Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE REGULATION OF SOME GLYCOLYTIC

ENZYMES IN STREPTOCOCCUS LACTIS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, New Zealand.

> Vaughan Leslie CROW June 1975

ABSTRACT

Certain aspects of the control of carbohydrate metabolism have been studied primarily in <u>S. lactis</u> C_{10} . The kinetic and regulatory properties of two enzymes, lactate dehydrogenase and pyruvate kinase were investigated in some detail whereas a third enzyme, 6-phosphogluconate dehydrogenase, was subjected to a preliminary investigation only. A brief investigation was made of the <u>in vivo</u> concentrations of some metabolites in exponentially growing cells in batch culture.

The S. lactis lactate dehydrogenase (LDH) was purified about 100 The mobility pattern of the purified enzyme on polyacrylamide fold. disc gel electrophoresis was a complex function of pH and ionic strength. From sodium dodecylsulphate-gel electrophoresis the LDH appeared to have a subunit molecular weight of 37,000. A tentative model indicating a pH dependent association/dissociation has been suggested on the basis of the gel results and heat stability studies. At acid and neutral pH values a tetrameric species is favoured. At alkaline pH values (pH 8.0) a dimeric species is favoured. The tetrameric protein is more stable to heat than the dimeric species. The purified LDH requires fructose-1,6diphosphate (FDP) for catalytic activity at acid and neutral pHs. For pyruvate reduction, in the presence of FDP the pH optimum was 6.9 whereas in the absence of FDP only very low activity was found and the pH optimum was 8.0 to 8.2. The pH optimum for lactate oxidation in the presence or absence of FDP was 8.0 to 8.2 and the activation by FDP was very much less than the FDP activation of pyruvate reduction. The kinetics of lactate oxidation suggested that only the pyruvate reduction direction was significant in vivo.

A significant finding was the effect of different buffers on the FDP activation of LDH. The concentration of FDP required for 50% maximal activity was 0.002 mM when determined in triethanolamine/HCl buffer, 0.2 mM in tris/maleate buffer and 4.4 mM in phosphate buffer; a 2,000 fold difference depending on the choice of the assay buffer. At the pH optimum (pH 6.9) there appeared to be at least two FDP binding sites which interact with each other in a co-operative manner. The choice of buffer was shown to affect other properties of LDH, such as the pH effect on FDP binding, the heat stability of the enzyme at 55°C, the binding of NADH and pyruvate and the effect of the inhibitor, oxamate. Stoppedflow analysis of the LDH showed that a lag period was present at pH 6.9. This lag period could be eliminated by pre-incubation with FDP. No

ii

such lag period was demonstrated at pH 8.2. It is suggested that this lag period is due to a conformational change in the tetrameric species induced by FDP. The properties of the <u>S</u>. <u>lactis</u> LDH, taking into account the buffer effects, have been discussed in terms of the carbohydrate metabolism and related to other FDP-activated streptococcal LDH's. A brief comparative study of the <u>S</u>. <u>faecalis</u> ATCC 8043 LDH was made. The two major findings were its insensitivity to phosphate inhibition and its activation by manganese ions.

Pyruvate kinase was purified to near homogeneity as determined by polyacrylamide gel electrophoresis, with and without SDS. With SDS. a subunit molecular weight of 60,750 was determined. From equilibrium sedimentation studies the molecular weight of the native protein is 235,000. The enzyme is therefore a tetrameric protein. The kinetic properties of the pyruvate kinase were more complex than those of LDH, for as well as requiring FDP as an activator, the enzyme had an essential requirement for both a monovalent and divalent cation. FDP under most conditions bound to the enzyme in a co-operative manner. Phosphoenolpyruvate (PEP), and to a lesser extent, ADP, showed co-operative binding to the enzyme only at unsaturating FDP concentrations. Both the monovalent and divalent cations showed co-operative binding to the enzyme in the presence of saturating FDP concentrations. The activation properties of the enzyme were considerably different when Mn⁺⁺ was substituted for Mg⁺⁺ as the divalent cation. Like LDH, the pyruvate kinase was also affected by the nature of the buffer components. Pyruvate kinase was inhibited by lower concentrations of phosphate than were required to inhibit LDH. In addition the pyruvate kinase activity was inhibited by high concentrations of Mg⁺⁺ and ADP. The properties of the S. lactis pyruvate kinase have been discussed in relation to other pyruvate kinases and to carbohydrate metabolism in S. lactis.

