected along an axis ( z) with radius 
a is given by 

p(z) = (4!3 ) (a2 - z2 ) for - a �  z � a  
which upon Fourier transformation gives 

S(q) = fa ( 3 3 ) (z2 - a2 ) exp(i27rqz)dz -a 4a 
3 [sin(27rqa) - (21rqa) cos(27rqa)] 

(21rqa )3 
which yields the echo attenuation function[31 ] by applying eqn ( 4.2) 

( ) _ 9[sin(27rqa) - (21rqa) cos(27rqa)]2 Eoo q - (27rqa )6 

( 4. 1 5 ) 

( 4. 1 6) 

( 4. 1 7) 

This expression has a null when qa � 0. 73 and the "diffraction bumps" in the 
function are less pronounced than either the parallel plane or cylindrical case. For 
q � a-1 expansion of eqn (4. 17) gives 

Eoo (q) 1 2 3 4 1 - S(21rqa) + 1 75 (21rqa) - · · · 

1 
� exp( -41l'2l( -a2) )  5 (4. 18 ) 

for E( q) in the low-q long time limit . This expression for spheres is particularly useful 
because of its wide relevance to colloidal systems and many biological samples. It 
is also particularly useful in droplet size distribution analysis. The mean square 
displacement for molecules in a sphere in the long time limit is Z2 = 2a2 /5 implying 
a measure apparent diffusion coefficient of Dapp = a2 /5/:l. 

4 .1 .4  C omparison of planes , cylinders and spheres 

In comparing the expressions for the three geometries given above one must note 
that the expression for planes is for a sample half the width of both the cylinder and 
sphere expressions. For a true comparison, parallel barriers separated by a distance 
2a should be used, with the first minimum in E(q) occurring at qa = 0 .5 . This gives 
Dapp = a2 /3/:l for the apparent diffusion coefficient at low-q revealing the simple 
sequence of 1/3, 1/4 and 1 /5 for the factor in Dapp for planes, cylinders and spheres 
respectively. 

Figure 4.2 shows the long-time expressions for each of the geometries on a log­
linear plot . Note the less pronounced diffraction peak for cylinders, and even more 
so spheres, compared to planes. 

4.1.5 Reciprocal q-space 

The inversion of the echo attenuation data to reveal the average propagator can have 
many advantages [32 ,  3 1 ,  38, 37] .  However, the inherent loss of phase information 
can make the data in real space confusing unless some specific information about 
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Figure 4 . 2 :  Long time limit expressions for plane(black) , cylinders(grey) and spheres(light grey) . 
The nulls occurs at qa = 0.5 (planes) , qa :::::::: 0 .61  (cylinders) and qa � 0 .73 (spheres) . Note that a 
parallel plane spacing of 2a is used to be consistent with the cylinder and sphere radii of a .  

the original sample is know. In most cases analysis of the echo data is best done 
in reciprocal space especially where an analytic expression exists for the sample 
geometry in question. Most of the structural information obtained in this thesis 
work was done so using non-linear least-squares fitting methods in a specialised 
PGSE program I wrote called PGSEPLOT. 

In reciprocal space structures associated with boundary dimensions and bound­
ary repetitions reveal themselves as large "bumps" and "nulls" in the data, whereas 
in real space the edge of the average propagator may be hard to determine precisely. 
In fact , working in reciprocal space ties in extensively with conventional methodolo­
gies used in other scattering type experiments . The similarit ies between neutron, 
laser and X-ray scattering and PGSE are numerous as stated before, and working 
in reciprocal space is a common feature of these experimental methods. 

4.2 Finite time expressions for E( q) 

When dealing with finite values of 6.. the expressions for E(q) are more complex. 
Essentially they describe the transition from free diffusion at very short diffusion 
times 6.. , where most molecules have not encountered the restricting walls , to long 
6.. where the expressions described above are relevant . Fortunately, in the narrow 
gradient pulse situation, the propagator is analytically solvable for the three geome­
tries described above. By solving Ficks equation, eqn (3.27) , with the appropriate 
boundary conditions, Ps (z lz' ,  6..) can be found which leads to E (q) through the 
narrow-pulse expression eqn (3 .36 ) .  

4 . 2 .1 Parallel planes 

A rigorous solution is presented for Ps(z jz' ,  6..) and E ( q) in Section 6.2 where the 
effects of boundary relaxation are incorporated into the equations. For the case of 
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Figure 4.3 : (a)Theoretical curves for the echo attenuation function E(q)  for molecules diffusing 
between plane restricting barriers of separation a assuming narrow gradient pulses. The time 
.D. as a fraction of a2 /2D for curves of increasing attenuation is 0 . 0 1 ,  0 . 3 ,  0 . 1 ,  0 .3 ,  1 .0 and 10 .0  
respectively. The diffraction minima occur when qa has integer values and .D. 2:: a2 /2D. At short 
times the curves approach a Gaussian shape representing Brownian motion with self-diffusion 
coefficient D. (b) The same curves plotted on a log-linear scale. 

no relaxation the solution for 

w(r' , t) = j 'll (r, O)Ps (r Jr', t )dr 

with the reflecting boundary condition V Ps = 0 at the walls z = ±a/2, is 

1 2 00 ( n21r2D6.) (n1rz) (n1rz') Ps (z j z' , 6.) = - + - L exp - 2 cos -- cos --· a a n=l a a a 

( 4. 19) 

( 4.20) 

an expression obtained by Tanner and Stejskal [39] through an analogy to heat dif­
fusion. Using eqn (3 .36) it can be easily shown that the echo attenuation function 
in the narrow-pulse limit is [39] 

(4.21 )  
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Short time Limit 

The limiting behaviour in short times can be shown to be 
E( q) = exp( -4?r2q2 D�) ( 4.22) 

as expected. However eqn ( 4.22) applies strictly only in a lograthmic sense. Even 
at very short times some fraction of the molecules will be close enough to the walls 
to have their diffusion perturbed. This fraction will depend on the r .m.s . diffusion 
distance V2i5/5. and the surface-to-volume ration, S/V, of the sample. A simple 
calculation might propose that a fraction (2D�)112S/V would be immobilised. In 
fact i t has been shown analytically[40, 41 ] that the apparent diffusion coefficient , 
Dapp(�) ,  observed deviates approximately from D as 

Dapp(�) = 1 - -4- S D112�112 + higher order terms 
D 3dylii V 

where d is the spatial dimension. 

( 4 .23) 

We have demonstrated this effect by evaluating eqn ( 4.21 ) for a range of times 
and finding Deff(�) using the low- q limit [42] . Figure 4.4 shows graphs of such 
an exercise on both log and linear scales. The wall spacing a of 100 J.Lm gives a 
theoretical surface-to-volume ratio of 2/a = 2.0 x 1 0-4 m-1 . From the initial slope 
in Figure 4.4b ' and eqn 4.23 we obtain a value for s;v = 1 .9  X 10-4 m-I , in good 
agreement with the expected value. Latour et a/. [43] have found good agreement of 
eqn ( 4.23) with PGSE experiments on model porous samples . 

Soderman[44] has shown that with more accurate data eqn ( 4.23) is exact for 
parallel planes, however results for cylinders and spheres show consistent errors , 
suggesting the numerical prefactor may be incorrect for these geometries . 

Long time Limit 

In the long time limit where 6. � a2 /2D the first term in eqn ( 4 .21) dominates, 
which gives 

E(q) = 2(1 - cos (27rqa)) = sin
2 (7l'qa) 

(27rqa )2 ( ?rqa )2 
identical to the expression found before in eqn 4.4. 

4.2 .2  Cylinders 

( 4 .24 ) 

The expression for E(q) in cylindrical geometry in the narrow gradient pulse limit 
is[45, 46] 

E( ) = 4(2 )2 (� � Kmet�m [J
:n (27rqa)]2 exp(-D6.a�m /a) ) q ?rqa L.... L.... ( 2 (2 )2)2 ( 2 2 ) k=1 m=O Ctkm - ?rqa Ctkm - m 

( 4 .25) 

where a is the radius of the cylinders. Km is a constant with value 1 if m = 0 
and 2 if m -=/- 0. The quantity Ctkm is the roots of the Bessel equation J:n (a) = 0 . 
In the long time limit this equation reduces to the expression in eqn (4. 12 ) . The 
behaviour at finite times is similar to the plane expression showing a transition from 
free Gaussian behaviour to the diffraction-like expression for restricted diffusion as 
6. passes through a2 /2D. Soderman et a/. [45] have also found a PGSE expression 
for the case of a fixed length cylinder (as in a beer can) orientated at any angle. 
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Figure 4.4: (a) Detr vs � on a log-log scale for water diffusion between parallel plates , calculated 
using eqn (4.2 1 )  using low-q values. The plane separation a is 100 J.l.m and D = 2 .5  x 10-9 m2 
s- 1 .  The transition to restricted diffusion is apparent at � ,..., a2 /2D a value of 2 s. (b) The same 
data on a linear scale plotting Detr against � 112 . The linear region at short times can be used to 
calculate the surface-to-volume ratio through eqn ( 4.23) . 
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4 . 2 .3 Spheres 

The solution for narrow-pulse approximation for spheres[47) involves the use of 
spherical Bessel functions. 

E( ) = 9(21l'qa cos(21l'qa) - sin(27l'qa) )2 q (21l'qa)6 
2 � ( 1 ( ))2 " (2n + 1 )a�m - 6(21l'qa) L..J Jn 21l'qa L..J 2 2 n=O m Qnm - n - n 

( Q�mD� ) 
1 

X exp -
a2 ( a;m - (21l'qa )2)2 ( 4 .26) 

where Jn (x) is the spherical Bessel function of the first kind and Gnm is the mth root 
of the equation j� (a) = 0. This equation reduces to the expression in eqn ( 4 . 1 7) 
in the long time limit . Only the long-time limit expression for spheres is used in 
this thesis but there are many systems, especially biological ones, where a spherical, 
rather than planer, restriction may be encountered and the full expression shown 
here would be essential . 

4.3 The effect of finite gradient pulses 

One of the limiting aspects of all these equations is the assertion that the gradient 
pulses are short with respect to the time taken for the molecules to diffuse between 
the sample barriers . This criteria has meant that very small restriction samples , 
which are easily accessible to PGSE in terms of q, are often difficult to use because 
the gradients cannot be applied over a suitably short interval. One of the key consid­
erations has been as to whether the diffraction minima used to indicate structural 
features in these experiments are still apparent if finite duration gradient pulses 
are used. It was initially thought that intuitively the structural features would be 
"blurred" by the significant molecular motion over the gradient pulse interval[31] . 

4.3.1 G aussian phase approximation 

An accepted way to model finite gradient pulse experiments is through the Gaussian 
phase approximation method proposed by Neuman[48] . In calculating the echo at­
tenuation from eqn (3 . 1 9) one assumes that the distribution of phases are Gaussian , 
an approximation which is strictly valid only for the case of free diffusion. However 
Neuman[48] derived the equations for the echo attenuation function for the case of 
steady gradients where spins are confined between parallel planes, in a cylinder or in 
a sphere. Murday and Cotts [49) derived the equation for the case of pulsed gradients 
for spheres and recently Balinov et al. [47) derived the pulsed gradient expression 
for planes and cylinders. 

One characteristic of the Gaussian phase approximation is that no diffraction­
type peaks or minima are apparent . In fact the Gaussian nature of the phase 
distribution necessarily implies that the echo will always decay with increasing gra­
dient . However these equations are remarkably good at approximating the echo 
attenuation function and simulations show that they are normally within 5% of the 
simulated value for E(  q) at attenuations greater than 0 . 1 [47] . 
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Figure 4 . 5 :  Echo attenuation, E(q) ,  for perfectly reflecting walls predicted by simulations for the 
case of finite gradient pulses. In each case the pulse separation , �' is fixed at 1 .2a2 /2D. The 
gradient pulse duration , b, varies from 0 .015 to 1 .2  in units of a2 /2D. Note that even in the steady 
gradient case , b = 1 .2a2 /2D, a diffraction minimum is apparent for qa ...., 2 . 5 .  

However, I have performed computer simulation experiments that show the min­
imum in the echo attenuation function is still very apparent even for very long 
gradient duration times [37] . The position of the minima are shifted to higher q, in­
dicating that the Gaussian phase approximation is at best a crude approximation of 
the PGSE experiment and lacks the structural detail necessary to evaluate correctly 
such experiments. 

4.3.2 Comp uter simulations 

The details of the computer simulations method are outlined in Section 6.3 . The 
simulations are for molecules diffusing between plane parallel barriers of width a 
with perfectly reflecting walls. 

The simulation used a range of 8 values where .6. is held at a fixed value and the 
gradient strength adjusted to keep q constant. The results for .6. = 1 .2a2 /2D are 
shown in Figure 4.5 . As 8 is increased, the position of the diffraction minimum shifts 
above qa = 1 .  It also seems that this shift would continue to increase monotonically 
as 8 is increased. There seems to be no fundamental limit on the size of this increase 
as long as .6. can be increased, and g decreased, to keep q constant . 

This shift of the minimum has also been observed in simulations by Soderman 
and co-workers[44] , and using a different simulation technique by M.H . B lees [50] . A 
finite difference numerical simulation of the Bloch-Torrey equation was performed by 
Blees using a method proposed by Zientara and Freed[51 ] . In this article the author 
numerically solved the Bloch-Torrey equation for the magnetizat ion evolution under 
the influence of diffusion, wall reflection and phase precession due to the magnetic 
field gradient. The echo attenuation curves shown here agree precisely with the 
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Figure 4 . 6 :  The dependance of the diffraction minimum position, aetr - 1  for perfectly reflecting 
walls as a function of the gradient pulse duration, 8, for three different observation times, 6., given 
by 0 .6  (solid squares) , 1 .2 (open circles) ,  and 2 .4 (open squares) in units of a2 /2D. The points 
shown are obtained from the position of the diffraction minimum derived from simulations,  such 
as the one show from in Figure 4.5. 

results of Blees . 
It is remarkable that the coherences which lead to the diffraction minimum are 

still strongly in evidence, albeit "shifted in q-space" , in the case where the gradi­
ent pulse has finite width. This contradicts the predictions of the Gaussian phase 
approximation which is commonly used in analytic treatments where the gradient 
pulse width is large. Such a treatment, which corresponds to retaining only the 
leading term in a cumulant expansion of the phase factor, cannot possibly lead to 
such q-space structure. 

The influence of pulse width, over a range of experimental observation times 6 ,  
are shown in Figure 4.6 . Here the position of the minimum i s shown as a function 
of gradient pulse width, for 8 varying from 0.6a2 /2D to 2.4a2 /2D. 

A recent paper by Mitra and Halperin [52] explains this shifting of the minimum 
by using a center-of-mass (COM) propagator in place of the normal propagator 
function. In their "ansatz" the molecule acquires a phase shift equivalent to its 
COM position over the duration of the gradient pulse. For two finite gradient pulses 
this has the effect of reducing the effective displacement and hence reducing the 
phase shift acquired by the molecules . The effect is that the pore distances appear 
smaller and the q-space minimum is shifted to higher q. They also predict that i n the 
very long time limit case, many times a2 /2D, the COM propagator will be shifted 
closer to the center of the pore and appear more Gaussian-like, slowly reducing the 
diffraction-like effect . 
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There is i n fact one restricted diffusion problem for which a complete analytic solu­
tion is known for any gradient pulse duration or separation. Terentjev et al. [53] have 
recently found the echo attenuation function for a particle confined by a harmonic 
potential . Because the problem remains Gaussian it can be solved completely, the 
only case known to date for which this can be done. The solution may have parti c­
ular relevance to the problem of measuring restricted diffusion in polymers where 
the confining tube can be modelled by such a harmonic well . 
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Chapter 5 

P G S E- MAS S EY 

In Pulsed Gradient Spin Echo experiments, there is no fundamental limitation on 
the size of the dynamic displacements one can measure . However, in real PGSE 
experiments, one finds it increasingly difficult to accurately measure displacements of 
less than 100 nm. This in turn leads to a lowest measurable self-diffusion coefficient 
of around 10-14 m2 s-1 . The main problem is that the two gradient pulses have to 
be matched to an exceedingly high accuracy. One of the primary considerations in 
gradient switching units is the ability to correctly deliver the same amount of charge 
to the gradient coils during each pulse. It is also important that the sample does 
not move, in the time between the two gradient pulses, as additional artifacts can 
be introduced. 

One method proposed to overcome these limitations is to use the large, stable 
field gradients found in the fringe field of superconducting magnets [25, 26] . Alter­
natively one can use a standard PGSE sequence and correct for the artifacts gen­
erated by gradient pulse mismatch and sample movement using a method dubbed 
PGSE-MASSEY[54] by its creator. The acronym stands for modulus addition using 
spatially separated echo spectroscopy. As part of the work in this thesis, I imple­
mented the PGSE-MASSEY on our spectrometer as outlined below. This technique 
was used to acquire the data for the polymer structure functions in Section 8.4.3 . 

5.1 Theory 

5 .1 .1 The cause of Echo instabilities 

The effect of sample movement between the two gradient pulses would be to intro­
duce a common displacement to all the spins. This results i n a net phase shift for all 
spins at the echo. Gradient mismatch would result in a local phase shift dependent 
on the position of the spin within the sample. Both these effects are complicated 
by the fact that they may, and usually will, differ from one individual acquisition 
to the next due to irregular movement of the sample in the first case, or noise or 
current ripple in the second. The average propagator, eqn (3.39) , can be modified 
to 

E( q) = j p(r) j Ps (R, �) exp[i27rq · R + i<P]dRdr (5. 1 )  

where the phase shift <P accounts for the sample movement or gradient mismatch. 
If the sample moves by �r between the gradient pulses and the pulses themselves 
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have a mismatch of strength D.q then 

21rq · R +<I> = 21r[(q + D.q) · (r + R + D.r) - q · r] (5 .2 ) 
If we define the z-axis so that the static and dynamic displacements are z and Z 
respectively and insist that the direction of the two gradient pulses are the same 
then one can write 

21r [(q + D.q) ( z + Z + D.z) - qz] 
21r [qZ + (q + D.q)D.z + D.qz] 

(5 .3 ) 
(5 .4) 

Notice the term D.qZ is removed since qZ is only on the order of unity and D.q << q. 
Eqn (5. 1 )  can now be written using eqn (5.4) as 

E(q ) = {j Ps (Z, D.) exp(i27rqZ]dZ} exp(i21r(q + D.q)D.z] 

x {j p(z) exp(i27rb.qz]dz} (5 .5) 

The first bracketed term in eqn (5 .5) is the normal echo attenuation function ex­
pected from the PGSE experiment free from artifacts: This term can be called 
E0(q) . The second term is the phase shift resulting from the D.z movement of the 
sample. The third term in brackets is the integral of the position-dependent phase 
shifts. This final term is only correctable if the position dependence of the phase 
shifts can be removed. This is readily achieved by using a read gradient . 

5 .1 . 2  Effect of a read gradient 

By applying a k-space read gradient , G, with the same gradient coil that generated 
the PGSE gradient g it is possible to resolve the phase shifts . The pulse sequence 
used to implement this is shown in Figure 5 . 1 . The spatial separation of the pixels 
is 21r j 1G NT where N is the number of points acquired at a sampling interval T . 
This spatial resolution must be less than the "wavelength" of the phase oscillation 
in the sample. We therefore require 

27r 1 --- < ­
,GNT - D.q 

which implies that 

G > 21rD.q > 8D.g 
- 1NT - NT 

(5 .6) 

(5 .7 ) 

The final term in eqn ( 5. 7) assumes the mismatch in q is due to a variation in g and 
not 8. Since 8 and NT will both be of the order of milliseconds this implies that G 
will have to be comparable to the gradient fluctuation D.g. 

A coherent superposition will now occur at the time t = -21rD.qf1G, either 
before or after the echo depending upon the sign of the mismatch. Full echo ac­
quisition is therefore essential if this scheme is going to work. Long acquisition 
times will reduce the bandwidth and improve signal-to-noise if bandpass filtering i s 
used. However the pixel separation must be greater then the homogeneous linewidth 
setting a lower limit on the bandwidth of 

1 N - > ­T - 1rT2 
(5 .8 ) 
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Figure 5 . 1 :  The PGSE-MASSEY pulse sequence . Both the read gradient and the PGSE gradient 
are applied to the same gradient coil but the current is supplied from different sources. Notice the 
exaggerated displacement of the echo center from 2r to indicate the effect of a mismatch in the 
two PGSE gradient pulses. For this reason full echo acquisition must be used as the echo center 
can vary significantly from one acquisition to the next. 
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With the full echo acquisition, the Fourier transform of the time domain data will 
contain no dispersion term. For a read gradient k and a PGSE gradient q the echo 
is(54] 

E(q, k) = E0(q) exp(i27r (q + �q)�z] j_: p(z) exp(i27r.Llqz] exp(i21rkz]dz (5 .9) 

which upon Fourier transformation with respect to k yields 

E( q, z) = Eo( q) { exp(i27r( q + �q)�z] } p(z) { exp(i27r ilqz] } (5 . 10) 

This one-dimensional projection image p(z) weighted by the true echo attenuation 
function Eo ( q) has two additional terms in the expression; a zeroth order phase 
shift {exp(i27r(q + �q)�z] } due to sample movement , and a first order phase shift 
{ exp(i27r �qz] } due to pulse mismatch. 

