Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

X-RAY CRYSTALLOGRAPHIC INVESTIGATIONS OF THE STRUCTURES OF ENZYMES OF MEDICAL AND BIOTECHNOLOGICAL IMPORTANCE

by

Richard Lawrence Kingston

A dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in the

Department of Biochemistry

at

MASSEY UNIVERSITY, NEW ZEALAND

November, 1996

ABSTRACT

This thesis is broadly in three parts. In the first, the problem of identifying conditions under which a protein will crystallize is considered. Then structural studies on two enzymes are reported, glucose-fructose oxidoreductase from the bacterium *Zymomonas mobilis*, and the human bile salt dependent lipase (carboxyl ester hydrolase).

The ability of protein crystals to diffract X-rays provides the experimental data required to determine their three dimensional structures at atomic resolution. However the crystallization of proteins is not always straightforward. A systematic procedure to search for protein crystallization conditions has been developed. This procedure is based on the use of orthogonal arrays (matrices whose columns possess certain balancing properties). The theoretical and practical background to the problem is discussed, and the relationship of the presented procedure to other published search methods is considered.

The anaerobic Gram-negative bacterium Zymomonas mobilis occurs naturally in sugar-rich growth media, and has attracted much interest because of its potential for industrial ethanol production. In this organism the periplasmic enzyme glucose-fructose oxidoreductase (GFOR) is involved in a protective mechanism to counter osmotic stress. The enzyme is unusual in that it contains tightly associated NADP which is not released during its catalytic cycle. The crystal structure of Z. mobilis GFOR has been determined by the method of multiple isomorphous replacement, and refined by restrained least squares methods using data extending to an effective resolution of 2.7 Å. The structure determination reveals that each subunit of the tetrameric protein is folded into two domains, one of which is the classical dinucleotide binding domain, or Rossmann fold. The C-terminal domain is a nine-stranded predominantly antiparallel β -sheet around which the tetramer is constructed. Preceding the Rossmann fold there is a 30 amino acid proline rich 'arm' which wraps around an adjacent subunit in the tetramer. The N-terminal arm buries the adenine ring of the NADP, and may also be involved in stabilization of the quaternary structure of the enzyme. The tight association of NADP is accounted for by the structure. An unsuspected structural relationship has been discovered between GFOR and the cytoplasmic enzyme glucose-6-phosphate dehydrogenase (G6PD). It is proposed that GFOR and G6PD derive from an common ancestral gene, and GFOR has evolved to allow it to function in the bacterial periplasm where it is required.

The human bile salt dependent lipase (BSDL) is secreted by the pancreas into the digestive tract, and by the lactating mammary gland into human milk, and is integral to the effective absorption of dietary lipids. It is markedly non-specific, and as its name implies is only active against water-insoluble substrates in the presence of primary bile salts. This differentiates the

enzyme from conventional lipases. Diffraction data has been collected from crystals of native BSDL (isolated from human milk), and from crystals of recombinant BSDL (including a truncated variant which lacks a C-terminal heavily glycosylated tandem repeat region found in the native enzyme). The structure of the truncated variant has been partially determined at 3.5 Å resolution, by the method of molecular replacement. The recent collection of a higher resolution (2.8 Å) data set should allow the completion of the structure. The current status of the crystallographic investigations of the human bile salt dependent lipase are reported.

ACKNOWLEDGMENTS

I thank my principal supervisor, Professor Ted Baker for his friendship, his enthusiasm for science, and for allowing me much freedom to follow my ideas. I also thank Mrs. Heather Baker for her help and constant encouragement.

I thank my assistant supervisors, Dr. Bryan Anderson (for many discussions about crystallographic computing), and Professor Sylvia Rumball (who initiated a collaboration with Umeå University on bile salt dependent lipase).

I would like to specifically acknowledge the scientific contributions of Dr. Rick Faber, and Dr. Stanley Moore to the work presented in this thesis (when they weren't fly fishing, that is).

I would like to thank all the other friends I have made during my time at Massey. Andrew, Rosemary, Isobel, Shaun, Treena, Ross, Catherine, Alain and Anne-Gael, Mark, Michelle, Jakki and Paul, Neil and Liz, Phil, and Maria to name only some. Thanks.

