
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

IT1.E9.EB.T

IT1€TA E9Bl€CT
EBRI€NTAT€D TEBEBL

A NEBV€L IT1€TA--CAS€
TEBEBL IT1€THEBDEBLEBGY

R€ PR€ S € NTATI EB N
STRATEGY

A dissertation submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy in Computer Science

Massey University, New Zealand

David Charles Page

1998

Abstract

This thesis presents an investigation into current meta-CASE technology. The research

focuses on CASE tool support for the concept of methodology, the representation of

methodology syntax and semantics, and the support for re-use of methodology

descriptions and software artefacts. A novel methodology representation strategy for

meta-CASE tools is proposed and implemented with the development of a new meta­

CASE tool (MOOT- Meta Object Orientated Tool).

The novel strategy propounded in this thesis uses an object-orientated meta-model and

views methodology descriptions as potentially re-usable components. The coupling

between methodology syntax and semantic descriptions is minimised so they can be re­

used independently.

Two new modelling languages have been derived, to support the definition of syntax

(NDL - Notation Definition Language) and semantics (SSL - Semantic Specification

Language) of software engineering methodologies. Semantic descriptions are compiled to

a platform independent representation (SSL-BC), which is executed on a purpose built

virtual machine (SSL-V:M). Late binding of syntax and semantic methodology

descriptions is implemented with the development of Notation Semantic Mapping

(NS!vf) tables. Two libraries of re-usable methodology description components, the Core

Knowledge Base (CKB) and the Generic Object Orientated Knowledge Base (GOOKB),

have been derived during this research.

Empirical results gained from applying the MOOT prototype demonstrated the

flexibility, extensibility and potential of the novel methodology representation strategy.

This approach permitted the implementation and modelling of UML and patterns, two

recent advances of object technology that did not exist when the research commenced.

The novel strategy presented in this thesis is more than an untried theory. It has been

implemented, applied and is being evaluated. Simply, it is real and it works.

DEDICATION

This thesis is lovingly dedicated to my parents

MichaelJulius Page and Susan Evelyn Page

TABLE OF CONTENTS

INTRODUCTION 1

1.1 Introduction 1

1 .2 Fundamental Terms 2
1.2.1 Software Engineering Development Methodology 3
1.2.2 Meta-Modelling 6
1.2.3 Computer Aided Software Engineering (CASE) 7
1.2.4 CASE Tool 7
1.2.5 Meta-CASE and Meta-CASE Tool 8

1.3 Object-Orientated Software Development Methodologies 8

1.4 CASE Technology 11

1.5 Methodology CASE Tools 14
1.5.1 Methodology Dependent CASE Tools 15
1.5.2 Multi-Methodology CASE Tools 15
1.5.3 Tools that Support More than One Methodology 16
1.5.4 Meta-CASE Tools 16
1.5.5 CASE Tool Generators 16
1.5.6 Modifiable CASE Environments

1.6 Limitations of Methodology CASE Tools

1.6.1 Limitations from the Organisational Perspective
1.6.2 Limitations from the CASE Tool Perspective

1. 7 Objectives of the Research

1.8 Method

1.9 Outline of the Thesis

MET A-MODELLING AND M ETA-CASE TOOLS

2.1 Introduction

2.2 Meta-Modelling

2.2.1 The OMG Meta Object Facility
2.2.2 Unified Modelling Language
2.2.3 COMMA
2.2.4 Open Modelling Language
2.2.5 OOram
2.2.6 CASE Data Interchange Format
2.2.7 ISO/CDIF Meta-Model

11

17

18
20
22

23

24

25

27

27

27
29
31
32
33
33
34
35

2.2.8 MetaData Interchange Facility

2.3 Meta-CASE Tools

2.3.1 Framework for Discussion of Meta-CASE Tools
2.3.2 Meta View
2.3.3 Meta-Edit and MetaEdit+
2.3.4 Alfabet
2.3.5 ToolBuilder
2.3.6 Graphical Designer Pro