Analysis of the data must be performed on an individual acquisition basis as �z 
and �q may and probably will fluctuate from one FID to the next. Once the phase 
shifts are resolved, individual spectra can be eo-added and upon integration of the 
projection image a value for E0(q) can be determined. The experiment can then be 
repeated for different values of q . 

Two procedures are possible for removing the phase artifacts . If the signal-to­
noise ratios are good then the spectra could be autophased for maximum integrated 
area. For the majority of cases, where signal-to-noise will be poor, a modulus 
calculation can be performed to remove phase twists on the spectrum. However, 
a modulus calculation leads to a finite noise baseline and forbids the use of phase 
cycling to remove coherent noise. 

It is important to consider the noise power baseline in such experiments .  To 
illustrate the process we consider n acquisitions , labelled by i of m pixels in a 
spectrum, labelled by j where the signal per pixel is ai and the noise per pixel is 
O"ij where a is the r .m.s . noise power per pixel . By squaring the signal we find the 
power for pixel j is 

n n 

Power(j ) = 2)ai + O"ij )2 = naJ + na2 + 2aj L O"ij 
i=l i=l 

( 5 . 1 1 )  

The second term i s  the noise baseline, common to all points which can be subtracted 
from the final spectrum. The summation in the last term can be replaced with n112ai 
to give after baseline subtraction 

( " ) 2 ( 
2C/j ) Power J = nai 1 + nl/2a . J 

( 5 . 12) 

Therefore the square root of the net power is n 112aj + C/j and the integral over the 
m points of the spectrum gives 

m m m 

Signal = nt L ai + L ai = ntA + L ai j=l  j=l j=l 
( 5 . 13) 

The noise sum is a random variable centered about zero with standard deviation 
m112a .  Hence the overall signal-to-noise ratio is n112 A/m112a. 
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Figure 5 . 2 :  Diagram showing the various steps involved in  PGSE-MASSEY analysis. For the 
cylindrical sample shown a hypothetical position shift 6.z and gradient mismatch 6.q are included. 
Fourier transformation of the echo yields a normal projection image of the sample but with an 
arbitrary phase shift and phase twist due to 6.z and 6.q respectively. The modulus addition 
removes these artifacts but leaves a noise baseline which must be removed before final integration 
of the peak. 
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Figure 5.3: Diagram of hardware setup used to implement PGSE-MASSEY. The GX-270 spec­
trometer is used as it has simultaneous quadrature acquisition. The two power supplies are switched 
by standard TTL controlled current switching boxes. A battery is used to supply current for the 
small read gradient . Data is transferred via an RS-232 serial port and analysis of the data is 
performed on a program written on a Macintosh computer. 

5 .2 Hardware and Software 

Some modifications are necessary in order to implement this technique. The read 
gradient is typically several orders of magnitude smaller than the PGSE gradient and 
hence requires a separate power supply. Also the need for full quadrature acquisition, 
and not the time share quadrature on the FX-60, meant it was necessary to use the 
GX-270 spectrometer for signal acquisition. 

5 . 2 .1 Combining gradients 

When connecting two power supplies to the same coil , care must be taken not to 
directly connect the supply terminals to each other. A pair of crossed, high power 
diodes provided the necessary isolation between each supply. A further problem is 
that of earth loops, especially if the ground wires are made common. In fact the 
best supply for the read gradient I found was a rechargeable battery and a variable 
resistor, which removed the possibility of getting extensive hum in the gradient 
circuit due to earthing problems, and gave excellent control of the small currents 
necessary for the read gradient. 
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5 .2 .2  S ignal acquisit ion 

The GX-270 spectrometer was used for the PGSE-MASSEY experiments as , at the 
time, it was the only spectrometer with full complex echo acquisition. TTL outputs 
were required for switching both gradients and for turning on the current of the 
PGSE gradient at the required time. The magnet used however was the 60MHz 
electromagnet and the usual PGSE probe. Only the external lock was used on the 
FX-60 spectrometer. The r .f. pulses were fed out of the power amp on the GX-270 
and into the crossed diodes of the 60MHz quarter wavelength trap. The homebuilt 
preamp was used before the signal was returned to the A-D converters on the GX-
270. Although the cables to connect the spectrometers were long compared with 
typical lengths I found the reduction in signal-to-noise was not excessive. 

Because all processing of the signal had to occur after the acquisition, the data 
was collected in a 2-D file with one single FID per row. Typically between 32 to 
128 acquisitions, and therefore rows , were used for one single q-space point . The 
experiment was then repeated for additional q points. 

5 . 2.3 S oftware 

Once acquired the data was transferred via serial port to a Macintosh computer 
where the FT, baseline subtraction and modulus addition were performed by a 
program written by this author. The program then integrated the spectrum between 
predefined points and displayed the result. Once all q-space points were acquired, 
the echo attenuation data was saved in a file in a format suitable for use by the 
PGSEPLOT analysis program. 
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Chapter 6 

P G S E  experiment s  on parallel 

barrier samples 

6 . 1  Introduction 

Until recently(37] the PGSE diffraction-like effects, discussed in Chapter 4, had not 
been investigated or observed experimentally. As pointed out in ref (31 ] , the use of 
eqn (4.21 )  had been through varying �' the observation time, and not q. None of the 
diffraction-like effects discussed had been observed in experiments before the work 
done in this thesis (38] . To examine this fundamental problem of the "single slit" , or 
parallel barrier, we performed PGSE experiments (37] on rectangular microslides with 
an internal gap of 100 f-Lm, which showed the expected diffraction effects (32, 37 , 3 1 ] .  
Initial fitting of the theory to the experimental data was good, but showed some 
consistent errors which suggested that there may be relaxation of spins occurring at 
the walls of the microslides. We have extended the theory for parallel planes, given 
in Section 4.2. 1 to include the effects of relaxation at the walls and find a new closed 
form expression[37, 46] . This theory was also recently derived by Snaar and Van 
As[55] , but although mathematically equivalent , their expression is not as simple as 
the one summarised here. I performed computer simulations to examine the effects 
of wall relaxation and to compare with the analytic theory. These simulations have 
provided an important test of some of the assumptions implicit in the theory. 

6.2 Theory of enclosing boundaries with edge re­
laxation 

We show here how the theory presented in Section 4.2 . 1 can be expanded to include 
the effects of relaxation at the barrier walls. 

Full solutions for p(r' , t) and Ps (r jr', t) are possible for the three fundamental 
geometries [46] under the narrow gradient. pulse condition along with corresponding 
expressions for E(q) . These solutions involve expanding p or Ps on some orthogonal 
basis set appropriate to the geometry. The solution for containers of arbitrary shape 
would best be obtained using a numerical approach on a computer. 

To evaluate the time and space evolution of p(r, t) we need to evaluate the partial 
differential equation 

D't/2 ( ) _ 8p(r, t) 
v p r, t - ot (6 . 1 )  
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which can be solved using a "separation of variables" technique where p(r, t )  
u(r)v(t) .  Substituting into eqn (6. 1 )  and rearranging one gets 

D\72u(r) _ av(t) _1_ 
u (r) - at v(t)  

(6.2) 

Since both sides must be constant, we can set them equal to -k2 , given that the 
exponential form for v (t) must have a negative coefficient to satisfy the limit t --+ oo .  
This leads to the Helmholtz equations 

\72u( r) + k2u( r) 
av(t )  + Dk2v(t) 

at 

0 

0 

with solutions for v(t) of the form 

Vn (t)  = An exp( -Dk�t )  

and for u(  r )  of the form 

\72un(r) = -k�un(r) 

This leads to a general solution for p(r, t) of the form 

p(r, t )  = L Anun(r) exp( -Dk�t) 
n 

(6.3) 

(6 .4) 

(6 .5 )  

(6 .6)  

(6 .7) 

where An will be determined by the initial conditions and kn will be determined by 
the boundary conditions. The differential equation governing Ps (r lr' , t )  i s the same 
diffusion equation, namely, 

(6 .8) 

where D is the self-diffusion coefficient again. Ps must satisfy the different initial 
condition 

Ps ( r I r', 0) = 8 ( r - r') (6 .9) 

An eigenfunction expansion of Ps can also be made because 
00 

8(r - r') = L un(r)un(r') (6 . 10 )  
n=O 

where Un are the orthonormal set of solutions to the Helmholtz equation. This leads 
to the eigenfunction expansion 

CX) 

Ps (r i r' ,  t) = L exp( -Dk�t)un(r)un(r') (6 . 1 1 )  
n=O 

where An are the eigenvalues of un (r) .  In order to be finite as t --+ oo we make 
An = - k� .  Ps can then be found, using eqn (6 . 1 1 ) ,  by setting the appropriate 
boundary conditions and finding the eigenfunctions . 
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6 . 2 . 1  Boundary conditions 

It is possible for the boundaries to provide some mechanism for extra relaxation 
of the spins when they strike the surface[56, 57) . Any pause in the rotation of 
the molecule as it hits the surface could be a mechanism for such relaxation. Field 
gradients, caused by susceptibi lity changes, may also be responsible. This relaxation 
leads to a loss of signal from the spins as if the molecules themselves had been 
removed from the sample. This will lead to a reduction in the spin density p(r, t )  
over time. Consider a volume element of thickness 8x against a boundary surface 
of area 8A. If the spins decay exponentially as exp( -t/T) , with a local relaxation 
time T within this element, then the rate of loss of spins at the surface will be 

loss rate 8x 8A p 
T 

M 8A p  (6 . 1 2) 
where M is the "surface magnetization sink density" . This loss will be fed by a flux, 
J ,  that is driven by any spatial variation in spin density such that 

J = n · (-DV p) . (6 . 1 3) 
and the "gain" rate of spins into the volume element will be 

gain rate = J 8A = n · (-DV p) 8A (6 . 14) 
Equating eqn (6 . 12) and eqn (6 . 1 4) leads to the Brownstein-Tarr condition 

Dft · V p + M  p = 0 (6 . 1 5) 
For the case of perfectly reflecting walls where M = 0 it is obvious that the density 
will remain constant across the sample and therefore ft · V p = 0. For perfectly 
absorbing walls where M � oo we find p = 0 at the walls. From the relationship 
between Ps and p we find that Ps is governed by the same boundary condition 

Dft · V Ps + M Ps = 0 ( 6 . 16) 
with identical limiting cases. 

6 . 2 . 2  Parallel plane p ore 

This is a one dimensional problem in which the gradient is applied along the z­
direction normal to two parallel boundaries . The walls are placed at z = ±a/2 
and are allowed to be partially absorbing. The resulting general expression can be 
simplified to the limiting cases discussed previously. 

The eigenmode expansion 

To solve eqn (6. 10) we use as our orthonormal basis set the function 
un(z) = An cos(knz) + Bn sin(knz) ( 6. 1 7) 

which when put into the boundary conditions given by eqn 
z = a/2 and z = -a/2 yields the two possible solutions 

(6. 15) at the points 

or 
kn tan - = - and En = 0 ( kna) M 

2 D 

(kna ) M kn cot 2 = - D and An = 0 

(6. 18 ) 

(6 . 19 ) 
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The p ore density function 

An expression for the pore density function can now be obtained using eqn (6.7) 
and eqn (6 .18) . We make a switch to the dimensionless variable en = kna/2 for con­
venience. Only the cosine basis function is needed to fully describe p(z , t )  and with 
appropriate normalisation we get the following expression for the density function 
across the sample 

where the en are the roots of the modified eqn (6 . 18) namely 

M a 
en tan(en ) = 2D 

(6.20) 

(6 .21) 

By integrating eqn (6 .20) over the whole sample one can obtain the signal relaxation 
function 

(6 .22) 

which is identical to the expression found by Brownstein and Tarr[57] to describe 
the net relaxation i n a container due to relaxation at the walls. This expression is 
used as an initial check in computer simulations as it predicts the echo attenuation 
for the q = 0 point , the fraction of spins unrelaxed after a time .6.. 

The propagator 

The propagator can also be evaluated from the basis functions using eqn (6 . 1 1 ) .  
However both cosine and sine like solutions will be i n the expression. Again we 
make a switch to the dimensionless variables en = kna/2 and (m = kma/2 and 
making the PGSE substitution of .6. for t we get 

Ps (z l z', .6. ) = f: exp[- (2en ): D.6.
]2[1 + sin(2en )/2ent1 

n=O a 
x cos(2enz/a) cos(2enz' fa) 

oo (2( )2D.6. + L exp[-
m 
2 ]2[1 - sin(2(m )/2(mt1 

m=O a 
X sin(2(mz /a) sin(2(mz' /a) 

where en and (m are roots of the transcendental equations 

en tan(en) 

(m cot((m )  

M a 
2D 

M a 
2D 

(6.23) 

(6 .24) 

(6 .25) 

For perfectly reflecting walls (M = 0) , the roots of these transcendental equations 
are en = 0, 1r, 21r, . . .  and (m = 1r /2, 37r /2, . . .. Substitution of these values into 
eqn (6.23) gives an identical expression to the one shown in eqn ( 4.20 ) . 
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The average propagator Ps (Z, Ll) can be evaluated, neglecting relaxation before 
and after the two gradient pulses, by using a-1 for p(z, 0 ) . Substitut ing eqn (6.23) 
into eqn (3.30) yields [37] 

_ � 4en 2 DL:l
l 2 [ . ( )/ ] 1 Ps (Z, Ll) = L...J exp[- 2 a- 1 + sm 2en 2en -

n=l a 
x ( {a - Z + (a/4en ) [sin(2en - 4enZ/a ) + sin(2en)] } cos (2enZ/a ) 

+(a/4en) [cos(2en - 4enZ/a) - cos(2en ) ] sin(enZ/a)) 
� 4(m 2 DLl] 2[ . ( ) / ] 1 + L.,; exp [- 2 a- 1 - sm 2(m 2(m -
m=l a 

x ( {a - Z - (a/4(m ) [sin(2(m - 4(mZ/a) + sin(2(m )] } cos(2(mZ/a) 
- (a/4(m ) [cos (2(m - 4(mZ/a) - cos(2(m ) ] sin((mZ/a)) (6 .26) 

for the average propagator . 

Echo attenuation function 

The echo attenuation function can be evaluated using eqn (3 .36) and gives [37, 46] 
oo 

• (2e )2 DLl 
E(q, Ll) = 

L exp[- n 
2 ]2[1 + sin(2en )/2en l -

l 
n=O a 
[( ?rqa) sin( ?rqa) cos en - en cos( ?rqa )sinen]2 x �������--�����--� 

[( ?rqa)2 - e;p 
oo (2( )2 DLl 

+ 
L exp[- m 

2 ]2 [1 - sin(2(m) /2(mt1 
m=O a 

[(1rqa) cos(1rqa) sin (m - (m sin(?rqa)cos(m) 2 x ��--�--�--�--�----------
[ ( ?rqa)2 - (�)2 (6 .27) 

A simple check is done by evaluating it for the two limiting cases in M. For perfectly 
reflecting walls M = 0, this expression simplifies to the expression already given in 
eqn (4.21 ) .  For the perfectly absorbing walls (M -l- oo) , the expression reduces to 

(6 .28) 

an expression originally derived by Frey et a/. [58] . 

Long time limit 

It is interesting to note at this stage that a long time limit expression can be found 
for the completely absorbing barrier case. Normalising eqn (6 .28)to the q = 0 point 
in the long time limit we get 

1r4 cos( 1rqa) Eoo(q) = ( (2?rqa)2 - 7r2)2 (6 .29) 

This expression sti l l has a diffraction minimum as for reflecting walls . However, the 
null for this expression occurs at qa = 1 .5, shifted from qa = 1 .0 case for reflecting 
barriers. This indicates that the propagator appears to represent a smaller container, 
a situation not unreasonable if all spins near the walls are being completely relaxed. 
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While it is unlikely that eqn (6 .29) could ever be used in a real experiment due to t he 
overwhelming relaxation effects, it indicates that the echo function is significantly 
altered by the effects of relaxation[55, 37] . 

The full nature of the echo attenuation function given by eqn (6.29) will be dis­
cussed in conjunction with the computer simulation results in the following chapter. 
Analytic solutions for cylindrical and spherical geometry have also been found [46] 
along with extensions to eqn (6 .29) to allow for the effect of relaxation before and 
after the gradient pulses [ 46] . 

6.3 Computer simulations 

Several programs, written in C, were used to simulate the dynamics of molecules 
trapped between partially reflecting walls. The programs were compiled and exe­
cuted on a SUN IPX workstation. This SPARC chip based computer is capable of, 
on average, 4.2 MFlops (mi llion floating point operations per second) and 28 Mips 
(million integer operations per second). The UNIX multitasking setup also meant 
it was ideal for setting up multiple simulations over an extended period. Random 
Number generators from Numerical Methods in C[59] were tested and used. These 
random number generators did not suffer from pitfalls common to the simple, built­
in random number generators supplied with most compilers. 

6 . 3 . 1  Hopping method 

Initially both the time and spatial dimensions were quantized. The advantages of 
such a constant are numerous . Integer based arithmetic can be used for all functions 
and as such is often much faster than floating point based programs. A simple left­
or-right ( 1  or 0) random number generator can be used, this procedure was on 
average 7 times faster than the uniform distribution generator used later. Also a 
predefined lookup table could be used to calculate the accumulated phase shifts of 
the spins as only a fixed range of displacements were allowable. 

Relaxation at the walls can be added by allowing a finite probability for the 
molecule to be removed if it lands in the lattice site next to a wall. This models 
the Brownstein-Tarr assumption that a relaxation layer of 8x extends from a wall 
of relaxation sink density M .  

However the disadvantage of the finite lattice or hopping method is the discrete 
nature of the molecular motion. I used a lattice of 100 sites between each barrier and 
a 0 . 1 ms time grid but found results converged slowly to a consistent value, especially 
for checks of simple free diffusion where a Gaussian distribution of displacements is 
expected. In Figure 6. 1 a molecular density distribution p(z , t) is shown in order 
to demonstrate this point . Notice that the theory lines of eqn (6 .20) are above the 
simulation data towards the center of the sample. This strongly suggests that the 
random diffusion mechanism of the simulation does not accurately represent the 
Gaussian like motion of proper diffusion. A finer time or spatial grid would have 
corrected these errors but would have meant unreasonably long simulation t imes. 
This method was therefore rejected in favour of the following technique. 



6.3. COMPUTER SIMULATIONS 

- 1  a 

-a/2 0 
displacement z 

6 1 

a/2 

Figure 6 . 1 :  Nuclear spin magnetization densities p(z , t) predicted by the hopping simulation 
technique and the theory of eqn (6 .20), for partially absorbing walls with M af2D = 20. Note that 
for t =  0, the theoretical prediction is a constant, 1/a. Six successive time intervals are displayed. 
In multiples of a2 /2d, t is, respectively, 0.0 (solid dots) , 0 .005 (solid triangles) , 0 .025 (open circles) , 
0.05 (solid circles) , 0.25 (open squares) , 0 .5 (solid squares) . Note the discrepancy between theory 
and simulation near the center of the sample. 

6 . 3 . 2  Gaussian metho d  

In order to remove the discrete nature of the spatial jump distance a Gaussian 
jump algorithm was developed. The program was rendered entirely in floating point 
arithmetic. All positions between -a/2 and + a/2 were available to the molecules. 
It was found that larger time steps could be used with no compromise in the accuracy 
of the simulation. Two types of simulations were performed. In the first type , to 
investigate partially absorbing barriers , the simulations assumed narrow gradient 
pulses in which the phase shift of the spins, due to an applied gradient , is acquired 
instantaneously. 

In the second set of simulations the effect of finite gradient pulses was observed for 
the case of reflecting walls. The phase shift of the spins for this case was acquired 
over successive time intervals such that the effect of a finite gradient pulse was 
represented. For the first case the program calculated the molecular density p( z, t ) ,  
the average propagator, Ps(Z, t) and the echo attenuation function E(q) . For the 
finite gradient pulse simulations only the echo attenuation function was calculated. 
The results from the finite gradient pulse investigation have already been discussed 
in Section 4.3. 