The work on bile salt dependent lip ase was carried out in collaboration with Professor Olle Hernell and Dr. Lars Bläckberg (Umeå University, Sweden); and Dr. Kerry Loomes (Auckland University, New Zealand). The work on glucose-fructose oxidoreductase was carried out in collaboration with Professor Robert Scopes (La Trobe University, Australia). I thank these people for their scientific contributions, and especially Kerry, for believing we could solve the structure and working so hard to overcome difficult technical problems.

For financial assistance while this work was completed I thank Massey University (through the award of a doctoral scholarship), and latterly Professor Ted Baker.

Thanks to the members of my family for encouragement and support. I owe much to my parents for supporting what I do, and helping to finance my study.

Finally I would like to thank Wendy, a very special friend, and someone whom it has been difficult to be separated from while this thesis was written

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLDEGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
ABBREVIATIONS	ix
RELATED PUBLICATIONS	xi

Chapter 1 PROTEIN CRYSTALLIZATION

1.1	INTRODUCTION	1
1.1.1	HISTORICAL BACKGROUND	1
1.1.2	THE EXPERIMENTAL PROBLEM TODAY	2
1.1.3	PHYSICAL BACKGROUND	2
1.2	SEARCH DESIGNS FOR PROTEIN CRYSTALLIZATION	4
1.2.1	TERMS ASSOCIATED WITH EXPERIMENTAL DESIGN	4
1.2.2	CURRENT APPROACHES TO SEARCHING FOR PROTEIN CRYSTALLIZATION CONDITIONS	5
1.2.3	GENERAL CRITERIA FOR INITIAL SEARCH EXPERIMENTS	6
1.2.4	ORTHOGONAL ARRAYS	7
1.2.5	UNDERLYING FACTORIAL STRUCTURE FOR SEARCH EXPERIMENTS	13
1.2.6	PRACTICAL IMPLEMENTATION OF ORTHOGONAL ARRAY-BASED SEARCH DESIGNS	14
	EXDEDIMENTAL CONSIDERATIONS	22
1.2.7	EAFERIMENTAL CONSIDERATIONS	==
1.2.7 1.3	PRACTICAL APPLICATION TO SEVERAL PROBLEMS	. 24
1.2.7 1.3 1.3.1	PRACTICAL APPLICATION TO SEVERAL PROBLEMS	24
1.2.7 1.3 1.3.1 1.3.2	PRACTICAL APPLICATION TO SEVERAL PROBLEMS	24 25 27
1.2.7 1.3 1.3.1 1.3.2 1.3.3	PRACTICAL APPLICATION TO SEVERAL PROBLEMS BILE SALT DEPENDENT LIPASE GLUCOSE-FRUCTOSE OXIDOREDUCTASE α2ε2 EMBRYONIC HEMOGLOBIN	24 25 27 28
1.2.7 1.3 1.3.1 1.3.2 1.3.3 1.4	PRACTICAL APPLICATION TO SEVERAL PROBLEMS BILE SALT DEPENDENT LIPASE GLUCOSE-FRUCTOSE OXIDOREDUCTASE α2ε2 EMBRYONIC HEMOGLOBIN RELATIONSHIP TO PUBLISHED SEARCH PROCEDURES	24 25 27 28 29
1.2.7 1.3 1.3.1 1.3.2 1.3.3 1.4 1.5	PRACTICAL APPLICATION TO SEVERAL PROBLEMS BILE SALT DEPENDENT LIPASE GLUCOSE-FRUCTOSE OXIDOREDUCTASE α2ε2 EMBRYONIC HEMOGLOBIN RELATIONSHIP TO PUBLISHED SEARCH PROCEDURES DISCUSSION AND CONCLUSION	24 25 27 28 29 31
1.2.7 1.3 1.3.1 1.3.2 1.3.3 1.4 1.5 1.5.1	PRACTICAL APPLICATION TO SEVERAL PROBLEMS BILE SALT DEPENDENT LIPASE GLUCOSE-FRUCTOSE OXIDOREDUCTASE α2ε2 EMBRYONIC HEMOGLOBIN RELATIONSHIP TO PUBLISHED SEARCH PROCEDURES DISCUSSION AND CONCLUSION ANALYSIS USING LINEAR MODELS	24 25 27 28 28 29 31
1.2.7 1.3 1.3.1 1.3.2 1.3.3 1.4 1.5 1.5.1 1.5.2	PRACTICAL APPLICATION TO SEVERAL PROBLEMS BILE SALT DEPENDENT LIPASE. GLUCOSE-FRUCTOSE OXIDOREDUCTASE α2ε2 EMBRYONIC HEMOGLOBIN RELATIONSHIP TO PUBLISHED SEARCH PROCEDURES DISCUSSION AND CONCLUSION ANALYSIS USING LINEAR MODELS DISTRIBUTION PROPERTIES OF ORTHOGONAL ARRAYS	24 25 27 28 28 29 31 31 32
1.2.7 1.3 1.3.1 1.3.2 1.3.3 1.4 1.5 1.5.1 1.5.2 1.5.3	PRACTICAL APPLICATION TO SEVERAL PROBLEMS BILE SALT DEPENDENT LIPASE. GLUCOSE-FRUCTOSE OXIDOREDUCTASE α2ε2 EMBRYONIC HEMOGLOBIN RELATIONSHIP TO PUBLISHED SEARCH PROCEDURES DISCUSSION AND CONCLUSION ANALYSIS USING LINEAR MODELS DISTRIBUTION PROPERTIES OF ORTHOGONAL ARRAYS DYNAMIC LIGHT SCATTERING	24 25 27 28 28 31 31 32 33
1.2.7 1.3 1.3.1 1.3.2 1.3.3 1.4 1.5 1.5.1 1.5.2 1.5.3 1.5.4	PRACTICAL APPLICATION TO SEVERAL PROBLEMS BILE SALT DEPENDENT LIPASE. GLUCOSE-FRUCTOSE OXIDOREDUCTASE α2ε2 EMBRYONIC HEMOGLOBIN RELATIONSHIP TO PUBLISHED SEARCH PROCEDURES DISCUSSION AND CONCLUSION ANALYSIS USING LINEAR MODELS DISTRIBUTION PROPERTIES OF ORTHOGONAL ARRAYS DYNAMIC LIGHT SCATTERING CRYSTALLIZATION OF OTHER BIOLOGICAL MACROMOLECULES.	24 25 27 28 28 29 31 31 32 33 34