2.4 Limitations of Current Meta-CASE Technology

2.5 Summary

META OBJECT ORIENTATED TOOL

3.1 Introduction

3.2 Method

3.3 Rationale and Goals of the MOOT Project

3.4 MOOT Methodology Descriptions

3.5 The CKB and GOOKB

3.6 Addressing the Limitations of M eta-CASE tools

3.7 Architecture of MOOT

3.7.1 CASE Tool Client
3.7.2 Methodology Development Tool
3.7.3 MOOT Core

3.8 The MOOT Prototype

3.9 Summary

NOTATION DEFINITION LANGUAGE

4.1 Introduction

4.2 Method

4.3 Models and Notations

4.4 Analysis ofNotations

4.4.1 Symbols
4.4.2 Connections
4.4.3 Docking Areas
4.4.4 Groups
4.4.5 Presentation

ill

36

36

39
41
43
46
48
50

51

54

56

56

56

58

62

65

68

71

74
75
76

77

79

81

81

81

82

85

86
88
91
93
94

4.4.6 Actions 95

4.5 Notation Definition Language 96

4.5.1 Requirements of NDL 96
4.5.2 Design ofNDL 97
4.5.3 Describing Symbols in NDL 99
4.5.4 Support for Grouping 103
4.5.5 Docking Areas 105
4.5.6 Describing Connections in NDL 110

4.6 NDL Interpreter 113

4.7 Design of the NDL Interpreter 114

4.7.1 Representing Expressions 114
4.7.2 Segment Templates 116
4.7.3 Group Templates 117
4.7.4 Connection and Symbol Templates 117

4.8 Implementation of the NDL Interpreter 119

4.9 Summary 120

SEMANTIC SPECIFICATION LANGUAGE 121

5.1 Introduction 121

5.2 Method 121

5.3 Rationale and Goals of SSL 122

5.4 Requirements of SSL 124

5.5 Semantic Specification Language 126

5.5.1 Overview 126
5.5.2 MOOT Meta-Model 126
5.5.3 Module System 129
5.5.4 Memory Management 129
5.5.5 Messages 130

5.6 Semantic S pecification Language Definition 130

5.6.1 Collections 131
5.6.2 Simple Expressions 131
5.6.3 Interface Module 134
5.6.4 Class Interface Definition 134
5.6.5 Implementation Module 135
5.6.6 Class Definition 135
5.6.7 Methods 136
5.6.8 Statements 139

5.7 SSL Compiler 140

5.8 Executing SSL 143

1V

5.9 SSL Virtual Machine 145

5.9.1 Requirements of the SSL VirtuaLMachine 146
5.9.2 Architecture of the SSL Virtual Machine 146
5.9.3 SSL Virtual Machine Instruction Set 147
5.9.4 Internal Representation of Classes, Objects and Methods 148
5.9.5 Processing Messages on the Virtual Machine 151

5.10 Summary 153

THE CORE KNOWLEDGE BASE AND GENERIC OBJECT

ORIENTATED KNOWLEDGE BASE 1 54

6 .1 Introduction 154

6.2 Context of the Core Knowledge Base and the Generic Object

6.3

6.4

6.5

6.6

Orientated Knowledge Base 154

Development of the Core Knowledge Base 156

6.3.1 M eta-Model of Methodology 156
6.3.2 Meta-Model of Modelling Language 158
6.3.3 Handling Exceptional Situations 165

Development of the Generic Object Orientated Knowledge
Base 166

6.4.1 Object-Orientated Methodology Comparisons 167
6.4.2 Method used to Design the Generic Object Orientated

Knowledge Base 170
6.4.3 Generic Object Orientated Knowledge Base 171

Implementing the Knowledge Bases 175

Summary 176

REALISING METHODOLOGIES AND SOFTWARE

ENGINEERING PROJECTS IN MOOT 1 77

7.1 Introduction

7.2 Interaction Between CASE Tool Clients and the MOOT
Core

7.2.1
7.2.2

CASE Tool Client Requests
MOOT Core Directives and Responses

177

177

178
180

7.3 Methodology Description Table 181

7 .3.1 Composition of the Methodology Description Table 181
7.3.2 Applying the Methodology Description Table 184