The <u>S</u>. <u>lactis</u> 6-phosphogluconate dehydrogenase (6-PGDH) did not appear to be inhibited by FDP, nor did the enzyme from <u>S</u>. <u>faecalis</u> ATCC 8043. This is contrary to published findings by other workers. Because of the preliminary nature of this investigation, further work is required on the <u>S</u>. <u>lactis</u> 6-PGDH to establish whether or not its activity is regulated by FDP.

The <u>in vivo</u> concentration of several metabolites were determined in exponentially growing cells and related to the <u>in vitro</u> kinetic properties of the two enzymes, LDH and pyruvate kinase. The metabolites

iii

studied were; FDP, PEP, triose phosphates, ADP, ATP, glucose-6-phosphate and pyruvate. The <u>in vivo</u> FDP concentration was at a sufficiently high level (12.7 to 14.9 mM) to fully activate the two enzymes as indicated by <u>in vitro</u> determinations under a number of different assay conditions. The <u>in vivo</u> studies have suggested further <u>in vitro</u> kinetic studies which may be useful to investigate to gain a fuller understanding of the regulation of carbohydrate metabolism in <u>S. lactis</u>.

ACKNOWLEDGEMENTS

I wish to thank my Supervisor, Dr G.G. Pritchard, for his valuable advice and encouragement throughout the course of this study. I would also like to thank my secondary Supervisor, Professor R.D. Batt.

In addition, particular thanks are extended to:

Dr M.J. Hardman for help with the stopped-flow analyses and many helpful comments;

Dr J.W. Lyttleton for the analytical ultracentrifuge analysis; Dr R. Brooks for the manganese concentration measurements; Mrs C.J. Gradolf for typing the manuscript.

CONTENTS

			Page number
Abstra	ct		ii
Acknow	ledgeme	nts	v
List o	f Conte	nts	vi
List o	List of Figures		xii
List o	List of Tables		
SECTIO	N 1 - G	ENERAL INTRODUCTION	
1.1	Genera	l characteristics of the lactic acid bacteria	1
1.2		in pathways of catabolism in lactic acid bacteria ydrate	1
1.3	Format	ion of products other than lactate by streptococci	4
1.4	Oxidat	ive phosphorylation in lactic acid bacteria	5
1.5	Lactos	e and galactose metabolism	7
1.6	Metabo	lism of non-carbohydrate compounds	8
1.7	Bacter	ial regulatory mechanisms: general comments	9
1.8		spects of regulation of carbohydrate metabolism in streptococci	11
1.9	Genera	l aims of the present investigation	14
SECTIO	N 2 - L	ACTATE DEHYDROGENASE	
2.1	Introd	uction	15
	2.1.1	Mammalian $L(+)$ -lactate dehydrogenase	15
	2.1.2	Bacterial lactate dehydrogenases	16
	2.1.3	Fructose-1,6-diphosphate-activated L(+)-lactate dehydrogenase from streptococci	20
2.2	Materi	als and methods	26
	2.2.1	Organism	26
	2.2.2	Reagents	26
	2.2.3	Lactate dehydrogenase assay	27
	2.2.4	Protein determination	27
	2.2.5	Preparation of affinity chromatography resin	27
	2.2.6	Polyacrylamide disc gel electrophoresis	28
	2.2.7	Activity staining of gels for LDH activity	29
	2.2.8	Sodium dodecyl sulphate polyacrylamide disc gel electrophoresis	30
	2.2.9	Thermal stability of lactate dehydrogenase	30
.2.3	Purifi	cation of lactate dehydrogenase	31
	2.3.1	Growth and harvest of streptococcus lactis C10	31
	2.3.2	Breakage of cells	31
	2.3.3	Streptomycin sulphate treatment	31