Chapter 2 GFOR: STRUCTURE DETERMINATION

2.1	INTRODUCTION	36
2.2	OVERVIEW OF THE STRUCTURE DETERMINATION	38
2.3	PROTEIN PURIFICATION AND CRYSTALLIZATION	38
2.3.1	CELL GROWTH AND PROTEIN PURIFICATION	. 38
2.3.2	PROTEIN CRYSTALLIZATION	. 38
2.4	X-RAY DATA COLLECTION	39
2.4.1	CHARACTERIZATION OF THE CRYSTALS	. 39
2.4.2	DATA COLLECTION AND PROCESSING	. 41
2.4.3	SPACE GROUP TRANSITIONS	. 46
2.5	MULTIPLE ISOMORPHOUS REPLACEMENT	47
2.6	DENSITY MODIFICATION	49
2.6.1	ENVELOPE DEFINITION	. 49
2.6.2	PHASE IMPROVEMENT AND EXTENSION	. 52
2.6.3	RESULTS OF PHASE IMPROVEMENT AND EXTENSION	. 56
2.7	MODEL BUILDING AND REFINEMENT	56
2.7.1	BUILDING THE INITIAL MODEL	. 56
2.7.2	RECOVERY OF THE MISSING STRUCTURE	. 58
2.7.3	MODEL REFINEMENT	. 59
2.7.4	COMBINATION OF PHASE INFORMATION	. 60
2.7.5	ITERATIVE CYCLES OF REBUILDING, REFINEMENT AND PHASE COMBINATION	. 61
2.7.6	FINAL REFINEMENT OF THE MODEL	. 64
2.8	SUMMARY	72