7.4 Notation Semantic Mapping Tables 185

7.4.1 NDLvs.SSL 185
7 .4.2 Composition of NSM Tables 187

V

7.4.3 Applying NSM Tables

7.5 Summary

191

199

VALIDATING THE MOOT A PPROACH 201

8.1 Introduction 201

8.2 Defining the Coad and Y ourdon Methodology 202

8.3 Supporting Patterns 210

8.4 Supporting UML 213

8.5 Preliminary Development of the Semantics Editor 216

8.5.1 Notation for the SSL Module Structure Modelling
Language 219

8.5.2 Notation for the SSL Method Modelling Language 221

8.6 Toward Supporting Joosten Work:flow Modelling 224

8.7 Summary 225

CONCLUSION AND FUTURE WORK 227

9.1 Introduction 227

9.2 Summary of the Thesis 228

9.3 Discussion 230

9.4

9.5

9.3.1 The Novel Meta-CASE Tool Methodology Representation
Strategy 230

9.3.2 The MOOT Approach 231

9.3.3 The Notation Definition Language 236
9.3.4 The Semantic Specification Language 236
9.3.5 Core Knowledge Base and Generic Object Orientated

Knowledge Base 237

Future Work 238

9.4.1 The Notation Definition Language 238
9.4.2 The Semantic Specification Language 240
9.4.3 Notation Semantic Mapping Tables 240
9.4.4 Support for Re-use 241
9.4.5 Cognitive Support 242
9.4.6 Meta-Modelling 242
9.4.7 Validation of a Complete Implementation of MOOT 243

Conclusion 244

V1

APPENDICES

EVALUATION FRAMEWORK

1.1 Existing Evaluation Frameworks

I.2 A New Evaluation Framework

NDL GRAMMAR

II.1 Introduction

11.2 Reserved Words

II.3 Operators

11.4 Grammar

SSL GRAMMAR

111.1 Introduction

111.2 Reserved Words

Ill.3 Operators

111.4 Grammar

SSL EXAMPLES

IV.1 The Sieve of Eratosthenes Version 1

IV.1.1 Interface Module
IV.1.2 Implementation Module

IV.2 The Sieve of Eratosthenes Version 2

IV.2.1 Interface Module
IV.2.2 Implementation Module

SSL-VM INSTRUCTION SET

V.1 Introduction

V.2 Instruction Set

Vll

246

246

246

249

249

249

249

249

253

253

253

253

253

258

258

259
259

265

265
266

269

269

269

SSL COMPILER 277

VI.1 Introduction 277

Vl.2 The SSL Compiler 277

VI.3 Representing Types in the SSL Compiler 279

VI.4 Representing Statements and Expressions in the SSL
Compiler 280

VI.5 Representing Modules in the SSL Compiler 282

THE SSL VIRTUAL MACHINE 285

VII.1 Introduction 285

VII.2 The SSL Virtual Machine 285

VII.3 Representing SSL Types 287

VII.4 SSL Proxies 287

VII.5 Processing Messages 289

VII.6 Binding 291

VII. 7 Garbage Collection 293

REFERENCES 297

V111

LIST OF FIGURES

Number Page

Figure 1-1 Modelling 4

Figure 1-2 - Meta-modelling 6

Figure 1-3 Classification hierarchy of CASE tool categories 14

Figure 1-4 - Thesis outline 26

Figure 2-1 - Four layer meta-modelling process 28

Figure 2-2 - CDIF Meta-metamodel (EIA CDIF, 1994 b) 35

Figure 2-3 - CASE tool generators 37

Figure 2-4 - Architecture of a m odifiable CASE environment 38

Figure 2-5 - Meta-CASE tools and the four layer meta-modelling architecture 39

Figure 3-1 Mapping between goals and design decisions made regarding MOOT 60

Figure 3-2 - The relation between software projects, methodology descriptions
and the description languages in MOOT 62

Figure 3-3 Methodology descriptions and software engineering projects 64

Figure 3-4 - Knowledge bases in MOOT 65

Figure 3-5 The relation between the CKB, the GOOKB, methodologies and
software engineering projects in MOOT 66

Figure 3-6 - Meta-modelling architecture 67

Figure 3-7 - Addressing the limitations of meta-CASE tools 69

Figure 3-8 - The two roles of the MOOT system 71

Figure 3-9 Moot system 72

Figure 3-10 - Proposed, top level, system architecture 73

Figure 3-11 Architecture of the MOOT prototype 79

Figure 4 -1 - A state transition diagram drawn in the notation of Booch and

�� M

Figure 4 -2 A simple diagram drawn with UML, Coad and Yourdon and Booch
notations 86