The effect of wall relaxation was simulated by allowing a relaxation layer next to 
each wall of thickness d. The molecules then have a finite probability, a, to relax if 
they are within d of the wall for each time interval T. The proportion of molecules 
that relax would then be 2ad/a for both walls. Over a time period t = Nr the 
number of molecules remaining would be 

(6.30) 

which can be written in terms of an exponential, if 2ad/a � 1 ,  as 

exp( -2aN d/ a) (6 .31 )  



62 CHAPTER 6. PGSE EXPERIMENTS ON PARALLEL BARRIER SAMPLES 

a (J.Lm) M (ms-1 ) D (m2 s-1 ) T (ms) d (mm) 0: Maf2D a2 /2D (s) 
100 0.00001 2 .5 X 10-9 0.5 0.5 0.01 0.2 2 .0 
100 0.00010 2 .5 X 10-9 0.5 0.5 0 . 1 2 . 0 2 .0 
100 0.00 100 2 . 5 x 10-9 0.5 0.5 0.4 20.0 2 .0 

Table 6.1:  Parameters used in partially reflecting barrier simulations with narrow gradient pulses 
using the Gaussian jump method .  Resulting magnetization densities, average propagators and 
echo attenuation functions are shown in Figures 6 .2 ,  6 .3  and 6.4 respectively 

or 

exp( -o:df aT) 
or 

where we can define an effective T2 due to relaxation as 
aT T2 = -2do: 

(6 .32) 

(6.33) 

(6 .34) 

comparing this T2 to Brownstein Tarr theory in case where M af D « 1 we can write 
a aT T2 = 2M = 2do: 

which results in 
MT a = --d 

(6 .35) 

(6 .36) 

It is interesting to note that , if T is too large, it is possible for a: to take on non 
physical values ( i .e. greater than unity) . This would reflect a situation where the 
condition for eqn ( 6.36) is no longer valid and would require a decrease in the step 
time to remedy. In our simulations we normally limited a to values smaller than 0 . 1  
and adjusted the step time T as necessary, although for the most absorbing cases this 
proved difficult if simulation t imes were to be kept reasonable. The details of the 
particular simulations that were performed are given in Table 6. 1 .  They correspond 
closely to reflecting, intermediate and absorbing situations respectively. 

6 . 3 .3 Effect of wall relaxation 

The resulting magnetization densities, p(z, t), are shown in Figure 6.2 for partially 
absorbing walls with three different values of M. Superposed on the simulation 
results in the same Figures are the theoretical p(z, t) distributions obtained from 
the Brownstein-Tarr theory of eqn (6.20) . In the highly reflective case shown in 
Figure 6.2a the spin density is almost constant , as expected for completely reflective 
walls. The almost fully absorbing wall shown in Figure 6.2c has virtually zero spin 
density at the walls, and the spin density is dominated by the lowest frequency 
cosine of the eigenmode expansion. 
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Figure 6 . 2 :  Nuclear spin magnetization densities p(z, t) predicted by the Gaussian jump simula­
tion method and theory, eqn (6 .20), for partially absorbing walls with M af2D of 0.2 (upper) , 2 
(middle) and 20 ( lower) . Note that for t = 0 ,  the theoretical prediction is a constant, 1/a. Five 
successive time intervals are displayed . In multiples of a2 /2d, t is, respectively, 0.0 (solid dots) ,  
0 .025 (open circles) , 0.05 (solid circles) , 0.25 (open squares),  0.5 (solid squares) . 
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Figure 6.3 shows the average propagator for each case with the theoretical lines 
of eqn (6.26) superposed. Since the barrier walls are placed at ±al2, the possible 
displacements of a molecule varies from -a to +a. In the highly reflecting case Fig­
ure 6.3a the long time propagator is a triangular shape, as expected from eqn ( 4.5) . 
This distribution corresponds to the autocorrelation function of the rectangular pro­
file which describes the density of molecules between the barriers. By contrast , in 
the highly absorbing case of Figure 6 .3c, the cosine-like lowest frequency eigenmode 
dominates indicated by eqn (6.29) 

Figure 6.4 shows the echo attenuation functions, calculated directly from the 
numerical simulations along with theoretical lines from eqn (6.27) . As expected there 
is a diffraction minimum which arises when qa is close to unity for each simulation. 
This minimum is consistently evident at each of the M values used here, and is 
apparent even when the experimental observation time, D., is considerably less that 
a2 I2D, the mean time taken to diffuse across the slit . In is also clear from Figure 6.4 
that the effect of wall relaxation, M ai2D, is to shift the position of the minimum to 
higher values of q, a point already noted before. However this shift is quite delicate, 
and becomes severe only when the wall relaxation is sufficiently strong to attenuate 
the signal intensity at zero gradient to below 1 0% .  This fact is demonstrated by 
Figure 6.5. 

In Figure 6.5a we show a family of curves corresponding to the position of the 
minimum as a function of wall relaxation, at different values of the observation time. 
This shift is plotted as aeffla where aeff is the sample width one would obtain by as­
suming the minimum occurs at qa = 1 .0 .  This Figure indicates that relaxation could 
cause discrepancies of up to 30% in structural parameters measured using PGSE. 
For comparison, in Figure 6.5b the corresponding zero gradient signal intensities are 
shown. Note that the limiting position of the minimum for perfectly absorbing walls 
is 1 .5a-1 . 

6.4 Experiments 

While the theoretical result for echo attenuation for plane reflecting barriers i n  the 
absence of wall relaxation has been well known for over 20 years, there have been no 
published results of a "diffraction curve" resulting from a real PSGE experiment on 
such a sample. Such an experiment would be able to provide direct measurement 
of the size of the restricting boundaries and would be able to probe distance scales 
smaller than those attainable by conventional NMR microscopy. 

6 . 4 . 1  Sample and geometries 

A sample comprising microcapillaries with approximately rectangular cross-section 
and internal width of 100 J.lm was used to test the restricted diffusion model . Al­
though the application of q-space gradients of sufficient size was easily achieved, the 
time taken for molecules to diffuse across the width of the microcapillaries needed 
consideration. For water with a self-diffusion coefficient of 2.5 x 10-9 m2 s-1 the 
time a2 ID is 4.0 s. The pulse sequencer on the modified FX60 has a maximum of 
1 x 1 06 J.lS, or 1 .0 s, of total time available for any one pulse sequence. Therefore a 
liquid with a higher self-diffusion coefficient was needed to decrease the time a2 I D . 
Pentane (C5H12) has a self-diffusion coefficient of around 5.0 x 10-9 m2 s-1 , reduc-
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Figure 6 . 3 :  Average propagator, P, (Z, Ll), for partially absorbing walls predicted by simulations 
and theory, eqn (6 .26) with M af2D of 0.2 (upper) ,  2 (middle) and 20 ( lower) .  Four successive 
time intervals are displayed. In multiples of a2/2d, A is, respectively, 0 .025 (open circles) , 0 .05 
(solid circles) , 0 .25 (open squares),  0 .5 (solid squares) .  
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Figure 6.4: Echo attenuation, E(q) ,  for partially absorbing walls predicted by simulations and 
theory, eqn (6 .27) , with Ma/2D of 0 .2  (upper) , 2 (middle) and 20 (lower) . Four successive time 
intervals are displayed. In multiples of a2 /2d, .6. is, respectively, 0.025 (open circles) , 0 . 05 (solid 
circles), 0 .25 (open squares) , 0.5 (solid squares) .  
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Figure 6 . 5 :  ( a) shows the diffraction minimum position, a;J for partially absorbing walls as a 
function of Ma/2D for three different observation times, A,  given by 0 .25 (solid squares) , 0 .5 
(open circles) , and 1 . 0  (open squares) in units of a2j2D. The points shown are derived from 
calculations based on eqn (6.27). (b) shows a corresponding set of p oints indicating the degree of 
echo attenuation at q = 0 .  
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Figure 6 . 6 :  An NMR image of the microslide stack used in the PGSE experiments presented in 
this Chapter. The proton signal is from pentane contained inside each microslide. The narrow 
dimension between the plane parallel walls is 100 p.m. Note that the stack is coincidentally regular 
and the spacing between each microslide is irrelevant to the diffusive-diffraction experiment of 
Section 6 .5 .  

ing a2 j D to 2.0 s. After filling with pentane, 7 capillaries were sealed and glued in 
a parallel stack, in order to provide a sample which filled the r.f. coil volume and 
provided the maximum possible signal. Figure 6.6 shows a NMR image obtained 
from the pentane in the capillaries. The microcapillary stack had a square cross 
section and fitted into a 4 mm o.d. NMR tube. The experiments were carried out 
on the FX-60 spectrometer using the high gradient PGSE probe using gradients 
of 1 . 2 1  T m-1 •  The temperature of the sample was maintained at an ambient 28 
degrees . 

6 .4.2 1 0 0  J.liD m icroslides 

In practice PGSE diffraction experiments are difficult due to signal-to-noise con­
siderations. To observe an echo attenuation function with a sinc2 like behaviour 
requires good signal acquisition at attenuations of 0 . 1% of the original echo s ignal . 
Even with the best of samples a criteria such as this would be difficult to meet . Lib­
eral use of signal averaging especially at high attenuations and good system stability 
over a period of days are essential. In this case a variable "ngain" factor was used 
which increased signal averaging by a factor 2ngain for data points as the expected 
attenuation of the echo signal increased. 
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PGSE NMR experiments were carried out with the stack carefully aligned so that 
the magnetic field gradient direction was normal to the parallel walls of the tubes. 
Stimulated echo pulse sequences were used in which the gradient pulse duration 
never exceeded 2 ms (0.001a2 /D) justifying the narrow pulse approximation used in 
our analysis. The proton T1 was measured as 1 000 ms and the T2 value as 20 ms. 
Because the time spent in the transverse plane was always less than 4 ms, the spin 
relaxation was dominated by T1 and was never more severe than e-1 in the PGSE 
experiments reported here. It should be noted that the T1 value observed here 
corresponded to M = 0 .00005 and M af2D of 0 .5 ,  sufficiently low that any shift to 
the echo minimum due to relaxation is less than 5% and the theory for perfectly 
reflecting walls provides a close approximation. 

Figure 6.7 shows the echo attenuation, E(q) ,  obtained i n the capillary stack, at 
different fixed times , Ll, ranging from 200 ms to 900 ms and corresponding to the 
range O . la2 / D to 0.45a2 /D. Superposed in Figure 6.7a are the theoretical curves 
obtained using eqn ( 4.21) (the case of perfectly reflecting walls) in which the known 
parameters for D and a (5.0 x 1 0-9 m2 s-1 and 100 J-Lm respectively) are used. 
Allowance for relaxation (M = 0 .00005) using eqn (6.27) produces the results shown 
in Figure 6. 7b . While the inclusion of relaxation leads to an improvement in the fit 
at shorter values of Ll, the longer time data is less well represented near qa � 1 .  In 
this region the echo amplitude is especially sensitive to the chosen value for D. 

6 .4 . 3  Fitting theory to data 

In order to allow the theoretical parameters to be adjusted, we have fitted the 
experimental data to · eqn (6.27) by a non-linear least squares method, adjusting 
the values of a and D, but keeping the wall relaxation M fixed at the measured 
value. This resulted in the theoretical curves shown in Figure 6.8a along with the 
parameter values given in Table 6.2 . 

In practice, there will be some variation in both the plane spacing and the 
alignment of the different microcapillaries in the stack. The effect of this variation on 
the echo attenuation data must be considered. We have incorporated such variation 
by the simple device of convolving a normal distribution of standard deviation O" 
with the average propagator, corresponding to a Gaussian multiplication of E(q) .  
This allowance for sample imperfection, in which the data is fitted for D, a , and the 
standard deviation (J '  best accounts for the observed echo attenuation, as shown in 
Figure 6.8b. The results of the fitting are shown in Table 6 .2 . In each case a is 
within 7% of the manufacturer's specification while the alignment/spacing standard 
deviation value is less than 5%.  D values, which arise predominantly from the fit 
to the low q part of the data, are all close to the known self-diffusion coefficient of 
pentane at 28 °C, 5 X 10-9 m2 s-1 . 

Although none of the theoretical curves completely and consistently fit the data 
they do give good indications of the size of the structural parameters being inves­
tigated in the microslide sample. The PGSE analysis also provides , at worst, an 
estimation of the upper limit of wall relaxation and width variation in the sample. 
Although such a well defined rectangular sample is unlikely to occur in most sam­
ples of interest it is useful in order to demonstrate the fundamental physics of the 
problem. 

These experiments also show that the diffraction minimum in the echo attenu­
ation function becomes apparent for times, Ll, considerably less than a2 /D.  Given 
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Figure 6. 7: Echo attenuation data, E(q), obtained from PGSE experiments using the microslide 
stack shown in Figure 6 .6 .  The four different fixed times, �. are 200 ms (open circles) ,  300 ms 
( closed circles) , 700 ms (open squares) and 900 ms (closed squares) . These times correspond to 
the range 0 . 1  a2 ID to 0 .45 a2 I D. Theoretical curves from eqn (6.27) are shown where the known 
system parameters are used (a = 100 J.Lm, D = 5 .0  X w-9 m2 s- 1 .  In the upper graph perfectly 
reflecting walls are assumed, M = 0, while in the lower graph partial absorption is allowed for ,  
M = 0.000 05, consistent with the measured value of T1 . 
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Figure 6 . 8 :  Echo attenuation data, E(q), as for Figure 6.7 but in which the theoretical curves 
have been fitted to the data. In the upper graph the wall relaxation is held fixed at M = 0 .000 05 
while a and D are varied to obtain best fits. In the lower graph no relaxation is assumed ( M = 0) , 
but a distribution, u, of a values is allowed for. Both a and D are varied as well as u to produce 
best fit lines. Values obtained for fits in both graphs are shown in Table 6 .2 .  
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Best fitting with wall relaxation Best fitting with variance in a 

b. (ms) a (J.Lm) D (m2 s-1 ) M (ms-1 ) a (J.Lm) D (m2 s-1 ) 0' (J.Lm) 
200 1 12 6.0 0.000 05 106 5 .8 4 .5 
300 108 5.8 0.000 05 105 5 .4 5.2 
700 1 05 5.0 0.000 05 101 4 .3 8 .7 
900 103 4 .35 0.000 05 100 3 . 7 9 . 1 

Table 6 . 2 :  Parameters a and D obtained by fitting the echo attenuation data. In one set the 
relaxation parameter M is kept at the known (experimental) value while in the other a distribution 
of a values is allowed and the variance (j fitted. 

that neither wall relaxation nor finite gradient pulses destroy the q-space structural 
information, and noting that the gradients used here were weak compared to the 
available gradient strength, the possibility to extend this technique to smaller and 
more interesting samples appears promising for future work. 

6.5 Edge enhancement effects 

As part of the restricted diffusion experiments performed in the previous section, I 
acquired NMR images of the microslide stack sample using the commercial Bruker 
AMX300 (300MHz) system in our laboratory. During these experiments I noticed 
a remarkable edge-enhancement effect in some images of a nature that seemed sim­
ilar to an edge-enhancement effect described by Piitz et al. [60] and Hyslop and 
Lauterber [6 1 ] . However, upon further investigation we found [62] that the mechanism 
for this phenomenon was a differing signal attenuation due to restricted diffusion 
rather than a line-narrowing diffusive effect . 

6.5.1  Theory 

Diffusive-spectral edge enhancement 

The lineshape hypothesis of Piitz et al. is described in detail in their paper [60] . 
They obtain a result using a one-dimensional representation of diffusing molecules 
contained between parallel compartment walls of separation d. In the presence of a 
read (frequency-encoding) gradient of amplitude G, such as might be used in Spin 
Warp or Projection Reconstruction imaging, the nuclear spin spectrum for stationary 
molecules would be rectangular with spectral width w = 1G8,  1 being the nuclear 
gyromagnetic ratio. However the translational motion associated with self-diffusion 
causes molecules to sample a variety of local Larmor frequencies, thus motionally 
narrowing the spectrum. The usual exchange criterion, determined by a relevant 
exchange time, T, is � /2D, namely the time taken to traverse the compartment. 

When WT � 1, the spectrum will reduce to a narrow line yielding an image of 
the compartment in which all the spins appear to reside at the compartment centre. 
It is in the intermediate exchange region, WT "' 1, that surprising effects arise. 
Restricted diffusion near the compartment walls causes a "peaking of the spectrum" 
as reflections at the walls pushes the mean molecular positions slightly towards 
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the centre of the diffusion interval . We term this phenomenon "diffusive-spectral 
edge enhancement" . The calculations of Piitz et al. showed that these spectral 
edge enhancement peaks may have a fractional amplitude of order 30% while their 
fractional displacement from the wall i s of order (47rDj,Gb3 )113 or ( 27r/wr)113. In 
consequence, even such very slow exchange conditions as wr � 104, can lead to 
noticeable edge enhancement effects , according to this model . 

To calculate the size of this effect in an NMR imaging experiment we assume a 
voxel dimension �x with N voxels across the dimension d. The exchange criterion 
parameter is given by 

(6 .37) 
Taking a typical water diffusion value of 1 x 10-9 m2 s-1 , �x = 10 mm and N = 256, 
exchange narrowing wr < 1 requires gradients smaller than 5 x  1 0-10 T m-1 ! Even 
the slow exchange condition wr � 104 requires gradients below 5 x 1 0-6 T m-1 to be 
visible. This corresponds to an unrealistically small image bandwidth of around 1 
Hz. Such small gradients are impracticable because of the need to overcome magnet 
inhomogeneity and internal susceptibility inhomogeneity effects� Clearly the key 
factors determining scaling are �x3 and N3. Even if the resolution limit could be 
improved to 5 mm, a maximum of 1 1  pixels across the compartment is permitted 
in order to observe diffusive-spectral enhancement at realistic bandwidths of a few 
kHz. This suggests that such effects are at the margins of attainability in practical 
NMR Microscopy. 

Diffusive-relaxation edge enhancement 

The mechanism for the effect we observed relates to the diffusion of the sample 
molecules in the presence of an imaging field gradient . Under certain conditions the 
imaging gradients can cause significant attenuation of the image signal dependent on 
the self-diffusion coefficient of the molecules. However near the walls of a container 
the self-diffusion of molecules is restricted and is significantly smaller than that for 
the bulk liquid. This reduces the attenuation of the signal from molecules at the 
walls, compared to the signal from the faster diffusing center of the sample, and 
leads to the apparently enhanced edges observed below. 

This effect , which we term "diffusive-relaxation edge enhancement" , is consider­
ably more influential than spectral edge enhancement. 

Consider the spin warp imaging sequence shown in Figure 6 .9 . Molecular self­
diffusion in the presence of both the phase-encoding and frequency-encoding imaging 
gradients will result in image attenuation, the predominant signal reduction being 
caused by the read gradient whose total duration is greatest . According to the 
Stejskal-Tanner equation[1 7) ,  eqn (3 .25) , the read gradient echo attenuation factor 
is [62) 

E(G) = exp (-,2G2 (NT/2)2 (� - NT/6) )  (6 .38) 

where � is the separation of the leading edges of the read gradient pulses and T 
i s the acquisition dwell time, corresponding to an acquisition bandwidth 1/T. For 
compression of � to the minimum possible duration, NT /2, this yields, 

E(G) 

(6 .39) 
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Figure 6.9:  The spin-warp sequence used to acquire the image shown in Figure 6.6 and Figure 6 . 1 1 .  
The sampling dwell time is T which leads to an acquisition bandwidth of 1/T. The diffusion time 
between the two pulses is indicated by D. .  

or 
(6.40) 

where the field of view, FOV, is N 6.x. Eqn (6.39) shows that diffusive attenuation 
effects will be significant when the mean-squared displacement over the observation 
time, NT/2, is on the order of the pixel size 6.x. Both equations (6.39) and (6.40) 
indicate the sensitivi ty of the diffusive echo attenuation to N. In addition it should 
be noted that the exponent is four times smaller in the case of phase gradient 
attenuation and can therefore be neglected by comparison with the read gradient . 

Diffusive relaxation effects will be significant when the exponent in eqn (6 .39) 
exceeds unity, giving the inequality, 

D > 3!Gd3 
- 271'2 N3 

(6 .4 1 ) 
By contrast spectral enhancement at a minimum exchange parameter, WT , requires 

1Gd3 D � 2wT 
(6 .42)  

Even with slow exchange effects , such that the exchange parameter is on the order 
of 104 ,  it is clear that diffusive relaxation will dominate provided N � 10. 