Page number

	2.3.4	Ammonium sulphate precipitation	32
	2.3.5	DEAE-protion ion exchange chromatography	32
	2.3.6	Chromatography on an "Oxamate Affinity Resin"	35
2.4	Proper	ties of the purified $L(+)$ -lactate dehydrogenase	40
	2.4.1	Polyacrylamide disc gel electrophoresis	40
		2.4.1.1 Sodium dodecyl sulphate polyacrylamide disc gel electrophoresis	43
	2.4.2	Effect of pH on activity of LDH	48
	2.4.3	Factors affecting the fructose-1,6-diphosphate activation of S. lactis $C_{1,0}$ L(+)-LDH	54
		2.4.3.1 The effect of different buffers on FDP activation of $L(+)-LDH$	54
		2.4.3.2 The effect of NADH and pyruvate on FDP activation of $L(+)-LDH$	57
		2.4.3.3 The effect of pH on FDP activation of $L(+)-LDH$	57
	2.4.4	Effect of varying pyruvate and NADH on enzyme activity	62
		2.4.4.1 Determinations of Michaelis constants for pyruva and NADH for S. lactis C_{10} L(+)-LDH in tris/maleate buffer	te 62
		2.4.4.2 Determinations of Michaelis constants for pyruva and NADH in different buffers	te 65
	2.4.5	The effect of fructose-1,6-diphosphate on kinetic parameters	68
	2.4.6	Lactate oxidation by S. lactis C_{10} L(+)-LDH	72
		2.4.6.1 Determinations of K_{M} values for L(+)-lactate and NAD ⁺	72
		2.4.6.2 The effect of phosphate on lactate oxidation	75
	2.4.7	Stopped-flow analysis of initial reaction rate	77
	2.4.8	Effect of inhibitors	82
		2.4.8.1 Inhibition with pyruvate as the varied substrate	82
		2.4.8.2 Inhibition with NADH as the varied substrate	83
		2.4.8.3 Inhibition of pyruvate reduction by phosphate	83
		2.4.8.4 Effect of oxamate in phosphate buffer	88
	2.4.9	Factors affecting the stability of the S. lactis C_{10} LDH at 55°C	90
2.5	A compa	e dehydrogenase from Streptococcus faecalis ATCC 8043. arison of some regulatory properties with those of tis C ₁₀ LDH	94
	2.5.1	Introduction	94
		Partial purification of LDH from S. faecalis ATCC 8043	95

viii

	2.5.3	Propertie	s of the S. faecalis LDH	96
			FDP activation of the S. faecalis LDH in relation to buffer composition	96
			Effect of Mn ⁺⁺ on activity and pH optimum of S. <u>faecalis</u> LDH	99
			Effect of varying Mn^{++} concentration on the activity of <u>S</u> . <u>faecalis</u> LDH	99
	2.5.4	Response	of <u>S. lactis</u> C ₁₀ LDH to Mn ⁺⁺	101
	2.5.5		n of data obtained from the brief study <u>faecalis</u> LDH	1 01
2.6		sion of th <u>S. lactis</u>	e results from studies on the properties	103
	2.6.1	The FDP r	equirement of streptococcal LDH's	103
	2.6.2	Compariso LDH with	n of the properties of the <u>S. lactis</u> C_{10} those of other streptococcal LDH's	105
	2.6.3	The inter S. lactis	relationship between the properties of the LDH	1 08
	2.6.4	Other fac	tors that may regulate LDH activity	114
SECTION	3 – PY	RUVATE KIN	ASE	
3.1	Introdu	uction		115
	3.1.1	Mammalian	pyruvate kinases	116
	3.1.2	Microbial	pyruvate kinases	1 21
	3.1.3	Pyruvate	kinase of streptococci	125
3.2	Materia	als and me	thods	127
	3.2.1	Organism		127
	3.2.2	Reagents		127
	3.2.3	Pyruvate	kinase assay	128
	3.2.4	Protein d	eterminations	129
	3.2.5	Polyacryl	amide disc gel electrophoresis	129
	3.2.6	Detection	of pyruvate kinase activity on gels	129
	3.2.7	Sodium do electroph	decyl sulphate polyacrylamide disc gel oresis	129
3.3	Pyruva	te k in ase	purification	130
	3.3.1	Growth an	d harvest of Streptococcus lactis C10	130
	3.3.2	Breakage	of cells	1 30
	3.3.3	Streptomy	cin sulphate treatment	1 30
	3.3.4	Annonium	sulphate precipitation	1 30
	3.3.5	DEAE-cell	ulose ion exchange chromatography	1 31
	3.3.6	Gel filtr	ation on Biogel A 0.5 M	133
3.4	Studies	s on the p	roperties of the purified pyruvate kinase	137
	3.4.1	Polyacryl	amide disc gel electrophoresis	138

