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ABSTRACT

This thesis considers mathematical modelling of self-heating of cellulosic materials,
and in particular the effects of moisture on the heating characteristics. Following an
introductory chapter containing a literature review, Chapter 2 presents some
preliminary results and an industrial case study. The case study, which discusses a
'dry' body self-heating on a hot surface, investigates the following questions: (i)
how hot can the surface get before ignition is likely? (ii) how well does the (slab-
like) body approximate to an infinite slab? and (iii) how valid is the Frank-
Kamenetskii approximation for the source term? It is shown that the minimal steady
state temperature profile is stable when the temperature of the hot surface is below a
certain critical value, and bounds for the higher steady state profile are derived.
Chapter 3 presents the thermodynamic derivation of a reaction-diffusion model for
the self-heating of a moist cellulosic body, including the effects of direct chemical
oxidation as well as those of a further exothermic hydrolysis reaction and the
evaporation and condensation of water. The model contains three main variables: the
temperature of the body, the liquid water concentration in the body, and the water
vapour concentration in the body. Chapter 4 investigates the limiting case of the
model equations as the thermal conductivity and diffusivity of the body become
large. In particular it is shown that, in this limiting case, the model can have at least
twenty-five distinct bifurcation diagrams, compared with only two for the well
known model without the effects of moisture content. In Chapter 5 the maximum
principle and the methods of upper and lower solutions are used to derive existence,
uniqueness and multiplicity results for the steady state solutions of the spatially
distributed model. Finally, in Chapter 6, existence and uniqueness results for the

time dependent spatially distributed model are derived.




I would like to express my gratitude to my supervisors Professor Graeme
Wake and Mr Adrian Swift for their unfailing help and enthusiasm throughout
my work. Thanks also to Dr Alex McNabb and Mr Aroon Parshotam for
many helpful comments, Mr Richard Rayner for his help in producing the
graphics, Miss Fiona Davies for her typing of this thesis, Joanne for her

constant support, and Patricia for her friendship.




CHAPTER 1
1.1

1.2

1.3

CHAPTER 2
2.1

2.2

CHAPTER 3

3.1
3.2
3.3
3.4
3.5

CONTENTS

INTRODUCTION

Physical background

Formulation of the model for self-heating by a single
exothermic reaction

Interpretation

PRELIMINARY RESULTS AND A CASE STUDY
Preliminary results

Industrial case study

THERMODYNAMIC DERIVATION OF A MODEL
FOR THE SELF-HEATING OF DAMP CELLULOSIC
MATERIALS

Heat producing reactions

Assumptions

Derivation of the equations

Dimensionless formulation of the equations

The steady state equations for the spatially distributed

model

6

24
24
42

85
85
86
87
98

103




CHAPTER 4 THE SPATIALLY UNIFORM MODEL
4.1 Introduction
4.2 Questions of existence, uniqueness and multiplicity of
solutions
4.3 The nature and stability of steady state solutions
4.4 Hopf bifurcations and periodic solutions
4.5 Plotting degeneracy and bifurcation curves: the pseudo-
arclength method
4.6 The degeneracy curves in A1, L space
4.7 The distinct bifurcation diagrams
CHAPTER 5 EXISTENCE, UNIQUENESS AND MULTIPLICITY
RESULTS FOR THE SPATIALLY DISTRIBUTED
STEADY STATE MODEL
5.1 Existence results
5.2 Uniqueness results
5.3 Results on the multiplicity of solutions
CHAPTER 6 EXISTENCE AND UNIQUENESS RESULTS FOR
THE TIME DEPENDENT PROBLEM
CONCLUDING COMMENTS

REFERENCES

106
106

107
117
123

133
135

143

153
153
170
184

196

204
205




CHAPTER 1

Introduction

1.1  Physical background

A body is said to be 'self-heating' when its temperature rises due to a process occurring
inside the body itself. Under certain conditions this temperature rise may be sufficiently
large so as to induce the body to thermally ignite. 'Spontaneous ignition' or 'spontaneous

combustion' has then occurred.

Fires due to spontaneous combustion arising in practice can generally be placed into one
of two categories, the common denominator being an internal exothermic process. The
first category is where a 'small' body of material such as a sack, small pile or dust layer is
stored subject to high ambient conditions (for example on a hot surface) and/or at a high
initial temperature (for example chemicals from a drying process). Generally these fires
are induced over quite a small time scale, sometimes a matter of hours or days. Typical
scenarios for fires occurring in this category would include: the last batch of laundry from
an industrial cleaning process catching fire in the early hours of the morning, or forest
litter, for example gum leaves, igniting due to the proximity of a barbecue fire, or a
woodchip/oil dust layer igniting on a hot fibreboard press. The second category is
associated with fires that occur over far longer time scales, sometimes months, and at
lower ambient conditions, sometimes room temperature - the spontaneous combustion of
large stockpiles of material. Typical materials would include hay, woodchips, wool and
bagasse (bagasse being the fibrous residue of the extraction of sugar from sugar cane).
The economic importance of the study of spontaneous combustion can be placed in
perspective by analysing the following table from Bowes 1], which summarizes statistics

of building fires in the United Kingdom between 1970-1973.




Year 1970 1971 D12 913 1970 1971 jLgp) 1973
Number of fires 93412 39310 100031 105323
Supposed cause Proportion of 31 [ assigped Proportion of 2il fires assigoed to
to given amse gven amse which were 2lso large(3)

Electrical applianczs 28.5 295 298 312 053 051 0.48 0.54
and installations

Primary fuel burning

appliances and 20.3 19.3
installations (1)

Childrea playing with 8.5 9.1 99 95 014 0.34 0.31 0.36
fire, eg matches

192 185 035 0.39 0.31 0.46

1.7 83 0.73 0.77 0.81 1.00

Smoker’s materials 8.7 8.0

Malicious or inten- 4.1 59 7.0 73 3.2 33 3.3 3.6
tonal ignition

Spontancous 0.61 0.55 047 041 18 29 32 2.5
combustion

Other known 15.9 14.6 144 13.5 0.65 0.67 0.67 0.85
causes (2)

Unknown 13.4 13.0 11.7 11.0 4.5 5.5 6.2 6.1

(1) Solid fuel, oil, gas, LPG, acetylene

(2) Listed and unlisted, excluding rubbish burning and including *other and unspecified fires’.
less than 5 per cent of total fires assigned to each

(3) Direct loss in excess of £10 000.

Figure 1.1 Building fire statistics 1970-1973.

These statistics indicate that spontaneous combustion is second only behind 'malicious or

intentional damage' as the most common of the assigned causes of large fires.

In terms of the mathematical modelling of self-heating bodies, then, the three main areas

of interest, which of course are closely related, are:

(1) Critical size. What is the 'largest' size of stockpile in which we can safely store a

given material at a given ambient temperature and initial temperature?




(ii)  Critical ambient temperature. What is the hottest storage temperature we can

safely apply to a given stockpile at a given initial temperature?

(iii)  Critical initial temperature. To what temperature should we allow a body to cool

before storing it in a stockpile of given dimensions and given ambient temperature?

The mathematical analysis of most incidences of fires caused by spontaneous combustion

can be reduced to a consideration of one of the above three factors.

1.2 Formulation of the model for self-heating by a single exothermic reaction

We shall assume that the thermal conductivity of the self-heating body is constant and

that reactant consumption does not significantly inhibit the rate of the exothermic reaction.

An energy balance between the heat generated in unit volume of a body by a single

exothermic reaction (typically a chemical oxidation reaction) and the heat lost from that

volume by thermal conduction gives the differential equation
JT A
mﬂT+qa»=c5xinmemgmn?eszgnﬁ,?>o
Jt

with boundary conditions

JdT A _ _
k ot h(T-T,)=0 on 09, (Newtonian Cooling)

or

A
T=T, on 0JQ, (perfect heat transfer)
and initial conditions

T =0)=TyM), Tel

where

—
]

absolute temperature,

—
I

absolute ambient temperature,

i
I

initial temperature profile,

(1.1a)

(1.1b)

(1.1¢)

(1.1d)




k = thermal conductivity,
q(T) = rate of heat production per unit volume at temperature T,
h = heat transfer coefficient,
d A
= outward normal derivative at the boundary,
A .
t = time,
C = specific heat capacity.

The steady state, spatially uniform (that is the solution in the limit k — o) case of this
model was first studied by Semenov [2], and the solution for finite k and high activation
energy was obtained in the infinite slab by Frank-Kamenetskii |3]. Both these authors

assumed that the rate of the exothermic reaction varies in accordance with the Arrhenius

law
_E )
a(m) = Q pZ expfy ). (1.2)
where
Q = exothermicity of the oxidation reaction,
= density,
Z = pre-exponential factor of the Arrhenius equation (also known as a

frequency factor),

g3}
I

activation energy of the oxidation reaction,

R = gas constant.

As we will see later in the discussion of the application of this theory to the prediction of
safe storage regimes for dry bodies, the Arrhenius law has proved to be accurate over the
practical parameter range, and indeed has been used by the majority of authors since its
first formulation. Frank-Kamenetskii's |3| work on the infinite slab with perfect heat

transfer on the boundary, used the dimensionless temperature rise over the ambient as




E

=‘ﬁ‘§(T—Ta), (1.3)

so the steady state problem becomes, in dimensionless coordinates

d%6 )
5;2*+8exp =0, -l<r<]|, (1.4a)

(1 +¢,0)

with

6=0, at r=zxI, (1.4b)

where

half-width of the body, h

o
o
Il

RT,
& = E o

E
pQa2E Z exp (R a) e (1.4¢)

§ =
kRT? :

._,
Il

A
dimensionless length (: gr_}
0 4

The parameter & is often referred to as the Frank-Kamenetskii parameter. Frank-

E
Kamenetskii observed that, provided RT >>1 (i.e. g, << 1), and 6 is not too large, the

a
problem reduces to the equation
q2

§)
a—r-2-+66xp9=0, -l1<r<l, (1.5a)

with

6=0, at r==%1, (1.5b)

which has the well-known closed form solution

6(r) = £nF — 24n(cosh(r cosh™"\ F)), (1.62)




where F is the solution of the transcendental equation

SF
F=cosh2\/‘§“. (1.6b)

The assumption €, << 1 is known as the Frank-Kamenetskii approximation, and is the
most commonly used, but not the only such approximation, in the literature. For example

Gray and Harper |4] introduced a quadratic approximation to the Arrhenius term i.e.
~E -E 5
exp (ﬁl—)z exp (1—271‘_) (by + byB + b307) (1.7)
a4
where by =1, by =¢-2, by=1.

The merits and consequences of the Frank-Kamenetskii approximation will be discussed

again in Chapter 2.

1.3  Interpretation

It is well-known (the verification involves simple calculus) that for & < 0.88 two solutions
to (1.6a, b) exist, the lower of which is stable (in a time sense) and the higher of which is
unstable. But for 6 > 0.88 no solutions exist. Frank-Kamenetskii identified this transition
with the onset of thermal ignition, since for & > 0.88 no stable steady state profile will
exist and the temperature of the body will rise in an unbounded manner with time. The
value 6 = 0.88 is referred to as J;, for the infinite slab. This behaviour in the 8, 161l

space, where 116ll, = max 18(r)l, is summarised in Figure 1.2 below
rell




el

o

7N l‘ P
NI 0
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Figure 1.2 Typical 8, l16lly bifurcation diagram for the infinite slab with the Frank-

Kamenetskii approximation.

For the infinite cylinder and unit sphere, 8., = 2.00, 3.32 respectively. For more general
shapes (cubes, finite cylinders etc.) Boddington, Gray and Harvey [5] have introduced the
concept of a root-mean-square 'Frank-Kamenetskii' radius, rg, of a body, and it is this

approach that is used by experimentalists in laboratory scale tests.

Several variations of this basic model have been studied, both with and without the Frank-
Kamenetskii approximation. For example: a model with reactant consumption
(Boddington et al [6]), criticality with variable thermal conductivity (Wake [7]), ignition of
a self-heating body subject to asymmetric boundary conditions (Thomas and Bowes [§],
Shoumann and Donaldson [9] and Sisson, Swift and Wake [10]), and a model for an
exothermic reaction sustained by a single diffusing reactant (Burnell et al [11]). In 1989
Burnell et at [12] presented a paper questioning the appropriateness of the classical

Frank-Kamenetskii formulation, particularly the use of the ambient temperature in the non-




dimensionalization of the body temperature. They suggested an alternative formulation for

the non-dimensionalization of the system i.e.

=
_.3

u=4=, (1.8a)
U RT, 1.8
= E - (1.8b)
This gives the dimensionless form of the parabolic system (1.1a, b, ¢, d), (1.2) as
~1\ Jdu
2 —1y_gd . .
Vu+nexp(u)—a[, re Q, >0, (1.9a)
with
du Bi U)=90 e dQ 1.9b
an+ i(u-U)=0, re , (1.9b)
(Newtonian cooling)
or
u=U, re 0Q, (1.9¢)
(perfect heat transfer)
and
u(r, t=10) = up(r), (1.9d)
where
. _ pQZRa%
= TkE
ay = an appropriate characteristic length such as the half-width of the
body,
. . . . hay,
Bi = dimensionless Biot number =
A
— tk
- a%C’
A
A
roo= T,
Ll()

N N
and Q, dQ are the scaled representations of €, dQ respectively.
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The steady states of this system are given by

—1
V2 + 1 exp (’;)= 0, re Q, (1.9e)

with the same boundary conditions (1.9b) or (1.9c¢).

Their basic idea was that in most practical situations (and laboratory scale tests) T,, the
ambient temperature, is the most accessible control parameter, and hence U (the
dimensionless representation of T,) is the natural bifurcation, or 'distinguished’,
parameter. In the Frank-Kamenetskii formulation T, appears in 6, & and €,, whereas in the
new formulation T, appears only in U. As Burnell et al explain this means that for a
the critical value of the ambient temperature,

bifurcation diagram in U, llull, space, T, .,

RT, .
can be observed directly from the graph (as Ugis = é””) For the Frank-Kamenetskii

formulation, however, an iterative process must be used to find T from the 6, 18Il

i, crit
bifurcation diagram as follows:
RT,

. . . . . a, crit
(1) use a trial value of T, ., which gives g, = E

(ii)  record &, from the 9, IIBll, plot;

(iii) ~ from this value of dy;, calculate the next approximation to T, .

: . L RT, :
Also since the Prank-Kamenetskii approximation in elfect sets €, = E = 0, this
approximation is obviously inappropriate in the new formulation. In their 1990 paper,
Wake et al [13] presented existence, uniqueness and multiplicity results for the steady
states of the model using this new dimensionless formulation. For the analysis of the

model in this thesis we will use the new formulation of Burnell et al [12] and the full
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Arrhenius representation of the heat balance equation, i.e. we will refrain from using the

Frank-Kamenetskii approximation.

In the chemical literature the most common approach in analysing safe storage regimes for
particular materials is to invoke the Frank-Kamenetskii approximation and the concept of
Frank-Kamenetskii radius and then extrapolate to results for practical stockpiles from
those obtained from laboratory scale tests. Using the Frank-Kamenetskii approximation
the heat balance equation (1.1a), (1.2) for a system with one characteristic dimension (a)

becomes

+= — + 8(ay) expd = 0 (1.10)

0 j do
2 T odr

where j is a shape factor and & is as given in (1.4¢). Boddington et al [S] give the shape

factor j and the critical value of the parameter & for non-standard shapes as

, 31'(2)
J:[“lfgj—l, (1.11a)
where ry = QSX ,
ro = the root mean-square radius,
V = volume of the body,
S = surface area of the body,
and
Seric = 3Q2j+6) / (j+7). (1.11b)

The values of ry, j and 8., are given for various shapes, taken from Gray, Griffiths and

Hasko [14], in Figure 1.3 below.
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Shape Iy I J Ocrin(ro)
Cube 1.194a, 1.000a 3.275 3.663
(220)”
Equicylinder 1.115a, 1.000a, 2.729 3.531
(Diam. 2a, x length 2ag)
'‘Squat'cylinder 1.081a, 0.965a, 2762 3.541
(Diam. 2a, x length 1.8a)
'Long'cylinder 1.225a 1.500a, 1.000 2.999

(Diam. 2ag x length 14a;)

Figure 1.3 Parameters for some non-standard shapes.

Eigeban et al [15] have shown that a good approximation to the critical value of the

Frank-Kamenetskii parameter § is then

-E
pQ r% EZ exp (_R—:I“:)

Scrit(ro) = kRT '[2 ’ (1.12)
a, cri
or equivalently
T 7ZQE E
/ crit La, crit =Zn( )_ . 113
: ( r% 9) kR RTa, crit ( )

The idea behind this approach is that T, . can be measured in the laboratory by slowly

heating various small piles (low r( values) at very high ambient temperatures. Then a
2
8crit Ta, crit S 1
plot of ¢n 5 against |7

Iy P a, crit

-E
)should give a straight line with slope R from

which the activation energy, E, can be estimated. Figure 1.4 below shows an example of

one such plot for barbecue fuel (Jones [16]).




1247 Slope= -10166

(&:ril Tu. critz} 120
n 9 -
o P

16
1121
108 i [ | !
- 2.05 210 215 2.20 2.25
1
10°K ( )
Tu, crit

Figure 1.4 Frank-Kamenetskii plot for barbecue fuel.

Extrapolations can also be made from these graphs to practical values of T, (say 20-40°),
to predict the corresponding ry values, and so estimate the safe storage sizes at these
temperatures. The T, . values for laboratory scale tests are measured by plotting
temperature excess/time graphs for various oven temperatures. An example of one of
these diagrams (bagasse pith in a squat cylinder, taken from Gray, Griffiths and Hasko

S

[14]), is given in Figure 1.5 below.
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Figure 1.5 Temperature excess/time graphs for bagasse pith in a squat cylinder,

for varying oven temperatures.

It can be seen from Figure 1.5 that there is a marked difference between the subcritical
and the supercritical behaviour of the body. For oven temperatures above 470.8K, the
body temperature continues to rise until (ultimately) ignition occurs. But for oven
temperatures below 470.6K the temperature excess achieves a maximum then falls as
reactant is consumed. Thus on the basis of this diagram, T, ., for this particular body is
470.7K + 0.1K. Figures 1.6, 1.7 and 1.8 below show some typical apparatus used in these
laboratory scale tests (at the School of Chemistry, Macquarie University, Sydney,

Australia).
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Figure 1.6 Oven for regulating high ambient temperatures.
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IFigure 1.7 Cylinder in oven.
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Figure 1.8 Size range of vessels for laboratory scales tests.
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This technique of extrapolation from laboratory scale tests has been applied to a wide

range of materials. Results from the literature are summarized in Figure 1.9 below.

STORAGE CONDITIONS .
MATERIAL ambient temperatures in °C | REFERENCE C%II’IMSNE ONC ORS?
critical heights in metres MOISTURE FACTORS?
WOOL Amb. lemp. 40 Jones [17] YES
Crit. height 6.6
QUEENSLAND Amb. temp. 40 20 Gray ct al | 14] YES
BAGASSE Crit. height 66 276
HOPS Amb. temp. 40 Jonesand Raj  [18] NO
Crit. height 29
EUCALYPTUS Amb. temp. 40 25 Jones and Raj [19] NO
LEAVES Crit. height 39 6.9
FIJIAN Amb. temp. 40) 25 Raj and Jones [20] YES
BAGASSE Crit. height 16.3 374
FIJIAN Amb. temp. 40 25 Rajand Joncs 20| YES
HARDWOOD Crit. height 39 95
FLAKES
NSW WOOD Amb. tcmp. 40) 25 Jonesand Raj  [19] NO*
SHAVINGS Crit. height 48.5 126
NSW RICE Amb. temp. 40 25 RajandJones 20| YES
HUSKS Crit. height 255 63
CHEMICALLY Amb. temp. 4() 30 Bowes and Cameron YES
ACTIVATED Cril. height 2.5 48 (21]
CARBON

Figure 1.9 Table of storage predictions from the literature.

* in effect this is a 'yes' since Jones and Raj state that this result 'corresponds well with

the value for Queensland bagasse'.

In more than half of these references the authors acknowledge that the bounds on the safe

storage heights obtained at realistic ambient temperatures were something of an

overestimation. For example Raj and Jones [20] state
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"all test materials show satisfactory conformity to the predictions of thermal
ignition theory when heated in baskets ... When the results are extrapolated to
outdoor temperatures, all test materials gave surprisingly high values of the

calculated maximum stockpile height".

Gray, Griffiths and Hasko [14] conjectured that this discrepancy is due to the effects of
moisture content in the real-sized stockpiles. [t appears to be a major fault in the process
outlined above that, since typical oven temperatures are above 100°C, after an initial
period during which water evaporated from the system, the laboratory scale tests can only
measure the amount of heat produced by 'dry' materials. Any data on the heat produced by
ancillary reactions associated with the presence of water in the body e.g. hydrolysis or

microbial factors, is bound to be lost. This is acknowledged by Jones [16]

"...however, as has been pointed out more than once to the author, such
extrapolations may require caution. It may happen that processes are occurring in
the 'real' stockpile which are absent from the laboratory test, for example moisture
effects and creation of reactive new surface by breakage on handling. In such

circumstance the extrapolation would be of doubtful meaning".

This would also explain why the laboratory scale tests correspond so well to the Frank-
Kamenetskii model (see Figure 1.4), which only accounts for heat produced by a dry
material. It is thought by many authors, hence the comments on moisture content
mentioned in Figure 1.9, that it is this underestimation of the amount of heat being
produced inside the self-heating stockpiles that is the cause of the overestimation of the

safe stockpiling sizes.
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In a 1973 paper Smith [22] summarised the causes of self-heating in wet wood chips as

(1) the metabolism of living wood parenchyma cells in fresh wood chips;
(ii)  the metabolism of bacteria and fungi;
(iii)  direct chemical oxidation;

(iv) acid hydrolysis of cellulose.