Figure 4 -3 Three examples of a UML class symbol 87

Figure 4 -4 - Topographical description of a UML class 87

Figure 4 -5 - Coad and Yourdon and Booch symbols showing common sub-parts 88

Figure 4 -6 Two example connections 88

Figure 4 -7 - Inheritance connection in UML 90

1X

Figure 4-8 - An example UML sequence diagram 91

Figure 4-9- A Jacobson Use Case diagram 91

Figure 4-10 - Docking areas on Coad and Y ourdon Class&Object symbols 92

Figure 4-11 - Coad and Y ourdon Subject Area: expanded Qeft) and collapsed
(right) 93

Figure 4-12- A UML class expressed with varying levels of detail 94

Figure 4-13 - Two example active areas 96

Figure 4-14 - (i) A symbol (ii) exploded Symbol (iii) templates 97

Figure 4-15 - Applying a template 98

Figure 4-16- Topographical description of a UML class symbol 99

Figure 4-17 A UML class symbol with active areas 101

Figure 4-18 - Template describing a UML class symbol 102

Figure 4-19 - Coad and Y ourdon class and Class&Object symbols 103

Figure 4-20- Identified common sub-parts in Coad and Y ourdon's notation 103

Figure 4-21 -Group templates 104

Figure 4-22- Coad and Yourdon class symbol 104

Figure 4-23- Docking at a point 106

Figure 4-24 - Anatomy of a point docking area 106

Figure 4-25- Docking on a line 107

Figure 4-26- Anatomy of a line docking area 107

Figure 4-27 - Representing valid directions for a line docking area 108

Figure 4-28- Docking on an arc 108

Figure 4-29 - Anatomy of an arc docking area 109

Figure 4-30 - Representing valid directions for an arc docking area 109

Figure 4-31- Two example connections 110

Figure 4-32 Connection symbol template 110

Figure 4-33 - Coad and Yourdon connection symbol line docking area (i) with a
single connection (ii) with multiple connections 111

Figure 4-34 Connection terminator templates for Coad and Y ourdon Gen-Spec
and message connections 112

Figure 4-35- NDL connection templates for Coad and Yourdon Gen-Spec and
message connections. 112

Figure 4-36- Components of the NDL interpreter 113

Figure 4-37 The Expression class hierarchy 115

Figure 4-38 Template segment hierarchy 116

X

Figure 4 -39 -The different types of template

Figure 4 -4 0 - NDL interpreter using an NDL description of the Rumbaugh
instance and object diagram

Figure 4 -4 1 - NDL interpreter using an NDL description of the Coad and
Y ourdon class diagram

Figure 5-1 - Mapping between goals and design decisions made regarding features
of SSL