ix

Page number

	3.4.1.1	Sodium dodecyl sulphate polyacrylamide disc gel electrophoresis	1 38
3.4.2		r weight determination of pyruvate kinase	141
3.4.3	Effect of kinase ac	f pH and buffer components on pyruvate stivity	143
3.4.4		vation and the effect of PEP, ADP and concentrations on FDP-activation	145
	3.4.4.1	The effect of PEP concentrations on FDP- activation	146
	3.4.4.2	The effect of ADP and Mg^{++}/K^+ concentrations on FDP-activation	146
3.4.5	Response concentra	of pyruvate kinase to varying FDP ations	1 50
	3.4.5.1	The effect of FDP and K^+/Mg^{++} concentration on the response to varying PEP concentra- tion	1 50
	3.4.5.2	The effect of ADP and K^+/Mg^{++} concentration on PEP activation	153
3.4.6	Response tion	of pyruvate kinase to varying ADP concentra-	1 55
	3.4.6.1	The effect of FDP concentration on ADP bind- ing to the S. lactis pyruvate kinase	156
	3.4.6.2	The effect of PEP concentrations on ADP binding	157
3.4.7		ct of guanosine 5 ¹ -diphosphate (GDP) on C ₁₀ pyruvate kinase activity	159
3.4.8	The effect activity	ct of monovalent cations on pyruvate kinase	1 61
	3.4.8.1	The effect of monovalent cations on the <u>S</u> . lactis C_{10} pyruvate kinase activity	1 61
3.4.9	The effect activity	ct of divalent cations on the pyruvate kinase	164
	3.4.9.1	The effect of divalent cations on the S . lactis pyruvate kinase activity	164
	3.4.9.2	Effect of Mg^{++} concentration on ADP activa- tion and inhibition of <u>S</u> . <u>lactis</u> pyruvate kinase	167
	3.4.9.3	Inhibition by other divalent cations	169
	3.4.9.4	Further investigation of Mn^{++} activation of the <u>S</u> . lactis pyruvate kinase	1 71
3.4.10		ct of pH on the kinetic properties of s pyruvate kinase	176

	3.4.11	Effect of phosphate on the kinetic properties of S. lactis pyruvate kinase	180
	3.4.12	ATP inhibition of pyruvate kinases	1 81
		3.4.12.1 ATP inhibition of S. lactis pyruvate kinase	181
		3.4.12.2 The effect of AMP on S. lactis pyruvate kinase	182
3.5	Discus pyruva	sion of the results from studies of the S. lactis C_{10} te kinase	184
	3.5.1	Factors controlling S. lactis C. pyruvate kinase activity	184
SECTION	4 - 6-3	PHOSPHOGLUCONATE DEHYDROGENASE	
4.1	Introd	uction	189
4.2	Method	S	190
	4.2.1	6-phosphogluconate dehydrogenase assay	190
	4.2.2	Glucose-6-phosphate dehydrogenase assay	190
		Partial purification of the 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase	190
4.3	Result	s	192
	4.3.1	Studies on the partially purified 6-phosphogluconate dehydrogenase from S. lactis $C_{1,0}$.	192
	4.3.2	Studies on the 6-phosphogluconate dehydrogenase from S. faecalis ATCC 8043.	193
	4.3.3	Studies on the partially purified glucose-6-phosphate dehydrogenase from S. lactis C_{10} .	193
4.4	Discus	sion	194
SECTION	5 - IN	VIVO METABOLITE CONCENTRATIONS	
5.1	Introd	uction	197
5.2	Materi	als and methods	199
	5.2.1	Organisms	199
	5.2.2	Chemicals	199
	5.2.3	Extraction of intracellular metabolites	199
	5.2.4	Measurement of the intracellular metabolites	200
	5.2.5	Determination of intracellular volume	202
	5.2.6	Measurement of manganese content of cells	203
	5.2.7	Determination of reducing sugar present in medium	203
5.3		s and discussion from studies on the intracellular lite concentrations	204
	5.3.1	Growth of S. lactis C10	204
	5.3.2	Intracellular metabolite concentrations from <u>S. lactis</u> C_{10} : first experiment	204
	5•3•3		207
	5•3•4	Relation of the intracellular metabolite concentra- tions to the kinetic parameters of the S. lactis C_{10} LDH and pyruvate kinase	210