We will assume these to be the main heat producing components in all stockpiles of
cellulosic materials. Factor (i) will only be present if the material in the stockpile has
been cut fairly recently. It can also be ignored if, for example, the material has gone
through an industrial refining process prior to stockpiling. Factors (i1) and (iv) can only
occur if there is moisture present in the body. We will look at the data for the production
of heat by the metabolism of bacteria and fungi in a particular material (bagasse) later in
this introduction. Factor (iii) is the classical exothermic process of the Frank-
Kamenetskii model, which can occur whether or not moisture is present in the stockpile.
The effects of moisture on the chemical/physical processes occurring in stockpiled

cellulosic materials have been discussed by Gray, Griffiths and Hasko [14].

(1) evaporation and loss of water can confer an endothermicity which tends to stabilise
the system;

(ii)  completely dry cellulosic materials are hygroscopic. The rate of heat release which
is due to condensation of water vapour and evolution of its latent heat can be
sufficient to cause self-heating and thermal ignition;

(iii) when movement of water through a mass takes place by evaporation and
condensation, no net thermal effect will result when the two rates balance. The
overall heat release from the system will then approximate to that of dry material

at the same temperature;




(iv) balanced internal rates of evaporation and condensation do not lead to identical
conditions for criticality of wet and dry masses. The thermal diffusivity within wet
material is greater than that within dry material and the stability of the wet mass is
enhanced because of this;

(v)  When a net loss of water occurs from the system, there is a gradual decrease in
thermal diffusivity;

(vi) as long as water remains in the system, liquid-phase oxidations and acid
hydrolysis of hemicellulose (an isomer of cellulose) may take place, making

additional contributions to the heat release rate.

It is clear that, as well as taking into account the amount of heat produced by the extra
exothermic reactions due to moisture content per se, any mathematical model for 'self-
heating with moisture content' must also include the exothermic process of water vapour

condensation, and the endothermic process of liquid water evaporation.

In the light of the obvious over estimation of safe storage regimes for bagasse, as seen in
Figure 1.9, and in an attempt to gain further insight into the reasons for this discrepancy,
some experimental work has recently been carried out at the Sugar Research Institute at
Mackay, Queensland. Trials were conducted on various stockpiles including identical
stockpiles with and without added H,SO4 (the presence of H,SO, kills microbes in the

stockpile). The results were given in Dixon [23] and are summarised below.

(1) the dry bagasse reaction alone is not sufficient to cause spontaneous combustion in
full size stockpiles;
(11)  microbiological heat generation can be of little significance in initial bagasse

stockpile temperature increases;




(iii)  there must exist one or more low temperature reactions which generate rapid initial
chemical heating in bagasse stockpiles;

(iv) preliminary micro-calorimetric investigations with bagasse at low temperature
(60°C) show considerably enhanced heat generation in the presence of water;

(v)  the relative importance of wet cellulose oxidation and aqueous phase oxidation of
microbiological and hydrolysis by-products has not been established;

(vi) little change will occur in the total moisture content of the bulk of the bagasse

stockpile during normal heating.

Work by Gray and Scott [24] showed that the initial bagasse storage temperature,
typically 50-70°C, would not be sufficient to induce thermal ignition in stockpiled dry
bagasse. Gray and Scott calculated that for dry bagasse an initial temperature greater
than 90°C would be required for ignition in practical stockpile sizes and in the usual
ambient temperature range. In comparison with the dry model, very little theoretical work

has been done on the self-heating of damp stockpiles.

In 1939 Henry [25] published a paper on work arising from the analysis of the uptake of
moisture by cotton bales. He considered the diffusion of one substance through another in
the pores of a solid body which could absorb and immobilise some of the diffusing
substance. Due to the small size of the pores encountered in these stockpiles and the fact
that many of them are filled with liquid, Henry neglected the influence of convection in the
model. There was also no account made of the influence of heat production by oxidation or

hydrolysis reactions within the body. As Bowes [1], page 296, states

"The transient diffusion of heat and moisture through porous hygroscopic materials
was considered theoretically by Henry with particular reference to temperature and

moisture changes in bales of textile fibres ... He suggested that the analysis might




[Se]
o

be extended to include simultaneous heat generation by other processes but did not

pursue this interesting possibility".

In the 1970's, Walker and co-workers (e.g. Walker and Harrison [26], Walker and Jackson
(27], Walker and Manssen [28]) proceeded by essentially using the Frank-Kamenetskii
model, but by operating at lower oven temperatures (80-92°C), they were able to include
some of the effect of the moisture content. This model had the fault that it 'lumped' two,
essentially distinct, reactions in the same Arrhenius term. Also no account was made of
the evaporation or condensation of water. In 1990, Gray and Wake [29] considered a
spatially uniform model, analysing the effects of condensation/evaporation of water in
conjunction with the exothermic oxidation reaction. In their analysis Gray and Wake used
the quadratic approximation (1.7) to the Arrhenius term. llowever as they state in their

paper
"... we will assume that there are no extra self-heating reactions in the aqueous

phase, although there undoubtedly are for some materials, such as bagasse".

Finally, again in 1990, Gray |30| presented a spatially uniform model which unified all the

main factors thought to be involved in the self-heating of moist cellulosic stockpiles i.e.

(1) the heat produced by the oxidation reaction;
(i1)  the heat produced by the hydrolysis reaction;
(iii)  the endothermic evaporation process;

(iv)  the exothermic condensation process;

(v) the heat lost due to Newtonian cooling.
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Gray also included a term to represent the water consumed by the hydrolysis reaction.
We have decided to ignore this term in our analysis. We do this for two reasons: (a) on
the grounds of consistency, in that the model also 'neglects' the consumption of the other
two reactants i.e. cellulose and oxygen, and (b) because steady state analysis with non-
trivial concentrations of each species requires that all reactant consumption is 'neglected'
(otherwise as t — o the water content will tend to zero which contradicts observation
(vi) of Dixon [23] mentioned earlier). 'Neglect of reactant consumption' in this context
means that we will assume that the consumption of the reactants does not effect the rates
of any of the reactions in any way, i.e. there is always 'enough' of the reactants to fully
sustain all the reactions. This model was formulated in the wake of the Sugar Research
Institute's comment on the minimal effects of microbes on the self-heating of bagasse.
How well the neglect of the heat produced by microbes can be justified for materials other
than bagasse is an open question to a certain extent. However it seems reasonable to
assume that, since all cellulosic materials have basically very similar chemical
constituents, the heat produced by the hydrolysis reaction is the dominant factor when
considering ancillary exothermic reactions due to moisture effects. It is the mathematical
analysis of this slight variant of Gray's model, and the corresponding spatially distributed

model, that we shall be mainly considering in this thesis.

Before embarking on this we will consider a case study involving self-heating by a single
exothermic reaction of a (dry) body on a hot surface. This example will illustrate the
power of steady state ignition theory in practical circumstances and introduces some
further important concepts such as the maximum principle and the method of upper and
lower solutions. We also introduce some new results on the stability of the minimal

steady state solution, and on bounds for the higher steady state reached beyond criticality.
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CHAPTER 2

Preliminary results and a Case Study

2.1 Preliminary results
We shall firstly define several important function spaces. We follow the definitions used

by Ladyzenskaja, Solonnikov and Ural'ceva [31].

Definition 2.1.1
Suppose S denotes a bounded, open, connected set of points in n-dimensional real space

R", S is the closure of S and 0 < & < 1. Then

(1) A function g :S — R" satisfies a Holder condition with exponent 0. on S (.e. gisof

class C* on S) if <g>$ is finite, where

lg(x) = g(y)l
<g>¢= su () $2 .
S P eyl
X,y €8S y

X' #y

(ii)  Suppose k is a nonnegative integer and g is a C¥ function on S. Then set

<g>f= I qp IDf gl
&=k y 3

where £ = (£, ..., £,) is an n-tuple of nonnegative integers,

¢ amf
Bl=£ +...+4, Dif=r———""5,
! n g oxd
and 2 denotes summation over all derivatives of a given order k.
12l =k
k

Also let ligh, = 3 <g>) .
=0
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(iii)  If k is a nonnegative integer then g is of class C<*® on S if each partial derivative of

order j < k exists and is of class C* on S. Then set

k
gl = llghe + 2 3 <DE g>%
=0 16l =j

Definition 2.1.2

Suppose k is a nonnegative integer, S is an open bounded set in R™ and 0 < o < 1. Then
dS is of class CX*® if at each point xo € S there is a ball A, centre xg, and a one-to-one

mapping \s of A onto an open set D € R™ such that

(1) YA NS) S R ={(X, ... x,) € R": x>0} ;

(i)  W(AMIS) C IR™;

(iii) y and ™" are respectively class C<** on A and D.

Definition 2.1.3

Suppose S <.IR" is a bounded, open, connected set and (a, b) € IR is an open interval.

Further suppose that k 1s a nonnegative integer, 0 < a < 1 and

g:Sx [a,b] = R™ Then g is of class C***® on S x [a, b] if llglly, ,,, is finite where

2k
lgly,o =2 = [ID{D) glig+ IDE DI glly)
i=0 ll+2j=1

here £ is as in (2.1.1) (ii), subscripts x and t represent partial derivatives with respect to

the first and second variables of g respectively, and for any function f : S x [a, b] - R",




If(x,t) — f(y,v)!
lifll, = sup

(%0, () € § x [a, b] 000 = O
(x,t) # (y,V)

||f||0 = sup |f(X,t)|.
(x,t) € S x [a, b]

Definition 2.1.4
Suppose S < IR" is a bounded, open, connected set of points. For any real p > 1, we
define the Banach space L,(S) in the usual way to be the space consisting of all real

measurable functions on S with finite norm
— P P
gl s =1 J 18COP 4V

2.1.5 The maximum principle
One of the most important results we shall use in this thesis is the maximum principle for

the solutions of differential equations. We shall use the maximum principle for the

solutions of elliptic differential equations in the following two complementary forms

and.

Suppose that D is an open bounded set satisfying the interior sphere property of
Sperb [32] in R™ and h is a continuous non-positive function. Suppose also that w;

is a class C? function on D and is piecewise continuous on dD, and satisfies

V2w, +hwy 20, inD.




Then

(1)

(ia)

(ii)

(111)
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if h =0, the maximum of w, over D is obtained on dD ;

if h = 0 and w, attains a maximum of M at some pointr’ € D, then w; = M in

D;

if dD is of class C*** for some T e (0, 1), h = 0, and w; achieves its

. , . , owy ..
maximum at r’ € 9D, with w{(1") > w;(r) for all r € dD, then B0 (if it

. , .. 9w, ,
exists) at r’ satisfies n ) >0;
if w, satisfies either

(a)  w;<0, ondD,

an
or (b)  for some W >0, S FHw S 0, ondD,

then w; €0 in D, and w(r) <O for all r € D unless V2w1 +hw; =0inD

. aW]
and either (for (a)) w; =0 on dD, or (for (b)) T Hwy = 0 on dD.

Suppose that D and h are as in . Suppose also that w, is a class C? function on

D and is piecewise continuous on dD and satisfies

Then

(1)

V2w, + hw, €0,  in D.

if h =0, then the minimum of w, over D is obtained on dD ;
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(ia) ifh =0 and w, attains a minimum of m at some pointr’ e D,w,=minD

(i)  if dD is of class C2*" for some T e (0, 1), h = 0, and w, achieves its
.. , ) , aWz e
minimum at r’ € dD, with w,(1r’") < wy(r) for all r € 9dD, then Y (if it
. , ... dwy ,
exists) at r’ satisfies 0 ) <0;

(iii)  if wy satisfies either

(a) w,2>0, ondD,

aW2
or (b)  for some [ >0, I THwy 2 0, ondD,

then wy >0 on D, and w,(r) > 0 for allr € D unless V2w, + hwy =0 in D

0
and either (for (a)) wy =0 on dD, or (for (b)) _év;v]z + 1w, =0 on dD.

[ |
For a fuller discussion of the various maximum principles see Sperb [32] and Gilbarg and

Trudinger [33].
We shall now define the terms 'upper' and 'lower' solutions for the general elliptic

differential equation, which includes a non-local term, that we shall be discussing in this

work.

Definition 2.1.6

Consider the nonlinear elliptic boundary value problem

Vi +f (r, u, JQ g(u)dV)= 0, reQ, (2.1)

Bu=q, re 0Q, (2.2)
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where B is one of the boundary operators

Bu=u,

or

du
Bu =5 T Hu,

Q is an open bounded set satisfying the interior sphere property of Sperb [32], and, for the

purposes of this thesis, q is either zero or a piecewise continuous positive function.

The function ¢(r) is an upper solution for (2.1), (2.2) if ¢ is of class C?in Q and satisfies

V2¢+f(r, 0, jQ g(q))dV)SO, re Q,

Bd>q, re Q.

Similarly the function y(r) is a lower solution for (2.1), (2.2) if y is of class C?in Q and

satisfies
Vz\;f+f(r, v, jﬁ g(\y)d\/)z 0, reQ,

By<q, redQ.

B
The existence of upper and lower solutions can be combined with the maximum principle to
show that elliptic boundary value problems of the form (2.1), (2.2) have a solution. The
result we will use here can be considered to be a generalization of Sattinger's [34] result
concerning the case g(u) = 0. The proof we will use is similar to that of Sattinger's except
a Freéchet derivative is introduced to extend the results to non-zero g(u). The proof is
given in detail both for the sake of completeness and as it illustrates the method of

monotone iteration inherent in many of the results in this thesis.
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Theorem 2.1.7

Suppose there exists an upper solution ¢4(r) of (2.1), (2.2) and a lower solution y(r) of
(2.1), (2.2) with ¢y(r) = (1) forr e Q. Then there exists a regular solution u(r) of (2.1),

(2.2) such that

Yo<usd,, rte Q.

Proof

We will assume that we can find a positive constant ® so that the function
F (r, u, jn g(u) dV)Ef(r, u, J.Q g(u) dV)+ Ou,
is an increasing function of u.

Now F (r, u, J;z g(u) dV) will be an increasing function of u if the corresponding Fréchet

derivative is positive. To explain what is mean by the Freéchet derivative of F, we will

consider the non-local term in the function which mapsu — J;) g(u) dV to be given by

k(u) = J;) g(u) dV.

The Frechet derivative of f(r, u, k(u)) for a small positive perturbation h(r) is defined to be

J(u)(h) where

f(r, u+h, k(u+h)) — f(r, u, k(u)) = J(u)(h) + o(lthll).
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Now
J)th) = gg (r,u, k) h + gflz (r, u, k) K(u)h),
where K(u)(h) is a 'complementary' Fréchet derivative satisfying
k(u+h) — k(u) = K(u)(h) + o(llhll),
i.e.
K()h) = [ %%h dv.

Obviously if g(u) = 0, the requirement on ® reduces to

g% (r,u) + ® >0, (c.f. Sattinger [34]),

otherwise it is sufficient that ® satisfies, for all small positive perturbations h,
Jw)(h) + ®h >0, re Q.
Having found such a ©, define a mapping T : y = T¢ if
(Vil_@)\y:—[f(r, 0, jg 2(6) dv)+®q>] re Q,

By=q, re Q.
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Now T is completely continuous and monotone, i.e. ¢ <\ implies T¢ < Ty for

miny, < ¢, \y <max ¢y. To show this monotonicity consider ¢ <\, then
(V2 - @)To =_[ f(r, o, [ 2@ dV)+ @q)} , TEQ,

(VZ_@)Ty = _[ f(r, v, jn g(¥) dV)+ @\yl re Q,
BTy =BTy =q, redQ.
So

-0 (ry-Toy=-| 15w [, e av)-e(r 0, | y¢>de

+@w_@],reg % (2.3)

B(Ty-Td)=0, re Q. J
If we now define

F (r, u, JQ g(u) dV)= f(r, u, JQ g(u) dV)+ Ou,

then F has a positive Frechet derivative and so is increasing in u. So the terms in the

square brackets on the right hand side of (2.3) combine to form

F (r, v, jQ 2(y) dV)— F (r, 0, jﬂ () d\/) > 0.
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This implies

(V2—®)WSO, re Q,
Bw=0, re dQ,

where w = Ty — T¢. So by the maximum principle , w > 0 in €, and hence Ty > T¢ in
Q.

Now define ¢; = Ty and y; = Ty, (where ¢, W, are respectively the upper and lower

solutions of (2.1), (2.2)). We will now show that ¢, < 9q and y; > . We have

(V2-@) ) = [f(r, %0 [ 2(60) dV>+ ® %l re Q,

Bo;=q, re oQ,

50
(V2= )01~ 00) =~ £ (1. 6o, [ £(00) AV |- O~ V2o + €0,
|70y £ (e, 00, [ &000) dVﬂ,
20, re
and

B(¢1—¢0)=q—B¢OSO, re dQ.
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Therefore by the maximum principle , d1 < ¢¢ in Q. Furthermore since yg < @ it

follows by the monotone property of T that Ty < T¢q in €, thatis, y; < ;.
So we have
Vo <Y1 <1 <Py
Now define ¢, = T¢;. Since ¢ < ¢, we have T¢; < T in Q, that is ¢, < ;. Also if we

define \y, = Ty, then y, >y, in Q. Since y; < ¢; it follows that Ty; < Td; in €, so

Yy < §,. So we have
Wo <W1 <Y <y <0y <@g
Continuing in this manner we obtain the sequences {¢;}, {y;} satisfying
Wo <) <V < <0y <0 < .

Since the sequences {¢;}, {y;} are monotone and bounded, both converge pointwise. Let

these limits be & (r) and (r) respectively where

o) = Im ¢;(r), Y) = .lim Wi(1).

1—0e0 1—>00

The operator T is a composition of the nonlinear operation ¢ |— f(r, 9, JQ g(d) dV) + 00

with the inversion of the linear, inhomogeneous elliptic boundary value problem ¥ |—

defined by
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(V2—®)\|/=x, re Q
By=q, redQ

For ¢ and f (r, o, JQ g(d) dV) bounded on the range of ¢, the first operation takes bounded

pointwise convergent sequences into pointwise convergent sequences. The operation )
I— y takes L(€2) continuously into the Sobolev space W, ,(Q) for all p, 1 <p < oo (by
the L, estimates of Agmon et al [35]). So since ¢; = T¢;_; and since {¢;} is a bounded
pointwise convergent sequence, it converges also in Wy, p By the embedding lemma [35],

C1+0.

W, p 1s embedded continuously into , and by the classical Schauder estimates for

regular elliptic boundary value problems {4} then also converges in C***. So we have

§(r) = lim () = lim Ty ,(0) =T lim ¢y, (1) = TH(x),

i—e0 i—o0 i—eo
and similarly

'\T/(r) = hm W;i(r) = 'lim Twy,,1(r)=T lim yi_(n) =T fij(r)

j—o0 j—>o0 1—o0

So & and \y are fixed points of the mapping T, and are of class CH™(Q) for 0 < o < 1.
Thus & and V are solutions of (2.1), (2.2). Therefore (2.1), (2.2) has at least one solution

between ¢, and . This completes the proof.

We shall make use throughout this thesis of the function w(r) which satisfies:
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Viw +1=0, re Qc R3,
with either
%—‘;—/+ uw =0, re 09,

(where 9Q is of class C2** for some T e (0,1)),

or

w =0, r e dQ. y

Theorem 2.1.8
Suppose the function w(r) satisfies (2.4) in Q.

Then

(1) w(r)>0, re Q,

(i1) o <0, re Q.

Proof

Directly from the maximum principle .

Theorem 2.1.9

Consider the problems

(a) Viw,+1=0, re ScR3
w,=0, re ds,

and

(b) Viwg+1=0, re DcR?

wy=0, re dD,

where S, D are regions satisfying the interior sphere property of Sperb [32].

(2.4)
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Thenif S € D, i.e. S is wholly enclosed by D,
wg2w,, TreS.

Proof
Assume there exist points in S such that wg > wy. Then, since wy and wg are positive in S

by Theorem 2.1.8, there exists a positive constant k < 1 such that
kwi<wy for re S/, (2.5)
kwi=wy at r=r'eS§, (2.6)

(if there exists more than one such point ', we choose just one of these points in the
following argument). Therefore kw, — wy has a maximum of zero at r = r’. But
V2(kw,wy) = —k + 1 > 0 everywhere in S and in particular at r = ', so by the maximum
principle , kwg —wyg=0forallre S. This is a contradiction of inequality (2.5).

Therefore wy = wg, T € S.

Theorem 2.1.10
Let D c R3 be any convex shape with dD of class C?** for some 1 € 0, 1), and S be a

sphere (of radius a) wholly enclosed by D. If we consider the problems

(a) V2v+1=0, re D,
g‘%+uv =0, re dD,

and
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(b) V2w, +1=0, re S,
-aa%+ nw, =0, re dS,

with pn >0,

then v2=w, re S.

Proof

18>

Figure 2.1 Convex shape with enclosed sphere

Let O be the centre of the sphere, P be a point on dD, Q be on the tangent to dD at P such

that PQ is perpendicular to OQ, Q’ be a point on OQ which is also on dS, and let 6 be the

angle between OQ and OP. It is well-known that the solution to (b) is
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32—1‘2

WS(I‘) = 6

+ —, reS. (2.7)
3w

Now we can easily extend wg's domain to D, as w, satisfies the same equation i.e.

V2w, + 1= 0. Consider the new boundary valug

(aws+ )
Lw || .
on )l
Now at P,
dw, -OP a?-0OP? g
_—_9 We ="~ y
oar 3 : 6 3
and
ow, Jdw,
on _ or cos0
So
dw, _ 0P ..a.  (a-OF
(an +uws)p-— 3 cos +3+p( G )
_-OP OQ  a (a*-OP?
=73 P+3+“( 6 )

but  OQ=a, (forall P since D is a convex shape and OQ =2 OQ’ = a)

and OP 24,

which gives

<0, VPe dD.