Figure 5-2 - MOOT meta-metamodel

Figure 5-3 - The built-in SSL variables

Figure 5-4 - SSL collection and iterator types

Figure 5-5 -Partial SSL implementation of a list class

Figure 5-6 SSL implementation of the list class

Figure 5-7 - Implementing SSL create operations

Figure 5-8 Example loop and if statements

Figure 5-9- SSL compiler

Figure 0 Processing actions

Figure 1 - Architecture of the SSL virtual machine

Figure 5-12- SSL class

Figure 3 SSL method

Figure 5-14 - SSL object

Figure 5-15 -Processing messages on the SSL- VM

Figure 6-1 The three tier structure of the information processed by MOOT

Figure 6-2 Methodology meta-model

Figure 6-3 - Transitions

Figure 6-4 Meta-model of modelling language

Figure 6-5 - Representing a whole-part relation

Figure 6-6 - Representing a class diagram with instances of classes from the CKB

Figure 6-7 - Detailed meta-model of modelling language

Figure 6-8 - Extended meta-model of modelling language

Figure 6-9- Core Knowledge Base

Figure 6-10 - Situations

Figure 6-11 - Critics

Figure 6-12 Taxonomy of object-orientated methodology comparisons

Figure 6-13 - Number of comparisons for Nm methodologies

Figure 6-14 - Representing classes and objects

X1

118

119

120

124

127

128

131

135

137

138

14 0

14 1

14 3

14 6

14 9

150

151

152

155

157

158

159

160

161

162

163

164

165

166

168

169

171

Figure 6-15 -Representing object -orientated relations 172

Figure 6-16 - The Generic Object Orientated Knowledge Base 173

Figure 6-17 Representing an object model with classes from the GOOKB 174

Figure 6-18 - Module structure of the CKB and GOO KB 17 5

Figure 7-1 - The communication between CASE tool clients and the MOOT core 179

Figure 7-2 Methodology Description Table 182

Figure 7-3 Creating a new sofuvare engineering project 184

Figure 7-4 - The create concept map 187

Figure 7-5 - The create relation map 188

Figure 7-6 - The add map 189

Figure 7-7 - The action map 190

Figure 7-8 - The SSL object creation map 190

Figure 7-9 The SSL object update map 191

Figure 7-10 The Notation Semantic Mapping Table 192

Figure 7-11 - Creating a new model 193

Figure 7-12- Creating a new concept 195

Figure 7-13 - Successful update of a field 196

Figure 7-14 - Failed attempt to update a field 197

Figure 7-15 - Propagating server side update 198

Figure 8-1 - Supporting the Coad and Y ourdon 202

Figure 8-2 - Methodology description table for Coad and Yourdon 203

Figure 8-3 - The select methodology dialogue box 203

Figure 8-4 - Symbol template for the Coad and Y ourdon Class&Object symbol 204

Figure 8-5 -Representing the Coad and Y ourdon message connection 206

Figure 8-6 - NSM table for Coad and Y ourdon 207

Figure 8-7 - Implementation of the addAttribute operation 208

Figure 8-8 - Adding an attribute 209

Figure 8-9 - An Object-Orientated Analysis model of Object-Orientated Analysis
(Coad and Yourdon, 1991a) 210

Figure 8-10 Extending the GOOKB to support Patterns 212

Figure 8 -11 - UML v1.1 Foundation: CORE: Backbone+ Foundation: CORE:
Extension Mechanisms+ Foundation: CORE: Auxiliary Elements 214

Figure 8-12 UML v1.1 Behavioural Elements: Collaborations 215

Figure 8-13 - UML v1.1 Common Behaviour: Common Behaviour 216

Figure 8-14 - SSL modelling languages 217

X11

Figure 8-1 5-Representing SSL as an extension of the GOOKB 218

Figure 8-16 NSM table for the SSL module modelling language 219

Figure 8-17 -Supporting SSL with MOOT 220

Figure 8-18 -Explain method of the ComplexCritic class in the CKB 223

Figure 8-19 -An example SSL method model 224

Figure 8-20-Joosten trigger model Ooosten, 199 5) 225

Figure I-1 -Dimensions of the evaluation framework 248

Figure N-1 - Sieve ofEratosthenes version 1 258

Figure I V-2- Sieve of Eratosthenes version 2 265

Figure VI -1 -The main components of the SSL compiler 278

Figure VI-2-Representing types in the SSL compiler 28 0

Figure VI-3 Statements and expressions in the SSL compiler 281

Figure VI-4 Representing modules, classes, operations and methods in the SSL
compiler 282

Figure VII -1 -Components of the SSL-VM 286

Figure VII-2-Representing SSL objects and SSL classes 28 8

Figure VII-3 The classes involved in processing a message on the SSL-VJ'vf 290

Figure VII-4 -Executing a method on the SSL-VM 291

Figure VII-S - Binding a message to a method on the SSL-VM 292

Figure VII-6 Implementation of the reference counting garbage collection

scheme 29 4

Figure VII-7-Implementation of the SSL Instance Proxy class 295

xili

LIST OF TABLES

Table 1-1 - First generation object -orientated methodologies

Table 1- 2- Second generation object-orientated methodologies

Table 1- 3 - History of CASE tools (Ferguson, 1998)

Table 2-1 - Four layer meta -modelling architecture

Table 2- 2- Meta-CASE tools

Table 5-1 - SSL-VM types

Table 5- 2- SSL-BC instruction set

Table 7-1 Correspondance between syntax and semantic elements

Table 9-1 -Practical work completed during the research

Table VII -1 - Implementation of SSL types in the SSL-VM

XlV

8

9

13

28

40

147

148

18 6

23 0

28 7

ACKNOWLEDGMENTS

Colours

You reap what you sow. Put your face to the ground.

Here come the marching men. Your colours wrapped around.

The Sisters if Merry

The research detailed in this thesis was supported by two PGSF funded research projects

(MAU- 503, MAU- 8 07). Financial assistance was also received with a New Zealand

postgraduate scholarship.

The following people deserve special mention.