As part of this thesis I have calculated the spatial dependence of the echo at­
tenuation function. The profile of the edge effect for a rectangular box of width a 
can be calculated two ways. The mean square displacement of a molecule can be 
calculated as a function of position in the sample, z , by substituting the propagator 
for molecules confined to a box, eqn (4.20) ,  into 

(Z2(z)) = loa Ps (z lz', 6.) (z' - z)2 dz' (6 .43) 
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which gives 
(Z2 (z) ) = a2 - 3az + 3z2 

3 
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00 4a mrz -n21r2 D6. 
+ L 22 cos (-) exp( 2 ) (z + ( -1t(a - z)) 

n=l n 7r a a (6 .44) 

The echo attenuation as function of position can be calculated using eqn (3 .43) 
where 8, 6. and g are determined by the duration and strength of the read gradient 
pulses. 

Alternatively if narrow read gradient pulses are assumed then eqn (3 .36) can 
modified to reveal a position dependant echo attenuation function . Although a 
narrow gradient pulse approximation is strictly not applicable to most imaging se­
quences, it will give, at least, a good initial approximation of the image profile. 

E(q, z) = loa Ps(z lz', 6.) exp(-i27rq(z' - z) ) dz' (6 .45) 

which gives a result for E( q, z) with both phase and magnitude. This is simple to 
understand as a phase shift is the result of any velocity-like net motion of the spins. 
For molecules an the left of the box there is a higher probabili ty of moving to the 
right of the box over a time interval than to the left . Hence the position dependent 
echo attenuation will have both real and imaginary parts , except at the center of 
the sample. The result from eqn (6.45) for the rectangular . box is 

E(q, z) = exp[i1rq(a - 2z)) 
[ sin(7rqa) (8 ) " (-n21r2D6.) (n1rz) sin(1rqa) 

x + 1rqa L....J exp cos --7rqa neven a2 a (27rqa ) 2 - ( mr ) 2 
. ( -n21r2 D6.) (n1rz) cos( 1rqa) l + 1 (81rqa) L exp 2 cos - ( )2 ( )2 nodd a a 27rqa - n7r (6 .46) 

Figure 6 . 10 shows imaging profiles for a rectangular box sample calculated using 
eqn (6.44) and eqn (6.46). The profiles shown in Figure 6. 10b and 6. 10c are similar 
for small attenuations but differ considerably for larger diffusion times. 

The diffusive relaxation effect is not restricted to Fourier imaging. If spin or 
gradient echoes are used with projection reconstruction imaging, a very similar ex­
pression results. Such attenuation can only be avoided entirely by using a three 
dimensional projection reconstruction in which the origin of signal acquisition co­
incides with the application of read gradients following a non-selective excitation 
pulse. 

6 . 5 . 2  Experiments 

Figure 6 .6 shows an image I obtained using the spin warp sequence of Figure 6.9 
for a phantom of pentane contained in rectangular glass capillary tubes of interior 
cross-section 100 mm x 3000 mm. For this image, obtained at a bandwidth of 20 
kHz, the value of N is 128, the pixel dimension is (32 tJm)2 and very little diffusive 
relaxation occurs. By contrast Figures 6 . 1 la and 6 . 1 lb show the phantom imaged 
at identical bandwidth and FOV but with N = 256 and a pixel dimension of (16 
tJm)2 • According to eqn (6.38) the freely diffusing water will suffer an attenuation 
factor of exp( -3. 7) . In these experiments the read gradient is respectively parallel 
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Figure 6 . 1 0 :  (a) The r .m.s. displacement calculated from eqn (6 .44) for a box of width 100 
rm and D = 5.0 x 10-9 m2 s- 1 .  The lines show the r.m.s. displacement as a function of the 
molecules starting position inside the box for diffusion times of 0 .001 s, 0 .01  s, 0 . 1  s and 1 s for 
increasing displacements respectively. (b ) The corresponding attenuation as a function of molecule 
starting position for the case shown in (a) , for typical imaging gradient strengths using eqn (3 .43)  
to calculate the attenuation . (c) The attenuation as a function of starting position for identical 
parameters as in (a) and (b) but using the magnitude of eqn (6.46) to calculate the attenuation. 
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Figure 6.1 1 :  (a) to (c) 1H NMR images of the microcapillary stack shown in Figure 6.6. (a) 
Acquisition bandwidth of 20 kHz using N = 256 and with the read gradient perpendicular to 
the walls. Significant diffusive attenuation results in the brighter edge enhancement at the walls 
where self-diffusion is restricted. (b) As for (a) but with the read gradient parallel to the walls. 
(c) As for a but with an acquisition bandwidth of 40 kHz. The diffusion time NT /2 is one-half 
the duration of the 20 kHz case. The bright band at the walls are n arrower because of the shorter 
time over which diffusion occurs. (d) An image acquired by L. C. Forde(63 ,  62] .  1 H  NMR image of 
a water-filled capillary, obtained with acquisition bandwidth 10 kHz using N = 256 with a 3 mm 
field of view. A crescent of edge enhancement is apparent due to the (horizontal) read gradient. 
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and perpendicular to the transverse dimension of the capillary. Near the walls , 
where diffusion is restricted, the effect of local reduction in D causes dramatic edge 
enhancement effects as the attenuation exponent reduces. 

Figure 6 . 1 lc shows the result of increasing the bandwidth and thereby decreas­
ing the time, NT /2, over which diffusion occurs. The bright bands, corresponding 
to molecules whose diffusion is restricted, are noticeably narrower. Pentane was 
chosen for these experiments because of the large self-diffusion coefficient and the 
resulting significance of diffusive attenuation at relatively coarse spatial resolution. 
However similar edge enhancement effects can also be observed in water, as appar­
ent in Figure 6 . 1 ld , an image acquired by L. C. Forde[63 , 62] , provided that the 
pixel dimension is reduced. In this latter experiment , using a 1 .5 mm I .D . capillary 
tube, restricted diffusion along the read gradient direction leads to bright crescent 
features at the edge of the capillary tube. Other bright features in the image also 
suggest reduced diffusive-attenuation, possibly due to local susceptibility inhomo­
geneity arising from suspended dust particles [62] . Hills and Snaar[64] have also 
noted this effect in a one-dimensional profile experiment on a film of water. 

6.6 Summary 

The experiments on the parallel barrier microslides show convincingly that the fun­
damental idea of a q-space, diffraction approach to PGSE is both possible and useful 
in obtaining real structural parameters on samples of interest . The PGSE data ac­
quired contains qualitative "diffractive" features directly related to the size and 
structure of the enclosing boundaries . As well , an analytic theory can be numeri­
cally fitted to the data to give quantitative information about the structure. To date, 
analytic theories exist for rectangular, cylindrical and spherical geometries which in­
corporate relaxation effects at the boundaries. Non-linear least squares fitting of the 
parallel plane analytic theory to the microslide PGSE data gives the parameter a ,  
the width of the microslides, to within 10% of the expected value of 1 00 f.Lm. The 
parameters a and D were larger at small 6. times, and approached the expected 
values at longer values of 6.. The model incorporating a Gaussian variation in the 
barrier width gave move consistent values than the relaxing wall model. However 
the Gaussian variation in barrier width model is only strictly correct in long t ime 
limit , which suggests a good reason for the deviation of fitted parameters for shorter 
times. 

This approach to PGSE, in contrast to traditional techniques previously used in 
this field, opens the possibility of a form of micro-imaging, where structural informa­
tion is revealed, at resolutions far below those attainable by NMR microscopy. The 
signal-to-noise ratio is only limited by that available from the whole sample and, 
although a relatively large sample was used for these experiments , distances down 
to 0 . 1 f.Lm can easily be measured with an appropriate slow-diffusing liquid given the 
current gradient strengths available. It is worth noting that to date, these are the 
only published [37] PGSE experiments showing the diffractive minimum predicted 
for fully restricted diffusion in any geometry. 

The NMR imaging experiments on the microslides suggest that restricted diffu­
sion leads to significant contrasts in NMR microscopy. In fact the local propagator 
can be directly imaged, revealing detail not available in PGSE experiments. This 
form of imaging is limited to large samples, above 10 f.Lm, given the current reso-
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lution constraints on NMR microscopy. However, as the resolution limits of NMR 
microscopy are pushed to smaller distances, the restricted diffusion effects reported 
here [62] will become increasingly significant. 

In the Chapter 7 the effect of interconnections between enclosed "pores" will 
be investigated and the diffractive, q-space approach is used to reveal important 
structural information about the sample under investigation. 
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Chapter 7 

Porous Media 

7. 1 Introduction 

Fluid transport in porous media is important to a wide range of problems in sci­
ence, in particular to research concerning oil recovery, catalysts , fluid penetration of 
plastics and ceramics and biological perfusion. PGSE provides a unique method to 
observe the diffusion process in vivo in porous systems. The ability to differentiate 
between chemical species in the diffusing liquid also provides further possibilities . 

The single slit diffraction-like ideas used as an analogy in restricted diffusion can 
be extended to porous systems through an analogy to multiple slit interference. In 
fact an analytic expression can be written for the narrow pulse echo attenuation 
function based on a pore hoping formalism for the diffusion process . A solution for 
the case of molecules diffusing between pores separated by thin permeable mem­
branes was found by Tanner [65] in 1978. His solution represents the limiting case 
where the pore size is equivalent to pore spacing. However, it is interesting to note 
that in this paper, Tanner observed some "unusual effects" in the echo attenuation 
function when plotted as a function of gradient strength. 

7.2 Porous theory 

The followi ng theory [31 , 38, 66, 67] concerning porous system diffusion is based on 
two fundamental assumptions . The first is that the experiment is carried out in such 
a way that the narrow gradient pulse approximation is valid. This premise enables 
the use of the Fourier type formalism presented in eqn ( 4.2) and the diffractive 
consequences [66] . For pores of size a and a fluid with self-diffusion coefficient D the 
premise mathematically indicates that the gradient pulse duration should satisfy the 
condition 8 � a2 I D. 

The second assumption is a pore equilibration approximation [66] . The premise 
here is that the fluid molecules move quickly inside a pore but more slowly between 
pores, in other words the porous structure is relatively enclosed and not too open. 
For pore spacings of b with and effective diffusion between pores of Deff this implies 
that a2 / D � b2 I Deff · This assumption says that when a molecule "jumps" to a new 
pore it quickly equilibrates itself within that pore enabling the use of the long time 
limit expression for the echo attenuation due to the pore and separating inter-pore 
effects from intra-pore ones. 

It is helpful to initially consider a perfectly periodic set of N identical connected 
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pores arranged along the z axis of pore spacing b and pore dimensions a .  The total 
pore density can be represented by a superposition of identical local pores with 
density p0(z - zi) where Zi is the center of t he ith pore and Po is 0 everywhere 
outside that pore. Therefore for N pores the normalised total density is 

1 N 
p(z) = - L Po(z - zi ) N i=l 

( 7 . 1 )  

If a spin starts at a point z in pore i then the conditional probability funct ion 
Ps (r Jr' , 6.) can be written 

N 
Ps(z 1z' , 6.) = L P(i Jj, 6.)po (z - Zj ) ( 7 .2 )  

j=l 

where p(i Jj ,  6.) gives the probability that a particle starting in pore i will diffuse 
to pore j in a time 6.. This separation of local pore effects from intra-pore effects 
is a consequence of the pore equilibration assumption. Substituting eqn ( 7  . 1 )  and 
eqn (7 .2) into eqn ( 3 .36) one gets 

E(q) JSo (q) J 2 N-1 L L P(i Jj, 6.) exp[i27rq(zi - Zj )] 
j 

I So ( q) J2 F(q , 6.) 

where 

Soj (q) = 1 po ( z - Zj) exp [i27rq(z' - Zj ) ]dz' 

(7 . 3 )  

(7 .4)  

and the product S0i (q)Soj(q) is  JS0(q) J 2  for identical pores. For a structure with vari­
able pore geometry an "average pore structure factor" can be defined as S0i (q )Soj (q) 
yielding I So( q) 1 2 • 

Making the substitution n = i - j eqn (7.2) can be rewritten in the limit of large 
N as 

n 

where 

p(n ,  6.) = � � p(i J i  + n, 6.) 
' 

( 7 . 5 )  

(7 . 6 )  

I t  can be seen that the function F ( q ,  6.) can be separated into a pore position (or 
lattice) function weighted by a inter-pore diffusion function. This can be made clear 
through the use of the Gaussian envelope (GE) approximation. 

7.2 . 1  Gaussian envelope model 

An initial assumption for p( n, 6.) can be a Gaussian probability function [66, 3 1 ,  67] 
with a long-range diffusion coefficient Deff giving 

(7 .  7)  
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which upon substitution into eqn (7 .5)  gives 

F(q, � )  = j b L S(Z - nb)C(Z, �) exp[i27rqZ] 
n 

(7 .8 )  

where C(Z, � ) is a Gaussian distribution of displacements given by 

(7 .9)  

From eqn (7 .9)  i t  i s  apparent that F( q, �) is the Fourier transform of the product 
of two functions, C(Z, �) and L(Z) where 

L(Z) = bL S(Z - nb) (7 . 10 )  
n 

This function L( Z) can be thought of as a one-dimensional lattice-correlation func­
t ion describing the relative displacement of pores along the z axis. Using the con­
volution theorem eqn (7.3) can be rewritten 

E(q) = I So (qW[
F[L(Z)] ® F

[C(Z, �)] ] ( 7. 1 1 )  

where F represents Fourier transformation. The optical diffraction analogy can 
be made clear by treating j S0(q ) j 2 as the individual slit diffraction pattern. L(Z) 
then represents the position of each slit and C(Z, �) a function which increases the 
number of slits included in the diffraction pattern as a function of time. The origin 
of C(Z, �) is the increase in the number of "scattering centers" which increases with 
� as the molecules diffuse to more distant pores. So while jS0(q) j 2 will lead to a 
diffractive minimum around qa � 1 ,  F(q, �) will give interference peaks at qb � 1 
which, for the regular lattice presented above, will sharpen as � increases . 

The · Gaussian envelope diffraction model outlined here was originally suggested 
by Callaghan[66 ] .  However this model has major deficiencies . In particular its 
description for C(Z, �) is inaccurate especially for short times and small n. It will 
generally be most accurate for values of qb close to integers , or near the diffractive 
peaks. 

7 . 2 . 2  Pore hopping model 

It has been shown by Halpin and MacGowan[67] that the flaws in the Gaussian 
envelope model for C(Z, �) can easily be corrected by using a hopping model based 
on a short time T such that a molecule has only a finite probability of "jumping" 
to a nearest neighbour pore and no further. One can then define a C ( Z, T) function 
that incorporates both the hopping envelope and the lattice function L( Z) where 

F(q, T) = F[C(Z, T)] . (7 . 12 )  

The final outcome of M independent, successive, identically distributed, random 
hops is represented by a M convolutions of C(Z, T) . By utilising the fact that the 
Fourier transform of a convolution of functions is a multiplication of the individually 
transformed functions one finds 

F(q, MT) = F[(C(Z, T) @ C(Z, T) 0 · · · )Mtimes] = (F[C(Z, T)j )M (7 . 13 )  



84 CHAPTER 7. POROUS MEDIA 

which i mplies 

(7 . 14) 
Expressions can therefore be obtained by evaluating the function only for the simple 
case of M = 1. The long range diffusion coefficient can be incorporated by noting 
that in the low q l imit E(q, 6.) gives exp[-27r2q2 (Z2 (6.))] . Hence 

(Z2(6.) ) = _ _!_2 F"(q = 0, MT) = 2Defffl 47r 
(7 . 15) 

where the double prime denotes the second derivative with respect to q . The echo 
attenuation function, from eqn (7 .3)  is therefore 

(7 . 16 ) 

assuming identical pores. 

7.2.3 Regular latt ice 

For the regular lattice, a molecule can hop left or right by the pore spacing distance , 
b. If T i s  small enough that the molecule has only a small finite chance, w, of hopping 
only to a nearest neighbour pore and no further, one can write 

1 C(Z, T) = ( 1 - w)8(Z) + 2w[8(Z - b) + 8(Z + b)] 

as shown in Figure 7 . 1a. Using eqn (7 . 13) and eqn (7 . 17) yields 

[1 - 2w sin2 ( 1rqb )]
M 

exp[ -2M w sin2 ( 1rqb)] . 
Using t he technique outlined in eqn (7 . 15) one finds 

M wb2 = 2Deff6. 
and substituting into eqn (7 . 19) gives [ 4Defffl . 2 ] F(q, 6.) = exp b2 sm (1rqb) 

(7 . 17 ) 

(7 . 18) 
(7. 1 9 ) 

(7 .20)  

( 7 . 21 ) 

Figure 7 .2a shows the echo attenuation function for the regular lattice for various 
values of 6.. 

Irregular lattice 

Whilst considering structure associated with the displacement of probe molecules, 
we must take into account "correlation regularity" . Suppose there is an average pore 
spacing b, but that there is  some irregularity in that spacing e. As a molecule suc­
cessively moves to neighbouring pores, and then next neighbouring pores, the fluc­
tuations in spacings successively add in the the total displacement of the molecule. 
It is apparent then that the greatest coherence will be observed when 6. is at a t ime 
such that the molecules diffuse on average only one lattice spacing. 

For an irregularly spaced lattice a suitable lattice function can be formed by 
convolving a Gaussian with the neighbouring lattice sites. Although this is an 
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Figure 7 . 1 :  (a) The function C(Z, r) for a regular lattice as given in eqn (7 . 17 ) .  (b) C(Z, r) for 
an irregular one-dimensional lattice as given by eqn (7 .22) 

excellent first approximation of any randomness in the pore array one must consider 
the possibility that the probability of hopping w may vary with b in which case 
this function may need adjusting. An initial approximation for such an adjustment 
may be a b-1 weighting for w, however such refinements are not necessary in the 
experimental analysis and hence are not expanded on here. 

One can therefore write 

as shown in Figure 7 . 1b .  Upon Fourier transformation this expression one gets 

F(q, Mr) [1 - w[1 - exp( -21l"2q2e) cos (21rqb) ] ]M 
exp[-Mw[1 - exp( -21r2q2e)  cos (21rqb) ] ] . 

Using eqn (7 . 15) yields 

and hence 

(7 .23) 
(7 .24) 

(7 .25 )  

( 7 .26) . 

Figure 7.2b shows the echo attenuation function for an irregular lattice for various 
values of .6.. Notice the diffraction peak at qb = 1 which is most pronounced for 
the time .6. � b2/2Deff , the time taken to diffuse to the nearest neighbour pore. · 
As .6. increases further the diffraction peak becomes more attenuated due to the 
irregularity in the lattice function which increases as more distant pores are probed 
by the diffusing molecules. 
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Figure 7 . 2 :  (a)The echo attenuation function for a regular lattice given by eqn (7.2 1 )  with the 
spherical pore expression of eqn (4 . 17) used for JS0 (q ) J 2 .  The pore size a is fixed at b/3 . The l ines 
represent increasing times D., for increasing attenuation , with values as a fraction of b2 /2Deff of 0 .2 ,  
0.5 ,  1 .0 and 2 .0 respectively. Notice the large coherence peak at qb = 1 .  (b) The echo attenuation 
function for an irregular lattice given by eqn (7 .26 ) .  The parameters are as for (a) but with a pore 
spacing irregularity e = b/3. Notice the damping of the coherence peak and the shift of the peak 
to lower q values . 
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Figure 7 . 3 :  (a) The function C(Z, r) for a pore glass lattice as given in eqn (7 .27) . (b) C(Z, r) 
for an irregular pore glass as given by eqn (7 .32) .  

7 . 2 .4 Pore glass 

In a pore glass the neighbouring pores are uniformly distributed in solid angle around 
the starting pore with some spacing b. In consequence the projection onto the z 
axi s  gives a Hat function H(Z, b) which has a value (2b)-1 for -b < Z < b and zero 
elsewhere. 