9w,
(ont e

We finally consider the function v — w, (again extending w,'s domain to D),
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V2(v -w,) =0, re D,

olv —
—(V—aﬁ—V—v—Qw(v—ws)zo, re oD,

which gives, by the maximum principle , v2wg,re D, and in particular

V2w re S.

s

Corollary 2.1.11

For the region D and function v defined in Theorem 2.1.10, there exists an € > 0 such that

v2eg, foralre 13

Proof

Considering the vector r to be a position vector in 3-space, define the sphere Sy with
centre I ¢ to be
Sg’: {’[ |£—£S| <8}

Now as D is convex, there is a & > O such that Vr e D, there exists a sphere Sg such that

r e Sg Then by (2.7) and Theorem 2.1.10,

The result stated below may well be a standard result from differential equation theory,

but we present a proof here for completeness.
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Theorem 2.1.12

Suppose there exists a function ¢ which is of class C? on a region Q R> and satisfies
V2¢<0, at r=1r"e Q.

Then ¢ cannot have a local minimum atr =r".

Proof

For the purposes of this argument we will write r € Q as the position vector

1 = (Xj, X, X3) in a suitable cartesian coordinate system.

Suppose ¢(r) does have a minimum at r =r’, and V2¢(£') < 0. The Taylor series

expansion of ¢(r) about r = 1" is
’ ~nT , _1_ nT ’ 2
O(r) =0+ @-1)" Vo(r’) +5(z-r)" A(x-1") + olllz-1II),

where A is the Hessian matrix of ¢ given by

_ 20
Aij = axax; (L)

This gives (as V§(r") = 0),
O(r) - o) = %(L—L’)T A(r-1") + o(llz—r %) > 0,
hence A is a semi-positive definite matrix with
trace(A) = V26(r") 2 0.

This contradicts our original statement regarding the sign of V%(;j) and so completes the

proof.
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2.2 Industrial Case Study

2.2.1 Background

In this section we will consider in detail the investigation of a particular industrial fire
caused by spontaneous ignition. By using the experimentally measured physical
parameters of the materials involved, we shall predict a safe storage (or in this case,
cleaning) regime which should prevent similar fires from occurring in the same
environment. The fire in question was caused by the self-heating to ignition of a wood
fibre dust layer on a hot factory press. Since the typical press operating temperature was
approximately 200°C, this fire comes under the first of the two categories of spontaneous
combustion fires outlined in the introduction i.e. where a small body of material is stored
subject to high ambient conditions. Since the hot surface temperature is above 100°C we
will assume that there is no moisture and there are no microbes present in the self-heating
dust layer (the maximum temperature commonly recognised as an upper limit for living
processes is 75 - 79°C (Kempner [36])). Therefore we will assume the self-heating of
the body is due to a single exothermic process i.e. direct chemical oxidation, so that the
analysis of the model can proceed by the single Arrhenius term approach. The problem
can be treated as a self-heating body subject to asymmetric boundary conditions. We will
compare the results obtained using three different approaches, all of which solve for the
steady states (aT/a? = () of the classical problem (l.la, b, c¢), (1.2). Firstly by the
method of Thomas and Bowes [8], which uses the Frank-Kamenetskii approximation to
the Arrhenius term and assumes the dust layer can be approximated by an infinite slab.
Secondly by a method which retains the full Arrhenius kinetics but also assumes the body
1s an infinite slab. For this method we use the new dimensionless formulation of Burnell
et al [12], this approach has also been studied by Shoumann and Donaldson [9] using the
classical Frank-Kamenetskii dimensionless formulation. Finally we shall use a method

which solves the full problem: full Arrhenius kinetics in the three dimensional domain. By
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these comparisons we hope to answer some of the following questions that arise in

practical situations using ignition theory.

(1) how well does the Frank-Kamenetskii approximation behave in practice?

(i1)  when does the infinite slab approximation for a rectangular block fail to be valid in

ignition theory?

(iii)  what are the upper and lower bounds for the steady state temperature profile

beyond criticality for models retaining the full Arrhenius kinetics?

We will comment on the suitability of Newtonian cooling versus perfect heat transfer
boundary conditions for this particular problem. Finally we shall show that the minimal
positive solutions for U, < U, . for both the full Arrhenius term models is stable. We
shall do this by a non-trivial extension of the approach of Keller and Cohen [37]. We must
make this adaptation since, unlike Keller and Cohen's [37] system, our bifurcation
parameter U, occurs in the boundary conditions for the model. This work has been

published, see Sisson, Swift and Wake [10].

At this stage we shall give a more detailed outline of the conditions in the factory under

which the fire occurred.

A New Zealand company which produces medium density fibreboard from pine woodchips
noticed several unexplained fires occurring on the presses in their factory (on average two
per year). Figures 2.2 - 2.4 below show, respectively, the fibreboard processing machine
within the factory, the fibreboard press itself, and the finished product - medium density

fibreboard.
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Figure 2.2 Fibreboard processing machine
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Figure 2.3 Fibreboard press
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Figure 2.4 Medium density fibreboard
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Figure 2.5 below gives a schematic representation of the press operation in the factory.

CONVEYCR BELT
—~at
3 mejres
¢ - 10 metres
e S
\ \i -
fibreboard press woodfibre

Figure 2.5 Schematic diagram of fibreboard press

The press itself was heated by thermal oil usually at a temperature of 200°C (subject to
fluctuations). During its normal operation deposits of mixed fibre and oil built up as dust
layers on various parts of the press. The company required the possible cause of the fires
due to spontaneous ignition of these dust layers to be investigated, given that the normal
‘ignition temperature' of the fibre/oil substance was well in excess of 200°C. The results
would be used to implement efficient cleaning procedures (the press operated 24 hours per
day, being shut down only for cleaning). On a visit to the factory made by one of the team
of investigators, it was observed that the fibre/oil mixture was escaping from the conveyor
belt and building up on shelves inside the press casing. The largest of these dust layers is

shown in Figure 2.6 below.
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igure 2.6 Largest dust layer
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This dust layer was observed to be a rectangular block of fixed base 50cm x 100cm. The
height of the dust layer (a;) was measured to be a maximum of 20cm on the day of the

visit. The block is shown schematically in Figure 2.7 below.

100cm

50cm

Figure 2.7 Schematic diagram of largest dust layer

The problem then, is to estimate the maximum height of the rectangular block (as a
function of the press temperature), such that the dust layer is not likely to self-heat to

ignition.

2.2.2 Boundary conditions

The block shown in Figure 2.7 does not satisfy the 'interior sphere' property (see Sperb
[32]). So in order to use maximum principle (part (ii)) we consider a similar block
with 'rounded corners’. This will have negligible effect on the nature of the bifurcation

diagrams and the results that follow (see e.g. Fradkin and Wake [38]).
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In this section we will consider the suitable boundary conditions for the press/dust layer

interface. The boundary conditions for the dust layer/air interface will be discussed further

in a later section in this Chapter. If, provisionally, Newtonian cooling boundary conditions

are taken at each interface, then the boundary conditions become

where

also

ks

oT
ky n +hy (T—Tp) =0, at the press/dust layer interface,

JT o
k, ot hy (T-T,) = 0, at the dust layer/air interface,

thermal conductivity of the fibre/oil dust layer,
heat transfer coefficient for the press/dust layer interface,
heat transfer coefficient for the dust layer/air interface,

absolute temperature of the press,

(2.8)

(2.9)

absolute ambient temperature in the factory (taken as a fixed 300K),

thermal conductivity of the press,

thermal conductivity of air.

In their paper Thomas and Bowes [8] assumed perfect heat transfer between the hot

surface and the slab body, that is hy — . This gives the boundary condition

press/dust layer interface as

at the

(2.10)
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Actual values of k; and k, are unavailable, but typical values (Jones [39]) would be

k, = 47Wm™ K7,
k, = 0.103Wm™ K™,
also

ky = 0.026 Wm™ K™,

Given that k; >> k,, and h, is dependent on the ratio of these, Thomas and Bowes'
assumption seems to be valid for this model. Thus we will also use (2.10) as the
boundary condition at the press/dust layer interface. The difference between k, and k;
however, and so the appropriate boundary condition at the dust layer/air interface, is less

well defined.

2.2.3 Outline of Thomas and Bowes' method

The application of the paper of Thomas and Bowes [8] assumes that two important
simplifications can be made to the model: (a) the rectangular block can be approximated
by an infinite slab; (b) it is valid to make the Frank-Kamenetskii approximation based on

the press temperature T,,, i.e.

“E —E E(T-T,)
exp (RT) = exp(RTp) exp( Rsz )

Under these assumptions the equation for the steady states of (1.la), (1.2) with the

boundary conditions (2.9), (2.10) becomes

d%e
a—}—(§+66xp6=0, 0<X<2,

0=0, atX =0, > (2.11)

de
=t 1wo-0,) =0, at X =2,
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where (using the Frank-Kamenetskii like dimensionless formulation)

E ~,
e = Rsz (T—TP) ? ea = RTp2 (Ta_Tp)’
ap
3) , >
b= X= (2.12)
<h
5)
QZpE[2:
T
exp
kRTp2 RT, py

The analysis of (2.11) proceeds in a similar manner to that of the corresponding model
with symmetric boundary conditions outlined between equations (1.5a) - (1.6b) of Chapter
1. The J, lBlly space bifurcation diagram can also be summarised as in Figure 1.2. In their
paper Thomas and Bowes tabulate d; against 0,, from which the critical value of the

height a;, can be estimated, for a particular T, via (2.12). These results (once we have

p’
chosen the appropriate boundary condition at the dust layer/air interface), and the effect of
the above simplifications on the predictions for the critical dust layer heights, will be

shown later.

2.2.4 Outline of full Arrhenius, infinite slab model

To assess the validity of the Frank-Kamenetskii approximation we shall also solve the
problem by retaining the full Arrhenius kinetics and also approximating the block by an
infinite slab. Using the dimensionless formulation of Burnell et al [12] the steady state

problem becomes
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d%u -1
dX2+nexp(u)=O, 0<X<1, W
u=U,, at X =0, s (2.13)
d
o+ Bii-Up =0, at X=1
where
RT RT, RT, )
u=g, Up= E > Uu:E ,
s (2.14)
PQAR (a)* X . _hyay
n= kE ’ X_r':lh’ Bl_ k2 P

Here m is a constant (for a given a;) and the bifurcation (distinguished) parameter is taken
as Up, the dimensionless temperature of the press. No exact solution is known for (2.13)
so it must be solved by numerical means. The numerical algorithm used is similar to that
outlined for the three dimensional model in Section 2.2.8 later in this Chapter. A
schematic example of a typical bifurcation diagram in Up,B space (where B is the
temperature of a typical point in the domain) for a model which retains the full Arrhenius

kinetics is given below in Figure 2.8.
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B = temp. of typical

point in domain %

— —

Up, crit

Figure 2.8 Schematic diagram of a typical U, 8 bifurcation diagram for the full

Arrhenius, infinite slab model

For U, > U, there exists a high temperature steady state profile. This bifurcation
diagram can be compared with that of Thomas and Bowes [8] (Figure 1.2) which predicts
no steady state solutions beyond criticality. This larger steady state is 'lost' due to the
Frank-Kamenetskii approximation to the Arrhenius term. Later in this chapter we shall
verify that this steady state is so large that ignition will have occurred 'long' before it is

ever reached in a time sense.
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2.2.5 Measurement of physical constants related to the model
Experimental analysis was performed on samples of the fibre/oil material (Smedley [40])

using methods similar to those outlined in the introduction. This analysis yielded

PQAR

_ 14 -2
kg = 423x107 m™,

e

16220 K.

The actual value of the dust layer/air heat transfer coefficient was unavailable, but, given
that a typical value of a wall/air heat transfer coefficient in still air is 8.3 Wm™ K™ (Jones

(39]) we will take

2 -1
K, 80m™".

2.2.6 The boundary condition at the dust layer/air interface
In section 2.2.2 above we justified the boundary condition T = T, at the press/dust layer
interface. Here we will test the hypothesis that h, — oo is also a valid assumption for the

model, i.e. that the boundary condition at the dust layer/air interface can be taken as

(2.15)

We will use the method in section 2.2.4 (infinite slab, full Arrhenius model) with

(a) h2—>°°,

i.e. T =T, atthe dust layer/air interface,
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and
(b) ==80m7,

) dT .

i.e. =t 80(T-T,) =0 at the dust layer/air interface,
and compare the results.

Figure 2.9 below shows the comparison of the graphs of a, vs critical temperature of the

press for (a) and (b).
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Height of Fibre/Oil Layer (cm)

Figure 2.9 Comparison of critical press temperatures for given dust layer heights for

h2 — oo and h2/k2 = 80m—1.
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The comparison suggests that for the practical range of a;, (= 2cm) and Tp (<573K) the
critical press temperatures corresponding to the two boundary conditions are
indistinguishable. The tabulated results in Thomas and Bowes paper also indicate that
hy — o is a good approximation for this model. Consequently our final steady state model
on which the analysis of all three methods will be based is the steady states of (1.1a),

(1.2) with the boundary conditions (2.10), (2.15).

2.2.7 Existence of solutions to the full Arrhenius model

In this section we will verify the existence of at least one solution for all U, >0 (in
particular U, > U,, ;) for the models which retain the full Arrhenius kinetics (i.e. both the
infinite slab and the full three dimensional domains). We will also show, using the
maximum principle, that any solution of the model must occur between the constructed

bounds.

Theorem 2.2.1

Consider the problem

VZu+1 exp(%)z 0, in Q,
u(dQ) = U,, > (2.16)
u@Q") =U,, 0Q U dQ” =0Q,

with U, >U, >0, n > 0. y

There exists a solution u to this problem for all U, > U, > 0, satisfying
UpysusU +1mw,

where w satisfies (2.4) with w(9Q2) = 0.
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Proof
Let y(r)=U, reQ,
then
Viy 12 1 o
+M exp(w)— 1 exp(Ua) in Q,
>0,
and
Y = U, <min(U, U,) on Q.
So y(r) =U, is alower solution of (2.16).
Also let
o(r) = Up +nw(), re Q,
then
V2¢ +M exp(:“j =-1 (1 - exp(iJ} in Q,
<0,
and
o) =U, 2 max(U,, U,) ondQ.
So o(r) = Up +Mw(r), re Q, isanupper solution of (2.16).

Also since Up >U,, ¢() > y(r) in Q. So by Theorem 2.1.7, there exists a solution u of

(2.16) with

U,susU,+nw.
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Corollary 2.2.2
Setting ¢ = U, +Mw —u and Wy =u- U, and applying the maximum principle , it can

easily be shown that ¢ > 0 and y 2 0 in Q. Therefore any solution u of (2.16) must satisfy
U, <usU,+nw, inQ.
2.2.8 Three dimensional model and outline of the numerical algorithm

Again using the dimensionless formulation of Burnell et al [12], the three dimensional

version of the steady state problem becomes

Pu, P P (D=0, 0 |
ax2 oy tazz p( u )" ’ ’
with
4 (2.17)
U =U,, on the dustlayer/air interface,
U=U,, onthedust layer/press interface. -
The dimensionless variables are defined as in (2.14) with the additions
y=2, z=-%, 2.18)

Using three term difference approximations to the second derivatives in the three
coordinate directions, and a suitable three dimensional finite difference mesh to represent

the domain, (2.17) reduces to a system of non-linear equations of the form

F(a,B)=0, (2.19)
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where a is the vector of unknown temperatures at the internal mesh points (excluding B),
and B (which will take the role of a path following parameter) is the temperature at an
arbitrarily chosen mesh point in the domain. This system is solved (for a particular a;) by
defining B to be some given B, and then solving the resulting well-posed system for the
unknown temperature vector a = a(Bg) by a Newton-Raphson method (which involves the
calculation of the Jacobian matrix for F). We can then solve (2.19) for a(Bo+Ap) by a
combined Euler predictor and Newton corrector scheme. This approach is similar to that
used by Abbot [41]. In particular U, is thus calculated for a range of values of 3. As 3
can be thoughtof as a characterisation value for the domain temperature profile, a plot in
Up(B), B space will represent a steady state bifurcation diagram for the system for a
particular ;. The graph is plotted in this manner since physically U, is the control variable
and P the response. The critical value of Up, i.e. Uy oy can then be observed from the
graph in the usual way. It is expected on physical grounds that the value of U, ., should
be independent of the point at which we choose to define B, but we have been unable to

find a rigorous proof of this.

2.2.9 Existence and bounds for higher steady state

In this section we will prove the existence of, and derive bounds for, the higher steady
state solution the temperature will approach (in a time sense) beyond criticality. We will
do this for the two models which retain the full Arrhenius term. Our aim is to show that
this 'passage of U, through criticality' is sufficient to induce thermal ignition in the body.
We achieve this by showing that the steady state temperature a typical point in the body

will approach is very high indeed (> 1010°0).

It is obvious that in most physical situations ignition will occur long before this higher
steady state is attained; thus in terms of physically observed behaviour predicted beyond

criticality, there is no difference between these models and the Thomas and Bowes model
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(which predicts no higher steady state beyond criticality), in realistic situations.
However, although this steady state is not physically realizable, it is an important factor
for the set of different initial conditions, which arise in, for example, the question of hot

assembly (see Gray and Wake [42]).

2.2.9.1 Existence
It can be shown, using methods similar to those used by Wake et al [13] for the

symmetrical heating case, that for 1| 'sufficiently large' (2.16) has
(i) an upper solution ¢ = Up +Nw,
(i) a lower solution v =U, + exp(Aw £nn)-1,

with ¢ 2y in Q,

1

where w is the solution of (2.4) with w(dQ) =0, and A =577 .
2llwilg

In this context, 1 'sufficiently large' corresponds to 1 satisfying the following inequalities

- 1
(i) inm > Ak,

(i1) exp(Af; ¢nm) > 2,

” (2.20)
Gi) > Ae e, |

Ja-1

lwlly /

(iv) n>
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where ki, £, are constants satisfying

w2k, >0 inQ,

w28 >0 inQ,,

with QL uUQ, =Q

We will not give the details of this result at this stage, as this approach will be used again

later in this thesis, and these inequalities will then be derived fully, (in Chapter 5).

By Theorem 2.1.7 there then exists, for 1 satisfying the inequalities (2.20), a solution u of

(2.16) with

U, +exp(Aw &mm) — 1 SusU, +nw, in Q. (2.21)

This solution corresponds to the very high steady state. To obtain bounds for this steady
state, or at least for a typical point in the profile, we must solve (2.4) (with w(dQ) = 0) in

the particular domain.

2.2.9.2 Bounds on the higher steady state for the full Arrhenius, infinite slab model
To derive bounds for the higher steady state for an infinite slab of height a, we must solve
the one dimensional linear ordinary differential equation

d?w

a‘}z@‘z——], 0<X<«l,

w=0, atX=0,

w=0, atX=1.
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This has the simple analytic solution
w(X) = X(1-X)/2.
Now, since
1M = 4.23 x 10'(a;)? m™2
for a; in the range of interest, i.e. a;, = Scm, we can assume
N2 1.05 x 10'2,
For w given in (2.22), that is with
llwllg =0.125, A =4,
we can choose ka, §—232 such that
IVwi? > k, = 0.23, in Q

w >4, =001, in Q.

(2.22)

(2.23)

(2.24)

(2.25)

Substituting these values into the inequalities (2.20) we see that all are satisfied since

(1) 27.67 > 1.09,

(i)  3.02> 2,




64

(iii)  1.02 x 10° > 301,

(iv)  1.05x 10'?2> 8.2 x 10°.

So, indeed, for the range of a;, of interest, and for w given in (2.22), n is sufficiently large
so that ¢ and W given in section 2.2.9.1 are upper and lower solutions respectively for the
infinite slab, full Arrhenius model. Now let us define B* (in degrees Celsius) to be the
temperature which the (dimensionless) temperature [ of the typical point in the domain

approaches for Up > Up, crite

Then, for example, for an infinite slab of height Scm, and a typical point chosen at the

‘centre’ of the slab (i.e. X = 0.5), this approach gives the following bounds on pB*

1.65 x 1019 °C < B* <2.12 x 10'% °C.

2.2.9.3 Bounds on higher steady state for full Arrhenius, three dimensional domain

model.

Obtaining bounds via (2.20) involves solving the equation

Viw=-1, inQ,

w(@Q) = 0,

where Q is a 'brick' of base 50cm x 100cm and height a,. Given that we must simply show
that the lower bound is sufficiently large to induce ignition, an acceptable method of

obtaining bounds for this problem can be found by using the solutions for w in the inscribed
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and escribed spheres for the domain Q. This has the effect of modifying the bounds in

(2.21).

The inscribed and escribed spheres for the brick are defined respectively by the regions Q,

and €,. These regions are illustrated in Figure 2.10 below.

Q1 !

Q-

Figure 2.10 Inscribed and escribed spheres for the brick

We shall make use of the functions wy, w, which are, respectively, the unique solutions to

the problems

Viw, +1=0, in Q,
(2.26)
\;V1 = O, on BQI,
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and

(2.27)

and also of the following Theorem.

Theorem 2.2.3
If w, with w(dQ) = 0, wy and w, are respectively the solutions of (2.4), (2.26) and (2.27)

then

wir) 2 w(r) 2 wy), r1e Q.

Proof

Simple application of Theorem 2.1.9.

By Theorem 2.2.1 and Corollary 2.2.2 the solution u of (2.15), and in particular the portion

of the u profile inside £,, exists and satisfies

V2 + n exp(-Ll—) =0, re
with

U, Sum) U, +w(r), 1€ 6Q,
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Now consider the solution of

2 -
Ve +n exp(u

)=O, re Qz,

u(r) =q;(r), re 9Q, S (2.28)

where q;(r) 1s an unspecified
function satisfying

U, qim) sU,+w(), re 0Q,. -
We will show that
¢=Up+nw1, re £,
is an upper solution of (2.28).