My supervisors) who inspired me and taught me a great deal

Assoc. Prof. Daniela Mehandjiska-Stavreva, Prof. Mark Apperley

The Masters and Honours students n'ho were also involt1ed in this research

Paul C lark, Steven Adams, Hong Yu, Duane Griffin, Sarisha Dasari, Mi Duk Choi,

J onathan Ham

Two people that selfless!J proofread the thesis

Rachel Page, Wendy Browne

My fami!J, without whom this would not have been possible

Michael Page, Susan Page, Audrey Isaac, Rachel Page, Jonathon Page, Ruth Page

lvf;yfriends (you know who you are)) who all helped without knowing it

Extra thanks to: Nick Earle, Paul Clark, Duane Griffin, Lisabeth Weston, Shamus

Smith, Luke Usherwood, Marion Moore, Andrew Turvey, James Fulton, Steven

A dams

XV

GLOSSARY

The content of the glossary has been derived from a range of dictionaries
(Collins, 199 5; Nuttals, 1902; Readers Digest, 198 8 ; Oxford, 199 3 ; Mirriam­
Webster, 1998), the Dictionary of Object Technology (Firesmith and Eykholt,
199 5) and (D'Souza and Wills, 1998 ; Jacobson et al. , 1995; Pressman 1997 ;
Schach, 1993 , 1997 ; Somerville, 1996).

Abstraction. Any model that includes the most important, essential, or distinguishing
aspects of something while suppressing or ignoring less important, immaterial, or
diversionary details. The result of removing distinctions so as to emphasise
commonalties.

Arity. The cardinality of something. For example the arity of a relation specifies the
number of concepts that are involved in the relation.

Attribute. Any named property used as a data abstraction to describe its enclosing object,
class or extent.

Behaviour. Anything that an organism does involving action and response to stimulation.
The way in which someone behaves; also: an instance of such behaviour.

Bind. To place under certain constraints. To cohere or cause to cohere. To place under
obligation; oblige.

Binding. Any selection of the appropriate method for an operation on receipt of a
corresponding message.

Browser. Any view that allows you to access hierarchically organised and indexable
information.

CASE Tool. A) Any computer based tool for software planning, development and
evolution. This includes all examples of computer-based support for the managerial,
administrative, or technical aspects of any part of a software development project. B)
Products that assist the software engineer in developing and maintaining software.

CASE. An acronym that stands for Computer Assisted Software Engineering.

CKB. Core Knowledge Base. A library of methodology semantic components that
implements a meta-model of methodology.

Class. Any uniquely identified abstraction (i.e. a model) of a set of logically related
instances that share the same or similar characteristics. The combination of a type
interface and associated type implementation.

Classification. The act of forming into a class or classes; a distribution into groups such as
classes, orders, families, etc., according to some common relations or affinities.

XV1

Cohesion. The degree, to which something models a single abstraction, localising only
features and responsibilities related to that abstraction.

Component. A) Any standard, reusable, previously implemented unit that is used to

enhance the programming language constructs and to develop applications. B) An
independently deliverable unit of software that encapsulates its design and
implementation and offers interfaces to the out-side, by which it may be composed with
other components to form a larger whole.

Coupling. The degree to which one thing depends on another. Low coupling is desirable
because it produces better encapsulation, maintainability, and extendibility with fewer
objects needlessly affected during iteration.

Encapsulation. To enclose in or as if in a capsule; the act of enclosing in a capsule. The
physical localisation of features.

Engineering. The application of scientific principles to such practical ends as the design,
construction, and operation of efficient, economical structures, equipment and systems.
The application of science to the design, building, and use of machines, constructions etc.

GOOKB. Generic Object Orientated Knowledge Base. A library of methodology semantic
components that implements a meta-model of concepts germane to all object-orientated
methodologies.

Identity. Individuality.

Information Hiding. The deliberate and enforced hiding of information (e.g. design
decisions, implementation details) from clients. The limiting of scope so that some
information is invisible outside of the boundary of the scope.

Inheritance. The incremental construction of a new definition in terms of existing
definitions without disturbing the original definitions and their clients.

Instance. Anything created from or corresponding to a definition.

Interface. The visible outside, user view of something.

Language. Any method of communicating ideas, as by a stream of signs, symbols, gestures
or the like. The special vocabulary and usage of a scientific professional or other group.
The speech or expression of ideas.