Chapter 3 GFOR: STRUCTURE AND FUNCTION

3.1	STRUCTURE OF THE MONOMER	74
3.1.1	N-TERMINAL DOMAIN	. 74
3.1.2	C-TERMINAL DOMAIN	. 75
3.1.3	N-TERMINAL ARM	. 77
3.2	COMPARISON WITH GLUCOSE 6-PHOSPHATE DEHYDROGENASE	77
3.2.1	STRUCTURE COMPARISON	. 77
3.2.2	EVOLUTIONARY IMPLICATIONS	. 79
3.3	STRUCTURE OF THE TETRAMER	81
3.4	DINUCLEOTIDE BINDING	82
3.4.1	NADP CONFORMATION	. 82
3.4.2	INTERACTIONS WITH GFOR	. 82

3.4.3	TIGHT ASSOCIATION WITH GFOR	85
3.4.4	EVOLUTIONARY IMPLICATIONS OF THE N-TERMINAL ARM	86
3.5	M PLICATIONS FOR CATALYSIS	. 86
3.5.1	BACKGROUND	86
3.5.2	THE ACTIVE SITE OF GFOR	87
3.5.3	SEQUENCE AND STRUCTURAL SIMILARITIES	88
3.5.4	GENERAL DISCUSSION	90
3.6	GFOR AS A PERIPLASMIC ENZYME	. 91
3.7	CONCLUSION	. 92

Chapter 4 BILE SALT DEPENDENT LIPASE

4.1	INTRODUCTION	
4.1.1	GENERAL BACKGROUND	
4.1.2	LIPASES	
4.1.3	BILE SALT DEPENDENT LIPASE	
4.1.4	THE ROLE OF STRUCTURAL STUDIES	110
4.2	NATIVE BSDL	111
4.2.1	PROTEIN PURIFICATION AND CRYSTALLIZATION	111
4.2.2	CHARACTERIZATION OF THE CRYSTALS	111
4.2.3	ANISOTROPIC DIFFRACTION	
4.2.4	DIFFUSE SCATTERING	
4.2.5	ENZYMATIC DEGLYCOSYLATION	119
4.3	RECOMBINANT FULL LENGTH BSDL	122
4.3.1	EXPRESSION, PURIFICATION AND CRYSTALLIZATION.	
4.3.1 4.3.2	PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION	
4.3.1 4.3.2 4.4	PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION	
4.3.1 4.3.2 4.4 4.4.1	EXPRESSION, PURIFICATION AND CRYSTALLIZATION PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION RECOMBINANT TRUNCATED BSDL EXPRESSION AND PURIFICATION	122 123 123 124
4.3.1 4.3.2 4.4 4.4.1 4.4.2	EXPRESSION, PURIFICATION AND CRYSTALLIZATION PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION RECOMBINANT TRUNCATED BSDL EXPRESSION AND PURIFICATION CRYSTALLIZATION	122 123 123 124 124 125
4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3	EXPRESSION, PURIFICATION AND CRYSTALLIZATION PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION RECOMBINANT TRUNCATED BSDL EXPRESSION AND PURIFICATION CRYSTALLIZATION DATA COLLECTION AND PROCESSING	122 123 123 124 124 125 125
4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4	EXPRESSION, PURIFICATION AND CRYSTALLIZATION PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION RECOMBINANT TRUNCATED BSDL EXPRESSION AND PURIFICATION CRYSTALLIZATION DATA COLLECTION AND PROCESSING STRUCTURE SOLUTION BY MOLECULAR REPLACEMENT	122 123 123 124 124 125 127 133
4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5	EXPRESSION, PURIFICATION AND CRYSTALLIZATION PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION RECOMBINANT TRUNCATED BSDL EXPRESSION AND PURIFICATION CRYSTALLIZATION DATA COLLECTION AND PROCESSING STRUCTURE SOLUTION BY MOLECULAR REPLACEMENT BUILDING AN INITIAL MODEL	122 123 123 124 124 125 127 133 136
4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6	EXPRESSION, PURIFICATION AND CRYSTALLIZATION PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION RECOMBINANT TRUNCATED BSDL EXPRESSION AND PURIFICATION CRYSTALLIZATION DATA COLLECTION AND PROCESSING STRUCTURE SOLUTION BY MOLECULAR REPLACEMENT BUILDING AN INITIAL MODEL REFINEMENT AT LOW RESOLUTION	122 123 123 124 124 125 127 133 136 138
4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7	EXPRESSION, PURIFICATION AND CRYSTALLIZATION PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION RECOMBINANT TRUNCATED BSDL EXPRESSION AND PURIFICATION CRYSTALLIZATION DATA COLLECTION AND PROCESSING STRUCTURE SOLUTION BY MOLECULAR REPLACEMENT BUILDING AN INITIAL MODEL REFINEMENT AT LOW RESOLUTION DIFFICULTIES IN COMPLETION OF THE PARTIAL STRUCTURE	122 123 123 124 124 125 127 133 136 138 139