Xi

٢,

SECTION 6 - SUMMARY OF MAIN CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK	215
APPENDIX - Abbreviations	218
APPENDIX 3.4 - Pyruvate kinase	219
APPENDIX 3.4.1 - The effect of two different FDP salts on pyruvate kinase activity	219
APPENDIX 3.4.2 - The sulphate effect on the kinetic parameters of S. lactis pyruvate kinase	222
REFERENCES	227

Figure No.	Title Pag	e number
2.3.5a and b	Comparison of LDH purification on DEAE-cellulose and DEAE-protion	33
2.3.6	Trial "Oxamate Affinity" chromatography of LDH	37
2.4.1a, b and c	Polyacrylamide disc gel electrophoresis	44
2.4.1d and e	Polyacrylamide disc gel electrophoresis	45
2.4.1f and g	Polyacrylamide disc gel electrophoresis	46
2.4.1.1.a	SDS polyacrylamide disc gel electrophoresis	49
2.4.2a and b	Stability of LDH at 25°C	49
2.4.2c, d and e	Pyruvate reduction pH profiles	51
2.4.2f and g	Lactate oxidation pH profiles	52
2.1.3.1 a and b	Effect of varying FDP concentration on activity of S. lactis LDH	55
2.4.3.1c	Effect of three buffers on FDP activation of LDH	56
2.4.3.3	The effect of pH on FDP activation of LDH	59
2.4.4.1a, b, cando	1 K _M values for pyruvate and NADH	63
2.4.4.1e	Pyruvate inhibition	64
2.4.4.2a, b, and c	Effect of phosphate buffer on pyruvate and NADH binding	67
2.4.6.1a and b	K_{M} values for L(+)-lactate and NAD.	73
2.4.6.1c, d, e, and f	K_{M} values for L(+)-lactate and NAD ⁺	74
2.4.6.2	^m Inhibition of lactate oxidation by phosphate	76
2.4.7a	Stopped-flow analysis of initial reaction rate	80
2.4.7b	Stopped-flow analysis of initial reaction rate	81
2.4.8.1a, b, cand d	Inhibition with pyruvate as the varied substrate and \swarrow -ketobutyrate as a substrate	84
2.4.8.1e	Inhibition with pyruvate as the varied substrate	85
2.4.8.2a, b, c and d	Inhibition with NADH as the varied ${\tt substrate}$	86
2.4.8.3a and b	Inhibition of pyruvate reduction by phosphate	87
2.4.8.4a, b and c	Pyruvate binding: effect of oxamate in phosphate buffer	89
2.4.9a, b, c and d	Factors affecting the stability of LDH at 55° C	91
2.4.9e and f	Factors affecting the stability of LDH at $55^{\circ}C$	92
2.5.3.1a and b	Effect of varying FDP concentration on activity of S. faecalis LDH	97
2.5.3.2a and b	pH optimum of S. faecalis LDH	98
2.5.3.3a and b	Effect of varying MnCl ₂ concentration on activity of S. faecalis LDH	100
2.6.3	A model of S. lactis LDH	109
3.3.5	DEAE-cellulose - trial gradient run	132
3.3.6	Gel filtration of pyruvate kinase on Biogel A 0.5 M	1 34