Now

V20 +1 exp(ﬁ‘) =1 [—1 + exp(’_é'ﬂ,

SO, re QQ,

and
0@ =Up +mwi(m 2 U, + w() 2 qi1), re dQ.

so indeed ¢ is an upper solution.
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Also

y =U, +exp(Aywy fnn) — 1, r1e £,

is a lower solution of (2.28) for the part of u inside ,, where A, =

sufficiently large so that it satisfies the following inequalities

. 1 N
(1) gnn > Azk,3 })
(i) exp(Aq,ds fnmn) > 2,
>
(ii1) '\/_T;> Aje ¢nm,
N Yn-1
(iv) N> Tiw,lly /

and where ks, £3 are constants satisfying

2 M
V\N >
l Zl = k3 > 0, m Qk?,’

w2£>0, inQ,,

with Qk3 () 52[3 = Qz.

2||W2||0

and m is

(2.29)

Again, the details for the verification of this lower solution will be given later in the thesis.

It should be noted that ys satisfies the correct boundary inequality to be a lower solution

since, on 0€),

Yy =U, <q(r) re Q.
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1
In the inscribed sphere of radius 5, (2.27) reduces to

d*w, 2 dw, 1
92 tT & +1=0, O<r<y,

which has the analytic solution

1
wy =57 (1-41%). (2.30)

1 5
In the escribed sphere, which has radius '\/Z (1 + m) , (2.26) reduces to
I

=h

d’w, 2 dwy

1 8
02 + T Tar +1=0, ’ O <r< 4(1+ )

/
(o P

which has the analytic solution

1
w1=§Z(1+—-§—4r2), (2.31)

where a;, is the dimensionless length of a;.
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1
Now (2.30) gives llw,lly = 54> Ay = 12 and we can choose 23 =0.01, k3 = 0.0211, hence 1

satisfies all the inequalities (2.29). Choosing the typical point B to be the centre of the
escribed sphere, we obtain the following bounds for §* (i.e. the temperature of the typical

point in degrees celcius) for the three dimensional brick with dust layer height Scm.

1.65 x 101%°C < B* < 3.55 x 1017 °C.

These results can be used to derive bounds for the higher steady state for any point within

€2,, and they indicate that the higher steady state solution is indeed sufficiently large in

magnitude to induce ignition in the body.

2.2.10 Example steady state bifurcation diagrams

In the example steady state bifurcation diagrams given below, the bold sections have been
computer generated and the broken sections correspond to the higher steady state the
system will approach for U, > U, . (derived by appealing to the bounds in section 2.2.9).
Figure 2.11 corresponds to the steady state bifurcation diagram obtained for the full
Arrhenius, infinite slab model for a Scm high dust layer with typical point B chosen at the

‘centre’ of the infinite slab. Figure 2.12 corresponds to the bifurcation diagram obtained for

the full Arrhenius, three dimensional for the dust layer of height Scm, with B chosen at the

centre of the inscribed sphere.
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Figure 2.11 Steady state bifurcation diagram for full Arrhenius, infinite slab model
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Figure 2.12 Steady state bifurcation diagram for full Arrhenius, three dimensional

domain model (a;, = Scm)
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2.2.11 Stability
In this section we shall show that the minimal solution of (2.16) is stable for U, < U, .

We shall do this by using a similar method to that outlined in Keller and Cohen |37].

Keller and Cohen considered equations of the form

Lu=Af(r,u), re Q, (2.32)

where L is an elliptic, self-adjoint, second order operator and A is the bifurcation
parameter. The difference between this work and our model is that in our problem the
bifurcation parameter U, occurs in the boundary conditions, not in the equation itself. Thus
our system cannot be transformed into a bifurcation problem of the form (2.32). We will
follow a similar route to that of Keller and Cohen and only explain in detail the differences

between the two sets of results.

We are considering solutions u,(r, t, Up) of the parabolic problem

— P h
V2u, +M exp(—l)= ﬂ, re Q, t>0,
U t
) s (2.33)
uy=U,, red, >0, :
up=U, r1e€dQ’, >0, dQUIN"=0Q, -

with uy(r, 0, U = upn), re Q

and the solution u(r, Uy,) of the corresponding steady state problem (2.16). We shall
transform these systems so we are dealing with a modified problem with homogeneous

boundary conditions.
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Let

vi(, ¢, Up) =T, t, Up) — h(r, Up), (2.34)

v(r, Up) = u(r, Up) - h(z, Up), (2.35)

where h(r, Up) is the solution of the linear problem with inhomogeneous boundary

conditions
V?h =0, re Q, b
h=U,, re 0,
e (2.36)
h=U,, re 0Q”, Q" U Q" =0Q,
with U,>U,>0. 7
The systems (2.16), (2.33) transform respectively to
v? —L =0 Q
v+nexp(v+h)— , re Q,
(2.37)
v=0, re 0Q,
and
-1 ov y
V2V1+neXp(v]+h)=_t’ re Q, t>0,
v;=0, redQ ; (2.38)
with vi(r, 0, Up) =ug(r) - h(r,Up), re€ Q. -

We will now focus our attention on these related problems.
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Lemma 2.2.4  Positivity Lemma

Let py(r, Up) be positive and continuous on £ and let ¢(r) be twice differentiable on  and

satisfy

V% +py(r, U)o <0, re Q,
=0, redQ.

Then ¢(r) > 0 on Q if and only if 1 < p,, where i, is the principle (lowest) eigenvalue of

the problem
Vi + up,(r, Uy =0, re Q,
v=0, redQ.
Proof

Similar to that of the Positivity Lemma (with A = 1) of Keller and Cohen [37], page 1363.

We shall now state some of the properties of the function

-1
f(r,v,h, Upy) = exp(v n h)‘

By applying the maximum principle to the problems (2.36), (2.37) we see that

respectively h > 0, v> 0, r e Q. This gives

f(r, v, h, Up) >0, re Q. (2.39)

we also have

s—; (r, ¢, h, Up) >0, andis continuous for $ >0, re €, (2.40)
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of
@ v, ¥y, Uy >0, andis continuous fory >0, re Q. (2.41)

AN
(j\{l

We can also derive a further result concerning the monotonicity of f with respect to Up,.

Consider the functions ¢, \y which are solutions respectively of

V2¢ = 0, re Q,
o = U, re JQ’,

o = Uy, re Q"
and
VZy =0, re Q,
v = U, re 0Q,
v = Up, re dQ”,
with Upp>U, 20, 0Q7UdQ" =0Q.

Then the function ¢ — \ satisfies

Vio-y)=0, re Q,
O-y) =20, re IQ.

So by the maximum principle , d—w>0inQ,ie. ¢ >y in Q. This result combined

with (2.41) gives

£z, v, h(Uyp), Upp) > £, v, h(Uyp), Uy, 1€ @ if Uy > Uy 20, (2.42)

We will now give some further preliminary results which are needed before the main result

on stability can be derived.
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Theorem 2.2.5
Let F(r, ¢, h, Up) satisfy

F(r, ¢, h, Up) > f(r, W, h, Up), on Q,if p >y >0,
and suppose for some U, > 0 a positive solution ¢(r, U,,) exists for the problem
V% +nF(r,¢,h,U)=0, reQ,

6=0, re JQ.
Then the minimal positive solution V(r, Up) of (2.37) satisfies
v(r, Up) < 4(r, Up)

Proof
Similar to proof of Theorem 3.3, Keller and Cohen [37] p1367.

Corollary 2.2.6

The minimal solution V(r, Up) of (2.37) is an increasing function of Uy, on 0 < Up < Up, crit

Proof

For any fixed value of Uy, in the interval 0 < U, <Uj < U, o, define
F(r, v, h, Uy,) = f(r, v, h, U]',).

Then for this value of Uy, the hypothesis of Theorem 2.2.5 is satisfied, say with

o, Up) = v(r, Up).
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So by Theorem 2.2.5,

v(r, Up) < V(, Ug).

Also
VAV, Up) = V(r, Up) == (i, v, h, Up) - £, v, h, Up)

<0, re Q, by (242),
and

v(r, U}’,) -v(r, U,)=0, re dQ.

So by the maximum principle , v(r, UI',) > V(r, Uy) in Q. This completes the proof.

It is well-known (see e.g. Diekmann and Temme [43] p48) that the occurrence of
criticality (i.e. U, = U, <) corresponds to the existence of a non-trivial solution of the
linearized version of the system (2.37). In fact this result is just the contra-positive of the
implicit function theorem. With this in mind, a mathematical definition of U, ; is thatit s

the smallest value of U, such that the system

_1 ~
2 Py +h 0 o
v+n 7 Y=Y, TE3
(V +h) (2.43)
y=0, redQ,

has a non-trivial solution, where V is the minimal solution of (2.37). Thatis U, .y is the

smallest value of U such that j1;(Up) = 1, where [1;(Up) is the principle eigenvalue of
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exp

V+h
VA +un (

v+h)2

yv=0, r1teQ,
s (2.44)

y=0 redQ. ~

Theorem 2.2.7

Let U, lie in the open interval 0 < U, < U, ¢ Then each Uy, in this interval must satisfy

1 <p1(Up) where [Ly(Up) is the principle eigenvalue of (2.44).

Proof

As mentioned by Keller and Cohen [37] in the proof of Theorem 4.1 p1370, the function

v
m(ra Up) = aU (r3 Up)a
p

exists and is continuous in U, on 0 < U, < U, « (see note below). The function m then

satisfies

of of oh
V2m +T]é;(r, v, h,Up)mz—-n -a—ﬁ(r, Vv, h, Up) _a—L_J;’ re Q,
(2.45)

m=0, re Q.

of of
Now (2.40), (2.41) give 5N > 0, 5 0 respectively, and the function

h
n(r, Up) = 3%_@, Up) satisfies
P

V2 =0, re Q
n(@Q’) =0,
n(@Q") =1, Q" U IN”=09Q,
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so a simple application of the maximum principle shows that n > 0 in Q. We will now
show that m is positive (strictly) in . We have by Corollary 2.2.6 that Vv is an increasing
function of U i.e. m 2 0 in Q. If we assume there is a pointr’ € Q such thatm =0 atr’

then m has a local minimum of zero at r’. But then (2.45) gives

of oh
V2m=—n“"(r', v,hU)s+, atr=r,
oh P aU,

<0,

and by Theorem 2.1.12 this means that m cannot have a local minimum at r = r’. Thus
m >0 in Q. We can now apply Lemma 2.2.4 to equation (2.45) with m > 0 to show

1< P«](Up) for 0 < Up < Up, crit*

Note

There is a small error in Keller and Cohen's [37] Theorem 4.1 (which is the parallel of the
result we have just proved here). The result stated by Keller and Cohen implies that
1 <y (Up) for all Uy > 0. This is clearly untrue, since 1= 1;(U}, ;) and a fold bifurcation

must occur at an eigenvalue of the linearized problem. Also in their proof they imply that
v
U,
Thus the results in fact hold for 0 < U, < U, . only, as we have stated here.

v
is continuous for all U, > 0, when in fact there is a discontinuity in 30 at U, = Uy, erie
P

By the standard approach of writing a solution of (2.38) in the form
vi(r, £, Up) = v(x, Up) + e y(r) exp(-ar) + O(e?), (2.46)

where v is a solution of (2.37), we see to first order that €, o and \y must satisfy
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Vz\l/+[(x+n-aa%(r,v,h,Up)}\y=O, re Q 1
(2.47)

y=0, redQ.

~

So by (2.46) a solution is stable under a small perturbation if the principle eigenvalue, o,

of (2.47) is positive and unstable if a; is negative.
These results can be combined to give the following result concerning stability.

Theorem 2.2.8

For 0 < U, < U, ., the minimal positive solution v(r, U,) of the problem (2.37) is stable.

Proof
This is similar to that given in Keller and Cohen [37], but we will give the details here for

completeness. Let V(U_, r) be the minimal positive solution of (2.37), and let ocl(Up) be

p?

the principle eigenvalue of (2.47), then the variational characterization of o, (U,,) gives

*J'Q q)vzq)de-n J’Q ¢2§€dv
oy (U,) = min , (2.48)

)€ Q [ 2av

where Q is the set of admissible functions, i.e.
Q E{ o) : 6()>0 on Q, o) e CQNCHR), ¢r)=0 on BQ}.

We can also write, by the variational characterization of the principle eigenvalue of the

problem (2.44),
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- oV dv
(U, = min & af ,
() e Q J q)z

which gives for any ¢(r) € Q and any U, in 0 <U, < U,

f
~ [ eV dveWpyn [ o5 J

So 0(U,,) satisfies

a](Up) 2 n]in (“‘](Up)
(e Q
fQ 0 av

Now by Theorem 2.2.7, ul(Up) -1>0.

. of . .. . )
Also ¢(r) > 0 in Q, N> 0in Q, so ocl(Up) > 0 and the minimal solution Vv (1, Up) is

stable for 0 < U, <U, ey
We are now finally in a position to give a stability result for the minimal solution u(r, U,)

of (2.16) as a corollary to Theorem 2.2.8.

Corollary 2.2.9

The minimal solution u(r, Up) of (2.16) is stable for 0 < U, < U, ...

Proof

Trivially, since there is a one-to-one correspondence between the problem for v given by

(2.37) and the problem for u given by (2.16) i.e. u = h + v where h is independent of time.
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2.2.12 Comparison of critical press temperatures
A comparison of the critical press temperatures (in degrees Celsius) as a function of the

dust layer height for the three methods is given in Figure 2.13 below.

280~
~ 270~
8 260+
v
) 250+
E 240~
k= B30- N A LEGEND
g 2e0- LN - ~u -
3] o Full 3-d domain,
= 210+ \\ full Arthenius temm
\1\
.g 200+ \\- o Inlinite slab approx,
'8 < S full Arrlienius tenn
\\.
180 4 B%\\ u Inlinitle slab approx,
) —~f Frank-Kamenetskii
180 x ¥ ¥ . ; . approx.
0 10 20 30 40 50 GO 70

Height of Fibre/Oll Laycr (cm)

Figure 2.13 Graph of the height of the fibre/oil dust layer against the critical

temperature of the press for the three models discussed in this Chapter.

2.2.12.1 Advice to the company

On the basis of the model which best approximates the physical situation, i.e. the Full
Arrhenius term with full three dimensional domain model, spontaneous ignition of the
fibre/oil layer will be likely when both the dust layer exceeds 20cm in height and the press
temperature rises above 220°C. The company, therefore, should be advised to adjust their

cleaning procedures accordingly and also to monitor the press temperatures.
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2.2.12.2 Infinite slab approximation to the domain

As would be expected, for a;, < 10cm the domain approximates well to an infinite slab.
However, for a;, > 10cm (the practical range of interest) the approximation becomes
increasingly poor, with up to a 15% difference in the critical press temperatures for the

range of a; considered.

2.2.12.3 On the Frank-Kamenetskii approximation

For the range of dust layers and press temperatures considered, the Frank-Kamenetskii
approximation seems to perform well in the infinite slab domain. However, it should be
observed that even though we have retained the full Arrhenius term, the results for the
infinite slab model are not independent of the Frank-Kamenetskii approximation. This is
because the method outlined in Chapter 1 was used to derive the activation energy of the
reaction and the physical constants for the model, and this uses the Frank-Kamenetskii
approximation. So we are really comparing how the two equations in the infinite slab
domain behave with the same physical constants. The true validity of the Frank-
Kamenetskii approximation can therefore only be determined when an experimental
method for the derivation of the relevant physical constants is developed that does not

itself use the approximation.

2.2.12.2 Comment on plots as a;, — o

On physical grounds, it is expected that the graph corresponding to the full three
dimensional domain model should have a horizontal asymptote as a;, — oo, i.e. the critical
temperature for the corresponding semi-infinite rod. For the models that use the infinite
slab domain approximation, the whole upper half plane is filled as a;, — oo, thus it is

expected that T,

p, crit = 0 as a, — oo for these models.
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2.2.12.3 Multiplicity of steady states

The occurrence of a series of 'intermediate’ steady state solutions (Figure 2.11) is only
observed for the full three dimensional domain model. For the symmetrical heating case
gross multiplicity of steady state solutions was first observed by Steggerda [44] in the
unit sphere, and does not occur in the infinite slab. These observations suggest gross
multiplicity of steady state solutions is a property of three dimensional regions in contrast
with the situation for 'one dimensional' domains. This conjecture requires further

investigation but is not of special relevance to the practical concerns of this Chapter.
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CHAPTER 3

Thermodynamic derivation of a model for the self-heating of damp

cellulosic materials

3.1 Heat producing reactions

Since this work was motivated by the study of bagasse, a material that goes through a
refining process before storage, we shall ignore heat produced by the metabolism of living
cells from freshly harvested materials. The chemical reactions outlined schematically

below are likely to hold for most self-heating damp cellulosic bodies.

(i) CELLULOSE + OXYGEN — PRODUCTS + HEAT,
an exothermic oxidation reaction.

(ii) CELLULOSE + WATER + OXYGEN — PRODUCTS + HEAT,
an exothermic hydrolysis reaction.

(iii) MICROBES + SUGARS + WATER + OXYGEN — PRODUCTS + HEAT,
metabolism of bacteria and fungi, an exothermic process, (‘'sugars’ would include
glucose).

(iv) WATER VAPOUR — LIQUID WATER,

an exothermic condensation process.

(v) LIQUID WATER — WATER VAPOUR,

an endothermic evaporation process.

On the basis of the experimental work done on bagasse by Dixon |23] outlined in Chapter

1, we shall neglect the heat produced by (iii), i.e. by the action of microbes, in this thesis.
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Assumptions

In the derivation of the mathematical model we shall make the following assumptions

(1)

(i1)

(111)

(iv)

(v)

(vi)

(vii)

That reactant consumption, or the formation of reaction products, does not effect the
rates of any of the reactions in the system. This is a parallel assumption to that
made by the classical model for the self-heating of a body by a single exothermic

reaction.

That there is no forced convection through the system. This is a reasonable

assumption provided there is no applied pressure gradient.

That the thermal conductivity coefficient and the coefficient of diffusivity of water

vapour through the system are constant.
That the dry air/water vapour mixture behaves as an ideal gas.

That heat can travel through the system by conduction and also by the diffusion of

water vapour. Liquid water remains static in the system until vaporized.

Heat is lost at the boundary by Newtonian cooling. No moisture is transferred
across the boundary - this assumption is based on Dixon's [23] comments on
bagasse, and is likely to be valid for other cellulosic substances, especially those

stored under a cover.

As a result of assumptions (i) and (vi), total moisture content in the system is

conserved.

(viii) Dry air concentration is constant in the body.
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In our formulation of the equations we shall also include the effects of natural convection in
the system for the sake of completeness. In our analysis of the resulting formulation
however, we shall, for the same reasons outlined by Henry [25] in Chapter 1, ignore these

convection effects.

3.3  Derivation of the equations
3.3.1 Conservation law
In the derivation of this model we will use the conservation equations for energy and
mass. We will first derive the basic conservation equation we will be applying (see for
A A
example Aris [45] p50). Consider a quantity inside a closed region Q with boundary 9Q.
A
t

. . A NCA AN N LA A A A
Let the quantity have concentration A(r, t), Te Q,t >0, and flux j(r,t), Te Q,t >0,

where j is a vector such that the amount of the quantity per unit area per unit time that
crosses an element with normal n is j . n.
A ANCA AA . oo A
Also let g(r, t), T € Q, t > 0 represent the rate of generation of the quantity in Q. We
. . . . A . .
will assume that A, j and g are continuous functions of r. If we now consider a region D

A
where D ¢ Q, with boundary dD, and outward normal on the boundary n, then the rate of

change of the amount of the quantity in D is

0 A
7 [ adv,
the rate at which the quantity crosses dD is
. A
[ j.ndS,
an ~

~

and the rate of generation of the quantity within D is

JD gd/\\/‘
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Now by Green's theorem we can write

[ indS=] v jdV,

~

so we can balance the three terms to give the conservation equation for the quantity as

dA , A
_[D [a,t\+V.i-—g)dV—O.

N
Since this equation must hold for any region D < Q, we have

§—f+v.j=g, in &, (3.1)
t o~

as the basic conservation equation for any quantity in the region.

3.3.2 Enthalpy per unit volume of the body
Assuming the body consists of cellulosic solid, liquid water, water vapour, and dry air,
then the following expressions are obtained for the enthalpy per unit volume of each of the

constituent components of the body

enthalpy of cellulosic solid = H,,
enthalpy of liquid water = XH,,
enthalpy of water vapour = YH,,
enthalpy of dry air = p,H,
where
SA = enthalpy of the cellulosic solid per unit volute,

w partial molar enthalpy of liquid water,




89

= partial molar enthalpy of water vapour = H, + L,,

H, =

L, = latent molar heat of vaporization of liquid water,
H, = partial molar enthalpy of dry air,

X = liquid water concentration per unit volume,

Y = water vapour concentration per unit volume,

Pa = dry air concentration per unit volume.