EFERENCES

LIST OF FIGURES

Chapter 1

FIGURE 1.1	GEOMETRIC REPRESENTATION OF THE 2 X 2 X 2 FACTORIAL AND SOME	
	POSSIBLE SUBSETS	
FIGURE 1.2	CRYSTAL OF NATIVE BSDL	
FIGURE 1.3	CRYSTAL OF ZYMOMONAS MOBILIS GFOR	
FIGURE 1.4	GEOMETRIC REPRESENTATION OF TWO ORTHOGONAL ARRAYS,	
	OA(8, 3, 2X2X4, 2)	

Chapter 2

FIGURE 2.1	STEREOGRAPHIC PROJECTIONS OF THE SELF-ROTATION FUNCTIONS OF THE	
	TWO CRYSTAL FORMS OF GFOR	. 40
FIGURE 2.2	PATTERSON FUNCTION CALCULATED FROM THE FORM II DATA	. 41
FIGURE 2.3	THE RELATIONSHIP BETWEEN THE TWO CRYSTAL FORMS	. 42
FIGURE 2.4	DATA COLLECTION USING CRYSTALS MOUNTED IN LIQUID-FILLED CAPILLARIES	. 44
FIGURE 2.5	CALCULATED AND OBSERVED ELECTRON DENSITY HISTOGRAMS	. 53
FIGURE 2.6	ELECTRON DENSITY MAPS FOR GFOR	. 56
FIGURE 2.7	STEREOVIEW OF ELECTRON DENSITY MAPS CALCULATED FROM AN ATOMIC	
	AND A 'GLOBIC' REPRESENTATION OF AN α-HELIX AT 3.0 Å RESOLUTION	. 63
FIGURE 2.8	STEREOVIEW OF A DIFFERENCE FOURIER SYNTHESIS WITH RESIDUES IN	
	THE REGION CONFLICTING WITH THE PUBLISHED SEQUENCE OMITTED.	. 66
FIGURE 2.9	RAMACHANDRAN PLOT FOR THE REFINED GFOR MONOMER	. 71
FIGURE 2.10	ELECTRON DENSITY MAP CALCULATED USING THE FORM II DATA	. 73

Chapter 3

FIGURE 3.1	Ca PLOT OF GFOR	74
FIGURE 3.2	TOPOLOGY OF GFOR	76
FIGURE 3.3	RIBBON DIAGRAMS OF GFOR AND G6PD	78
FIGURE 3.4	QUATERNARY STRUCTURE OF GFOR	81
FIGURE 3.5	CONFORMATION OF THE ENZYME-BOUND NADP	83
FIGURE 3.6	HYDROGEN-BONDING INTERACTIONS BETWEEN GFOR AND NADP	84
FIGURE 3.7	THE ACTIVE SITE OF GFOR	87
FIGURE 3.8	ALIGNMENT OF SEQUENCES WITH HOMOLOGY TO GFOR	89

Chapter 4

FIGURE 4.1	DIAGRAM SHOWING THE CONFORMATIONAL CHANGE ASSOCIATED WITH	
	ACTIVATION IN CANDIDA RUGOSA LIPASE	96
FIGURE 4.2	SCHEMATIC DIAGRAM SHOWING THE CONFORMATIONAL CHANGE	
	ASSOCIATED WITH INTERFACIAL ACTIVATION IN THE FUNGAL LIPASES	
FIGURE 4.3	ALIGNMENT OF KNOWN BSDL SEQUENCES	102
FIGURE 4.4	TOPOLOGY DIAGRAM OF THE LIPASE/ESTERASE FAMILY FOLD.	104
FIGURE 4.5	RIBBON DIAGRAM OF T: CALIFORNICA ACETYLCHOLINESTERASE	105
FIGURE 4.6	BILE ACID STRUCTURE	108
FIGURE 4.7	SPACE FILLING MODEL OF CHOLIC ACID	109
FIGURE 4.8	CRYSTAL OF NATIVE BSDL	111
FIGURE 4.9	DIFFUSE SCATTERING PATTERNS FROM NATIVE BSDL CRYSTALS (I).	I17