xiii

Figure No.	Title	Page number
3.4.1.1a	SDS polyacrylamide disc gel electrophoresis: standard curve	139
3.4.1	Polyacrylamide disc gel electrophoresis	140
3.4.1.1b	SDS polyacrylamide disc gel electrophoresis	140
3.4.2	Molecular weight determinations of pyruvate king by equilibrium sedimentation	142
3.4.3a	Effect of pH on pyruvate kinase activity	144
3.4.3b	Hill plots showing tris, maleate and phosphate inhibition	144
3.4.4.1a and b	Effect of PEP concentration on FDP activation	147
3.4.5.1a, b, c and d	Factors affecting PEP activation	151
3.4.6.1	Effect of FDP concentration on ADP activation	158
3.4.6.2a and b	Effect of PEP concentration on ADP binding	158
3.4.7a and b	Effect of GDP on pyruvate kinass activity	160
3.4.8.1a, b, c and d	Effect of monovalent cations on activity	163
3.4.9.1a, b, c and d	Effect of divalent cations on activity	166
3.4.9.2	Effect of $MgSO_4$ concentration on ADP activation and inhibition ⁴	168
3.4.9.3a and b	Inhibition by divalent cations	170
3.4.9.4a	FDP activation with Mn ⁺⁺ or Mg ⁺⁺	172
3.4.9.4b	TEP activation with Mn ⁺⁺ or Mg ⁺⁺	172
3.4.9.40	ADP binding with Mg++ or Mn++	1 74:-
3.4.9.4d	Hill plots for ADP binding with Mg^{++} or Mn^{++}	1 74
3.4.12.1a, b, and c	ATP inhibition of pyruvate kinase	: 33
3.4.12.2	AMP inhibition of pyruvate kinase	183
5.3.1	Growth of S. Jactis C10	205
A.3.4.1a and b	The effect of two different FDP salts on pyruvat kinase	220

Table No.	Title	age number
2.1.3	Comparison of some properties of different streptococcal L(+)-LDH's	3
2.3	Summary of lactate dehydrogenase purification procedur	e 39
2.4.3.2	The effect of NADH and pyruvate on FDP activation of LDH	58
2.4.3.3	The effect of pH and buffer components on FDP activation of LDH	61
2.4.4.2	Influence of buffer composition on $K_{\rm M}$ and V $_{\rm max}$ values for pyruvate and NADH	66
2.4.5a	Effect of FDP on pyruvate binding	70
2.4.50	Effect of FDP on NADH binding	71
2.5.2	Summary of LDH preparation	96
3.3	Summary of the purification of pyruvate kinase from S. lactis $C_{1,0}$ harvested from 6L of medium	136
3.4.4.2	The effect of ADP and Mg^{++}/K^+ concentrations on FDP activation	148
3.4.5.2	The effect of ADP and Mg^{++}/K^+ concentrations on PEP activation	154
3.4.10a	The effect of pH on PEP activation of pyruvate kinase	1 78
3.4.10b	The effect of pH on FDP activation of pyruvate kinase	179
3.4.11	Effect of phosphate on the kinetic properties of <u>S. lactis</u> pyruvate kinase	180
4.2.3	Partial purification of the <u>S. lactis</u> C ₁₀ 6-phospho- gluconate dehydrogenase and glucose-6-phosphate dehydrogenase	191
5.3.2a and b	The intracellular concentrations of metabolites	206
5.3.3	The intracellular concentration of metabolites in S. lactis, S. faecalis and L. casei	208
5.3.4a	Relation of intracellular metabolite concentrations to the LDH kinetic parameters	211
5.3.4b	Relation of intracellular metabolite concentrations to the pyruvate kinase kinetic parameters	213
A.3.4.2a and 1	b The effect of PEP and ADP on FDP activation: sulphate effect	224
A.3.4.2c and	The effect of FDP and ADP on PEP activation: sulphate effect	225
A.3.4.2e and	f The effect of FDP and PEP on ADP activation: sulphate effect	226