This gives the enthalpy per unit volume of the body as
E, = XH,, + YH, + p,H, + H,. (3.2)

. . . A
Differentiation of (3.2) with respect to t gives

JE, 9X oH, 2Y oH, JH, OoH;
—& =—xH, +X +xH, +Y P, At :
it o Tt ot TP TR

We will assume H,,, H,, H,, H, are functions of T only. In fact if we are dealing with an
ideal gas we lose nothing by this assumption. Generally the H;, i =1, ..,4, H = (Hy, Hy,

H,, H,) will also be functions of X, Y, p (where p = pressure), for example

JH, 9JH, JT JH, JdX JH, dY JH, Jp

of TOT f X gt oY ot T op of

However, if we assume the dry air/water vapour mixture is an ideal gas, then the last term
JH, OJH,
vanishes. Also as Aris [45] observes, the sum of the contributions of the ——*ax' , '““‘aY’ ,

JE,
i=1, .., 4 terms to the —ar’ expression 1s zero since the H;, 1 =1, ..., 4 are intensive
t

thermodynamic properties.
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This gives

OB, [_dH, _OH, 9OH, 9H,]aT aX . oY
a?lz[XaT YT P aT““aT}T*THWJ’THV’ S

. JT . o : .
where the coefficient of B_A is the specific heat per unit volume of the system and will be
t

written as Ci.
That is

9H, _ 9H,  9H, oH,
Co=X77 *Y 3T *PaJT * 3T

giving

JE, JT oX oY
'=C, %+ A H, +—x H,. 3.4
B A A (-4)

3.3.3 Transport of heat and mass in the system
Heat and mass will be transported in the cellulose/liquid water/water vapour/dry air

mixture by several means

(i) Conduction of heat due to temperature differences in the system.

(ii)  Diffusion of water vapour due to concentration differences in the system.

(iii) Convection of water vapour through the system. In the absence of forced
convection, this will be by natural convection arising from differences in the average

density of the water vapour/dry air mixture.
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The enthalpy flux F, will include contributions from each of the above three factors. In fact

we can write
F.=F +H,F, ., (3.5)

where F_ is the contribution to the enthalpy flux by conduction of heat and F, 1s the mass

flux due to the diffusion and convection of water vapour.

Mass flux

In the system we are considering, the only movement of mass is that associated with the
diffusion and convection of water vapour. An important variable for describing convective
effects in porous systems is the volume flux, also known as the superficial velocity, v. We

will assume that this volume flux satisfies Darcy's law 1i.e.

= p- (M), (3.6)

where p is the pressure, x is the permeability of the system, L is the viscosity of the
water vapour/dry air mixture and the vector g represents gravitational effects. Assuming

the water vapour/dry air mixture behaves as an ideal gas the pressure p is given by

Y p,
p:RT(—NT]+“I$[‘;\J, (3.7)

where M; is the molecular weight of water vapour and M, is the molecular weight of dry
air. The mass flux can then be written as
F,=-DVY + Yy, (3.8)

where —DVY is the contribution of diffusion of the water vapour and D is the diffusivity of

water vapour in the system.
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Enthalpy flux

Assuming the contribution of conduction of heat to the overall enthalpy flux is given by

F.=-kVT, (3.9)

~

where k is the thermal conductivity of cellulose, we can combine equations (3.5) and (3.8)

to give the total enthalpy flux as

F,=-kVT +H, [-DVY + Yy ] . (3.10)

3.3.4 Rates of generation of heat and mass in the system

We will assume there are two exothermic chemical reactions occurring in the system, the
classical oxidation reaction and an ancillary hydrolysis reaction due to the presence of
water. We will further assume that the rate of the oxidation reaction is given by the

Arrhenius law, so

rate of heat production by the oxidation reaction = QpZ exp (&—E ), (3.11)
where
Q = exothermicity per unit volume of the oxidation reaction,
Z = pre-exponential factor for the oxidation reaction,
E = activation energy of the oxidation reaction,
p = cellulose concentration per unit volume.

For the hydrolysis reaction we will follow Gray |30] in assuming that this reaction is first
order in the liquid water and cellulose concentrations, and that the reaction rate obeys the

Arrhenius law, i.e.
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-E
rate of heat production by the hydrolysis reaction = Q,,pZ,, X exp (—R—% ), (3.12)

where
Q, = exothermicity per unit volume of the hydrolysis reaction,
Z, = pre-exponential factor for the hydrolysis reaction,
E, = activation energy of the hydrolysis reaction.

Although moisture can change between the liquid and vapour phases in the system, there
is no net production or consumption of moisture in the body. Similarly there are no
changes in the cellulose or air concentrations, so the rate of generation of mass in the

system is zero.

3.3.5 The mass conservation equation
Applying the basic conservation equation (3.1) to the mass balance problem in the region

§/\2, with mass flux given by (3.8) gives

X + Y)+

S+ V. (-DVY 4Ty ) =0, cQ, >0 (3.13)
t

Given that liquid water remains static in a unit volume of the body, the rate equation for

the change in liquid water concentration in unit volume is given by

dX rate of water vapour rate of liquid water

A = condensation B evaporation
ot

Following Gray [30], we will assume:

(i) that the rate of the (exothermic) condensation reaction is independent of

temperature and is first order with water vapour concentration,
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(ii)  that the evaporation of water is the rate determining step in transfer to the vapour
phase, and that this is an endothermic reaction with an activation energy equal to
the latent heat of vapourization of liquid water, and is first order with liquid water

concentration.
This gives, again assuming Arrhenius kinetics,

rate of water vapour condensation = Z_Y,

-L
rate of liquid water evaporation = Z X exp (‘{{Tl)

where
Z. = constant of proportionality for the condensation process (equivalent
to a pre-exponential factor),
Z. = pre-exponential factor for the evaporation process.

So we have the following rate equation for X

X L,
—aa—x.—.ch—ZCXexp(—-:F—), ted, t>o (3.14)
L

Substituting this expression in (3.13) gives the rate equation for Y as

Y -L,
@‘,\“=ZCXexp(ﬁ)—ZCY—V.{—DVY+Yx}, Te 62 /t\>0. (3.15)

dt
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3.3.6 The energy conservation equation
Applying (3.1) to the energy conservation equation with enthalpy flux given by (3.10) and

the rate of generation of heat given by (3.11) and (3.12) gives

Csa—'{+@¥hw+-a%hv+v {-kVT +H, [-DVY +Yv ]}
ot ot ot "

—E _EW A A
=QpZexp(§-T~)+prZerxp(~R-i:), re Q, t>0,

= (as H, =H,, +L, and by (3.13), (3.14))

Q

T
C,—~-L, (ZCY - Z.X exp (
t

__LV
= ))_ V.(kVT) +| -DVY + Yy | . VH,

QO

. ) ~-E
=QpZexp(”§f)+prZerxp(Rr}v), e O, 1o (3.16)

The term —DVY . VH,, is usually neglected in models of this nature. As Aris [45] states

"

[this] term seldom appears in any derivation of such an equation and when it does
appear is usually neglected without more ado. Amundson [46] has included it in
his discussion of models of the fixed-bed reactor, but remarks that he knows no
experimental or theoretical work that has been done to justify this neglect ... We
also bow down in the house of Rimmon and sacrifice it to the demands of

simplicity.”

In his work on the coupled diffusion of heat and moisture in bulk wool, Heath [47] has
stated that this term is small in comparison with V . (kVT), with the ratio of order
1072AY. In this thesis we will follow the lead of Aris and Heath and neglect the

-DVY . VH, term.
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3.3.7 Boundary and initial conditions
As mentioned in section 3.2 we shall assume the temperature change across the boundary

A A
dQ) is governed by Newtonian cooling and that no moisture crosses dQ2. This gives

A A

T
k5, +h(T-T) =0, Te a0, >0, (3.17)

where h is the heat transfer coefficient between the body and its surroundings,

aa—?::o, fedd Tso, (3.18)
X
aan=o, e dd tT>o. (3.19)

We shall also take the variables T(/x\', /l\), Y(/I\', ?), X(?, /l\) to have the initial profiles

TR =0=T,M20, el (3.20)
Y& t=0=Y,H20, e (3.21)
Xt t=0=x,020, tel (3.22)

3.3.8 Model equations with and without convection

Now

.
H,=L,+H, =L, + L_ C,, dT,
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where the standard state of water is liquid at temperature T, and C,, is the specific heat

of liquid water. So

VH,=V(L,+ [ C,dT)=C,VT. (3.23)

Then assuming k and D are constants, the reaction/diffusion/convection system for the

seven variables T, Y, X, v, pis

T _ o (22 Z.X exp (2 L[ZY 7.X :-L-}
Csa/t\“szexp(RT)'*’pr w eXP(RT Tyl Lol = LA CXPL T

A

+kV2T-—CWYX.VT, re 62,?>0,

oY v 2
5,[\—= Z.X exp(ﬁ)— 7Y + DV?Y - YV . v-v.VY,

X "‘Lv
gg:ZCY_ZCX exp (ﬁ)’ Te f\),/[\>0,

K A AN
v=—"(Vp-(p,+Y)g), Te Qt>0,
M ~

with the boundary conditions (3.17) - (3.19) and initial conditions (3.20) - (3.22).
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Neglecting natural convection, i.e. setting v = 0, the reaction/diffusion system for the three

variables T, Y, X becomes

JT ~E —E
C, o QpZ exp (ﬁ) + Qup ZyX exp (R”I\“N)
+L, [ 7Y — ZX exp Gﬁ-ﬂ +kV2T, Te
oY Ty 2 A 5 4
g:ZeXexp(ﬁ)~ZcY+Dv Y, T e Q,t>(),
L.
%—%:ZCY—ZOX exp (ﬁ:ﬁ), Te fl,lt\ >0,

(3.24)

(3.25)

(3.26)

with the boundary conditions (3.17) - (3.19) and the initial conditions (3.20) - (3.22). For

the reasons outlined earlier in this Chapter and in Chapter 1 it is the solution of the

reaction/diffusion system (3.23) - (3.25) that we shall consider for the rest of this thesis.

3.4

3.4.1 Dimensionless formulation of the spatially distributed equations

Set
RT XV,
u=—, X = - - —,
E Ja (Y, (F) + X, (F)dV
L E.
a=—, o, = —-,
E E
A = Iﬁ(Yl(f) + Xl(?))d\/ . kE
Vp PQRZa2’
? Q\V
r=—, h, = ,
a, Q
z, zZ,
QC = _’ QC = ‘—...—’
Z Z

Dimensionless formulation of the equations

B YV,
d Ja(Y, () + X, ()av’
Lo RpQZt,

C.E

_RpQ

T CE
h, = -L—v,

Q

v (3.27)
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A AN AN
where V, is the volume of the region €. Also let Q and 92 be mapped into Q and 9dQ
9 ) A 9 9
respectively by the transformation r = r/a,. Here A is a constant which represents the
ratio of total moisture concentration to cellulose concentration in the body. Then the non-

dimensioned representation of the equations (3.24) — (3.26) is

Jdu ] ~ Oy -
b exp(jj +A { h,, 0, X exp(—u—j— he ¢ x CXP(TJ +h, 0.y }

+1n' Vi, re Q, t>0, (3.28)
dy - 2
Eat=¢exexp 0 —-o.y+yYVy, 1reQ, t>0, (3.29)
ox —o
85—t=¢cy—¢cxexp p TE Q, t>0. (3.30)
Also setting
. ha, RT RT l
Bi = . U ==t [ ==
K E E
(3.31)
_ Ylvl _ X1V|
T RGO x @ T LG+ X, () J

the non-dimensioned versions of the boundary conditions (3.17) - (3.19) and the initial

conditions (3.20) - (3.22) are, respectively,

%+Bi(u—U)=0, re dQ, t>0, (3.32)
dy
F=0, redq >0 (8.83)
11
XK_0 reon 0 3.34
an =V, e 5 t>0, ( . )

MASSEY UNIVERSITY
LIBRARY,
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and
u@r, t=0) = @) 20, re Q (3.35)
y(r, =0) =y, (1) 20, re Q, (3.36)
x(r, t=0) = x,(r)20, re §—2 (3.37)

3.4.2 Dimensionless formulation of the spatially uniform case

By the 'spatially uniform case' we mean the limiting case of the equations (3.17) - (3.26)
as k = o and D — eo. As k — o and D — <o, equations (3.17) - (3.26) will only be
satisfied if V2T — 0, V2Y — 0 and %;T; — 0. So in the limit k — o, D —oo the state
variables T, Y and X will be independent of the space variable T, Integrating (3.24) across

A
the region Q and applying Gauss's theorem gives

%(I TdV) Qij exp(RT)dV+prZ J Xexp(IfT)j/\\/

A -L,\ A A
+L,| Z, jﬁ YdV - Z, jﬁ Xexp(RT)dV ~h jm (T-T,dS.

In the limit k — oo, D — oo we thus obtain
dT —E —E
V,C, S5 = QpZV, exp[mm | + QupZyV X ex (——«ﬂ)
1= h QpZV, p(RT) Qup 1 PIRT
-L, A
+L,V, [ .Y - 72X exp(ﬁ)} —hS(T-T,), >0, (3.38)

A A
where T =T(t), Y = Y(/l\) and X = X(/t\), and S is the surface area of the region Q.
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Similarly for (3.25), (3.26) we obtain

=N

~L, A
=7ZX exp(ﬁ)— Z.Y, t>0,

=7

5[

L\ A
Y —Z.X exp(ﬁ) t > 0.

The initial conditions (3.20) - (3.22) become

T(t=0)=T,,
A
Y (t=0) =Y,

X(1=0) = X,.

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

As total moisture content is conserved in the system, we can eliminate Y from the above

equations (3.38) - (3.43). By adding (3.39), (3.40) we see

which implies

that 1s

Y () + X(1) =Y, + X,

A A
Y(t) = Yl + X] - X(t)’

dX+Y
dX+Y) o 4o,
dt

for all /t\ > 0,

forall t > 0.
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We can then eliminate Y from our equations to give

dT -EB -E
C, 7= QoZ oxp(ff )+ QupZuX exp( i

-L, hS A
+L, [ZC(Y]+X1-—X) ~ZX exp(RTﬂ -V, (T-Tp), t>0, (3.44)
: —L
5%{ = Z.(Y+X;=X) - Z,X exp(ﬁf—), t>0, (3.45)
dt

with the initial conditions (3.41), (3.43).

Where applicable, the non-dimensionalization of these equations is similar to that used in

(3.27), (3.31) except

X W XY hSE |
x: N :"—"“_——_’ :—*__—'“",
Xi+Y; ! o ViRpQZ , (3.46)
po— Xl .
17X, +Y, y

This gives the final non-dimensional form of the spatially uniform case as

du —1 -0 -
a0 = exp(—u—)— Lu-U) + X, { hy, X exp(Tw‘)— hodex exp(Tj

+ hc¢c(1—x)}, t>0, (3.47)

u

dx —o
e q; = Pe(1-%) = dex exp[—), t>0, (3.48)
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with the initial conditions
u(t=0) = ¢, , (3.49)
x(t=0) = %, . (3.50)
3.5' The steady state equations for the spatially distributed model

Our conservation of total moisture content assumption also means that at steady state

solutions of (3.28) - (3.37), that is where

du Jdy Ix

- ot o=

we can eliminate both y and x from the equations to give a single equation in u only.

Adding (3.29), (3.30) and integrating across the region Q gives

p)
5 jg (x+y) dV ij V2y dV

Yjan Vy.ndS, by Gauss's theorem
—0,  as o0 reoo
= 0, as an =), Ire .

So

[ cenydv = [y dv=v, forallt>0, (3.51)

where V is the dimensionless volume of the region Q (= V,/ a(3)).
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The steady state equations for the spatially distributed model are

2 ~1 —Qy -0
Vou +m exp(—d“)dr A Yhyd,x exp N h.0.x exp ot hooy(|=0, re Q,

..... (3.52)
2 —(X
YV + ¢.x exp o -0y=0, re Q, (3.53)
-
Oy — Gex CXP(T) =0, re Q, (3.54)
where M = i, , with the boundary conditions (3.32) - (3.34).
Ul

Now adding (3.53), (3.54) shows that the steady state solution for y must satisfy

Viy=0, re Q, (3.55)

dy _ .
= 0, re dQ,

which implies that y must be a constant in Q at steady state. In fact, using (3.51)
|
y=1-% _[Q xdV,
and by (3.54)

X =(*D-Qy exp[g), (3.56)
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SO

at steady state. (3.57)

Finally substituting for x and y in (3.52) gives the steady state equation for u as

o0,
o o exp( U
Ye =
¢°+V .[Q exp(ujd\/

u

—1) " thq)wq)c

V2u+n exp( J =0, reQ, (3.58)

with the boundary condition (3.32) i.e.

g% +Bi(u-U)=0, re JQ.
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CHAPTER 4

The spatially uniform model
4.1 Introduction
The coupled pair of non-linear ordinary differential equations, i.e. (3.47), (3.48), we will be

studying in this Chapter are of the form

d
=X 8,8), >0, (4.1)
d
=8 x,8,p), >0, (4.2)
where
§=(U, LA,

@ = (8’ hw’ hc’ q)w’ q)e’ q)c’ Ay O().

We have split the parameters of the system up into two groups, those in § and those in .
In a set of experiments to be carried out on a particular self-heating substance, the
parameters that can be varied are: T, the ambient temperature, -\% the surface area to
volume ratio of the sample, and X; + Y, the total initial moisture content. Thus the vector
d contains 'variable' parameters - parameters that can be varied while analysing a
particular material. However Q, Q,,, C, p, Z, Z,, E, E, etc. are 'constant’ parameters in
that they stay fixed for a particular material. We have grouped these 'constant'
parameters in the vector 3. So in effect we are dealing with a two variable, three

parameter problem.

To obtain a complete description of all the qualitatively distinct behaviour of the system,
we must analyse the full parameter space of each of the components of §. To do this we
will use the method of degenerate singularity theory which is outlined in detail in

Golubitsky and Schaeffer [48]. Degenerate singularity theory provides a means of finding
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the 'organising centre’, or bifurcation of the highest degeneracy possible in the system.
Once this point in parameter space has been found we will be able to generate all the
possible bifurcation diagrams exhibited by the system in U, L, A, space, and thus obtain
all the possible responses, both steady state and oscillatory, to any given U. In particular
we will here use the special case of degenerate singularity theory developed by Gray and
Roberts [49] to deal with a two variable, three parameter problem. To solve the resulting
coupled non-linear equations in parameter space we will use the pseudo-arclength method
for the solution of non-linear systems (see e.g. Keller [50]). We will show that the model
given by (3.47), (3.48) can exhibit up to five steady state solutions for a particular value of
U, as well as limit points, and hysteresis point and quartic fold point degeneracies in U, L,
A, space. The introduction of the effects of moisture into the model also leads to the
possibility of periodic solutions to the system (the classical Semenov spatially uniform
model for self-heating by a single exothermic reaction does not have periodic solutions).
We show the model can exhibit Hopf bifurcation points and degenerate Hopf bifurcations
of the H2, and H3, types (using the notation of Gray and Roberts [49] explained later in

this Chapter), as well as double zero eigenvalue degeneracies.

However, we will begin by discussing some general existence, uniqueness and multiplicity
results for the solutions of the ordinary differential equations (3.47), (3.48), and for the

solution of the associated steady state problem.

4.2  Questions of existence, uniqueness and multiplicity of solutions

The spatially uniform model can be written in the form (4.1), (4.2) where

—1 —Ql, -0
f(u, x, §, B) = exp('{l“)— Lw-U) + A4 {hw Ow X exp(“u“J— he ¢, X exp(Tj

+h, 0, (l—x)}, (4.3)




108

1 —
glu, x,8,B) = i% (1) - ¢, x 6XP(—L?) } (4.4)

Now at steady state f = g =0, so (4.4) gives

e
—QL
O + & CXP(”JS“]

, (4.5)

Xg =

(where the subscript s denotes steady state), which implies that a priori bounds for x are

e

Y < x < 1. (4.6)

We can now substitute for x¢ into equation (4.3), at steady state, to give the equation

satisfied by ug as

=0y
1 7Ll hw d)w q)c CXp Ug
= L(u, — U).

exp(— +

u, (4.7)

-

e + e CXP['U*
S

It is then a simple task to show that (4.7) has at least one solution ug for all U 2> 0.

Consider the functions

....aw
7\'l hw q)w ¢c €Xp T

-0
bc + b exz{;:)

G(uy) = expG‘s‘)+ , (4.8)

Gy(ug) = L{ug — U), 4.9)
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for any fixed U > 0, where G,(u,) represents the rate of heat release by the various
reactions at steady state, and G,(ug) the rate of loss of heat due to Newtonian cooling.
Now G;(0) = 0, Gp(0) = -LU (so clearly U = 0 has the solution ug = 0), G;(ee) is
positively finite (in fact it equals 1 + (A, hy, 0, ¢,/ (de + ¢.)), and Gy(e0) is positively
infinite. So by the intermediate value theorem there must be at least one value ug = ug*,

with 0 < u ¥ < oo, for which G;(u,) = G5(u,), for every U 2 0.

In showing that the system can exhibit five steady state solutions for a certain parameter
range we will use a similar graphical approach to that of Gray [30]. Figure 4.1 below
shows an example set of ug, G;(u,) curves as the dimensionless initial moisture content

A, increases (with o > o).

G1(us) M1 increasing

\\

\
/
Us

Figure 4.1 Rate of heat release curves as A increases from zero
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We can see that for A; sufficiently large, the heat release rate curve can have a negative
slope. Thus, as the function G,(u,) is a straight line, for this parameter range (4.7) can
have up to five solutions. It is simple to deduce that a necessary condition for this
negative slope to appear is that the second term in (4.8) has a maximum. This in turn can
occur if o > a,. So & > @, is a necessary but not sufficient condition for our system to
have five steady state solutions. Figure 4.2 below shows some example U, u

steady

S

state bifurcation diagrams, as A, increases, for the case & > a.,,.

N

b .1 increasing L=t

A=Al

=0

U
Figure 4.2 Example bifurcation diagrams, as 4, increases, for a > a,,
We observe that as A; (the dimensionless characterization of the total moisture content in

the body) increases the 'traditional’ critical ambient temperatures, corresponding to the

first limit point on the A; = 0 curve, decreases. For A; =A,” the diagram has four limit
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points and an intermediate steady state is reached as U increases past the first limit
point. It is interesting to note that for A; sufficiently large, eg A; = A,”, the lower right
hand limit point is to the right of the higher right hand limit point, so this lower limit point
now defines the U, value for the system. These diagrams show how U, can be

substantially reduced by the inclusion of the effects of moisture content in the model. This

may explain the comments in Figure 1.9 of Chapter 1.