Therefore 

C(Z, T) = ( 1 - w)o(Z) + wH(Z, b) 

as shown in Figure 7 .3a, which upon Fourier transformation yields 

[1 - w(1 - sinc(27rqb) ) ]M 

exp[-Mw( 1 - sinc(27rqb) ) ]  

Using eqn (7. 1 5) one gets 

Mwb2 = 6Deff/:). 

and substituting into eqn (7.29) gives 

F(  f:).) = [- 6Deff/:). (1 _ sin(27rqb) ) ] 
q, exp 

b2 (27rqb) 

( 7.27) 

( 7.28) 

( 7.29) 

( 7.30) 

(7 . 3 1 )  

Figure 7.4a shows the echo attenuation function for a pore glass lattice for various 
values of /:).. The diffraction peak at qb = 1 which is most pronounced for the time 
6.. � b2 Deff, the time taken to diffuse to the nearest neighbour pore, although it is 
less pronounced than the peak for a regular lattice. As 6.. increases the diffraction 
peak becomes more attenuated, but more pronounced, due to the glassy nature of 
the lattice function. The coherence peak for the pore glass is significantly more 
attenuated than the peak for a regular lattice. 
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Figure 7.4:  (a)The echo attenuation function for a pore glass lattice given by eqn (7 .31 )  with the 
spherical pore expression of eqn (4. 17) used for ISo (q) i2 . The pore size a is fixed at b/3. The lines 
represent increasing times .6., for increasing attenuation, with values as a fraction of b2 j2Deff of 
0.2, 0 .5 ,  1 . 0  and 2.0 respectively. Notice the coherence peak at qb = 1. (b) The echo attenuation 
function for an irregular pore glass lattice given by eqn (7.33) . The parameters are as for a but 
with (a) pore spacing irregularity � = b/3. Notice the damping of the coherence peak and the shift 
of the peak to lower q values. Note that in both graphs the echo attenuation axis covers a greater 
range than for the regular lattice plots shown in Figure 7 .2 .  
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Irregularity in pore glass 

Any irregularity in a pore glass will cause a spread in Z, greatest at the edges 
where Z = ±b and least at Z = 0 since any variation in b is projected along the 
Z-axis .  However, the flatness of H(Z, b) means that the effect of convolution with 
a Gaussian will be most apparent at the edges provided e < b. Again any pore 
spacing dependance of w may need to be considered in extending this theory. 

For the irregular pore glass the convolution gives 

z2 
C(Z, r) = ( 1 - w)8(Z )  + w[(21ret1!2 exp[-

2e
] ® (H(Z, b)] 

as shown in Figure 7.3b, which yields [ 6Deff!l ( 2 2 2 sin(27rqb)) ] F(q, !l) = exp -
b2 + 3e 

1 - exp( -21r q e ) 21rqb 
with the appropriate factors included. 

(7 .32 )  

(7 .33) 

Figure 7 .4b shows the echo attenuation function for an irregular pore glass latt ice 
for various values of .6.. The diffraction peak at qb = 1 which is most pronounced 
for the time .6. � b2 Deff, although considerably less pronounced than for either the 
regular lattice or pore glass. As .6. increases the diffraction peak becomes more 
attenuated and shifted to lower q due to the glassy nature of the lattice function 
and the irregularity in pore spacing. 

7.3 Computer simulations 

Computer s imulations of diffusion in porous media were performed by MacGowan 
as part of our collaboration with B .P. Research, Sunbury-on-Thames, UK[68, 67] . 
These simulations were useful in revealing the strengths and weakness of the pore 
hopping model. 

7.3 . 1  Method 

The method is detailed in our joint paper[67] and followed the usual random-walk 
simulation techniques . Similar problems were encountered for a finite hopping lattice 
method, as the ones already outlined in Section 6.3 .  The solution used, in this case, 
involved a two-dimensional model where the particle steps were of a fixed length but 
allowed to be in a random, continuously distributed direction. Within a few step 
intervals the simulated parti cle displacement approached the proper Gaussian form 
and reduced problems due to discretization of the displacement . 

7 . 3 . 2  Results for regular lattice 

These simulations revealed that for the regular lattice the analytic theory fitted the 
computer data well. They also showed that Deff approached its asymptotic value 
in a very short time lending good support to the pore equil ibration assumption. 
However, some error was noted for model pore systems with small pores and long 
interconnecting channels. This error resulted from the finite number of molecules 
residing in the interconnecting channels between pores and is not accounted for by 
the pore hopping model. In fact the analytic theory assumes the molecules hop to 
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a neighbouring pore instantaneously and spend no time in pore connections. The 
error is small and only obvious for half integer values of qb where the pore-to-channel 
volume ratio is above 0 . 5 .  

Lattice with disorder 

For the pore models with disorder the results suggested that the analytic theory of 
eqn (7.26)was at least qualitatively correct . Unfortunately the model was restricted 
to 10 different pore spacings and so could not accurately represent a Gaussian dis­
tribution of pore spacings well . 

7.4 Experiments on polystyrene spheres 

In order to perform PGSE experiments on porous systems, a suitable sample had 
to be found. A one dimensional porous system would be ideal due to the large 
diffraction peaks predicted by the theory. However, in practice, we could find few 
samples that would fit the relevant criteria. Plane laminar surfactant hi-layers were 
considered, as water diffusion though the sheets would be greatly reduced compared 
to diffusion between the sheets. However, the spacing between sheets cannot be 
made stable above 50 nm, too small to observe diffraction effects with current gra­
dient strengths. Fortunately a suitable pore glass system was found in the form 
of monodisperse polystyrene spheres. By packing the spheres into a close packed 
array the intersphere spaces would appear as a three dimensional porous lattice to 
interpenetrating water in the sample. These micron sized spheres, manufactured 
by Duke Scientific, are available as a dilute solution in water and have a surfactant 
coating to reduce surface effects. The spheres are characterised on the data sheets 
using microscope and light scattering techniques, yielding average sphere size and 
distribution of sphere sizes to a high precision. 

7.4. 1 Theoretical considerations 

For an orientationally disordered pore glass with pore spacing b, the echo attenuation 
function from pore hopping theory in given by eqn (7 .33) .  A coherence peak in the 
echo attenuation data is predicted by eqn (7.33) when qb is integer. The coherence 
peak is also most pronounced if .6. � b2 /2Deff such that molecular diffusion of one 
pore spacing is favoured. Over longer times more molecules will diffuse to second 
and third neighbouring pore shells for which no integer pore spacing relation exists ,  
leading to an increased damping of the coherence peak. Of course the variation � 
in the pore spacing also leads to further damping of the coherence maxima and in 
extreme cases of polydispersity no coherence peak would be visible. However even 
in such extreme cases there would still be anomalies in the q-space dependence of 
the echo attenuation data. 

It should be noted that eqn (7.33) involves two approximations. Firstly, the 
Gaussian distribution convolution in the pore spacing is applied directly along the 
Z axis and not by projecting all possible orientations along the Z axis. The second 
assumption is that the probability of hopping is independent of the exact pore 
spacing, such that slightly closer pores have no greater hop probability than that of 
slightly more distant pores. 
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I t  is useful to consider the porous medium formed by close packing of  spheres. 
L .C .  Graton and H .J .  Fraser[69] have given a detailed analysi s  of possible geometries. 
They show that there are six different symmetrical structures possible based on cubic 
and rhombohedral packing labelled Case I to Case VI. Of the six structures, two 
pairs are rotationally degenerate, leaving four intrinsically different packings with 
different porosities. These porosities are 47.6 % (Case I ) ,  39.5 % (Case II and 
Case IV), 30.2 % (Case V) and 26.0 % (Case Ill and Case VI) .  The unit cell for 
each case is  a six faced parallelepiped with a total occupied volume of one sphere 
and a sphere center at each corner. The distance between t he pore centers is b, the 
sphere diameter. 

Fitting the data 

To fit the data to the pore hopping theory some function must be assigned for 
IS0 (q) l 2 , the pore structure function. The real pore shapes for the voids in close 
packed sphere arrays are highly complicated and unlikely to be amenable to an 
analytic representation. However it is possible to numerically simulate the pores 
and with the orientation averaging necessary in such a glassy structure it is likely 
that the pore sizes will be comparable in each of the four different cases described 
by Graton and Frazer (69] . We chose to investigate the structure functions for the 
two limiting cases of porosity and compare them to the spherical pore structure 
function(70] . 

Non-spherical pores 

Using a simple computer program a three dimensional regular array of points was 
reduced to the required unit void by removing all points that lay inside the spheres 
bounding the void. By knowing the position of the center of each sphere the program 
checks to see if the distance from each point to each sphere center is less than the 
radius of the sphere and then removes the point from the array if this condition is 
true. A second program then takes the three dimensional data and calculates the 
one dimensional radial density distribution function of the points starting from the 
center of the unit void .  The radial density function for Case I is shown in Figure 7 .5 .  

This radial function is then spherically averaged and projected onto an axis to 
represent the arbitrary gradient direction. This is again made trivial by realising 
that the projection of a spherical shell onto an axis is simply a hat function with 
width equal to twice the radius of the shell . The distributions are shown for both 
Case I and VI in the upper graphs of Figure 7.6. 

This spherically averaged density function is Fourier transformed and squared 
to reveal the single pore structure function of the unit void. Theoretical fits based 
on a uniform spherical pore were then done and the equivalent spherical pore radii 
noted. 

The squared modulus Fourier transforms are shown in the bottom graphs of 
Figure 7 .6 .  The lines represent non-linear least squares fits of the long time l imit  
spherical pore structure function, 

E ( ) = I S( ) ! 2 = 9((2?rqa) cos(2?rqa) - sin(2?rqa)J 2  
oo q q 

(2?rqa )6 
from eqn ( 4 . 17 ) .  

( 7 .34)  
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Figure 7.5:  The radial density function of the unit void for the most porous cubic sphere packing 
(Case I). The digitization is caused by the discrete nature of the three dimensional array of points 
used to generate this data. The sphere diameter b is shown for reference . 
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Figure 7 . 6 :  The upper two graphs show spherically averaged radial distribution functions for 
CASE I (cubic) and CASE VI (rhombohedral) packing . The CASE I data radial distribution 
function used is shown in Figure 7.5 .  In the lower two graphs the corresponding squared modulus 
Fourier spectra are shown (filled circles) . The lines represent theoretical fits based on a uniform 
spherical pore. In each case the sphere diameter, b (or its inverse, b- 1 ), is shown for reference. 
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Catalog Number Sphere diameter Size distribution 

7516A 15 .8  J-Lm 2 .8 J-Lm 

241 14.6 J-Lm 0.4 J-Lm 

4210A 9.870 J-Lm 0.057 f.Lm 

93 

Table 7.1: The monodisperse polystyrene spheres used in this work and their manufacturer's 
specifications. 

For Case I a spherical pore of width 0.44b is a good representation of the pore. 
For the Case VI the spherical pore works moderately well for q :::; a-I , the regime 
used in the PGSE experiments here. The equivalent spherical pore radii for Case 
VI i s  0.41 b. The spherical pore structure function of eqn (7.34) , is used for j S(q) j 2 
with eqn (7.33) , for all the fitting of theory to experimental data that follows . 

7.4 . 2  Samples 

All the experiments were performed on the FX-60 system using the high gradient 
PGSE system. The sphere solution was transferred to the 4mm O .D .  sample tubes 
using the following technique. The sample tube was filled with some of the sphere 
solution and then centrifuged at 300 g for 5 minutes until the spheres formed a thin 
layer at the bottom of the tube. The excess water above the spheres was removed 
and the process repeated until the layer of closely packed spheres was around 5-
10  mm in height . In this way the porous sample would completely fill the space 
contained by the probe r.f. coil .  By comparing the NMR signal strength from a 
sample of only water, and the water from within the porous sphere system, the 
porosity was estimated at 44%.  

Three samples were investigated each with a different sphere diameter. The 
details  for each sample are shown in Table 7 . 1 .  The pore size distributions for the 
samples expressed as percentages are 18 %, 2. 7 % and 0.0058 % for the 15 .8  f.Lm , 
14.6 J-Lm and 9.870 J-Lm sphere systems respectively. In this way the effects of both 
changes in pore spacing and disorder in pore spacing could be investigated. 

The T1 and T2 relaxation times of the water in the sample were of the order of 
1 s. This implies that there was no significant relaxation effects occurring on the 
surface of the spheres .  The samples were maintained at an ambient temperature 
of 28 °C .  Extensive signal averaging was required as data down to attenuations of 
0.001 were acquired. By using 2N averaging acquisitions the normalisation of the 
signal was simplified. N was chosen so that the signal-to-noise ratio of each data 
point was kept reasonably constant . For high q data points up to 8 192 averages were 
made in contrast to around 64 for the low q data. Such considerations of sensit ivity 
were found essential if the weak coherence effects are to be observed. 

The equilibration t ime a2 /2D0 is around 3 ms for the pores formed by the spheres. 
The interpore diffusion time b2 /2Deff around 50 ms. The gradient used was 1 .2 1  
Tm-1 and the gradient pulse duration, 8 was increased in steps of 0 . 1  ms. The 
maximum duration for 8 was 1 .8 ms implying that the narrow pulse approximation 
is valid for the interpore diffusion, However it is borderline for the intrapore diffusion. 
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Figure 7. 7: Echo attenuation function E( q) as a function of q for the 9 .870 p.m polystyrene sphere 
system. The times A are 10 ms (open circles) , 20 ms (filled circles) , 30 ms (open squares) , and 
40 ms (filled squares) . The solid lines represent fits using eqn (7 .33) , the parameters for which are 
given in Table 7 .2 .  

7 .4.3 Results 

In each PGSE experiment presented here the observation time � is held constant 
whilst the gradient duration 8 is varied. As the optimal time to observe the coherence 
peak in a pore glass is given by b2 /2Deff values of 1:1 were chosen accordingly. 

9.870 J.lffi data 

For the 9.870 p,m polystyrene spheres the values of 1:1 were 10 ms , 20 ms , 30 ms and 
40 ms. From the low q data we find Deff � 2.0 x 10-9 m2s-1 so that the time b2 /2Deff 
is 24 ms. As a fraction of this time, the observation times are then 0 .4 ,  0 .8 ,  1 .3 and 
1 .  7 respectively. Figure 7. 7 shows the results of the PGSE experiments carried out 
on this system. A clearly visible coherence peak is apparent when q "'  b-1 ( 1 00000 
m1 or 10 J.tm-1 and the observation time � is large enough that enough molecules 
have diffused from their starting pore to the nearest neighbour pore shell. 

Note that even for this highly monodisperse system the coherence peak is only 
visible at echo attenuations of 0.01 and greater. Signal averaging of up to 4096 (212 )  
individual FIDs was required for the high q data. 

14.6 J.lffi data 

For the 14 .6 p,m polystyrene spheres the values of � were 20 ms, 40 ms, 60 ms and 
80 ms. From the low q data we find Deff � 2.0 X 10-9 m2 s-1 so that the time b2 /2Deff 
is 53 ms. As a fraction of this time, the observation t imes are then 0.4, 0 .8 ,  1 . 1  and 
1 .5 respectively. Figure 7 .8 shows the results of the PGSE experiments carried out 
on this system. A clearly visible coherence peak is apparent when q "' b-1 (67000 
m-1 or 15 J.tm-1 ) and the observation time � is large enough that enough molecules 
have diffused from their starting pore to the nearest neighbour pore shell . 

The fitting of eqn (7 .33) to the PGSE data shown above was done using a non­
linear least squares fitting routine in the program PGSEPLOT. The fitting function 
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Figure 7.8: Echo attenuation function E(q) as a function of q for the 14 .6  pm polystyrene sphere 
system. The times � are 20 ms (open circles) ,  40 ms (filled circles) ,  60 ms (open squares),  and 
80 ms (filled squares) . The solid lines represent fits using eqn (7 .33) , the parameters for which are 
given in Table 7 .3 .  

Observation Parameter 

time 

6:. a b � Deff Deff low q 

10 ms 2 .7  J.Lm 6.2 J.Lm l .9 J.Lm 2.4 x 10-9 m2s-1 2 .0  x 10-9 m2s-1 

20 ms 2 .7 J.Lm 7.9 J.Lm 2.5 J.Lm 2.6 x 10-9 m2s-1 2 .0  x 10-9 m2s-1 

30 ms 3 .2 J.Lm 10 .0 J.Lm l . 5 J.Lm 2.5 x 10-9 m2s-1 2 .0  x 10-9 m2s-1 

40 ms 3 .3  J.Lm 10 .6 J.Lm 0. 1 J.Lm 2.3 x 10-9 m2s-1 2 .0  x 10-9 m2s-1 

Table 7.2:  Parameters obtained by fitting eqn (7.33 )  to the 9 .870 J..Lm data shown in Figure 7 .7 .  
Detr low q i s  obtained by fitting a straight line to  the low q data in a Stejskal-Tanner plot. The 
pore radius, a, is obtained from the spherical boundary function eqn ( 7.34) used for l50 (q) l2  with 
eqn (7 .33) . 

used eqn (7 .34) for jS0(q) j2 . This fitting process yields the parameters a ,  b, � and 
Deff which are shown in Table 7.2 for the 9.870 J.Lm system and Table 7 .3 for the 
14 .6 J.Lm system. 

Inspection of the fit parameters reveals some discrepancy as the observation 
time is increased. The most significant trend is the increase i n  pore spacing, b, as 
6:. is increased. A possible explanation for this is the assumption, in pore hopping 
theory, that the hop probability is independent of the pore separation. In the event 
of pore spacing distribution it is more likely that closer pores will be accessed at 
shorter observation times. As 6:. is increased, more of the longer distance pores will 
be "hopped" to and the apparent b will increase. However, in spite of this weak 
dependence of b on 6:. it is clear that the fits of the theory to the data give good 
estimates of the pore spacing close to the known diameters of the spheres. It is also 
apparent from inspection of Figure 7. 7 that the fitted lines agree well with the shape 
of the data in q-space. In fact the position of the clearly distinguished coherence 
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Observation Parameter 

time 

� a b e Deff Deff low q 

20 ms 5 .0 J.lm 10 .7  J.Lm 0.0 J.lm 2.4 x 10-9 m2s-1 2.0 x 1 0-9 m2s-1 

40 ms 5 .7 J.lm 13.7 J.Lm 0.0 J.lm 2.6 x 10-9 m2s-1 2 . 1  x 10-9 m2s-1 

60 ms 5.0 J.lm 14.9 J.Lm l . 5 Ji.m 2.7 x 10-9 m2s-1 2 .0 x 10-9 m2s-1 

80 ms 4.7 J.lm 16 . 1  J.Lm l .3 Ji.m 2. 7 x 10-9 m2s-1 2 . 1  x 10-9 m2s-1 

Table 7 . 3 :  Parameters obtained by fitting eqn (7.33) to the 14.6 pm data shown in Figure 7.8 .  
Detr low q is  obtained by fitting a straight line to the low q data in a Stejskal-Tanner plot . The 
pore radius, a ,  is obtained from the spherical boundary function eqn (7.34) used for jS0(q) j 2  with 
eqn (7.33) . 

peak in q-space defines b-1 , whatever the assumptions underlying the theoretical 
model used. For this reason any adjustment of fitting parameters to account for 
discrepancies between theory and data, must be made in the remaining parameters . 

The fitted parameter Deff was found to be significantly higher than the expected 
value for all the data. By taking the low q data and plotting it on a Stejskal-Tanner 
plot it was found to give a Detr of 2.0 x 10-9 m2 s-1 . These anomalies in Deff have 
been observed in fitting pore hopping theory to the computer simulations [ 67] . A 
likely source of error is the assumption in the pore hopping theory that probability 
of occupancy changes discretely from pore to pore. It is more likely that pore 
occupancy changes discontinuously within pore connections . However it seems that 
this discrepancy, which depends upon the degree of porosity, does not appear to  
influence the fit of b ,  the pore separation. 

A further discrepancy between the fitted lines and the raw data is apparent at 
high q values where the echo attenuation data is slightly higher than the theoretical 
fits. This is due to the sharp null at q = a-1 in  the spherical pore structure function 
used in the fitting equation. The more realistic pore structure functions shown in  
Figure 7.6 do not have a strong minimum and are more consistent with the data in  
the high q region. From the fitted parameters we find the fitted structure function 
yields an equivalent spherical pore radius of approximately 0.33b. This is smaller 
than the equivalent pore radii of 0.44b and 0.41b determined for Case I and Case 
VI respectively. This discrepancy could be attributed to the non-linear nature of 
the averaging process involved in determining a mean structure factor for the very 
non-spherical pores. Another consideration is the openness of the porous structure 
given the pore equilibration assumptions underlying pore hopping theory. It is also 
possible that the same defects that caused Deff to be overestimated may lead to 
a distortion in the apparent pore size. Despite these reservations, the values of a 
obtained in the fits are broadly consistent with the known pore dimensions . 

1 5 . 8  J.lffi data 

For the 15 .8  J.Lm polystyrene spheres the values of � were 20 ms, 40 ms, 70 ms and 
1 10 ms. From the low q data we find Deff � 2 x 10-9 m2 s-1 so that the time b2 /2Detr 
is 62 ms. As a fraction of this t ime, the observation times are then 0.32, 0 . 65 ,  1 . 1 2  
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Figure 7.9:  Echo attenuation function E( q) as a function of q for the 1 5 . 8  J.Lm polystyrene sphere 
system. The times .6. are 20 ms (open circles) , 40 ms (filled circles) , 70 ms (open squares) , and 
1 10 ms (filled squares) . The reciprocal lattice spacing, b- 1 ,  is indicated on the graph.  

and 1 .77 respectively. The data are shown in Figure 7 .9 .  
Inverse Fourier transformation of echo attenuation data will give the averaged 

propagator. Assuming the system i s  isotropic, a three-dimensional projection re­
construction can be used to produce an 'image' . For the polystyrene sphere array 
this ' image' will be the spherically averaged autocorrelation function for the pores 
convolved with the diffusion-weighted three-dimensional lattice correlation function 
(as opposed to the projection, L(Z) ,  of this function along a single axis .  Figure 7 . 10 
shows a slice through the center of this 'image' along with a reference distance for 
the 1 1 0 ms data of the 1 5.8 J-Lm sphere system. 

