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Abstract 

This thesis presents an investigation into current meta-CASE technology. The research 

focuses on CASE tool support for the concept of methodology, the representation of 

methodology syntax and semantics, and the support for re-use of methodology 

descriptions and software artefacts. A novel methodology representation strategy for 

meta-CASE tools is proposed and implemented with the development of a new meta­

CASE tool (MOOT- Meta Object Orientated Tool). 

The novel strategy propounded in this thesis uses an object-orientated meta-model and 

views methodology descriptions as potentially re-usable components. The coupling 

between methodology syntax and semantic descriptions is minimised so they can be re­

used independently. 

Two new modelling languages have been derived, to support the definition of syntax 

(NDL - Notation Definition Language) and semantics (SSL - Semantic Specification 

Language) of software engineering methodologies. Semantic descriptions are compiled to 

a platform independent representation (SSL-BC), which is executed on a purpose built 

virtual machine (SSL-V:M). Late binding of syntax and semantic methodology 

descriptions is implemented with the development of Notation Semantic Mapping 

(NS!vf) tables. Two libraries of re-usable methodology description components, the Core 

Knowledge Base (CKB) and the Generic Object Orientated Knowledge Base (GOOKB), 

have been derived during this research. 

Empirical results gained from applying the MOOT prototype demonstrated the 

flexibility, extensibility and potential of the novel methodology representation strategy. 

This approach permitted the implementation and modelling of UML and patterns, two 

recent advances of object technology that did not exist when the research commenced. 

The novel strategy presented in this thesis is more than an untried theory. It has been 

implemented, applied and is being evaluated. Simply, it is real and it works. 
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GLOSSARY 

The content of the glossary has been derived from a range of dictionaries 
(Collins, 199 5; Nuttals, 1902; Readers Digest, 198 8 ;  Oxford, 199 3 ; Mirriam­
Webster, 1998 ), the Dictionary of Object Technology (Firesmith and Eykholt, 
199 5) and (D'Souza and Wills, 1998 ; Jacobson et al. , 1995; Pressman 1997 ; 
Schach, 1993 , 1997 ; Somerville, 1996). 

Abstraction. Any model that includes the most important, essential, or distinguishing 
aspects of something while suppressing or ignoring less important, immaterial, or 
diversionary details. The result of removing distinctions so as to emphasise 
commonalties. 

Arity. The cardinality of something. For example the arity of a relation specifies the 
number of concepts that are involved in the relation. 

Attribute. Any named property used as a data abstraction to describe its enclosing object, 
class or extent. 

Behaviour. Anything that an organism does involving action and response to stimulation. 
The way in which someone behaves; also: an instance of such behaviour. 

Bind. To place under certain constraints. To cohere or cause to cohere. To place under 
obligation; oblige. 

Binding. Any selection of the appropriate method for an operation on receipt of a 
corresponding message. 

Browser. Any view that allows you to access hierarchically organised and indexable 
information. 

CASE Tool. A) Any computer based tool for software planning, development and 
evolution. This includes all examples of computer-based support for the managerial, 
administrative, or technical aspects of any part of a software development project. B) 
Products that assist the software engineer in developing and maintaining software. 

CASE. An acronym that stands for Computer Assisted Software Engineering. 

CKB. Core Knowledge Base. A library of methodology semantic components that 
implements a meta-model of methodology. 

Class. Any uniquely identified abstraction (i.e. a model) of a set of logically related 
instances that share the same or similar characteristics. The combination of a type 
interface and associated type implementation. 

Classification. The act of forming into a class or classes; a distribution into groups such as 
classes, orders, families, etc., according to some common relations or affinities. 
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Cohesion. The degree, to which something models a single abstraction, localising only 
features and responsibilities related to that abstraction. 

Component. A) Any standard, reusable, previously implemented unit that is used to 

enhance the programming language constructs and to develop applications. B) An 
independently deliverable unit of software that encapsulates its design and 
implementation and offers interfaces to the out-side, by which it may be composed with 
other components to form a larger whole. 

Coupling. The degree to which one thing depends on another. Low coupling is desirable 
because it produces better encapsulation, maintainability, and extendibility with fewer 
objects needlessly affected during iteration. 

Encapsulation. To enclose in or as if in a capsule; the act of enclosing in a capsule. The 
physical localisation of features. 

Engineering. The application of scientific principles to such practical ends as the design, 
construction, and operation of efficient, economical structures, equipment and systems. 
The application of science to the design, building, and use of machines, constructions etc. 

GOOKB. Generic Object Orientated Knowledge Base. A library of methodology semantic 
components that implements a meta-model of concepts germane to all object-orientated 
methodologies. 

Identity. Individuality. 

Information Hiding. The deliberate and enforced hiding of information (e.g. design 
decisions, implementation details) from clients. The limiting of scope so that some 
information is invisible outside of the boundary of the scope. 