MDT. An acronym that stands for Methodology Description Table. The Methodology
Description Table provides an index of the methodologies supported by MOOT.

Message Send. The sending of a message to an object.

Message. Any communication sent or received by an object.

Meta. A Greek prefix signifying beyond, after, with, among and frequently expressing
change. Going beyond or transcending. Used with the name of a discipline to designate a

:xvii

new but related discipline designed to deal critically with the original one. Of a higher or
second-order kind.

Meta-CASE Tool. A) A meta-CASE tool is any tool that provides automated or semi­

automated support for developing CASE tools. B) ... are CASE tools which are used to

generate other CASE tools. C) A CASE tool that operates on CASE tools.

Meta-language. The natural language, formal language, or logical system used to discuss
or analyse another system. A form of language used to discuss a language.

Method. A) Mode of procedure, logical arrangement, orderly arrangement, system of
classification. A means or manner of procedure, especially a regular and systematic way of
accomplishing anything. The procedures and techniques characteristic of a particular
discipline or field of knowledge. special form of procedure esp. in any branch of

mental activity. B) A way of carrying out a complete phase such as such as design or

integration. C) The hidden implementation of an associated operation.

Methodology CASE Tool. A CASE tool that supports one or more software development
methodologies and attempts to span most of the software development life-cycle.

Methodology. The science of scientific method of classification. From the Greek method
and logis (science). The system of principles, practices, and procedures applied to any
specific branch of knowledge. The science of method; a body of methods used in a
particular branch or activity.

ModeL A) Archetype; a description or analogy used to help visualise something that
cannot be directly observed; a system of postulates, data, and inferences presented as a
mathematical description of an entity or state of affairs. A preliminary pattern or
representation of an item not yet constructed. A tentative framework of ideas describing

something intangible and used as a testing device. B) A model clarifies- for a person or
group of people - some aspect or perspective on a thing or event.

MOOT. Meta Object Orientated TooL A new meta-CASE tool developed as a result of
this research.

NDL. Notation Definition Language. A new language used to define the syntax of a
methodology MOOT.

Notation. A system of characters, symbols, or abbreviated expressions used in an art or
science or in mathematics or logic to express technical facts or quantities.

NSM. An acronym that stands for Notation-Semantic Mapping. NSM tables are used to
implement late binding ofNDL and SSL methodology descriptions.

Object. Any abstraction that models a single thing.

Operation. Any service that may be requested.

Polymorphism. The ability of a single name to refer to different things having different
forms.

XV111

Process. A) A system of operations in the production o f something. A series of actions,
changes or functions that bring about an end or result. A course of action or proceeding,
esp. a series of stages in manufacture or some other operation. B) ... the way we produce
software. It starts with concept exploration and ends when the product is finally retired.
C) . . . the set of activities and associated results which produce a software product.

Relation. Connection by consanguinity or affinity; kinship; relationship; as, the relation of
parents and children; an abstraction belonging to, or characteristic of, two entities or parts
together.

Semantic. Of, or relating to, meaning in language.

Software Development Life-cycle (SDLC). A process by which software engineers build
computer applications.

Software Engineering. A) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is the
application of engineering to software. B) ... is concerned with the theories, methods and
tools that are needed to develop software for computers. C) A discipline whose aim is the
production of quality software that satisfies the user's needs, and is delivered on time and
within budget.

Software Project. A software project consists of a set of models (built using a particular
methodology) which collectively define the software being constructed.

SSL. Semantic Specification Language. A new object-orientated language used to define
the semantics of a methodology in MOOT.

SSL-BC. SSL Byte Code. A platform independent, binary, representation of SSL, which is
generated by the SSL compiler.

SSLC. SSL compiler.

SSL-VM. SSL Virtual Machine.
processing of SSL.

new virtual machine which supports efficient

State. Any status, situation, condition, mode, or life-cycle phase of an object or class
during which certain rules of overall behaviour (e.g. response to messages) apply.

Syntax. The way in which linguistic elements (as words) are put together to form
constituents (as phrases or clauses).

Tool. A thing used in an occupation or pursuit. Any instrument of use or service.

Type. A lower taxonomic category selected as a standard of reference for a higher
category. The declaration of the interface of any set of instances (e.g. objects) that
conform to this common protocol.

XLX

PUBLICATIONS

The results of this research have been presented in the following refereed publications.

