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ABSTRACT 

Botrytis cinerea is an important fungus causing serious losses to field and glass house 

grown fruits and vegetables and it is also an important postharvest pathogen. As a 

postharvest pathogen it is responsible for significant quality and economic losses to 

stored fruits and vegetables on a global scale. In New Zealand, infection by B. cinerea 

is one of the major causes of postharvest losses to the kiwifruit industry. This may be 

direct loss of infected fruit or an indirect loss due to secondary effects from the 

production of ethylene (C2H4) which causes softening of other non-infected fruit in the 

same tray. 

Several fungi are known to produce C2H4 but B. cinerea has not been reported to do so. 

One objective of this study was to establish whether B. cinerea is capable of producing 

C2H4 in vitro. To achieve this objective, 4 potential precursors of �H4 (methionine, 

glutamate, a-ketoglutarate and 1 -aminocyclopropane- 1 -carboxylic acid (ACC)) were 

added to Pratts modified medium at a range of pH's  using two different systems of 

incubation (shake and static culture). Methionine was shown to be the most efficient 

precursor of �H4 under both shake and static culture systems, with optimum pH being 

3 .5 and 4.5 respectively. ACC is known to be a precursor of �H4 in higher plants but 

it did not result in C2H4 production in B. cinerea, either alone or when added with 

methionine. Although methionine was a substrate of C2H4 production by B. cinerea, this 

production was significantly inhibited by a-aminooxyacetic acid (AOA), indicating that 

a pyridoxal phosphate (PLP) mediated reaction might be involved. This inhibition was 

not reversed by addition of ACC suggesting that ACC is not the immediate precursor 

of �H4 in B. cinerea. Cobalt ions (Co++) added to a culture medium supplemented with 

methionine, had a temporary inhibitory effect on C2H4 production by B. cinerea 

compared with methionine alone. This inhibitory effect soon disappeared, with the �H4 

peak in the eo++ treatment reaching the same level as for methionine, only delayed by 

2-4 days. This suggests that the ethylene-forming enzyme (EFE) complex in B. cinerea 

is different from that in higher plant. These results have shown that under defined 

conditions B. cinerea is capable of producing C2H4 from methionine but that the 

biosynthetic pathway appeared to be d�fferent from that present in higher plants. 
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Increased C2H4 production in response to stress is a common feature of plants. In an 

experiment at 20°C, kiwifruit infected with B. cinerea produced more C2H4, than 

uninfected fruit, even when the latter were physically damaged, or wounded, by drilling 

a hole through the stem scar. At 0°C, no ethylene was produced by wounded or healthy 

fruit and only infected fruit were shown to produce �H4• Healthy fruit stored with 

infected fruit in the same tray did not produce �H4• These results suggest that at low 

temperature C2H4 production by infected fruit may not trigger an autocatalytic response 

from healthy fruit in the same tray. At 0°C, wounding of fruit or �H4 in the 

environment did not trigger the autocatalytic response in kiwifruit but infection caused 

by B. cinerea did trigger this response. This suggests that infection may have activated 

the ACC synthase and ACC oxidase genes of the C2H4 pathway which consequently 

caused an autocatalytic response by the fruit. 

A few reports have suggested that the increased C2H4 production in response to infection 

may arise from noninfected tissue at the periphery of infection. Use of slices from 

different parts of infected kiwifruit has shown that most ethylene was produced by the 

healthy tissue immediately ahead of the infection front. This suggests that in these 

tissues a transmissible signal was produced which could be acting as an elicitor of C2H4 

production. Such an elicitor may have been a compound produced by the fungus itself, 

or it may have been produced as a result of secreted fungal enzymes acting on cell wall 

polysaccharides. Pectic and xyloglucan oligomers derived from polysaccharides are 

known to induce C2H4 in other plant systems. The nature of the C2H4 elicitor in B. 

cinerea infected k.iwifruit tissue has not been determined, but some possibilities have 

been discussed. 

Little or no ethylene was produced by infected kiwifruit tissue while ACC and ACC 

oxidase levels were no less than in healthy tissue. This suggests that the entire ethylene 

biosynthetic pathway was intact in these infected tissues. While all the individual 

components necessary for C2H4 synthesis were present the biosynthetic pathway could 

not operate in infected tissue. The reason for this is not known but could include 

inadequate oxygen (02) levels for C2H4 production in water soaked tissue; presence of 

a fungal produced toxin which inhibited the action of C2H4 enzymes or receptors; or lack 
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of EFE activity in tissue where membrane integrity was destroyed as a result of 

infection. 

This work has provided an opportunity to study in more detail the effect of B. cinerea 

infection on localized kiwifruit tissue. Although this study did not answer all the 

questions it has answered some difficult and interesting ones. 

This study has shown that B. cinerea can form ethylene from methionine using a non 

ACC pathway and that ethylene production is enhanced ahead of the infection front but 

ceases in diseased tissue. The questions raised by this study which requires further 

research are the steps involved in ethylene production by B. cinerea and the mechanism 

by which ethylene production is enhanced ahead of the infection front. 
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