Inheritance. The incremental construction of a new definition in terms of existing 
definitions without disturbing the original definitions and their clients. 

Instance. Anything created from or corresponding to a definition. 

Interface. The visible outside, user view of something. 

Language. Any method of communicating ideas, as by a stream of signs, symbols, gestures 
or the like. The special vocabulary and usage of a scientific professional or other group. 
The speech or expression of ideas. 

MDT. An acronym that stands for Methodology Description Table. The Methodology 
Description Table provides an index of the methodologies supported by MOOT. 

Message Send. The sending of a message to an object. 

Message. Any communication sent or received by an object. 

Meta. A Greek prefix signifying beyond, after, with, among and frequently expressing 
change. Going beyond or transcending. Used with the name of a discipline to designate a 
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new but related discipline designed to deal critically with the original one. Of a higher or 
second-order kind. 

Meta-CASE Tool. A) A meta-CASE tool is any tool that provides automated or semi­

automated support for developing CASE tools. B) ... are CASE tools which are used to 

generate other CASE tools. C) A CASE tool that operates on CASE tools. 

Meta-language. The natural language, formal language, or logical system used to discuss 
or analyse another system. A form of language used to discuss a language. 

Method. A) Mode of procedure, logical arrangement, orderly arrangement, system of 
classification. A means or manner of procedure, especially a regular and systematic way of 
accomplishing anything. The procedures and techniques characteristic of a particular 
discipline or field of knowledge. special form of procedure esp. in any branch of 

mental activity. B)  A way of carrying out a complete phase such as such as design or 

integration. C) The hidden implementation of an associated operation. 

Methodology CASE Tool. A CASE tool that supports one or more software development 
methodologies and attempts to span most of the software development life-cycle. 

Methodology. The science of scientific method of classification. From the Greek method 
and logis (science). The system of principles, practices, and procedures applied to any 
specific branch of knowledge. The science of method; a body of methods used in a 
particular branch or activity. 

ModeL A) Archetype; a description or analogy used to help visualise something that 
cannot be directly observed; a system of postulates, data, and inferences presented as a 
mathematical description of an entity or state of affairs. A preliminary pattern or 
representation of an item not yet constructed. A tentative framework of ideas describing 

something intangible and used as a testing device. B) A model clarifies- for a person or 
group of people - some aspect or perspective on a thing or event. 

MOOT. Meta Object Orientated TooL A new meta-CASE tool developed as a result of 
this research. 

NDL. Notation Definition Language. A new language used to define the syntax of a 
methodology MOOT. 

Notation. A system of characters, symbols, or abbreviated expressions used in an art or 
science or in mathematics or logic to express technical facts or quantities. 

NSM. An acronym that stands for Notation-Semantic Mapping. NSM tables are used to 
implement late binding ofNDL and SSL methodology descriptions. 

Object. Any abstraction that models a single thing. 

Operation. Any service that may be requested. 

Polymorphism. The ability of a single name to refer to different things having different 
forms. 
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Process. A) A system of operations in the production o f  something. A series of actions, 
changes or functions that bring about an end or result. A course of action or proceeding, 
esp. a series of stages in manufacture or some other operation. B) ... the way we produce 
software. It starts with concept exploration and ends when the product is finally retired. 
C) . . . the set of activities and associated results which produce a software product. 

Relation. Connection by consanguinity or affinity; kinship; relationship; as, the relation of 
parents and children; an abstraction belonging to, or characteristic of, two entities or parts 
together. 

Semantic. Of, or relating to, meaning in language. 

Software Development Life-cycle (SDLC). A process by which software engineers build 
computer applications. 

Software Engineering. A) The application of a systematic, disciplined, quantifiable 
approach to the development, operation, and maintenance of software; that is the 
application of engineering to software. B) ... is concerned with the theories, methods and 
tools that are needed to develop software for computers. C) A discipline whose aim is the 
production of quality software that satisfies the user's needs, and is delivered on time and 
within budget. 

Software Project. A software project consists of a set of models (built using a particular 
methodology) which collectively define the software being constructed. 

SSL. Semantic Specification Language. A new object-orientated language used to define 
the semantics of a methodology in MOOT. 

SSL-BC. SSL Byte Code. A platform independent, binary, representation of SSL, which is 
generated by the SSL compiler. 

SSLC. SSL compiler. 

SSL-VM. SSL Virtual Machine. 
processing of SSL. 

new virtual machine which supports efficient 

State. Any status, situation, condition, mode, or life-cycle phase of an object or class 
during which certain rules of overall behaviour (e.g. response to messages) apply. 

Syntax. The way in which linguistic elements (as words) are put together to form 
constituents (as phrases or clauses). 

Tool. A thing used in an occupation or pursuit. Any instrument of use or service. 

Type. A lower taxonomic category selected as a standard of reference for a higher 
category. The declaration of the interface of any set of instances (e.g. objects) that 
conform to this common protocol. 
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