Figure 7. 1 1  shows fits to the data for each of the three samples under conditions 

Figure 7 . 1 0 :  ' Image' of the pore autocorrelation function convoluted with the diffusion-weighted 
three-dimensional lattice correlation function . The 'image' was obtained by Fourier transformation 
of the 15 .8  J.Lm,  100 ms data. 
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Figure 7 . 1 1 :  Echo attenuation function E(q) as a function of q for water diffusing in the 15 .8  pm 
(filled circles) , 14.6 (open circles) and 9 .870 pm (open squares) polystyrene sphere systems. The 
solid lines represent fits using eqn (7 .33), with the parameters shown in Table 7 .4 .  

Parameter 

Sphere 

Diameter b. a b � Def£ 
1 5 .8 J.Lm 1 10 ms 5.3 J.Lm 18 .5 J.Lm 2.8 J.Lm 2.6 x 1 0-9 m2s-1 

14.6 J.Lm 80 ms 4.7 J.Lm 16 . 1 J.Lm l . 3 J.Lm 2.6 x 1 0-9 m2s-1 

9 .870 J.Lm 40 ms 3.0 J.Lm 10 .7  J.Lm 0 . 1  J.Lm 2.4 x 10-9 m2s-1 

Table 7.4: Parameters for fits to data from the three different polystyrene sphere systems shown 
in Figure 7 . 1 1  using eqn (7 .33) and eqn (7 .34) . The parameters may be compared with the 
manufacturers' values given in Table 7 . 1 .  

where b. was such that most molecules had diffused to  a neighbouring pore and the 
coherence peak was most pronounced. The fitted b and � parameters from Table 7.4 
agree well with manufacturers specifications. The graph shows clearly that the 
coherence peak for each data set occurs at a different value of q consistent with 
the reciprocal lattice distance of the differing pore spacings. The consistency of the 
pore distance variation parameter � with monodispersity can also be investigated. 
Comparing the fitted values with the manufacturer's specifications in Table 7 . 1  
reveals surprisingly good consistency. This is also evident in the echo attenuation 
data where the coherence peak for the more monodisperse 9.870 J.Lm system is far 
more pronounced than the weak peak barely visible in the less uniform 15 .8  J.Lm 
system. In fact the peak for the 9.870 J.Lm spheres is the most pronounced coherence 
peak we have observed to date, corresponding to a difference between the peak 
maximum and dip minimum by a factor of over 2.5. 
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7 . 5  ESR experiments 

A good example of the use of the P GSE theory presented in  this thesis is from exper­
iments performed to measure the restricted diffusion of electrons along fluoranthene 
channels in the quasi-one-dimensional organic conductor ( FA)2P F6 [71 , 72] . While 
the PGSE ESR experiments described here were carried out by Callaghan and Ka­
plan, I carried out the data fitting, using the various restricted diffusion models , as 
part of this thesis. The key features of this sample are the relatively long relaxation 
times of the electrons, T2 � 6f1-s, and extreme anisotropy of t he electron motion. 
Steady gradient studies [73] have shown the diffusion parallel to the conducting chan­
nels is about 1 .8  x 10-4 m2 s-1 whereas diffusion perpendicular to the channels is 
at least three orders of magnitude smaller. 

7 . 5 . 1  Apparatus and experiments 

The fringe field outside a 7.0 T NMR cryomagnet was used to provide a static field 
of 10.5 mT necessary to carry out ESR experiments at 300 MHz. The details of the 
apparatus used is described elsewhere[71 ] .  

The key features of our system was a home-built pulsed current driver based 
on the "clipped 1-C resonance" idea of Conradi et a/. [74] which provided gradient 
pulses of sufficiently short duration. Peak field gradients of up to 1 .0 T m -1 could 
easily be realised with pulse durations down to 2 fLS. 

Experiments 

P GSE experiments were performed on the samples at four fixed values for �' namely 
10 fLS, 14 J.LS, 1 6.5 fLS and 1 9.5 fLS. These values represent the t ime range available, 
limited by spectrometer recovery time and signal-to-noise considerations. For most 
t imes the experiments were performed with 8 values of 2 .0 J.LS and 4 .0 J.LS. The 
gradient was aligned parallel to the conducting channels and hence measured the 
motion of the electrons in the fast diffusing direction. 

7 . 5 . 2  P G S E  theory 

The electrons in this sample are assumed to be trapped in wells formed by the 
random inclusion of defects in the crystal structure. The distribut ion of well sizes 
is given by the density distribution P(l) = z-1 exp( - ljl) . The electron contribution 
to the echo is given by the weight function p(l) = tl-2 exp( -lfl) . The nature of the 
well defects will determine the type of model necessary to correctly represent the 
data. If the walls are completely reflecting the simple diffraction ideas presented in 
Chapter 4 can be used. The extension to PGSE, for relaxing boundaries , presented 
in Chapter 6 can also be incorporated. Finally the hopping ideas presented in this 
Chapter can be incorporated if the walls are assumed to be partially permeable. 

Well size distribution 

For simple reflecting barriers separated by a distance l the electron diffusion will 
appear to be unrestricted for � � [2 /2D, but for � � [2 /2D the mean-squared 
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displacement will appear to be time-independent and of the order of [2 . The echo 
attenuation for this single pore in the long time limit is given by eqn (4.4 ) ,  namely 

E( ) = 2[1 - cos(27rql)] 
q 

(21rql)2 
(7 .35) 

Integrating this equation over the assumed weighted distribution function , p( 1 ) ,  I 
found 

log ( 1  + 47r2q2F) E(q)  = 
47r2q2 [2 

(7 .36) 

This equation is clearly an approximation since the pore equilibration condition 
6. > [2 /2D must break down for the largest values of 1. However, provided I is not 
too large, this fraction of electrons will be small and the average structure function 
will be useful. The low-q expression provides further insight as the mean-square 
displacement , [2, can be obtained from 

E( q) = exp( -41!"2 q2 
1
1
2

12 )  (7 .37) 

Relaxation effects 

Many of the assumptions presented above can be removed by using a more exact 
theory for the echo attenuation. In fact the expression in eqn (6 .27) can be used 
which allows for finite 6 and any relaxation effects at the boundaries . The well size 
distribution can be incorporated by using eqn (6 .27) in the integration, 

(7 .38) 

where Et (q )  is eqn (6 .27) with a replaced by 1 .  This complicated expression can be 
evaluated numerically on a computer and has also been incorporated into a non­
linear least squares fitting algorithm in which the parameters I and M are varied, 
to best fit this theory to the PGSE data. 

Well hopping 

The facility to move between wells suggests that instead of being restricted to dimen­
sions of the local well ,  each electron, over a sufficiently long timescale, will experience 
a long range mobility characterised by an effective diffusion coefficient Deff · If the 
pore equilibration condition is to hold the the permeability of the walls must be 
weak so that the electrons will experience sufficient numbers of collisions so that 
interpore effects can be separated from the effects of motion within the well .  Given 
two wells of length 11 and 12 , the separation of the well centers is X = ( 11 + 12 ) /2. 
The distribution of separations h(X) is therefore 

h(X) {2X 
2 lo p(11 )p(2X - 11 ) dl1 

8 X3 -37 exp( -2Xjl) . (7 .39) 

Using eqn (7 .39) as the distribution of neighbouring well center displacements in  the 
pore hopping formalism it can be shown that 

E( ) = log ( 1  + 47r2q2F) 
ex [- 2Deff6 (

1 
_ 1 - 6(1rql)2 - (1rql)4 ) ] 

q 
41l"2q212 

p 
5I2 ( 1  + ( 1l"ql) 2 )4 

(7.40) 
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Figure 7. 1 2 :  Log-linear plot of normalised echo amplitude vs 47r2q2�r (Stejskal-Tanner plot) for 
electron spin echoes obtained from (FA)zPF5 . The data shown are for a range of reduced diffusion 
times (�r = � - 6/3) and in each case correspond to the shortest gradient pulse duration, {j = 2p.s 
for D.. = 10  p.s (filled circles) , 14 p.s (open circles) and 16 .5 p.s (filled squares) and to {j = 2 .6  p.s for 
� = 19 .5  p.s (open squares) .  The data deviate from the simple Gaussian expected for free diffusion 
with unique diffusion coefficient, D, and do not lie precisely on a common curve as � is varied. 
This latter feature is characteristic of restricted diffusion. 

for the echo attenuation function using eqn (7 .36) for the average structure function .  
This expression assumes equal well hopping probability, that is  the probabi lity of 
hopping is independent of the size of the wells the electron is hopping between. A 
reduction i n  hopping probability for large wells can be incorporated by altering the 
X3 weighting in eqn ( 7.39) .  By changing to a quadratic variation and integrating I 
obtained 

E( ) = 
log(1  + 47r2q2z2 ) 

ex [-Detr.6. (
1 

_ 1 - (1rqi)2 ) ] · 
q 

47r2q2f2 
p 

I2 ( 1  + (7rql) 2 ) 2  
(7 .41 ) 

Both this hopping model and the relaxing wall model presented above provide sig­
nificant deviations from the simple long-time well structure function in the high-q 
regwn. 

7 . 5 . 3 Results 

In Figure 7 . 1 2  some of the data collected is shown on a conventional Stejskal-Tanner 
plot . The shortest 8 data for each of the four .6. values used is shown. The low-q 
data can be analysed using eqn (7.37) which yields a value for ( f2 ) 112 of 80 ± 5J.lm. 
From p(l) it can be shown that (12)1/2 = .J6 I and hence, I � 33J.lm. 

Impenetrable relaxing wall model 

In fitting the data to equations (7 .38) and (6.27) a least squares algorithm was used 
with M and I as free parameters. The parameter D was fixed at 1 . 8  x 10-4 m2 s-1 , 
the value used in the previous steady gradient work[73] , noting that the fits to I 

depend only weakly on D .  Table 7.5 summarises the parameters for the fits which 
show an increasing trend for I settling at a value of around 50J.lm for the .6. = 16 .5  
and 19 .5 J.lS .  The best overall fit was found to be with M = 0.01 .  
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Figure 7.13:  Echo attenuation function E(q) as a function of q for electron spin echoes from 
(FA)2PF6 and for observation times /::,. of a) 10 J..LS (8 = 2 .0 J..Ls) , b) 14 J..LS (filled circles are 8 = 2 .0J..LS 
and open circles are 8 = 4.0 J..LS) , c) 16 .5 J..LS (filled circles are 8 = 2 .0  J..LS , open circles are 8 = 2 . 6  J..LS 
and open squares are 8 = 4 .0 J..LS) and d) 19.5 J..LS (filled circles are 8 = 2.6 J..LS and open circles are 
8 = 4.0 J..LS) . Also shown are the best fits using the impenetrable relaxing wall model of eqn (7.38) 
optimised by varying M and I.  The parameters for the fits are summarised in Table 7 .5 .  

Figures 7 . 13a to 7 . 13d show the data for the four different observation times along 
with fitted lines from eqn (7 .38 ) .  F igure 7 . 14  shows a set of curves for three values 
of b. for which the adjustable parameters were chosen to give the best compromise 
fit . 

Permeable wall model 

The discrepancy in fitting the relaxing walls model to the data naturally leads to 
consideration of the permeable wall model. A least squares analysis of the data 
using the pore hopping model was performed, allowing the parameters 1 and Deff to 
be varied. For the uniform hopping model of eqn (7.40 ) ,  no good fit is obtained for 
which Deff > 0. By contrast, the i nverse quadratic dependence of well hopping on 
well separation given by eqn (7 .41 ) does yield a consistent family of fitted curves, 
as shown in Figures 7 . 15a to 7 . 15d .  The parameters for these fits are summarised 
in Table 7.6. A combined least squares fit to all the data was also performed, the 
result of which is shown in Figure 7 . 16 .  The value for 1 of 25 �-tm found using this 
model is more consistent with the 33 �-tm obtained using the low-q data. 
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Figure 7 . 1 4 :  Echo attenuation function E(q) as a function of q for electron spin echoes from 
(FA)2 PF6 and for observation times (�,  6) values of open circles ( 14 .0  J.l.S, 2 .0  J.l.S) , filled squares 
( 16 .5  J.l.S, 2 .6  J.l.S) and open squares ( 19 .5 J.l.S, 2 .6 J.l.S) along with a set of three curves corresponding 
to the compromise best fit parameter set (D = 1 .8 x 10-4 m2 s- 1 ,  7 = 47 J.l.m and M =  0 . 0 1 )  using 
eqn (7.38) where descending amplitude corresponds to ascending �.  

Observation Parameter 

time 

D. I M D 

10.0 J.lS 21  J.Lm 4 m s-1 1 .8 x 10-4 m2 s-1 

14.0 J.lS 20 J.Lm 4 m s-1 1 . 8  x 10-4 m2 s-1 

16 .5 J.lS 47 J.Lm 0 m s-1 1 .8  x 10-4 m2 s-1 

19 .5 J.lS 46 J.Lm 0 . 1 1  m s-1 1 .8 x 10-4 m2 s-1 

compromise fit 47 J.Lm 0.01 m s-1 1 .8 x 10-4 m2 s-1 

Table 7 . 5 :  Parameters used in fits to the data shown in Figures 7 . 13  and 7 . 14 using the impene­
trable relaxing wall model of eqn (7.38) . 
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Figure 7 . 1 5 :  Data as for Figure 7 . 13 but with fits carried out using the permeable wall hopping 
model optimised by varying Detr and 7. The fitted parameters are shown in Table 7 . 6 .  No good fit 
can be obtained using the uniform hopping rate of eqn (7.40) and the theoretical curves shown here 
correspond to an assumption of inverse quadratic dependence of well hopping on well separation 
given by eqn (7 .41) .  
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Figure 7 . 1 6 :  Echo attenuation function E(q) as a function of q for electron spin echoes from 
(FA)2PF6 and for observation times (6., 8) values of filled circles 10 ps, 2 . 0  ps) , open circles 
( 14.0 Jl.S, 2.0 ps) , filled squares ( 16 .5 ps, 2 . 6  ps) and open squares ( 19 .5 ps, 2 . 6  ps) along with a 
set of four curves using eqn 7 .41  corresponding to a least squares best fit to the entire data set 
(Detr = 2 . 1  x 10-5 m2 s- 1 ,  7 = 25 pm) where descending amplitude corresponds to ascending 6.. 
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Observation Parameter 

time 

6. I Deff 
10.0 J-LS 1 3  p,m 3.2 x 1 0-5 m2 s-1 

14.0 p,s 20 j.Lffi 2.2 X 10-5 m2 s-1 

16.5 p,s 26 p,m 2 . 1  x 1 0-5 m2 s-1 

1 9.5 p,s 26 j.Lffi 2 . 1  x 1 0-5 m2 s-1 

best fit 25 p,m 2 . 1  X 10-5 m2 s-1 

Table 7.6 : Parameters used in fits to the data shown in Figures 7 .15 and 7 . 1 6  using the permeable 
wall model of eqn (7 .4 1 ) . 

Inverting the data 

All the models presented thus far depend specifically on the assumed exponential 
distribution of well sizes. In principle it is possible to transform the echo attenu­
ation function to reveal the appropriate weight distribution function , p( l ) ,  given a 
knowledge of the specific nature of the electron-barrier interaction. The simplest 
model to use is the time independent diffraction model where the averaged propaga­
tor is given by a sum of one-dimensional well autocorrelation functions. The inverse 
Fourier transform of the 6.. = 19 p,s data is shown in Figure 7. 1 7  a. This longest time 
was used as the model inherently assumes the long time limit approximation applies 
to all wells. The data is analysed to reveal a corresponding distribution function 
Petr( l) ,  shown in Figure 7. 1 7b, using both a non-negative least squares (NNLS) and 
a least distance (LDP) algorithm in which the kernel is taken to be the expected 
triangular autocorrelation function. The exponential weight function , p( l) is also 
using the value I = 25J.Lm. 

The difference in the results of the NNLS and LDP algorithms serves to empha­
sise the difficulties inherent in an inversion of the averaged propagator in  order to 
find the distribution of autocorrelation functions . The direct inversion also assumes 
perfectly reflecting walls, no boundary relaxation and the long time limit for the 
trapped electrons and therefore more weight is placed on the echo attenuation data 
results shown above. However the analysis shown here shows the possibility of such 
an approach in other more well defined systems. 

Two population model 

Finally we have attempted to fit the data presented here with a model comprising two 
populations of electrons, one of weight x which is free to diffuse without restrictions 
with self diffusion coefficient D and one of weight 1 - x which is completely confined. 
The best fit to D and x is shown in Figure 7 . 18  and clearly gives a poor representation 
of the data. 



106 CHAPTER 7. POROUS MEDIA 

(a) 1 .----------------------------, 

• 

0.6 • 
N' '-" • 
IQ.. ...., 

0.4 • 
• 

0.2 

0 
0 20 40 60 80 100 

z (!-!m) 

(b) 0.6 0.06 
0.5 0.05 
0.4 0.04 

,..-._ ,..-._ -'-" 0.3 � 
-0.03 � 

0.2 0.02 
0 . 1  0.01 

0 0 
0 20 40 60 80 1 00 

l (�-Lm) 
Figure 7 . 1 7 :  (a) The spatial Fourier transform of the E(q) data for � = 19 .5 J-LS and 6 = 2.6 
J-L S  along with (b) ,  the corresponding distribution function p(l) obtained using the NNLS (filled 
squares) , left hand scale) and LDP (open circles, right hand scale) algorithms of Lawson and 
Hanson in which the kernel is taken to be the expected triangular autocorrelation function.  The 
solid curve (right hand scale) shows the exponential weight function p(l), calculated using the value 
7 = 25 J-Lffi. 
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Figure 7 . 1 8 :  Fit to the E(q) data of Figure 7 . 16  (� = 10 ,  14 ,  16.5 and 19 . 5  Jl-S as filled circles, open 
circles, filled squares and open squares respectively) using a simple two site model in which one 
fraction of electrons is able to diffuse freely (D = 3 x 10-5 m2 s- 1 ,  x = 0 .9  ) while the remaining 
electrons are confined. Descending amplitude corresponds to ascending 6.. The data are poorly 
represented by such a model . 

7.6 Summary 

The experiments on the polystyrene sphere array clearly demonstrate the versatil­
ity and usefulness of taking a diffractive approach to PGSE NMR. Experiments 
performed on the polystyrene sphere array showed the coherence peak predicted at 
q = b-1 . These results were the first published[38] PGSE data showing an increase 
in echo signal strength with an increase in gradient strength.  A similar interference 
effect has recently been reported in an oil-water emulsion system by Balinov et. 
al [75] . The shape of the attenuation curve was consistent with predictions of the 
pore glass , pore hopping model. Structural parameters pertaining to the sample 
were revealed[67] . Through non-linear least square fitting, the analytic theory was 
fitted to echo attenuation data for each time 6. .  The parameters were consistent 
with expected results but with short times 6.. giving smaller fitted values for b. 

The shape of the pore voids formed by the polystyrene spheres were also analysed 
to test the use of the long time limit spherical pore structure function to model 
IS0(q) l 2 • The results showed a best-fit average spherical pore size of a "' 0 .43b, 
broadly consistent with the PGSE data results which found a "'  0.33b[70] . 

I also demonstrated the usefulness of the pore hopping model outlined in this 
chapter, and the parallel barrier model outlined in Chapter 6, by applying them 
to the analysis of PGSE ESR data obtained from the conduction electrons in a 
(FA)2PF6 sample where the electron diffusion data clearly involved restricted diffu­
sion. I fitted the data to two models, one based on the parallel relaxing wall model 
and the second on pore hopping. The pore hopping approach proved useful in find­
ing simple, analytic expressions for E( q ) .  I wrote computer programs to fit these 
models to the ESR data in order to test both the consistency of the mechanism of 
each model in simulating the observed data, and to obtain structural parameters 
relevant to the system under investigation. The pore hopping model proved better 
at modelling the data although neither method was conclusive. The ESR data was 
also inverted to reveal the average propagator. The corresponding distribution func-
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tion Peff( l) was found using two different algorithms in which the kernel was taken 
to be the expected triangular autocorrelation function. 