A well-known (see e.g. Ray [51]) condition for (4.1), (4.2) to have a unique, stable steady

state solution for all U > 0 is

Det (J) > 0, (4.10)

Tr(J) <0. (4.11)

Here Det (J) is the determinant of the Jacobian matrix of the system (4.1), (4.2) evaluated

at the steady state ug, Xq,

o of
I J12 Jdu ox
J= = , (4.12)
Ja1 J22 dg dg
du ox u=u,
X =X,
and Tr (J) is the trace of this Jacobian.
So
dg of o
Det(J) = 'g—fa 5)% - % 5%, evaluated at ug, X, (4.13)
and

o 0
Tr{J) = BN + 5% ,  evaluated at ug, x,. 4.14)
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For our system

-]
of eXp( u ) Ax { (—aw) (~aj}
3= - L+—5 Yh, ¢, O, exp —h. ¢, vexp|— |, (4.15)

ou 2 u? u u

g—fz = {hw Py exp(lgﬂ)— he 0 exp(*}?} he ¢ } , (4.16)

%%=_¢:2a exP(_Taj’ (4.17)

oo
This gives

—o
e Det (J) = L(q)c + Qe exp(TD‘ u?

)\’1 hw (I)w X =0y _(OH‘O(’W)
- 10 0y exp| T [ oo o) exp| = ke (4.19)

u

Z—l)
exp u 7\‘1)( [ -0y, —
Tr{)= - L+;2—1hw¢wawexp —h, ¢, o exp| —

2
u” u

-1 -0
— (d)c + e BXP(TB, (4.20)

where u, x are evaluated at ug, X,.
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We can now give a theorem regarding the unique steady state solution of the spatially

uniform system for L sufficiently large.

Theorem 4.1

The system (4.1), (4.2) with f and g defined by (4.3), (4.4) has a unique, stable steady

state solution for all U 2 0 if

~ -
4 h, ¢,
71+§3§+7\]—“’*§L} ., 0> 0L,
€L c Oy
L > ¥
4 [ 1 o~ 0
-5 1+99+k1hw¢w —-—+¢e( - )2} , Oy =0
N c oy O lot0y,)
Proof
Using (4.6) and the fact that
—k,
exp(T) 4
< < k, >0), 2
0 uz k}zcz, (ky >0) (4.21)
we see that Tr (J) < O certainly if
4 hy
L > 7[:1 + 7&1 _—“_qb&:[ ,
€ O('w
and Det (J) > O certainly if
(4T h
—§l+q~)9+7x1—w—%} , 0> 0,
e L 9 Oy
L><
41 1 oL, —0
—5 1+q—)9+7x1hw¢w[—*+9—°(—i"———l§} , Oy, > O
N q)c O('w (I)C((X—FO(.W)“

This completes the proof.
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This result has a logical physical interpretation in that it predicts that if the surface area to
volume ratio of a body is sufficiently large then criticality will not occur and so
spontaneous combustion is very unlikely. That is, if we take any moist self-heating body
and store it in, for example, the shape of a sufficiently thin brick, then the body will not

spontaneously ignite.

We will now derive some existence and uniqueness results for the solution of the time
dependent problem (3.47) - (3.50). Firstly we make a comment on the use of Arrhenius
kinetics. The Arrhenius law, given for example for a single exothermic reaction by (1.2)

i.e.

q(T) = QpZ ew(ﬁ%),

—E
holds only for T 2 0. Since the function exr(RT) has a singularity at T = O there is

obviously a problem in extending this theory to the range T < 0 (and non-dimensionally to
u < 0). We will thus assume that, in effect, there is a Heaviside operator in front of each
temperature dependent Arrhenius term which ‘switches the reaction off' for T < 0. This
seems realistic physically since it is unlikely that any reaction will still be occurring at
'negative' absolute temperatures. We will not need to look at the range T < 0 in general in
this thesis, but we do need to consider this range briefly here to derive a priori bounds for

the solution of the spatially uniform time dependent problem.

To consider the existence and uniqueness of solutions to the time dependent spatially
uniform system (3.47) - (3.50), we will first show that the solutions are bounded for all

time.
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Theorem 4.2
Suppose u, x is a solution of (3.47) - (3.50) with Cl 20and 0 <y; <1. Then, forall t >0,

0<x() L1,

1
O<u@®<p(1+LU + A1 {hy &y +he o))+ Gy

Proof

First we will show that x takes values between O and 1. Since ), < 1, it follows that if x

. . . dx
ever became greater than 1 then there exists an interval of time (t;, t,) such that TR 0

for t € (t;,ty). But (3.48) gives

d 1 —QL
e g{ 0c(1-%) = O x CXP(TJ} :

<0, forallx>1.

So x(t) £1 forall t >0.

Similarly it can be shown that x(t) 2 0 for all t > 0. Also since {; 2 0 it follows that if u
. . du

ever became less than zero then there exists an interval (tj, t;) such that a < 0 for

te (t;, tp). However (3.47) gives (remembering our comments above on Arrhenius

kinetics for negative u)

du
Q=" L(u-U) + h; ¢.(1-x),

>0, forallu<O.

Sou(t) 20 forall t>0.




116

Finally, since 0 < x(t) < 1, we have from (3.47)

QU Lw-U) + 2 (hy 6, + b, 0,),

dt
du
= qr TLus1+LU+A, (hy ¢y +he 0],
d :
= q; (exp(Liju) <exp(Ly) [1+ LU + Ay (hy, 0y +he 0.},
= exp(Lt) u £ _11: exp(Lt) [1 + LU + A, (hy, ¢, + h, 0.}] + Cs,

where Cs is a constant of integration.

Now att =0, u={;, so we can choose

1
C5=C1_E[1+LU+7\'1 {hw¢w+hc¢c”,

which gives

1
us<y [1+LU+2; {hy ¢, +he ¢ )] +;, forallt>0.

This completes the proof.

These a-priori bounds for the solutions of (3.47) - (3.50) can now be used to show that
(3.47) - (3.50) has a unique solution if 0 < %; <1, {; = 0. This follows from classical
results on ordinary differential equations given that f and g satisfy Lipschitz conditions on

some bounded set in R2,
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4.3 The nature and stability of steady state solutions
The local stability of the steady states of the spatially uniform model can be determined by
looking at the stability of the first variation of (3.47), (3.48). Consider a system of the

form (4.1), (4.2) i.e.

du
;= . x, 8, B),

d
d_)z = g(u, x, §, B).

Consider further a particular steady state solution ug, X such that
Lg% 8, B) =0, (4.22)

g(ug, xg, 9, B) = 0. (4.23)

Now perturb ug, xg by small amounts Au, Ax i.e.
u=u, + Au, (4.24)
X =X, + AX, (4.25)

then Taylor series expansions for f and g about ug, x¢ gives

f(ug + Au, x, + Ax, 3, B) = f(ug, xg, 3, B) + % (ug, X O, B) Au.

+ éa—i);( (us, Xg, §, @) AX + O((AU), (AX)),
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dg
glug + Au, xg + Ax, 3, B) = glu, %, 8, B) + 5% (ug, Xg, 8, B) Au

+ %)% (ug, X ,S.a @) Ax + o((Au), (Ax)).

Neglecting terms of o((Au), (Ax)), using (4.22), (4.23) and substituting into (4.1), (4.2)

gives the equations for Au and Ax to leading order as

Jd(A of of
(atu) =50 (ug, X, 8, B) Au + I (U Xgo 8, B) Ax,

d(A og d
(atX) _ a—% (U, X, §, B) Au + é‘% (ug, X §’ ﬁ) AX,

which has a solution of the form

Au(t) = Fy exp(oqt) + Fy exp(o,t),

Ax(t) = F5 exp(ot) + F3 exp(o,t),

(4.26)

(4.27)

(4.28)

(4.29)

where Fy, F,, F3, F, are real constants and ¢ and 0, are real or imaginary numbers. In

fact the values ¢, and o, are just the eigenvalues of the Jacobian matrix of the system

evaluated at the steady state, where the Jacobian is as given in (4.12).

eigenvalues are given by the roots of the characteristic polynomial

6% — Tr(J)o + Det(J) = 0.

These

(4.30)

So we can see that the nature and stability of the steady state point ug, X, we are

considering, depends critically on the form of ¢; and o5, given that 6, and 0, must either
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be real or form a complex conjugate pair. In fact there are five possibilities in u, x space if

the real parts of o; and ¢, are non zero

(1) U, X, 1S a saddle point;

(11)  uq, X4 1S a stable node;

(iii)  ug, Xg 1s an unstable node;

(iv) ug, X, is a stable focus;

(v)  ug Xg1s an unstable focus.

Of course more than one of these 'fixed points' may occur in the same u, x phase space

diagram if the system has multiple steady state solutions at those particular parameter

values. The dependence of the occurrence of each of these possibilities on o and o, is

summarized below

if Det(J) < 0, then ug, x¢ is a SADDLE POINT,
if Det(J) > 0, Tr(J) <0, then ug, X, is a STABLE STEADY STATE,

if Det(J) > 0, Tr(J) >0, then ug, X; is an UNSTABLE STEADY STATE,

further,

if 0;, 0, are real and < O, then ug, x5 is a STABLE NODE,

if 0,, O, are real and opposite sign, then ug, x; is a SADDLE POINT,

if 0,, O, are real and > 0, then ug, x; is an UNSTABLE NODE,

if C,, 05 are complex with real part <0, then ug, x, is a STABLE FOCUS,

if 0, 0, are complex with real part >0, then ug, x; is an UNSTABLE FOCUS.

The nature of the u, x phase space diagram close to each of these five possible steady

state points is shown in Figures (4.3) - (4.7) below.
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~.__#

77 X

Figure 4.3 Saddle point steady state

/\

u

Figure 4.4 Stable node steady state




Figure 4.5 Unstable node steady state

u

Figure 4.6 Stable focus steady state




u

Figure 4.7 Unstable focus steady state

Other possibilities include: Det(J) = 0, this is known as a saddle-node type bifurcation (or °
in our context a 'limit point') and usually indicates a change in the stability of the steady
state solution; Det(J) > 0, Tr(J) = 0, this corresponds to ¢, 0, being complex conjugates
with zero real parts and indicates the possibility of periodic solutions, i.e. a Hopf
bifurcation point; Det(J) = 0, Tr(J) = 0, this corresponds to ¢, and ¢, being identically

zero complex numbers, and is known as a double zero eigenvalue degeneracy.

We will discuss periodic solutions and their stability near a Hopf bifurcation point in the

next section.




123

4.4  Hopf bifurcation points and periodic solutions
As we have stated in the last section, the conditions for a steady state solution ug, X4 tO

also be a Hopf bifurcation point are

Tr(d) =0, (4.31)

Det(J) > 0. (4.32)

Hopf bifurcations are important to locate because (i) they usually represent a point in
parameter space where a branch of periodic solutions (limit cycles) emanates from the
steady state branch and (i1) they earmark a change in the stability of the steady state
solutions. The exception to (i) occurs when the degeneracy condition

d(Tr(J))
=0 (4.33)

is satisfied. This corresponds to two Hopf bifurcation points coinciding at the same point
on the steady state branch, so there are no emanating periodic branches linking them. The

set of conditions (4.31), (4.32), (4.33) is known as the H2; degeneracy in the notation of

Gray and Roberts [49], and we will investigate in detail its occurrence in parameter space.

We can calculate the stability of the limit cycles close to the Hopf bifurcation point by
looking at the sign of a parameter we shall refer to as p,. The parameter is a function of
the first three partial derivatives of f and g evaluated at the Hopf bifurcation point. To

calculate pg we will follow the formula of Segel [52], which we will now outline.
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At a Hopf bifurcation point the Jacobian matrix J given by (4.12) will have purely imaginary
conjugate eigenvalues *iw, To use the formula of Segel this coefficient matrix must have

the canonical form

J= . (4.34)

If this is not the case for our original system at the Hopf bifurcation point then new

variables
0=p;;u+ppyX, (4.35)
X = P21 u -+ P22 X, (436)

must be introduced so that the modified system

%z (§, %, 8, B, (4.37)
X sdx s (4.38)
3 = 58,0, :

does have a Jacobian matrix of the desired form:.

It is easily verified that

~,

P =1
p12=0,
_Jl_1 > (4.39)
P21 = w()»
Ji2
P22 = )
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are correct choices for the transformation, where the components of J are evaluated at the
Hopf bifurcation point. Now we calculate the following partial derivatives at the Hopf

bifurcation point.

9°T ’g
Byy=—>, Chp=—2,
20 aﬁ2 20 aﬁ-2
o O i
U7 onox U 9tz
0%t %%
By =77, Cypp=—2, > (4.40)
02 ai;z 02 anx-Q
1T %
By = — , Coy = == |
30 a,f.3 03 ari3
B.. < T Co - a3g
27 omox?’ 2 ou%x .

The scalar quant‘:‘tj LLs 1s then given by
Us = [B3g + Byp + Cyy + Cpzl/og
+ [-B11 (Boo#+Bga) + C11(Cag+Cp2) + BogCog — BpaCpol/(we)™.  (4.41)
The above constitutes Segel's formula. However it is more convenient to write the partial

derivatives in (4.40) in terms of the first three partial derivatives of f and g with respect to

u and x. We can do this by forming the matrices P and Q where




1
P11 Pi2
P= _
p p I
21 22
Wy
1
Q11 Q12
Q=pP"=
q21 Q22 Zjil
J12
Then
_2_N_ % O 9 0%t
372 = g2 ¥ 21 Juax t A1 32
7f 5, of
ox2 = {22 PR
i A S .
ooxR =022 0% 1 921 922 %2’

126

a~7 = P21 5.2+ 2P21 Qo1 gy t P21 921 7

2

d Jd°g
) 5&% + 2P Qa1 55 + P22 G5 Ix =5,

0%y O%f

2

) O

g
%2 = P2y Clzz Ix 302t P22 922 92

0§ 0%f

XF o O3f

O o’g
Srox P2t 922 Quax * P21 921 922 5 7 * P22 A22 g F P22 921 G2

Ot

aZ

a3
aﬁ3 al3+3(12la2a +3q2laaZ+q%la 3

0

3%

Q)L]?J
oS

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)
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¥f , of ) Pt
9% =2y 52 + 422 qo1 PR (4.51)
9°g Of 0
5%% =P qu Py + P22 Cl%z 5;% (4.52)
°F ot of ,  Of
Saox P2t 22 535 + 2p21 Qo1 22 Juax? T P21 21 d22 573
i g , g
* P22 Aoy At 2pyp 921 422 Juox2 T P22 421 922 373 (4.53)
where for our system
:'l' 1-2
2 _ow)0 4, BE ) g2
au2 u4 + u3 - wq)w(xw €Xp cq)ca' €Xp
1 2 e 2 -
+ a h, 0,0,  exp A h.0.,0° exp u , (4.54)

azf l] —-(xw -t
dudx — g2 | MwOwlhy expl T |- hebeoexpl = 1 (4.55)
o*f

oo (4.56)

s

a_zg“%wexp —2-2 (4.57)
du? eu “Tu) '

Ie _ - (4.58)
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b
[}
L

= (),

QU
)

X

- exp(%) ((1=2u)(1-4u) — 2u2)

3%.])( 2 | —Otw
au3_ l16 - l14 - IW(I)WOCWCXp u -

hcq)ca exp T + E hwq)wo{'w exp T - hC(I)cOL exp T

X 5 -0y, 3 -0
+? hwq>w0('w exXp T “‘h‘cq)e(X €xp T ’

1 -0 -0
+ ; {hw¢waw2 exp( uwj_ hcq)cOL2 GXP(T)} } ’

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)




These derivatives are to be calculated at ug, x,.

If 1, 1s negative then the limit cycles emerging from the Hopf bifurcation point will be

locally stable, if |  is positive then the emerging limit cycles will be unstable.

The condition

at a Hopf bifurcation point therefore corresponds to a change in stability of the emerging

limit cycles, and so represents another important phenomenon in parameter space. The

set of conditions (4.31), (4.32), (4.67) is known as the H3, degeneracy, in the notation of

Gray and Roberts [49].

d(Tr(J e . .
Given the signs of the quantities ., and —%(—)l at the Hopf bifurcation point, then, the

four possibilities for the stability and direction of the loci of emerging limit cycles in the
neighbourhood of the Hopf bifurcation point are given schematically below in Figures 4.8 -
4.11. In these diagrams (as in all later U, u bifurcation diagrams) a broken line represents
an unstable steady state, an unbroken line represents a stable steady state, an open circle
represents an unstable periodic solution and a black circle represents a stable periodic

solution.

increasingy ——=

Figure 4.8 Nature of the emerging limit cycles in the neighbourhood of a Hopf

Tr(.
bifurcation point for p < 0, *d‘(-afug—)—) > 0.
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increasingU  —————~=

Figure 4.9 Nature of the emerging limit cycles in the neighbourhood of a Hopf

d(Tr(,
bifurcation point for p < 0, —(G%'D*) <0.

“0

increasingU — =

Figure 4.10 Nature of the emerging limit cycles in the neighbourhood of a Hopf

bifurcation point for i, > 0, %@ > 0.

\V

increasing U

Figure 4.11 Nature of the emerging limit cycles in the neighbourhood of a Hopf

d(Tr(,
bifurcation point for L, > 0, —(a%]—))‘ <0.
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There are two possibilities for the ultimate destinaton of a locus of limit cycles from a
Hopf bifurcation point. It can either rejoin a steady state branch at another Hopf
bifurcation point, or the locus can abruptly end (or 'evaporate’) before reaching another
Hopf bifurcation point. This 'evaporation' corresponds to the period of the limit cycle
becoming infinite as the amplitude of the limit cycle grows to such an extent that the limit
cycle meets the separatrices of a saddle point in phase space. The 'evaporation' of a limit

cycle in phase space is illustrated in Figures 4.12 - 4.14.

Figure 4.12 Limit cycle in proximity of saddle point.
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Figure 4.13 Limit cycle 'approaches' saddle point.

-
i

u

Figure 4.14 Limit cycle merges with separatrices of saddle point.
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4.5  Plotting degeneracy and bifurcation curves: the pseudo-arclength method
In order to find each of the possible bifurcation diagrams the model can exhibit for a
particular value of the constant parameter vector 3, we will divide the A, L space up into

distinct regions of behaviour by plotting the degeneracy curves. For example H2; and H3,

degeneracies are both represented by curves in A, L space.

To do this involves solving systems of the form

F(d, p) =0, (4.68)

where d is a vector of unknowns and the parameter p is one of the group U, A;, L. In
general we will use the pseudo-arclength method to solve this system as p varies. The
pseudo-arclength method uses the arclength, s, along the solution locus as the
continuation parameter. We can see that the arclength is the best choice of continuation
parameter by noting, for example, how it is characteristic for steady state bifurcation
diagrams in ignition theory to have a discontinuity at U = U, if U is chosen as the
continuation parameter. The steady state locus is, however, continuous with arclength
through such points. For a detailed description of the pseudo-arclength method see e.g.

Keller [50]. We will outline it briefly below.

Introduce an arclength parameter s and let

1o ge]
Il
[{=H
~
[72]
~

Then assuming a solution d(sg), p(sg) is known, a solution at d(sy + As), p(sg + As) can

be generated using a combined Euler predictor/iterated Newton corrector approach.




(a)

(b)
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Euler predictor.

We have
FE(d(sp), p(so)) = 0, (4.69)

then define
(g_,()’ po) = (g(s()): P(S())),

and compute
° ° d
(dgs pg)s  where o= I
via
[ ] [ ]
Jido+po F, =0, (4.70)

[ ) [ )
lldgli? + Ipgl? = 1 =0, (4.71)

where J; is the Jacobian matrix of (4.68) evaluated at (dg, pg) and F, is the
gradient vector of I with respect to p, evaluated at (d,, pg). Equation (4.71)

represents the "arclength condition".

Then let

°
d%sy + As) = dy + As dyy
(4.72)

[ ]
0
p(sg+ As) =pg + As py,
Newton iteration

We require the solution at the next point along the solution locus, le. at

s = sy + As, to satisfy

F(d(s), p(s)) = 0, (4.73)
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N(d(s), p(s), (s)) = éoT(Q(S) —dp + Bo(p(S) —Po) —(s=sp) =0. (4.74)

Here equation (4.74) is the "pseudo-arclength condition". The iterated Newton

corrector thus consists of solving

o By [ sd F
do"  po &p' N

for the vector Qdi and the scalar Spi (where F, N and derivatives are evaluated at
(gi(s), pi(s))). Then we calculate
di*!(s) = d'(s) + 8d'(s) ,
p*l(s) = p'(s)+ Sp(s),
fori=1,2,3, ..,

and repeat the above process until II5d™ Il + 18p™*! is sufficiently small.