Phillips, C.H.E., Adams, S., Page, D. and Mehandjiska, D. (1998) The Design of the
Client User Interface for a Meta Object-Oriented CASE tool, Proceedings of
TOOLS Pacific'98, Monash Printing Services, Victoria, pp145-157

Page, D., Mehandjiska, D. and Phillips, C.H.E. (1998) Methodology Independent
00 CASE: Supporting Methodology Engineering, Proceedings of Software
Engineering: Education and Practise (SE:E&P'98), IEEE Computer Society
Press, Dunedin, New Zealand, pp373-380

P hillips, C.H.E., Adams, S., Page, D. and Mehandjiska, D. (1998) Design of the
User Interface for a Methodology Independent 00 CASE Tool, Proceedings
of OZCHI'98, IEEE Computer Society Press, Los Alamitos, California,
pp106-114

Phillips, C.H.E., Mehandjiska, D. and Page, D. (1998) The Usability Component of
a New Framework for the Evaluation of Object-Oriented CASE tools,
Proceedings of Software Engineering: Education and Practise (SE:E&P'98),
IEEE Computer Society Press, Dunedin, New Zealand, pp131-141

Page, D., Griffin, D., Usherwood, L. and Mehandjiska, D. (1997) Implementation
of a Semantic Specification Language Interpreter for a Methodology
Independent 00 CASE Tool, Proceedings of lASTED International
Cenference on Software Engineering (SE'97), ACT A Press, San Francisco,
USA, pp239-242

Mehandjiska, D., Page, D., Griffin, D. and Usherwood, L. (1997) Methodology
Knowledge Representation and Interpretation for a Methodology
Independent 00 CASE Tool, Proceedings of lASTED International
Cenference on Software Engineering (SE'97), ACTA Press, San Francisco,
USA, pp243-247

Mehandjiska, D., Page, D. and Choi, M. D. (1996) Meta-Modelling and
Methodology Support in Object-Oriented CASE Tools, Proceedings of 3rd

International Conference on Object-Oriented Information Systems
(OOIS'96), Eds. Patel, D., Sun, Y. and Patel, S., Springer-Verlag, London,
pp370-386

Mehandjiska, D., Page, D. and Dasari, S. (1996) Generic Knowledge Base for a
Methodology Independent Object-Oriented CASE Tool, Proceedings of the
lASTED International Conference on Artificial Intelligence, Expert Systems
and Neural Networks, Ed. Hamza, M., lASTED/ Acta Press, Honolulu,
Hawaii, pp23-26

XX

Mehandjiska, D., Apperley, M. D., Phillips, C.H.E., Dasari, S. and Page, D. (1996)
Advancing information technologies through CASE, Proceedings of the 19th

Australasian Computer Science Conference (ACSC'96), Ed. Ramamohanarao,
K, Melbourne, Australia, pp213-222.

Dasari, S., Mehandjiska, D. and Page, D. (1995) Construction of a Generic
Knowledge Base for a Methodology Independent CASE Tool, Addendum to
the Proceedings of The Second NZ International Two-Stream Conference on
Artificial Neural Networks and Expert Systems (ANNES'95), Dunedin,
pp466-473

Mehandjiska, D., Apperley, M.D., Phillips, C., Page, D. and Clark, P. (1995) A
Methodology independent object oriented CASE tool, New Zealand Journal
of Computing, Vol. 6, pp95-105

Mehandjiska, D., Page, D. and Ham, J. (1995) Template generator for methodology
independent object oriented CASE tool, Proceedings of TJ International
Conference on Object-Oriented Information Systems (OOIS'95), Eds.
Murphy, J. and Stone, B., Springer-Verlag, Dublin, Ireland, pp431-440

Page, D., Clark, P. and Mehandjiska, D. (1994) An Abstract Definition of
Graphical Notations for Object Orientated Information Systems, Proceedings
of 1" International Conference on Object-Oriented Information Systems
(OOIS'94), Eds. Patel, D., Sun, Y. and Patel, S., Springer-Verlag, London,
pp266-276

Mehandjiska, D., Page, D. and Clark, P. (1994) An Intelligent Object Oriented
CASE Tool, Proceedings of 1 '' International Conference on Object-Oriented
Information Systems (OOIS'94), Eds. Patel, D., Sun, Y. and Patel, S.,
Springer-Verlag, London, pp168-172

XX1