In Chapter 8 the restricted diffusion exhibited by entangled polymer chains will 
be investigated. 



Chapter 8 

Dynamics of Semi-Dilute Polymer 

solutions 

8.1 Introduction 

A further example of constrained or restricted diffusion can be found when con­
sidering the motion of polymers in solution. In the semi-dilute or concentrated 
regimes the polymers in a solution are sufficiently packed, such that they overlap 
and entanglements occur. A theory of the self-motion of such entangled polymers , 
originally proposed by de Gennes [76] , and extended by Doi and Edwards[77] , has 
been quite successful in describing the motion of entangled polymer systems. While 
experiments on concentrated polymer melts, using forced Rayleigh scattering[78, 79] , 
neutron scattering[80, 8 1 ,  82] and computer simulations[83, 84, 85, 86, 87,  88] , have 
definitively shown that reptation is the mechanism for diffusion, the situation with 
semi-dilute solutions is not so convincing[89, 90] . 

A question that is central to understanding the dynamics of entangled polymer 
molecules concerns whether linear chains in semi-dilute solution reptate[89] . P GSE,  
along with neutron scattering, is  one of the few techniques able to adequately probe 
the internal motions of polymers in this state, due to the ability to measure the 
self-motion of molecules as opposed to relative motion. The dynamic distances 
appropriate for polymer diffusion measurements are of the order of 50 to 5000 A.  
Unfortunately neutron scattering i s  confined to measuring displacements of less than 
50 A while, until recently, PGSE NMR has been confined to measurements above 
1 000 A displacement. Recent improvements [25, 54] to the PGSE NMR method have 
reduced this lower limit by an order of magnitude. One such method, the PGSE­
MASSEY technique[54] , is used to obtain some of the results presented here. The 
time window available is determined by the available gradient amplitude and by 
spin relaxation. In the present instance it is from 10 ms to 1 s .  

This chapter introduces the theory of polymer reptation and describes some 
experiments performed which provide evidence for reptational motion and the en­
tanglement tube in semi-dilute polymer solutions. 

8.2 Polymers 

Linear polymer chains are long, flexible snakelike molecules formed chemically by 
the repetition of some simple subunit known as a monomer. For example, in this 
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MP Mw/Mn 
3.30 X 105 1 .04 

5 .01 X 105 1 .06 

7 .70 X 105 1 .04 

1 . 13 X 106 1 .04 

1 .57 X 106 1 .06 

1 .75 X 106 1 .06 

3 .04 X 106 1 .04 

1 .50 X 107 1 .25 

Table 8.1 :  The high molecular weight , monodisperse polystyrene standards obtained from Poly­
mer Laboratories (Church Stretton, Shropshire, England) used in this work. 

work, polystyrene is extensively used and consists typically of between 10  and 105 
units of the styrene monomer linked end to end. 

Scaling properties 

Many polymer properties depend crit ically on the number of monomers in  the chain .  
In fact this leads directly to a number of scaling laws where some characteristic of 
the polymer, such as the self-diffusion coefficient, will scale with the number of 
monomers in present in the chain.  However these scaling relationships depend criti­
cally on the number of monomers in  the polymer, so the variation in the number of 
monomers in different polymer chains in a particular sample of polymer is important . 

Monodispersity 

The molecular mass M of a polymer, measured in daltons, is typically between 
1 000 and 107 , with each monomer being around 100 daltons in mass. In reality, there 
is often a distribution of polymer sizes in any sample, and M is not well defined . The 
distribution can be characterised by the number-averaged molar mass Mn where 

M _ "L./:0=1 Ni Mi n
- 2:::�1 Ni 

and the weight-averaged molar mass Mw where 

M _ 2:::�1 NiMi2 w
- 2:::�1 NiMi 

(8 . 1 )  

(8 .2 )  

The monodispersity or width of the distribution is given by Mw/ Mn called the 
polydispersity index. For a perfectly monodisperse polymer Mw/ Mn = 1 .0 .  An 
i ndex below 1 .2 indicates good monodispersity for a sample which can then be 
well characterised by appropriate parameters . As the polydispersity increases above 
this value the averaged behaviour becomes increasingly hard to interpret [9 1] . The 
polystyrenes used here had been polymerised by anionic polymerisation, which has 
typical polydispersity indices between 1 .04 and 1 . 1 .  Another parameter often used 
to describe the molecular weight is Mp, the peak average molecular weight . A list 
of MP and Mw/ Mn for the polystyrene samples used in this work can be found in 
Table 8 . 1 .  
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T 
b 
j_ 

1 1 1  

Figure 8 . 1 :  Freely jointed model of of a polymer. The end-to-end vector R has an r .m.s .  end-to­
end length of VNb for N links of length b as in eqn (8 .3) .  

Ideal polymer chain 

One of the most physically appealing aspects of polymers is that the chemical di­
versity of the monomers play little part in determining the dynamics of polymer 
molecules . With the exception of numerical prefactors all polymer molecules scale 
i n  the same way. For instance, a freely jointed model of a polymer with N joints of 
length b with have an r.m.s. end-to-end length of 

(8 .3) 

as shown in Figure 8 . 1 .  
A polymer can easily be fitted to this model by including enough monomer units 

in the segment length b such that each segment is conformationally independent of 
neighbouring segments . In fact this N112 scaling of the r.m.s. length changes when 
excluded volume and hydrodynamic effects are introduced, however, for entangled 
polymers , Flory's theorem states that the chains are ideal and R rv N112 • 

8.3  Polymer reptative diffusion theory 

The concept of polymer reptation was first proposed by de Gennes [76] and was 
developed further by Doi and Edwards [77, 92] . An outline of the theory is presented 
here. 

8 . 3 . 1 The primitive chain 

Reptation is characterized by !-dimensional Rouse-like[77, 93] curvilinear diffusion 
in an entanglement tube[92] formed by the topological constraints of surrounding 
chains . The tube formed by the surrounding polymer chains constrains the enclosed 
polymer to diffuse only along its own path as shown in Figure 8 .2 .  

For a given polymer configuration , a primitive path can be drawn connecting the 
two ends of the polymer chain by the shortest path, with the same topology as the 
chain, relative to the obstacles. A primitive chain can then be used to describe the 
simplified motion of the polymer moving along the primitive path by disregarding 
the small scale fluctuations about the path. 

The primitive chain has a constant contour length L and a step length a .  For 
any given network a will be of the order of the mesh size, or tube diameter. The 
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Figure 8 . 2 :  ( a) Entangled polymer chains with one polymer highlighted. (b) Schematic picture of 
(a) with the highlighted polymer placed on a plane and dots placed where other polymer strands 
intersect the p lane. (c) The tube model showing the primitive chain and the Doi-Edwards tube. 
(adapted from ref [77]) 
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number of steps in the chain, Z will be given by 

Z =
L 
a 

1 13 

(8 .4) 

And for Z steps each of length a we get the mean square length of the primitive 
chain 

-2 2 R = Za = La 

which must be equal to the polymer end-to-end length from eqn (8 .3) giving 

which implies 

and 

Nb2 
L = ­a 

(8 .5 )  

(8 .6)  

(8 .7 )  

( 8 .8)  

The diffusion coefficient De describes the rate at which the primitive chain moves 
back and forth along itself and is given by 

D _ kaT e - N( 
(8 .9 )  

where kaT i s  the usual Boltzmann factor and ( is the viscosity. The diffusion 
coefficient also scales as De rv N-1 .  This one dimensional curvilinear path has no 
branching points and can only be changed at the polymer ends, which can find new 
paths and therefore redefine the tube. 

Curvilinear path and the lab frame 

When dealing with the primitive path it is important to distinguish between dis­
tances along the curvilinear path and distances in three dimensions. If one takes 
n steps of length a along the primitive chain from point s' to s then the distance 
travelled along the path is 

i s - s'i = na (8 . 10)  

However in  the lab frame the primitive path is a random walk and the mean squared 
distance travelled in the lab frame is 

( (R(s) - R(s') ) 2 ) = a is - s' i = na2 ( 8 . 1 1 )  

which can be compared to eqn (8 .5) . In other words motion along the tube b y  a 
curvilinear distance s results in  motion of a distance (as )112 in three dimensions. 
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Diffusion of primitive chain along a curvilinear path 

By introducing the curvilinear diffusion coefficient De, which diffuses a curvilinear 
mean squared distance of 2Det in a time t 

2Det = I s - s1 1 2 = n2a2 (8 . 12) 
which in three dimensions gives[77] 

(8 . 1 3) 

Eqn (8 . 13 )  implies that the mean squared displacement of the polymer trapped i n  a 
tube will vary as t112 and not t as for normal Brownian diffusion. This effect can be 
easily measured with PGSE which always measures the mean squared displacement 
on the initial slope of a Stejskal-Tanner plot . The diffusion coefficient measured on 
such a plot will vary as D rv 6_-1/2 

Tube disengagement 

To calculate the motion of the primitive chain Doi and Edwards [77] found the mean 
square displacement of a primitive chain segment . Mathematically it is convenient 
to calculate the following time correlation function 

</>(s, s1 ; t )  = ( (R(s ,  t ) - R(s1, 0) )2 ) ( 8 . 14 )  

which due to  the one-dimensional nature of the chain gives the same result. The 
diffusion equation to solve is 

(8 . 1 5 )  

where De i s  the curvilinear diffusion coefficient along the primitive path. Eqn (8 . 15 )  
has solution[77] 

1 2Det 00 4La (p1rs ) </>(s, s ; t )  = -- + L 22 cos2 -
L 

[1 - exp( -p2 t/rd) ]  z p = l  p 7r 
(8 . 16 )  

where the time constant Td , called the  reptation or disengagement time, i s  a relax­
ation time describing the time it takes the primitive chain to disengage from the 
tube it was confined to initially, and is given by 

L2 
Td = -D 2 e1r 

Long time limit 

In the long t ime limit where t � Td eqn (8 . 16) reduces to 

( 1 ) 2Det </> s , s ; t  = z 

(8 . 1 7 )  

(8 . 18 )  

The polymer motion i s  completely Brownian, as expected, and the mean squared 
displacement scales directly with t. The timescale is long enough such that the 
polymer completely loses any memory of its initial tube and can effectively diffuse 
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Figure 8 . 3 :  The process of tube disengagement. The polymer is described by the primitive chain 
confined to a tube as shown in (a) . As the primitive chain diffuses along the tube, memory of a 
section of the tube is forgotten, as shown in (b) . A completely new tube will be formed over a 
time interval Td . (adapted from ref (77] ) 

randomly in  any direction. A three dimensional center of mass diffusion constant 
D s can be defined as 

D = lim 
cjJ(s ,  s'; t) 

= 
De 

= 
kBTa2 

s 
t-+oo 6t 3Z 3N2(b2 

(8 . 1 9) 

using eqn (8.9) and eqn (8. 18) .  Notice that Ds "' N-2 , which gives the 1\!J-2 
dependance of self-diffusion coefficient , often used as an indication of entanglement . 
Eqn (8 . 18) can be rewritten in terms of R2 , the mean square end-to-end length of 
the polymer, as 

and therefore[77] 

Short time limit 

For the case where t « Td eqn (8. 18) reduces to 

( D t) 112 ( t ) 112 
<jy(t)  = 2a -;- = 2R2 

tr3Td 

(8 .20) 

(8 .2 1 )  

(8 .22) 

as suggested by eqn (8 . 13) above. The t 112 dependance of <P(t) results directly from 
observing free diffusion confined to a curvilinear path. The crossover from one limit 
to the other occurs when the mean square diffusion is of the order of R2 and at a 
time of approximately 7rTd . 
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Structure functions for primitive chain 

The PGSE echo attenuation structure function can be calculated from[31] 

E(q) = (exp[i21l'q · (Rn(t) - Rn(O) ) ] ) . (8 .23) 

A solution for eqn (8 .23) for a segment at position s was found by Doi and Edwards. 
We integrated their solut ion[92] over the polymer length L to get 

00 { 2J.L 2 [ sin(2ap ) l (-4Dta; ) 
E ( q )  = L 2 2 cos 1 + ( 2 ) 

exp 
L2 

p=l J.l + a:P + 11 ap 

211 . 2 [ sin(2ap) l (-4Dtf3; ) }  
+ 2 f32 

sm 1 - (2 ) 
exp 

L2 11 + P + J.l ap 

where J.l = 1l'2q2aL/3 and aP and f3P are the solutions of the equation 

11 
11 ·  

The limiting case for eqn (8 .24) in the low-q limit where qR � 1 is  

as expected. 

(8 .24) 

(8 .25) 

(8.26) 

8 . 3 . 2  Internal dynamics: Rouse motion and t he primit ive 

chain 

Superposed on the primitive chain dynamics of an entangled polymer is the internal 
motion of the polymer about the primitive path. These small-scale fluctuations can 
be represented by the Rouse model[93] . This model, which ignores hydrodynamic 
and excluded volume effects ,  is too simplistic for dilute polymer solutions, but lends 
itself nicely to entangled polymer systems, where these extra interactions are not 
significant . The Rouse model is based upon a bead and spring model for the polymer. 

Rouse model in a tube 

The dynamics of a Rouse polymer can be described by the mean square laboratory 
frame displacement of a Rouse segment . 

(8 .27) 

where Rn is the position of the nth Rouse segment . At the shortest timescales, the 
segments in an entangled polymer would be unaware of the restrictions imposed by 
the constraining network and cPn (t) is given by the expression for the Rouse model 
in free space[77] . 

(8 .28) 
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where De i s  given by eqn (8 .9) .  The parameter rR, the time constant of the longest 
dominant i nternal mode, is called the Rouse time and is given by 

R 
rR = 

31f'2 De . 
Comparison with eqn (8 . 17) shows 

rR = rd/3Z. 
Since t � rR for short timescales, eqn (8.28) can be approximated by 

-2 ( t ) 112 (kBTb2t) 112 
cPn(t) = 2R -3- ::: t" 

7r rR '> 

(8 .29) 

(8 .30) 

(8 .31 )  

The mean square dependance on t112 motion is accurate until the segmental displace­
ment becomes comparable with a ,  the tube diameter. The dynamic timescale for the 
onset of tube constraint effects on segmental motion is given by re , the equilibration 
time, where 

a4( a4 
re � k Tb2 

= 
� · (8 .32) 

B DcR 

Rouse model along primitive path 

For times t > re the motion of the Rouse segment along the primitive path is  free, 
but motion transverse to the path is restricted. The mean square displacement is 
calculated using normal Rouse motion ,  but directing it along the one-dimensional 
primitive path. The mean square displacement of a Rouse segment along the tube 
is given by(77] 

4Nb2 00 1 (p1rn) 
( (sn (t) - sn (0) )2 ) = 2Det + 3.,.2 L: 2 cos2 -N · [1 - exp( -p2 t/rR)] (8 .33) 

" p=l p 
where sn is the displacement of the nth Rouse segment along the tube. The two 
limits of eqn (8.33) are 

( (sn(t) - sn (0))2 ) = 2R2 (---i--) 112 ::: (kBTb2tj()112 (8 .34) 
7r rR 

for t <  rR and 

( (sn(t) - sn(0)) 2 ) = 2Det (8 .35) 
for t >  rR . To calculate the displacement <Pn (t) in the laboratory frame, eqn (8 . 1 1 )  
can be used to show 

cPn(t)  = a /sn(t) - sn(O) / ::: a ( (sn(t) - sn(0) )2 ) 112 
which gives for 7e < t < rR 

cPn(t) = 2aR2 (---i--) 114
::: a (kBTb2tj() 114 

1f' 'TR 
and for rR < t < 'Td ,  

cPn(t) = a(2Dct) 112 ::: a (kBTtjN() 112 • 

(8 .36) 

(8 .37) 

(8 . 38) 
A most intriguing aspect of <Pn ( t) is that it is proportional to t 1 14 in  the time regime 
re < t < rR. This specific diffusion behaviour has been considered a "signature" 
for reptation and was first predicted by de Gennes [76] . The transition from t114 
behavior to t112 occurs at approximately 37r27R .  The behaviour for rn < t < rd 
agrees well with the behaviour predicted by the primitive chain .  
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Region Dynamic t imescale 

I t < Te 

II Te < i < TR 

Ill TR < i < Td 

IV Td < i 

Lab-frame displacement 

</>n(t) < a2 
a2 < </>n(t) < Ra 
- -2 Ra < </>n (t) < R 

-2 R < </>n(i) 

Displacement scaling 

</>n(i) rv tl/2 
</>n(i) rv tl/4 
</>n(i) rv tl/2 

</>n ( t) rv i 

Table 8 . 2 :  The characteristics of the four different timescale regions of polymer reptation as shown 
in Figure 8.4 

8 .3.3 Time scale regimes 

The different dynamic t imescale regimes are summarised in Table 8 .2 and Figure 8 .4. 
The regimes can be described as follows: 

I Free Rouse motion : 

For short time intervals up to Te , the polymer segments are unaware of the influence 
of the tube and therefore exhibit free Rouse motion with t112 scaling of <f>n (t) .  

11 Rouse motion constrained to the tube: 

For times t > Te the motions of segments perpendicular to the tube are restricted , 
but motion along the path  formed by the tube is unrestricted. The Rouse motion 
is directed along a one-dimensional path in a three-dimensional laboratory frame of 
reference resulting in a t114 scaling law for </>n (t) .  

Ill Curvilinear diffusion in the tube: 

For times t > TR the polymer motion along the tube is no longer dominated by 
i nternal Rouse motion, but by curvilinear diffusion directed along the primitive 
path. <Pn(t) therefore scales as t112 due to the one-dimensional nature of the tube. 

IV Long range centre-of-mass motion :  

Finally the polymer i s  able to  move into a completely new tube for times t > Td and 
losses all memory of its initial starting position. The diffusion is now random and 
Brownian with a normal t scaling for <Pn(t) .  

8.4 Experiments 

Samples were made by dissolving high molecular weight , monodisperse polystyrene 
in CC14 at concentrations of 2.2%, 9% and 13% volume fraction. Three types of 
PGSE experiment were performed[94] . In the first , the self-diffusion coefficient Ds 
of each sample was obtained from a standard Stejskal-Tanner plot of PGSE data. 
The large gradients available from our gradient coil ( 12 . 1  T m-1 at 10 A) enabled 
Ds values down to 6 x 10-15 m2 s-1 to be measured. In these experiments the M-2 
scaling law of Ds was investigated. 
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log t 

Figure 8 . 4 :  Mean squared displacement, <Pn (t) , of a chain segment plotted against time on a log 
graph .  The characteristics of the four regions are described in Table 8 .2 .  The slopes from each 
regime reveals the scaling dependence of <Pn (t) on t and are 1/2 (I) , 1/4 ( 11) , 1 /2 (Ill) and 1 (IV) 
respectively. ( adapted from ref [77]) 

In the second set of experiments, PGSE data was collected for a subset of samples 
with a range of diffusion times 1:1. The mean-squared displacement was found from 
the initial slope of the PGSE data on a Stejskal-Tanner plot . By using both spin and 
stimulated echoes, 1:1 values from 7 to 950 ms were available. The time dependence 
of the the mean squared displacement ,  (z(t)2 ) ,  was investigated. 

Finally, a set of PGSE-MASSEY experiments were performed in which very large 
gradients (up to 15 T m -I ) were used to acquire structure function curves for the 
entangled polymers. 

8 . 4 .1 Self-diffusion dependence on M 
Figure 8 .5 shows Ds vs M for polystyrene in carbon tetrachloride ( CC14 ) at a concen­
tration of 9% (volume fraction ) .  Note that in obtaining the data shown in Figure 8 . 5  
i t  was ensured that the diffusion time was sufficiently long for centre-of-mass mo­
tion, where <P(t) rv t, by utilizing a stimulated echo sequence where necessary. The 
data are consistent with the Ds rv M-2 prediction but due to the limited region 
of scaling we do not regard such behaviour as convincing evidence of reptation .  In 
fact there are non-reptative models (95, 96 ,  97, 98] for semi-dilute polymer diffusion 
which also predict a M-2 scaling dependence for Ds . 