4.6  The degeneracy curves in Ay, L space

The particular value of B we have used to plot the degeneracy curves in this section is

E = (1.0, 1.0, 1.0, 1.0, 1.0, 0.01, 0.2, 0.9), (4.75)

although a similar procedure could be applied to any [3 values, and thus to any particular

cellulosic material.
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4.6.1 The hysteresis and double limit point curves
The hysteresis curve in A, L space corresponds to a curve along which limit points are
born on the U, u bifurcation diagram. The equations which must be satisfied by the

hysteresis curves are the steady state condition (4.7) as well as

du
du, =0, (4.76)
and
d2U
5 =, 4,
dus2 0 (4.77)
where
:l (X(DGX :E\'-V._f_(p(a__a)ex w
_(_i_q_ = _exp(US)-}- 1 — 7\'lqt)cq)whw wre P uS e P s (4 78)
dUs B L.l,ls2 L USQ K12 s .
ex -1 1-2u,)
d?u p(us)‘ Y Mocduhy [ KKy KoK, 479
dus?‘ L us4 L us4 K13 ) .
and
_a 7
K] :¢c+¢eexp —L—I: »
K2 =Qy q)c cXp Uy + (pe (aw—a)(a+aw) exp T— »
4 (4.80)

-0y, —(a+a,,)
K3 = Oy q)c exp(_u——j + q)e((x'w”a) CXP(_'—'J“_‘*J )

S

-0
Ky=2u,K; + 200, exp('t'l“) .
s 4
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The double limit point (D.L.P.) curve in A, L space corresponds to the curve along which
two right hand limit points coincide at the same U value on the U, u bifurcation diagram.
This curve has great significance in ignition theory as it is the U value at the right-most of
these limit points which will usually (unless branching to periodic solutions has occurred)
be the U, value. Let these two limit points occur at ug; and ugy (ug; # ugy). Then the
conditions that must be satisfied on the D.L.P. curve are that ug, and ug, must both satisfy

the limit point condition (4.76) and they must also have the same U value i.e.
=1 { =1 =1
L exp(u“)— exp(usz) + Ug; — Uy
Oy :'aw
exp W expl T )
S 5
=0.

—Cly . ‘_O{'w
N q)c +Cbc exp( Ug ) (Dc + q)c €Xp( Uy j

—qu)cq)whw <

L (4.81)

The hysteresis and D.L.P. curves for the 3 value given by (4.75) are shown in Figure 4.15

below (D.L.P. curve is labelled separately).




4.00

3.00

2.00

I T N I O T T T Y O O Y I O B B A O B A A B A A N A B I

1.00

I

I

A
D.L.P.

0.00 S S R R IlIrll[lllillllillxlilillIl"l
0.00 0.50 1.00 1.50 2.00

!

| N ISR N N N N |

Figure 4.15 Hysteresis and D.L.P. curves
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4.6.2 The H2; degeneracy curves
The conditions for an H2, degeneracy curve in A, L space (with x, given in terms of ug by

(4.5)) are (4.7), (4.31), (4.32) and the equation (4.33), i.e.

d(Tr(J)))

au_ =0

where

d(Tr(J))  d(Tr(J)) duy
du = duy dU"

. . du . . . o
Now it is easily seen from (4.78) that Ju. s continuous and satisfies
S

40 Moy d 40,0, h,,0,
(1+ 10y )s"y—<1+ 1 ¢°2, for o > o,

dug ™ ° " Lo (a+a,)?e

and

- Aoyhy, A 0L Oy, —0L
42 ] + 10w w4 1%]“’%(2‘” ) sgg,él, for oL, > 0.
Le Clyy (O+0ty,)? O, dug

. du . du,
So in either case du. s bounded above and below, hence a—d # 0.
S

Therefore (4.33) can occur if and only if

d(Tr()

dug 0,

that is (equivalently),
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-0t
od, exp('—)
_ A Ug
exp('d-l‘) (1-2uy) + 10cls -1 2+ .
(b ¢ + (De exp(%?) Ug (‘Dc'Hbe exp(;:}

%y o), L 2 o T%w
hwq)waw exXp —E;— ~hc¢ea 29% ug +us hw(bwaw exp ug

Us

o $ 0 exp A
— h.,o? exp(—-) ) - - =0. (4.82)

The H2, degeneracy curves for the given 3 value are shown below in Figure 4.16. The

—~

dashed line corresponds to a portion of a curve along which Det(J) < 0 and is included only

for completeness.

L

4.00

3.CO

.00

N

Q
(@)
Lot e e v gt I O YO O O O A |

M

.00

Figure 4.16 H2, degeneracy curves
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4.6.3 The H3; degeneracy curves
The equations defining H3; degeneracy curves in A}, L space are (4.7), (4.31), (4.32) and

(4.67), with x given in terms of ug by (4.5). Figure 4.17 below shows the H3; degeneracy

curves for the chosen value of f.

4.00

L

3.00

2.00

1.00

Letor e e v e e e e v v s e b L

OOO N O O O L B L I S A L
0.00 0.50 1.00 1.50 - 2.0¢

%!

Figure 4.17 The H3; degeneracy curves
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4.6.4 The double zero eigenvalue curves
A double zero eigenvalue (D.Z.E.) point in A, L space usually corresponds to the abrupt
appearance (or disappearance) of a Hopf bifurcation point on the U, u bifurcation diagram.

The equations the D.Z.E. curve must satisfy are (4.7), (4.31) and
Det(J) = 0, (4.83)

where Det(J) is given by (4.19), (with x, given in terms of ug by (4.5)). The D.Z.E.

curves for our value of [ are given below in Figure 4.18.

4.G0

L

3.00

1.00

T T Y T T R A A l._L_l_l_J_J__L_l_l_l_l_l__.l__l_.l_]_.l__l_.l._l_!_L_L_l_l__]

IIIllllt[llllllllilulnl«xllll

[ N
C.50 1.00 1.50 2.0C

M

G.CC

(@]
(O~
(@]

Figure 4.18 The D.Z.E. curves
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2
. d? d’U . . :
Note Since by (4.79), _d 5 — 0 as u; » 0 and ug = oo, and 02 is continuous in ug, we
2 Ug s
have ) #c0,V ug > 0. Therefore, using the condition of Gray and Roberts [49]
u;

p 367, the system has no isolas or transcritical bifurcations.

4.7  The distinct bifurcation diagrams

Our aim in this section is to find all the distinct U, u bifurcation diagrams the model can
exhibit for the value ofE given by (4.75), and thus all the possible steady state and
periodic behaviour of the model as the group of parameters 6 varies. We can do this by
simply superimposing all the curves plotted in the previous section on the same A, L
diagram. Each closed region on this new diagram will correspond to a set of A, L values

which give a distinct bifurcation diagram in U, u space.

The superimposed degeneracy curves are given below in Figure 4.19. Figure 4.20 shows
a blow up of the part of Figure 4.19 with A, e [0, 0.5], L e [0. 0.6]. The distinct regions

are given labels 1, ..., 25.
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4.00 ~
L 1
3.00 -
2.00 -
1.00 -

] 2‘4

] n \

] : 25
O.OO]14::411ll;‘ls'l1|1;1[xlxllsil||£[lll""l

0.00 0.50 1.00 1.50 2.0(

A1

Figure 4.19 Superimposed degeneracy curves
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8,9,10,11
|
| / / !
5 /]
1_’.._.__.__
— 20
14,15,16,17 |
1/
13—,
|

88
()

18 19 21

Figure 4.20 Blow-up of region near origin

Figures 4.21 - 4.45 below show schematically the twenty-five distinct U, u bifurcation

diagrams possible for the given value of B.

11/\ Hf\

@/

U

Figure 4.21 Bifurcation diagram Figure 4.22 Bifurcation diagram

for region 1 » for region 2
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Figure 4.23 Bifurcation diagram

for region 3

Figure 4.25 Bifurcation diagram

for region §

Figure 4.24 Bifurcation diagram

for region 4

Figure 4.26 Bifurcation diagram

for region 6




v

Figure 4.27 Bifurcation diagram

for region 7

P
O ‘
d

U

Figure 4.29 Bifurcation diagram

for region 9
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Figure 4.28 Bifurcation diagram

for region 8
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Figure 4.30 Bifurcation diagram

for region 10
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Figure 4.31 Bifurcation diagram Figure 4.32 Bifurcaticn diagram

for region 11 for region 12

u?l u’

~—e
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~
Seene?

Figure 4.33 Bifurcation diagram Figure 4.34 Bifurcation diagram

for region 13 for region 14




Figure 4.35 Bifurcation diagram

for region 15

~——

Figure 4.37 Bifurcation diagram

for region 17
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u’

Figure 4.

36 Bifurcation diagram

for region 16

~m——

Figure 4.38 Bifurcation diagram

for region 18
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Figure 4.39 Bifurcation diagram Figure 4.40 Bifurcation diagram
for region 19 for region 20
u N
Figure 4.41 Bifurcation diagram Figure 4.42 Bifurcation diagram

for region 21 for region 22




u o)

Figure 4.43 Bifurcation diagram Figure 4.44 Bifurcation diagram

for region 23 for region 24

e —_

Figure 4.45 Bifurcation diagram

for region 25

|
|
4
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As we can see from the diagrams above the spatially uniform model including the effects of
moisture exhibits a very wide range of behaviour when compared to the model which
ignores the moisture content (i.e. A; = 0). In fact the 'dry' model can show only two

distinct bifurcation diagrams (namely those corresponding to regions 1 and 12).

An important point to note about this particular formulation of the variables (i.e. that of
Burnell et al [12]) is that the steady state and periodic loci can move into the negative U
section of the bifurcation diagram. Since the body will not be stored at or below absolute
zero the solutions in this section are irrelevant physically, although we are interested in
following them to see where (and if) they re-enter the positive U section of the diagram.
This phenomenon does not lead to any computational difficulties in the spatially uniform
case (as we can see from the diagrams, ug > 0 always), but it will certainly lead to
difficulties if steady state profiles are to be calculated for the spatially distributed model
(as there will always be a portion of the profile with ug < 0). We will not consider this
phenomenon further in this thesis, but the solution will obviously involve using a

Heaviside operator in front of all Arrhenius terms, as discussed in section 4.2.
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CHAPTER 5

Existence, uniqueness and multiplicity results for the spatially distributed steady

state model.

Throughout this Chapter we shall assume the region Q satisfies the interior sphere
property of Sperb [32], and further is convex (although the convexity condition can be
relaxed in a number of the results). In addition we will assume all the constants n, A, h,,,
b, ¢, 0. are non-negative. This is a valid assumption on physical grounds (see Chapter

3). We will also make further use of the function w, first mentioned in (2.4), i.e.

Viw+1=0, re Q, (5.1)
ow .
W Biw=0, rean (52)

5.1 Existence results
In this section we will consider the existence of solutions to the steady state problem

(3.58), (3.32) i.e.

- Ah
Va +1 exp(T]l) + wu e

%{g +Bi(w-U)=0, re Q.

1

(050

Due to the nature of the term exp( wj , we will consider the cases o, 2 a > 0 and
o > o, > 0 separately. In particular we will show that a solution exists for all U = 0 when
o, 2o >0, and a solution exists for all U > 0 when o > a,, > 0. We first give some

preliminary results.
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Theorem 5.1

If u is any solution of (3.58), (3.32) with U 2 0, then u > U in Q.

Proof

Consider the functionu—- U, r € Q.

Now

and

é% (u-U) + Bi (u-U) = g—ﬁ +Bi (u-U)=0, re Q.

So by the maximum principle @, u-U20,re Qieu2Ure Q.

Theorem 5.2

Ifo,=20>0,U 20, then

Ah ,
B=U+n [1 + -—ﬂm} w is an upper solution of (3.58), (3.32).

e tOc
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Proof

The function [ satisfies

VZB +1n| exp :l_ + )\'hwq)wdr)c
B) & [ expf2
b V Jo SXP B

[ Ah, 0,0, } —1 Ahy, b0, ~Oly
=MN{l+———[+M exp(—B—) + exp( B j ]
o a) v

Ry

¢e+¢c xc -
eV Jo CXPB
<0, re Q,
and
op . [ Ahy Oyt [OB [ thbw%J
SC+Bif=mn| 1+ 554 B —arhete
an+81[3 nb + o+ 0, —an+ 1(U+n 1+ 0. + 0, wj,

T A

Ah ]
+ Mu®ude (QY’— + Bi w) +Bi U,

=BiU, re oQ.

So, by Definition 2.1.6, B is an upper solution of (3.58), (3.22).

Theorem 5.3

Ifa,=2a>0,U2=0, then

~1 Ahy 00
y=U+n exp(ﬁ)+

is a lower solution of (3.58), (3.32).
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Proof

The function y satisfies

a Ah
quf +1 exp(—lj + wPue
o

—1 7\'hwq)wq)c 0—0Oly
+M| exp|— [+ exp
(\y) b o ( \/ )
0N +y J;z exp(—j dv
\

20, re (by Theorem 5.1),

and

oy (—1) . R

5;+Bhy=n exp| {7 o
e + e exp(ﬁ

- Ah . o—0L
+Bi| U+ exp(ﬁl)+ Pl jexp[ UW) W,

—1) Ahy 0y 0c

O—0Olyy ow . .
=1 exp(—o“ + N eXp| T (‘é‘n‘ + Bi w)+ BiU,
e+ e exp(ﬁ)

=BiU, re dQ.

So, by Definition 2.1.6, vy is a lower solution of (3.58), (3.32).
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We can now give an existence result for the case o, 2o >0, U 2 0.

Theorem 5.4

If o, 20 >0, U 20 there exists a solution u to (3.58), (3.32) with

~0L Ah
Jexp[muw) wSuSU+n[1 +—‘M} w, re Q.

_1) . Ahy, 0,0

U+n| ex (*‘“
P U [0 q)c'*'q)c
b + §c EXp| 7

Proof

For this proof we will use Theorem 2.1.7. Now w(r) >0, r e Q (by Theorem 2.1.8) so

khwq)wq)c ‘1) + 7\'hwq)wq)c exp(a_aw
e + O J

U+n{1 +——}w2U+n exp(ﬁ-
o
¢e+¢ceXP(fj

It is easily shown that J(u)(h), defined in Theorem 2.1.7, for (3.58), (3.32) satisfies

— ~

—1
exp(—u—) Khw(pwq)c Oy~ -0y,
J)th) =n| < 5+ 5 |exp > h
u e o u u

O, + 2 JQ exp(-u—] dv

04
Ah 2o o0l “xp (—J]
+ wq)wq)c exp w]J’Q hdV

2
v(q)c + %)f J;Z exp(%j d\lj

>0, ifo,20>0, re Q.
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Therefore, by Theorem 2.1.7, there exists a solution u with

— Ah
1)+ w@ule , re Q.

i
U+n exp(ﬁ' Ay e 1W¢W¢°} w

N cxp( U j wSuSU+n{1+ 5 + 0,
¢e+¢ce><p(ﬁj

Further to these results, we can show that any solution of (3.58), (3.32) must lie between

these upper and lower solutions. We do this using Theorems 5.5 and 5.6 below.

Theorem 5.5
If o, 20 >0, U20 and u is any solution of (3.58), (3.32), then

th%ﬂ o il E

uSU+T]|:1+ re Q.
be + c

Proof

Ah
Consider the function u — {U +M [1 + ———V&‘i@g} w } ,re Q.
e + Oc

Now

Ah _ A 6. 0. _
VZ (u — {U +M [1 + ‘6;&%%2:' w}): -n exp(L_Il) + q)c w(pwq)ca exp[a Llaw]
0ty [, exp|y [aV

th(pwq)c:l

1
”[ e+ 0,
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and

3%(”‘{U+Tl[1 +MJW})+B{U—{U +n[l +Mﬂ{‘ w})
q)e+¢c ¢e+¢c

J . Ahydue | 0 :
=§%+B1(L1—U)—n[l+“ﬁ}(‘a—}+&w),
=0, re JdQ.

Ah . ~
So by the maximum principle , u-— {U +1M [1 + 74;—“4%9&} w } <0, re Q,
c Cc

i.e. uSU+n{1+ , re Q.
e + Oc

Theorem 5.6
If a,20>0,U>=0 and u is any solution of (3.58), (3.32), then

— Ah, 0., O—0ly, ~
u=2U+n exp(*Ul)+ L0 exp( T ) w, re Q.
o
e + O eXp(ﬁ)

Proof

—1) Ahy, 0y 0.

Consider the function u— J U +n exp(U +
o
e + ¢c €XP| 7

jexp( U ) wl, re Q.
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Now
VZ u— U+ n exp(—%}_) + Khwq)wq)c GXP(G_U(XWJ w
b + Oc GXP(%)
i — Ah c —a,,
=-" exp(Tl) + wq)wq) Cxp(a u(x )
q)c (04
oor [ ol Jav
+M exp(%l_) N le‘bwq)ca Cxp(a—ﬁan
b + O 6Xp(ﬁj
<0, reQ
and

— Al . _
+Biju-) U+n exp(ﬁl‘)+ e ]exp(a [EXW) W

104
q}c + q)c ExXp [—j

-1 )"hwq)wq)c

d
:a—:]l+Bi(L1—U)+n exp(ﬁ)+ jexp( Tw) (‘a‘n‘+Biw

q)e + Cbc exp(%
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So, by the maximum principle ,

= Ah
u—- ) U+n exp("ﬁl-) + wOue

o
P + dc EXP| [
- Ah, 0,0, 00 _
L.e. uzU+n exp(%)+ e exp( UW] w, re Q
64
e + Oc eXp(ﬁ)

We now derive corresponding results for the case o > o, > 0.

Theorem 5.7

If a>a,>0, U20 then

—-1) N Ah, 0,0,

y=U+n exp(ﬁ‘ N w, T€
e + eXp(ﬁJ

is a lower solution of (3.58), (3.32).

Proof

The function y satisfies

-

Y

-1 ) + 7"hw(pw(bc

VA +m | expl— exp
( Qi exp[Lav Y
0+ J, x|

O—Cly

=_ Cxp(_:ﬁl‘)+ 7Lhwq)wq)c +1 exp(j__l_j+ Khwq)wq)c CXp(
b+ b x| & V) ] expf%)av
e c P U eV Q \V

W

I
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and

a\jl . ~1 thq)w(bc
o PBiy=n exp(—ﬁ)+ Ocj (an

Pe + Oc Cxp(ﬁ

= BiU, redQ.
So by Definition 2.1.6, \y is a lower solution of (3.58), (3.32)

Theorem 5.8

If a>a, >0, U>0 then

_ khwq)wq)c -y
B—U+n[1 + 0. + 0, exp( U ﬂ w,

is an upper solution of (3.58), (3.32).

Proof

The function B satisfies

—1) Ahy 0y fe
¢

V2B +1 exp(““ + exp(a—-aw)
P . +%9 I exp(%j dv P

ow

+Biw)+BiU,

= — 'n |:1 + )\'q}::/f\;i)c cxp(ahaw):l + ’n exp(jélj + ¢ q)c
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and

h _
%E—+ Bif="n [1 + Kq)wj:)% exp(aéxwﬂ (%?+ Bi w)+ BiU,

=BiU, re dQ.

So, by Definition 2.1.6, B is an upper solution of (3.58), (3.32).

Note: Clearly the above upper solution becomes infinite at U = 0, indeed we have been
unable to find an upper solution that holds for o > o, > 0, U = 0. It should be
noted again, however, that in physical situations an absolute zero ambient

storage temperature is unlikely to arise.

Theorem 5.9

Ifa, >0 >0, U>0 there exists a solution u to (3.58), (3.32) with

— Al . Ah . -
U+n exp(*ﬁl—) + L0ule - wsu<U+n {1 + q):vf‘ﬁ“ exp(a anﬂ w, re Q.
e + Oc eXp(i}

Proof

We will again use Theorem 2.1.7.

It is easily shown that

Xh wq)wq)c (a_awj} -1 lh wq)wq)c
U+n|:1+ expl T w2U+m exp(ﬁ)+ w, 1€ Q.
+
Pt ¢ O, + O, exp(%)

e C
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Also from (5.3) we have

N x’hw wq)c Ay~ -0y,
J(u)(h) 2 ¢c+¢¢c (UZ jexp( U jh.

So the positive constant ® we must choose in this case to satisfy the conditions of

Theorem 2.1.7 is

@_n}"hw(pwq)c O~y -0,
T gte, (VP )TPUU)

Then, by Theorem 2.1.7, there exists a solution u with

— Ah . ~ A\h -
U+n exp(—l) + wOue wsusU+n|1l+ wOule exp C % w, re Q.
U (04 q)c + q)c U
Pc + e eXp| 7

Theorem 5.10
Ifa>a, >0, U220 and uis any solution of (3.58), (3.32) then

1N Ak _
uzU+n exp(-ﬁ) + wPule w, re Q.
o
Pe + Oc exp| 5
Proof
—1 Ah
Consider the function u— J U +1 exp(U)+ wPude , re Q.

04
Pe + e exp(ﬁj




Now
VA4 u-JU+n exp(%) + Mo 0ue w
e + ¢ EXP(%)
-1 }"hw(bwq)c -0y,
=-" exp(T) + o exp u
O, + v g exp(;j dv
~1 Khw wYc
+7 exp(;;.g:) + 0u0 »
e + Oc eXP(’g)

<0, reQ

and

5% u—JU+n exp(:&j+ M 040 W
el
+Biju—-)U+n exp(%)+ M 0u0e w
(04
Pe + Pc exx{a)

— h . -
= g% + Bi (u-U) +1 exp(*l-}') + MG jexp(u an] (%% + Bi w),

0

e + O Cxp(ﬁ

=0, re dQ.
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So, by the maximum principle @,

pl

W, TE€E

—1) . Ahy, 0,0,

uz2U+n exp(—ﬁ‘
04
e + Oc exp(ﬁj

The following Corollary to Theorem 5.10 will enable us to produce an improved (i.e.

smaller) upper solution for a > a,, > 0 and U small and positive.

Corollary 5.11

By Corollary 2.1.11, if Q is convex there exists a 8 > 0 such thatw 28 >0,re Q. So we

can say that if @ > o, > 0, U 2 0 and u is any solution of (3.58), (3.32) then

—1)+ Ahy, 0,0, Y

uz2U+n exp(“g
o
Pe + e exx{a)

This gives,

Theorem 5.12
If a>a, >0, U>0 and u is any solution of (3.58), (3.32) then

Al —Q _
u<sU+n {1 + L exp(a wﬂ w, re
bo + O

where

— Al .
G=U+n1 exp(—Ul)+ L Qude

o

Qe + o exg)(ﬁ)
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Proof

ANNE exp(a_awﬂ w}, re Q.