FIGURE 4.10	DIFFUSE SCATTERING PATTERNS FROM NATIVE BSDL CRYSTALS (II)	118
FIGURE 4.11	ISOELECTRIC FOCUSING OF BSDL	120
FIGURE 4.12	CRYSTALS OF DESIALIDATED BSDL	121
FIGURE 4.13	CRYSTALS OF FULL-LENGTH RECOMBINANT BSDL	123
FIGURE 4.14	CRYSTALS OF TRUNCATED RECOMBINANT BSDL	125
FIGURE 4.15	GLASS-SLIDE MOUNTING DEVICE FOR CRYOCRYSTALLOGRAPHY	131
FIGURE 4.16	BACKGROUND SCATTER AND ABSORPTION DUE TO THE SOLID-SURFACE	
	MOUNT	132
FIGURE 4.17	RESULTS OF PATTERSON CORRELATION REFINEMENT	135
FIGURE 4.18	ELECTRON DENSITY FOR TRUNCATED RECOMBINANT BSDL	141

ABBREVIATIONS

AChE Acetylcholinesterase AMPSO 3-[(1,1-Dimethyl-2-hydroxyethyl)amino]2-hydroxypropanesulfonic acid BIS-TRIS PROPANE 1,3-bis[tris(Hydroxymethyl)-methylamino]propane **BSDL** Bile salt dependent lipase **BSSL** Bile salt stimulated lipase CDL Colipase-dependent lipase CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate CRL Candida rugosa lipase **DHPR** Dihydrodipicolinate reductase **DNA** Deoxyribonucleic acid EPPS N-[2-Hydroxyethyl]piperazine-N'[3-propanesulfonic acid] FAD Flavin-adenine dinucleotide FMN Flavin mononucleotide G6PD Glucose-6-phosphate dehydrogenase **GAPDH** Glyceraldehyde-3-phosphate dehydrogenase GCL Geotrichum candidum lipase **GFOR** Glucose-fructose oxidoreductase HEPES N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] **IEF** Isoelectric focussing LDH Lactate dehydrogenase MDH Malate dehydrogenase MES 2-[N-Morpholino]ethanesulfonic acid MIR Multiple isomorphous replacement MOPS 3-[N-Morpholino]propanesulfonic acid NAD Oxidized or reduced form of nicotinamide adenine dinucleotide NADP Oxidized or reduced form of nicotinamide adenine dinucleotide phosphate NADP⁺ Oxidized form of nicotinamide adenine dinucleotide phosphate NADPH Reduced form of nicotinamide adenine dinucleotide phosphate NAD(P) NAD or NADP NCBI National Center for Biotechnology Information NCS Non-crystallographic symmetry NIST National Institute of Standards and Technology **PCR** Polymerase chain reaction PEG Polyethylene glycol **PEG-mme** Polyethylene glycol monomethyl ether

PIPES 1,4-Piperazinediethanesulfonic acid

PQQ Pyrrolo-quinoline quinone

RMS Root mean square

SEL Sequential elimination of levels

SIR Single isomorphous replacement

TAPS N-tris[Hydroxymethyl]methyl-3-aminopropanesulfonic acid

TcAChE Torpedo californica acetylcholinesterase

TRIS Tris(hydroxymethyl)aminomethane

RELATED PUBLICATIONS

Some of the material presented in this thesis has already been published, or has been accepted for publication.

Kingston, R.L., Baker, H.M. & Baker, E.N. (1994) Search designs for protein crystallization based on orthogonal arrays. Acta Crystallographica. D50, 429-440.

Kingston, R.L., Scopes, R.K. & Baker, E.N. (1996) The structure of glucose fructose oxidoreductase from *Zymomonas mobilis*: an osmoprotective periplasmic enzyme containing non-dissociable NADP. **Structure**. in Press.