8.4.2  Mean squared displacement dependence on t ime 

For the <P(t) vs t experiments we have chosen a high molar mass subset of the 
prepared samples using M values well in excess of 1 x 1 06 daltons and varied the 
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F igure 8.5:  Dependence of self-diffusion coefficient , D, , on molecular mass lvf for polystyrene in 
CC14 as 9% volume fraction. The straight line has a slope of -2 and indicates the D, � M-2 
scaling law. The yalue of D, for the 15  x 106 dalton sample in  Table 8 . 3  is obtained from this 
graph by extrapolation. 

observation t imes over the widest possible range. Using literature values of R and 
the Ds data of Figure 8 .5 ,  equations (8 .  7) , (8 . 17) and (8 .29) can be used to generate 
the parameters shown in Table 8 .3 .  Note that in the case of the 9%, 15 x 106 
dalton polystyrene sample, where Td � 10  s ,  the self-diffusion coefficient in region 
IV cannot be measured directly and we use Figure 8.5 to obtain D s by extrapolation 
assuming Ds rv M-2 .  The value for Ds for the 13% 15 X 106 dalton sample is then 
calculated assuming the concentration, c scales as c-3 [77 ] .  The minimum numbers 
of entanglements are calculated by assuming a :S 320 A for the 9% solutions, a 
choice which shall subsequently justified . Using this upper limit we may calculate 
the number of primitive path steps, Z, using eqn (8 .7) . The values of Z 2: 10  
represent sufficient entanglements for the tube model to  apply [88] for these polymer 
solutions. It should also be noted that three of the calculated tube disengagement 
t imes cause 1fTd to lie within the experimental time window of PGSE-NMR. 

Figure 8 .6 shows </;(t) vs t obtained from the low q dependence of E(q,  t) for four 
of the polymer solutions of Table 8 .3 .  While Figure 8 .6a compares the data with 
scaling lines for t114 , t112 and t1 behaviour, in Figure 8.6b the data are compared 
with the numerical predictions of the Doi-Edwards theory given by eqns (8 . 16 ) ,  
(8 .33) and (8 .36 ) .  A transition region from </;(t) "' t  to  </;(t) "' t112 is clearly visible 
for three of the four polymer systems as the observation time is reduced below 
1 s. In each case the position of this transition closely agrees with the theoretical 
reptation prediction. For the 15 x 106 dalton polystyrene at 9% concentration no such 
transition is apparent , consistent with our calculated value of Td . It is important 
to note that , in the region t 2: TR, the theoretical curves of Figure 8 .6b contain 
no adjustable parameters and use only the empirical Ds and R values shown in 
Table 8.3 .  The chosen value of a is significant only in the region t < TR . 

The transition from </;(t) ,...., t112 to </;(t) ,...., t114 would be expected in  the vici nity 
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F igure 8 . 6 :  (z(t)2) vs t data for polystyrene in CCl4 (filled squares 2 .4% 15  x 106 daltons, open 
circles 10% 1 .8 x 106 daltons, open triangles 10% 3.0 x 106 daltons, open squares 1 0% 15 x 1 06 
daltons) . Note that <P(t) = 3(z(t )2 ) ,  z being the component of displacement along q. (a) The data 
are compared with asymptotic lines for t 1 14, t 1 12 ,  and t scaling. (b) The solid curves correspond to 
Doi-Edwards theory for regions II, Ill and IV, calculated using the parameters of Table 8 .3 .  For 
the 2 .2% 15  x 106 dalton system the effect of the transition from 11 to Ill is shown in the upper 
solid curve whereas the lower dashed line corresponds to the Doi-Edwards prediction incorporating 
only regions Ill and IV. 
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Volume 

Mp fraction R Ds a z Td TR 
(daltons) (%)  (A) (m2s-1 ) (A) (s) (ms) 
15 X 106 9 2900 3 .5  X 10-16 320 82 8 . 1  3 3  

3.0 X 106 9 1300 7.5 X 10-15 320 17 0.076 1 . 5  

1 .8 X 106 9 990 3.5 x 10-14 320 10 0 .010 0 . 33 

15 X 106 2 .2 3100 6.5 X 10-14 930 1 1  0.050 1 . 5  

15 X 106 13 2700 1 . 5  X 10-16 280 93 16 58 

Table 8.3:  Parameters for the polymer systems used in  this work. The values for R were obtained 
from concentration-dependent radii for polystyrene in CS2 [99] for which the dilute solution coil 
expansion factor is approximately 1 .7 ,  the same as in CC14[99 , 100] .  

t ,...., 3?r2TR, and at a length scale Ra. Reference to Table 8 . 3  indicates that, given the 
chosen upper l imit values of a , we would expect to just see this transition within the 
P GSE-NMR timescale only for the 10% solution of 3.0 x 1 06 dalton polystyrene and 
the 2.4% solution of 15 x 106 dalton polystyrene in CC14 . Our data does not clearly 
indicate such a transition for these polymer systems, suggesting p0ssibly that a is 
somewhat smaller than the chosen maximum. However we do see a clear t114 region 
in the case of the 10% solution of 15 x 106 dalton polystyrene, although the absolute 
values of the mean square displacements are somewhat below the predictions of Doi­
Edwards theory based on the value of Ds extrapolated for this polymer. It should 
be noted that the theory represents the data well if a value of Ds is chosen which is 
a factor of 5 lower. This casts some doubt on the use of M-2 scaling to obtain Ds 
by extrapolation. 

One other prediction of Doi-Edwards theory is that the <f>(t) vs t data for a 
common tube diameter should converge at </>(re )  � a2 . For the three sets of data 
corresponding to different molar masses with a common solution concentration, and 
hence tube diameter, a high degree of convergence is apparent at short observation 
times. We note that the convergence value of (z(t)2 ) is :S 3 x 10-16 m2, consistent 
with the maximum value of a assumed before. 

8 .4.3 Struct ure factor 

So far we have considered only the motion of the primitive chain measured using 
the low-q limit of eqn (8 .23) . Superposed on this is the rapid Rouse motion about 
the primitive chain which occurs at distance scales shorter than a. To examine 
this "local" motion it is necessary to measure the high-q dependence of E( q) . The 
incoherent dynamic structure factor of eqn (8.23) represents the Fourier transform of 
the average propagator of the motion as explained in Section 3.3 .2 .  We shall find it 
convenient to treat the local motion and the longer-range primitive chain motion as 
stochastically independent so that the total average propagator is a convolution of 
local and primitive chain propagators. In consequence the overall dynamic structure 
factor will be a product of factors for the local and primitive chain motions. 

Because the PGSE NMR observation t ime greatly exceeds Te , the average prop-



8.4. EXPERIMENTS 

2 q 
0 

1 .0 ---...---....---....---....---....---....----.----. 

0. 1 

• 
• • 

0 • 
0 0 0 • 

• 

123 

Figure 8 . 7 :  E(q) vs q2  for 15  x 106 daltons polystyrene at 9% (filled circles) and 13% (open 
squares) in CC14 . The observation time is 48.5 ms , sufficiently long for the PGSE narrow pulse 
approximation to hold. The theoretical lines correspond to Doi-Edwards incoherent structure 
factors of eqn (8 .24) and the downwards deviation of the data at high q is believed to arise from 
time-averaged local Rouse motion restricted within the entanglement tube. 

agator for this local motion is an autocorrelation function of the polymer segments 
density distribution, PI (r) ,  in their motion transverse to the tube. This leads to a 
structure factor I SI ( q) 1 2 where SI ( q) is the Fourier transform of PI ( r) . Consequently 

(8 .39) 

where Epc (  q) is the primitive chain dynamic structure factor. A suitable choice 
for PI (r) is the Gaussian distribution, (27r0')-I/2 exp( -r2 /20"2 ) where 20' may be re­
garded as the tube diameter. This would lead to ISI ( q) 1 2  of exp( -47r2q20'2 ) .  Epc (  q) 
i s  given by eqn (8 .24) for regions I l l  and IV but we are unaware of any analytic ex­
pression for the region II incoherent structure factor. For the purpose of interpreting 
I SI ( q) 12 we therefore use the extrapolated region Ill Epc( q) dynamic structure factor 
as an approximation . 

Figure 8.7 shows E(q) vs q2, for 15 x 106 polystyrene/CC14 solutions at 9% and 
1 3% concentrations. These data were obtained at a fixed measurement time of 48.5 
ms. Also shown are the corresponding Epc(q)  curves calculated using values of R 
and D s values given in Table 8.3 .  It is clear that the concave nature of Epc (  q )  vs 
q2 permits the observation of I SI (q ) l 2  attenuation provided qa "' 1 .  From the e-I 
points of this additional attenuation we estimate tube diameter values of 320 A and 
280 A for the 9% and 13% solutions. At best these values are rough estimates. We 
note that their ratio is not consistent with the expected c-0·75 dependence, a fact 
which may reflect hydrodynamic influences[101 ] .  A more detailed analysis would 
require an accurate description of Epc( q) over the entire range of q employed here. 
However, it is clear that the present data enable us to set upper limits on the value 
of a . Both the E(q) vs q2 data and the cp(t) vs t data are consistent with a tube 
diameter smaller than 320 A for the 9% solutions.  
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8.5  Summary 

It should be emphasised that the q values used here are unusually large for PGSE­
NMR (27rq "' ( 130 At1 ) and that the data reliability depends on the echo-stabilising 
effect of the PGSE-MASSEY technique described in  Chapter 5 .  In the event that 
the additional attenuation evident at high q contains an instrumental artifact ,  we 
may take the values of a determined here as upper limits. While our conclusions 
regarding magnitude of the tube diameters in semi-dilute solution are somewhat 
tentative, the establishment of these maximum values lends credence to the tube 
depiction for the very high molar mass polymer solutions used in this work. 

By contrast we attach a high degree of significance to the <P(t) vs t observations 
shown i n  Figure 8 .6 .  While such transitional behaviour has been found in com­
puter simulations[84, 85, 86] , to our knowledge, this data represents the first direct 
measurement of the motional regimes long considered a signature for reptation. 

PGSE has been extensively used to measure polymer diffusion coeffi.cients [ 100, 
1 02 ,  103] , but has been limited to distance scales too large to measure the internal 
motions of entangled polymers. However, with the introduction of both the stray 
field gradient technique[25] , and the PGSE-MASSEY technique[54] used here, there 
will be significant advances in this field. 



C hapter 9 

Conclusion 

9 . 1  Summary 

The use of the reciprocal q-space analysis in this thesis has been central to extending 
the scientific use of Pulsed Gradient Spin Echo experiments . The fundamental i deas 
of the technique can been seen in  the parallel barrier ideas discussed in  Chapter 6 .  
The use of  the 100 pm microslides was a key factor in being able to obtain the 
excellent diffraction peaks observed .  The extension to the original Stejskal-Tanner 
equation to incorporate the Brownstein-Tarr effects of edge relaxation allows the 
technique to be used on more realistic samples . A fundamental idea is that the 
PGSE experiment is not limited by typical imaging signal to noise considerations. 
By using larger magnetic field gradients, be they ordinary pulsed gradients with the 
PGSE-MASSEY technique or superconductor magnet static field gradients ,  one can 
theoretically probe smaller displacements. 

The extension of this theory to incorporate porous systems is shown in Chapter 7. 
Both the Gaussian envelope and pore hopping theories are discussed. Analysi s  of 
experiments on the packed array of monodisperse polystyrene spheres has proved 
excellent in  being able to extract important structural information about the system. 
By using the PGSEPLOT program we have been able to fit the pore hopping theory 
to the data and get parameters consistent with the known dimensions of the sphere 
array. Computer simulations have also proved useful in finding the limitations of 
the theory with real samples. 

The question of polymer dynamics in semi-dilute solution has been studied in 
Chapter 8 ,  and provided an opportunity to measure small displacements in highly 
viscous samples. By utilising our high gradient system and the MASSEY technique 
we have been able to probe the internal dynamics of such polymers. The experiments 
show a transition from center-of-mass diffusion to diffusion restricted along the one 
dimensional path of the polymer tube. Again by using the reciprocal space analysis 
we have been able to "measure" the size of the tube. These measurements are some 
of the highest q measurements made to date in the l iterature. 

9.2  Future work 

The possibility for future work exists in all three aspects of t his  thesis. The re­
stricted diffusion experiments from Chapter 6 have seen several recent extensions to 
the theory. Echo attenuation functions using the narrow pulse approximation for 
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all three geometries now exist incorporating the effects of relaxation at the walls. 
A theory also exist for the harmonic potential well, which may prove useful in ex­
periments on entangled polymers. However there have been few PGSE experiments 
performed on real systems to test the usefulness of these models in extracting real 
structural information from model systems . If further work in this field, especially 
testing spherical systems, proves that these techniques are useful ,  then the possi­
bility to extend the experiments to real samples of interest would exist . As the 
available gradient strengths increase, using techniques like PGSE-MASSEY, then 
q-space imaging, in principle, can be applied to smaller systems ( < 0 . 1 1-Lm) where a 
slowly diffusing probe molecule could enable ' imaging' of the structure at unrealised 
resolutions involving N MR. 

The porous experiments of Chapter 7 seem to have attracted considerable interest 
from workers in this field .  Many industries, in parti cular the oil industry, have shown 
considerable interest in the possibility of PGSE NMR being used to understand and 
measure porous diffusion. Although the pore hopping theory is simple, and for real 
systems, unrealistic ,  it has been successful in fitting PGSE data from model porous 
systems. Several other groups have now also observed the diffractive coherence peak 
in PGSE experiments on porous samples. Further work will be needed to understand 
how much these diffractive effects will still be observable in real systems of interest . 
However with the help of computer simulations and some extensions to the theory 
it should be possible to use this technique successfully in real samples of interest .  

The understanding of polymer diffusion has attracted a large amount of interest 
since the 1960's. The repatative models of de Geenes and Doi and Edwards have been 
central to the understanding of entangled polymer dynamics. There are many groups 
working in this field, several of which use PGSE to measure molecular dynamics. 
With the increase in available q made possible by the PGSE-MASSEY technique and 
the superconducting magnet stray-field method, it should be possible to measure the 
small displacements needed to accurately clarify the mechanisms involved in semi­
dilute polymer diffusion. 

\ 
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Appendix B 

Software 

A description of the programs written by the author and used in these studies is 
given here. The source code for all programs can be obtained by contacting the 
author by e-mail at "A.Coy@massey.ac.nz" . The majority of the software written 
was compiled and executed on Apple Macintosh computers but the descriptions 
indicate if a different machine was used . 

B . l  PGSEPLOT 

A program written to  display and analyse PGSE data. This program runs on a 
Macintosh computer and has been the backbone of data analysis for this thesis. 
It can fit a range of theoretical echo attenuation functions to PGSE data using a 
non-linear least squares fitting algorithm. The resultant fit p arameters are displayed 
and a graph is shown on-screen which can be printed for a permanent record. An 
example of the program running is shown in Figure B . l .  

The program has around 6000 lines of code i n  1 1  modules which generates about 
70K of compiled code. The first version of the program was written in July 1990 
and has since been updated many times. The current version number is 3.4 and I 
still have further modifications I wish to make. 

B .2 P GSE-JEOL 

A program used to  receive FID data from the GX-270 spectrometer. The program 
used the RS-232c serial communications port to receive the data, and then analyses 
the data to produce a final PGSE file suitable for use with the PGSEPLOT program. 
Two versions were written. One to do standard PGSE analysis, the second for 
PGSE-MASSEY experiments where the individual FID 's are eo-added after Fourier 
transformation and taking the modulus. 

The programs have around 2000 lines of code which generate about 25K of 
compiled code. 

B .3 P GSE-FX60 

A program written to automate P GSE data acquisition fro m  the FX-60 spectrome­
ter. Originally this job was performed by a program running on the Hitachi PC, but 
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q*q*Ll.r 
0.10 70.00 1.180 

3 0.20 70.00 1.180 
0.30 70.00 1.180 

5 0.40 70.00 1.180 
0.50 70.00 1.180 0.1  
0.60 70.00 1 .180 

0.70 70.00 1.180 
0.80 70 .00 1.180 

10 0.90 70.00 1.180 
11 1.00 70.00 1.180 

0.01 
12 1.10 70.00 1.180 
13 1.20 70.00 1.180 
14 1.30 70.00 1.180 
15 1.40 70.00 1.180 + 
16 1.50 70.00 1.180 
17 1.60 70.00 1.180 0.001 

18 1.70 70.00 1.180 Pore G'Ws Fit 
19 1.80 70.00 1.180 Pore size (a): 5.50 +/- 0.54 � 

Pore specing (b): 15.55 +1- 0.46 � 
Pore jitter (§): 0 . 14  +1- 0.45 � 

Di!fusion (Dp): (25.67 +1- 0.36)e-10  mA2/s 

Figure B . l :  Sample output from the PGSEPLOT program. The PGSE data is displayed on the 
left . The data is plotted as crosses on a Stejskal-Tanner plot on the right . The line represents a fit 
to the pore glass hopping model with a Gaussian distribution of pore spacings. The paramters a ,  

b ,  Detr and � ,  obtained from the fit, are shown below the graph (note the program has no  suitable 
symbol for � yet) .  

a replacement was required as the Hitachi keyboards failed. This Macintosh pro­
gram had the advantage of being able to save the acquired data in a file suitable for 
analysis by the PGSEPLOT program. A small program was also written, and left 
running on the Hitachi ,  to provide a simple parallel to serial interface to the Mac­
intosh. An example of the PGSE-FX60 program running is shown in Figure B .2. 
This system has since been replaced in our lab by the Tecmag LEO/ J computer 
interface. 

The program has around 3000 lines of code which generates about 35K of com­
piled code. 

B .4 Simulations 

A range of simulation programs were written. The programming language C was 
used as this enabled programs developed on the Macintosh to be run on the faster 
Unix machine available in our lab .  The simulations were written to emulate a PGSE 
experiment and saved files containing the density function and average propagator 
as well as the echo attenuation function. The main simulations run were to test 
the relaxing wall parallel plane barrier model, but additional simulations tested the 
effects of finite gradient pulses as well . 

These programs were generally small, about 1 000 lines of code, generating around 
20K of compiled code. 
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r File Edit 

Figure B . 2 :  Sample output from the PGSE-FX60 program. The bottom window shows the most 
recently acquired spectrum, which is autophased. The peak area is integrated and the result is 
added to the file in the upper right window . As each q-space point is acquired, the data set is 
plotted on a graph in the upper left window allowing the operator to check that the experiment is 
running correctly. A linear least squares fit shows the slope of the graph ,  and in cases where the 
self-diffusion coefficient is known, the slope can be used to check that the experimental parameters 
are correectly set . The data is then saved in a format suitable for use with the PGSEPLOT data 
analysis program. 
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B.5  Theory 

An early program I wrote to generate theoretical curves for the Stej skal-Tanner 
parallel plane barrier equation was rewritten several times to emulate many other 
equations. The program allowed the user to enter parameters to the equation and 
see the curves before saving the echo attenuation data into files as required. Ver­
sions of this program for parallel barrier restricted diffusion, eqns ( 4 .20)  and ( 4 .2 1 ) ;  
parallel barrier restricted diffusion with relaxation at the boundaries , which involved 
finding roots of transendental equations , eqns (6 .27) , (6 .26) and (6 .20 ) ; pore hopping 
theory, eqns (7 .26) , (7. 3 1 )  and (7.33) ; the modified pore hopping theory for the elec­
tron diffusion experiments, eqns (7.40 ) ,  and (7.41 ) ;  polymer diffusion mean squared 
displacement, eqns (8 . 16 ) , and (8.28) ; polymer structure functions, eqns (8 .24) ;  were 
written. 

An example of this program, called RECTSIM, to generate E( q) curves for the 
parallel plane barrier equation, eqn ( 4 .21 ) , is shown in Figure B .3 .  This was often 
refered to as the rectangular box equation, hence the program name. 

The RECTSIM version of the program has under 1000 lines of code which gen­
erates about 15K of compiled code. By contrast the MRECT version of the pro­
gram, which includes relaxation effects and therefore needs to find the roots of the 
transendental equations has around 1 500 lines of code generating 25K of code. 

B.6 BrukerTranslate 

A program written to convert AMX300 files into Macintosh files suitable for use with 
the Imageshow program. This program has around 2000 lines of code producing 
about 25K of code. 
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R e c t an g ular DoH PGSE 

b o H  size (a)  = 1 00 . 0 0  .urn 

Time (L:i.) = 5 0 0 . 0 0  ms 

MaH G radient (g)  = 0.29 Tlm 

( O K  - Calculate ) MaH delta (c}) = 1 .6 0  ms 

Diffusion Coef (D)  = S . O e - 9 m "' 2/s O K  - Calculate 
and Saue 

( C a n c e l  and Q u i t  ) 

Figure B.3:  Sample output from the RECTSIM program. This program formed the basis for 
many other programs which numerically evaluted different equations to generate echo attenuation 
curves. Parameters are entered in the dialog box and the echo attenuation curves displayed on 
the graphs above. The left graph shows the effect of varying D. and holding the gradient at the 
value chosen in the dialog box. The right graph shows a q-space plot where D. is fixed at the value 
given and the gradient is varied. The numerical curves could then be saved for use in analyising 
experimental data. 
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