Consider the function u — {U +1M [1 +
e + &

Now
Ah —
v? (u - {U +M {l + w0ue f:xp(OC gwﬂ w}]
q)c + ¢C

-1 }"hwq)w(pc O('"'O(w

= -1 exp(T) + ! N expl T
O, + v J’Q exp(t—lj dVv
Ah o
o {1 My 0,00 exp( Gawﬂ |
dc + O
20, re Q (since by Corollary 5.11,u=2G, re Q),
and

e B R et

e3

7\'hw wYc '™ .
= g%+ Bi(u—U)—n{l+ " j_)q)q) exp(aGa ﬂ (%%/+Bl w),

=0, re Q.

So, by the maximum principle ,

Al - _
usU+n {1 + q)lw(qu)c exp(a Gawj w, re Q.

c C
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We can now combine the results for o > a,, > 0 to provide the following improved result

regarding existence.

Theorem 5.13

If a>a, >0, U>0 then there exists a solution u to (3.58), (3.32) with

— Al Ah o0
U+n exp(%) + L @ule wsusU+n {1 + (ij_)‘fc exp( G wﬂ w, re Q,
64 ¢ ¢
e + e €XP| 7

where G is as defined in Theorem 5.12. Further any solution of (3.58), (3.32) must lie in

this range.

Proof

Simple consequence of Theorems 5.7 - 5.12.

We give a final result regarding existence,

Theorem 5.14

The problem (3.58), (3.32) has a minimal solution and a maximal solution if a,, 2 a >0,

Uz20, ora>a,>0, U>0.

Proof

We have shown that

~1 Khwq)w(bc o—-ay,
U+ exp(U) + N eXpl w
%+%w%ﬂ
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is a lower solution and

xhw¢w¢{]w

U 1
+”{ T 0p+ 0

is an upper solution of (3.58), (3.32) if =, >0, U =20. Therefore (3.58), (3.32) has a

minimal and a maximal solution between these upper and lower solutions. The result now

follows since every solution lies between these bounds. A similar approach holds for

o>a, >0 U>0.

Note:

|
In the limiting case Bi — oo, the boundary condition (3.32) becomes
u=U, re JdQ. (5.4)
If we now use the function w which satisfies (5.1) with
w=0, re dQ, (5.5)

then the existence results given by Theorems 5.4 and 5.9 for the cases
o, 2a>0, U20 and a>a, >0, U >0 respectively, still hold for this
limiting case. However, we cannot now prove the existence of the 8 > 0 required
by Corollary 5.11, hence Theorems 5.12, 5.13 no longer hold. Further the
convexity condition on Q can be relaxed for all results in this section except

Theorems 5.12, 5.13.
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5.2  Uniqueness results

In this section we will consider the range of m, U values for which the steady state
problem given by (3.58), (3.32) has a unique solution. The basic procedure we follow is
similar to that of Dancer [53] and Wake et al [13]. However, due to the functional form of
the equation we are dealing with, we need to define a different norm to that used in the
references mentioned above. In particular we will show that if U is sufficiently large and m

is either sufficiently large or sufficiently small, then (3.58), (3.32) has a unique solution.

We first conduct some preliminary analysis from which all the uniqueness results will

stem.

5.2.1 Preliminary analysis
Let uy, u, be the minimal and maximal solutions of (3.58), (3.32), so that W =u, — u; is
non-negative in Q. By the mean value theorem and our construction of the Fréchet

derivative J(u)(h) for the system, y satisfies

expﬁl—j

2 Khwq)wq)c Oy~ o—ay,

Vay +n 2 + o N ( 2 jexp[ c j f

¢c+'\7c 0 exp(z)d\/
off)
2 _ *Pl
. Ahy 0y be O exp(a awjj 7C vav =0 reo,
0, AP ¢ )
Vv ¢C+VJ.Q exp(c]dv

%\E+Bi\|/=0, re dQ,
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where ( is a function satisfying u; £ < u,. Consider the Banach space C,,(Q2) defined by

rsg}zz fu(r)l
C,(Q) =4ue C(Q):lull, = .

inf_Iw()l <
re Q2

Note: again we use Corollary 2.1.11 to show that there exists a 0 > O such that

w=8>0in Q.

Let g denote the symmetric Green's function for -V? with the boundary condition

g—g‘ + Biu=0. Then the integral operator G; given by

G = [, s u@dl, re Q (5.6)

is a compact map Lg(€2) — W o(€). Also if q > 3 it is easily verified (see e.g. Friedman
[54]) that WQ‘Q(Q) can be continuously imbedded in Cl(Q), and CH(Q) can be
continuously imbedded in C, (). So G, is a compact map from Lg(£) into C,,(€) if

q > 3.

Now y e C,(Q), hence from the definition of G,

exp(‘—‘l]

C 7Lhwq)wq)c Oy —Q o—Q,,
y=Gin 02 + o o (Cz )exp[ c ) v
q>e+-\7 0 exp(zjdV

" -
exp| =
thq)wq)go‘ O{"'O('w icj
’ 0 y 26“{ ¢ )Ll e v
V[¢C+V° 0 exp(zjd\/}
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Soifq > 3.
exp =1

[ C’ ) }"hwq)wq)c Oy —0 oo,

hylly, = Gqil N 2 + s o ( e jexp[ c ) 1
Q)c+v£fg exp(?j dv
exp Z )
Ah, 0,020 o0y, A (C)
9 a) Y exp[ )'[Q e Ve ’
\Y {({) +ty JQ exp(g) d\/j

- w

e q 3
e}\p( C j Kh\vq)wq)c Oy~ o—-ay,
S NGy lly g nf < 02 + ( 02 jexp( c j>\u
P o
et —|dV
| ERTI |
o)
2 B XPl
. khw(pwq)ca - exp( aij' ZC . dv ,
ﬁ)_c_ o C Q C
v ¢3+VJ’Q exp C dv
— q,Q

(where IIG,ll,, , is the operator norm of the operator in equation (5.6) and llell; o, is the

w,q

norm given in Definition 2.1.4),

off

S NGyl q dl 02 Y

q.2
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nxhwq)wq)c Oy =0 OOy
d s ek
¢c+vc* o exp(‘ij dv
q.Q
o D
AL wWYW 2 —Yw exp(_j
.\ 1;11) 1,0 ¢coca exp(oc Coc ),[Q CZC wdv (|
\% [¢c+7° jQ exp[z) d'\/)Z
q,Q/
1
exp(—z) rsg}gz hyl
S NGyl g M 02 W W -
. Ay 0,0c (aw~oc)exp(a~aw)w 2
¢ ¢? 4 W
¢°+%Jsz exp(%jdV
q,2
exp =
xp| —
NAhy,0,020: o-a, (CJ S, W
+ A 3 2exp( C )JQ C?‘ dV w
V [q)c +V9 JQ exp(‘c‘) dVJ

So this gives

cX ——-'1"
()

2 w
G 0.0

Iylly, < NGyl o hylly, | | [




174

Tv\'hwq)w(pc (OCW—(X] exp(a"awj -
2
oa) v g g

YT

q,

2 e
nkhwq)wq)c(l p (07 awj J’Q sz; dVv w (57)

ex ( c
v [(j)e + %9 fQ exp(%) d\/JZ

From here we will consider the cases a,, 2o >0, o > a,, > 0 separately.

5.2.2 The case oty 200 >0

For a, 2o >0, U =0 the bounds derived in section 5.1 gave us

— Al — AL —
U+ exp(Ul)+ 1w¢w¢ca exp(a anJ wsl<U+M [l +—¢%§g}w, re Q.
e + Oc CXP(’Q) S

So
: o)
exp| = had
¢ eXp|
|, —2tavs =,
t" -1 thq)wq)c o—Qy,
U+n exp(‘ﬁ‘) + eXp| T )
o
Pe + P eXP(‘gj

where 0 is as defined in Corollary 2.1.11.
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Therefore

ihylly, < 11Gylly, ¢ Iyl { L w l Gn.,
Q q’Q C q,Q
Cym exp{%} w
+
-] 7\'hwq)wq)c (O‘_aw)
U+n| ex (—) ex o
PlU O OPU
00+ 0c exp|
q,82
where
C, = 7"hwq)wq)(:(OLw“OL) _ thq)wq)go‘
ettt T (00400

We now define the integrals I;, I,, I3 where

n ¥ n
I, = W :J’ (‘7 wj dv,
( C" q,QJ @ C
Cin X cn Y
I, = i _E“W' ] -j (“Tw)d\/,
( ¢ "l ) Tl
/ o
Cn exp(ﬁ)w
I3 = 3
U+n exp(%)+ Ay 00 5
o o,
N b + & exp({j}exp( U )

(5.8)

(5.9)

(5.10)
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Comexp Ulv
= s [dv. 5
« 1 Ah, OO, o0t
U+n exp(U)+ eXp| Ty )
o
o)
/

We can now give:

Theorem 5.15

If o, 20 >0, then for every Uy >0 there exists a 1 so that (3.58), (3.32) has a unique

solution whenever U =2 Uy and 1 2 1.

Proof

We first show that the integrals I, I, I3 defined by (5.9), (5.10), (5.11) all tend to zero as

N — oo,

(1)

Consider I;.

— Ah . _
Since { satisfies Mw < ({-U) exp(_Ul) + whuOe CXP(OL Uocwj |
o
e + 0 em(g)

if we fix Uy > 0, then for U 2 U,

L o<, (C;;U Oj exp(:U‘lg) Mhudute |V Gy

(0.

G + & ew(mj

=+

— Ah —0
Also {2Uy+n exp(ﬁ%)+ wue exp( UOW) w, reqQ,
)

b, + 0. exp U,
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uniformly for U = U, as 1] — o. Further as { > Uy we have

Z;_U -1 }\'hwq)wq)c -0y
) en(3)- - jp( =

de + O eXP(U_O

INg

1 J —’1 )"hwq)w(bc
< 21?0 exp(U—0)+ o exp(
e+ e CXP(U_O)

So, by the dominated convergence theorem, we have

C—U -1 }‘"hwq)wq)c T Mw
oty 2ot

Pe + O exP(ﬁ

_.1q

uniformly for U 2 Uy, as M — oo,

Consider I,.

A similar process to that outlined above shows that for U 2 U,

C_U -1 thq)wq)c o—0yy,
I, < JQ O (‘E?Q) exp(-U—O)+ . )exp Us dv,

b + O eXp(ﬁ;

dv =0

~1N\g
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J;z o} (%’_2[_}_) exp(:&)nt Khw(i?wd)c exp(azjawj dv =0
)

uniformly for U 2Ugpasm — ee.

(111)  Consider Is.

If we again fix Uy > 0O, then for U 2 U

/ . N
Com exp(U—Oj Hwily
< [ > |dv

_ Ah O
Uy +1 exp(U—D+ wPue )exp( U(jjw) S

(04

be + Oc eXP(@‘a

\

Note: It can be shown, using a method similar to that used in the proof of

Theorem 2.1.10 (but with an escribed sphere) that llwlly is finite.

We then observe that

C
o 1

Czn eXp(ﬁ)”W”O
\Y 7 | =0

_ Al _
U+ exp(-Ul*)«F Qe jexp(al;wa S

o

e + Qe €Xp[ﬁ

\

uniformly for U 2 Uy as 1 — oo,
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Finally we note that there is a ng > 0, so that whenever 11 2 g and U = U,

-1N\g
L+, +3< fQ (C’C——zuj exp(%)Jr My Oude exp(aw[jxw) dVv
e + dc eXp(ﬁ)

~-U -1 }‘hw wyYe —Yw
+ J’Q O (%;j exp('ﬁ*)+ bud 5 exp((x{;C ) dv
e + G exp ﬁ]

4 o \!
Cyn exp(ﬁwj Hwilgy
+ VvV L 5
~1 Khwq)wq)c O—0y
U+n exp(—‘) + exp d
Y s (aj ’
e [ exp ﬁ
\ J
1
Gy 1y.q

So for U 2 Uy, M 2 M this inequality and (5.8) gives

Iyll, < Dy Iyll,, |

where Dj is a constant less than one. Clearly only y = 0 can satisfy this inequality and

thus our theorem is proved.
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We can also give:

Theorem 5.16
If a, 20 >0, then for every Uy >0 there exists a N so that (3.58), (3.32) has a unique

solution whenever U 2 U, and n <nj.

Proof

Returning to equation (5.7) and observing

-k
o)

2 T2 k> 0),
we have (fixing Uy >0 and U 2 Uy)
hlly, < Gy, , hydl ” ul Hwll + ] aSil wll
< — llw — llw
Wiy 1w, q Yily eZ 0 0.9 (a_aw)ZeZ 0 w0
o
Cn exp ﬁ—(; Hw g
+ 2 X
-1 Khwq)wq)c o0y,
Uy + 1| expl77 |+ ex S
ot N p(UO) o P Uy
9c + e exp| 7
q.Q7
1 an 4G
= Gyl o Ihpll, V79 llwllg s—5 + 5=
Gylly g thylly, wllg {62 (0 ) &2
\
Com expl —
2N exp Uy
+ 2 |-
—1 Ahy 0, o0t
Un+1l e — 4 wYwVYce w S
ol Xp(Uo) o €Xp Uy
+ ¢, eXp| 77
(Dc (Dc p U() y
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Now
-
C o
an 4Cim N exp(U)
2 (o) € 2 =0
" U+ exp(i)-i- Ay, 00 exp(on—ocw) )
A (“j ’
exXpDl ¥7
L e c CXp U )

uniformly for U 2 Uy asn — 0, so in particular there is a Mg > 0 so that whenever n <

and U ZUO

1
Va fiwlly

<

4 o N
fl + 4Cm ek exp(ﬁ]
2 2 .2 2
e” (a-ay)"e Uan m A Ahy, 0,0, (oc-onwj 5 >
exp(—) exp
U o U
e + & €Xp| 5
L
S Gl o

So for U= Uy and M €My this inequality and (5.8) gives

hyll, < Dy iy, ,

where D4 is a constant less than one. Again \y = 0 is the only function that can satisfy

this inequality, and so we have a unique solution as desired.
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5.2.3 The case o >0, >0

The results in this section are similar to those derived in section 5.2.2 except we have

—1) L Mt

Ah - _
U+n exp(-U— wSCSU+nl:1+ wq)wq)cexp(aéxwﬂw, re Q.
(04
e + bc exp(ﬁj

Pe + P

. - . o0
Of course we must also account for the change in monotonicity of the function exp( 0 w}

Theorem 5.17

If o> 0, >0, then for every Uy > 0 there exists a 1 so that (3.58), (3.32) has a unique

solution whenever U 2 Uy and 11 2 M.

Proof

Similar to the proof of Theorem 5.15, except we must choose

q q
/ Cm O—0Ly, Cm 00t
([ ol -l [l
q,0

0—0Ly, o \
G exp( U ]exp(ﬁ) w
—1 ) th(pwq)c

U+ exp(—u— +
o
e + e exz{gj

d

q,Q
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-1

—1 Ah
and use the inequality nw < ({-U) exp(v%_ wOwde
o
e + Oc ew(g]

Theorem 5.18
If o>a, >0, thenforevery Uy>0 there exists a Ng so that (3.58), (3.32) has a unique

solution whenever U 2 U, and M <1j.

Proof

Similar to that proof of Theorem 5.16 except we must use the initial inequality

Cln O—-0Oy wil
U% €Xp U() w 0

fr-T-l-ll I
o2 Wil

+
q.£2

Iyl < Gyl u\ynw{ ;
q,0

-0, o
Con exp Us expﬁ; lwllg

2 .
_ Ah . -
Up+m exp(U—lo + whude )

o
b + ¢ exz{mj

q,.Q)

5.2.4 Comments

Concerning uniqueness for small 1, we would liked to have obtained the following result:
if 17 is sufficiently small then there exists a unique solution of (3.58), (3.32) for all U = 0.
We have been unable to obtain this best possible result. We would, however, be able to

obtain this result for the case o, 2 a >0 if we could show that the function (in equation

(5.7))
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o exp| =

0. o T
¢c+v o exp(g)d\/

is bounded above by a value which does not tend to infinity as U becomes small (at least

for the range of { under consideration). We strongly suspect that this function is indeed
bounded above by a function independent of U, but we have been unable to prove this. We
should also mention that none of the above uniqueness results hold for the limiting case
Bi — o (i.e. the case corresponding to the boundary condition (5.4)), as we cannot verify

the existence of the & > 0 necessary for the proofs.

5.3  Results on the multiplicity of solutions

In this section we construct further upper and lower solutions for the case a,, =2 o > 0,
and hence show the system (3.58), (3.32) can have at least two solutions. We finally
apply a result of Amann [54] to show that the system can have at least three solutions for

o, = o> 0.

Theorem 5.18

If o, 20>0, U220 and U is sufficiently small, in particular

-1 Ah X -1
n liwll, < exp(r)b”)-k w0 U,
< 0—0Ly,
O + ¢ exp U
then

(05104
B=U+n exp(iﬁ)+ OC)exp( 2ij w

Gc + O exp(gg

is an upper solution of (3.58), (3.32).
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Proof

The function [ satisfies

-1 Khwq)w(pc
)
¢

V2B +1 exp(_ +

_ :_1_ A'hwq)w(pc ; (X'—aw
= -M CXP(ZU) + o je)\p U

Now if U is sufficiently small so that

-1
o—0Ly,
p ZUJ U,

(04
e + & eXP(ﬁjJ

- Ah
n liwlly < exp(,-)—llj).*_ wPcPc

then

-1

Ah .
B=U+n CXP(EU") . whwde

exp(
aj 2U

Pe + O eXP(Qg

So for these U values B satisfies

—1) Ahy, 0,0
)

V2B +m exp(E + exp(aﬁﬁaw)
et % J;) exp(%) dVv
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and

B ooin ~1 My 0y 0

BiU, re Q.

So by Definition 2.1.6, 3 is an upper solution of (3.58), (3.32).

We can combine this result with Theorem 5.3 to give:

Theorem 5.19

If o, 200 >0, U >0 and U is sufficiently small then (3.58), (3.32) has a solution u

satisfying
—1 Ah,d,0. 0—0L,,
U+n exp(— + exp w<u
U o U
00 + 0 exp| ;7
-1 Ah q)wq)c o—Qlyy
<U+n exp( j+ = exp w, re Q.

2U o 20

e + Oc em(gg)
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Proof

We showed in Theorem 5.3 that

0 o] exp{L) 2t
e+ e Cxp[ﬁ)

is a lower solution for all U 2 0, and in Theorem 5.18 that

_—_l xhwq)wq)c oy,
U+n CXP(ZU) + o eXp| 5[ w
Pe + 9c exr{gﬁ“j

is an upper solution for U sufficiently small. The result follows using the inequality

— Ah . ~
U+n exp(*ﬁl“) + whuwPe exp(@ UOCWJ W
o
e+ Pc eXp(ﬁj

:__1_ khw‘bwq)c o0y
<U+1 exp(ZU)+ N exp( 0 j w,
ol

and Theorem 2.1.7.

We now construct another lower solution. The lower solution in the following result was
first used by Wake et al [13] for the limiting case Bi — oo (and the 'dry' reaction only

ie. A =0).
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Theorem 5.20

If o, 20>0, U200 andn is sufficiently large, then

__ 1
= 2wl

Y =U +exp(Aw ¢nm) -1, where A

is a lower solution of (3.58), (3.32).

Proof

The function v satisfies

]

[(A £nm)? IVwIZ + A £nm V2w] exp(Aw £nm)

v &
v

—1) Ahy .y be
$

. ( . (a—aw)
exp|— exXp
PheolJor 7

ety Jo €XP

v

[(A ¢nm)? IVwi? — A ¢nm) exp(Aw £n1)

-1
+ 1 exp , re Q.
(exp(Aw Zm])—l)

d
Now, by Theorem 2.1.8, w(r) >0, r e Q and 5\:— (r) <0, re JdQ. Therefore Q can be

expressed as the disjoint union

Q=0,0UQ,
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where Q, , Q, are open sets with
kyr =<4 P

Vw2 2k, >0,  inQ,

w22, >0, in Q,

: 1 o
for some constants kg4, £4. Given that Aw < 7, ¥ then satisfies

W o

2 :‘i thq)wq)c -0y
Vay +1 exp( j + . exp v
e + VQ jﬂ exp[;j d

v

A fim (Akg £nm-1) exp(Aw £nm), re Q,

> —Afm il +1 -1 Q
2 — nnmM exp| —~ X re .
Ve )T p[exp(A€4 enm)-1 } 2

We now choose 1 so large that

1
ZnnZ‘A—g,

and

-1
n exp[ )> A\/ﬁ im, (5.12)

exp(A, £nm)-1

-1
exp(Ad, £nn)—1

(e.g. if m satisfies exp(Af, ¢nm) > 2 then 1M exp[ )> n el so (5.12) is

satisfied if M > Ae £nm).
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Then y satisfies

- h
Vz\;/ +1M exp(ﬁ} + Ay 0y

s
exp
“J av oV

s
e+ JQ eXP@

for these values of 1.

Also

%+ Biy = A /Zmm exp(Aw ¢4nn) %—‘: +Bi (U + exp(Aw nm)-1),

-BiwA ¢nm exp(Aw ¢nn) + Bi (U + exp(Aw £nm)-1),

IN

Bi {exp(Aw £nm) (I-Ad énm) -1} +BiU, re 0Q,

where § is again as defined in Corollary 2.1.11. Now if 1 is also sufficiently large so that

1
{nm > ——, then
285

—aa—\,n—/+Biu/SBiU, re dQ.

So, for these 1 values, y is a lower solution of (3.58), (3.32).
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Note: For the limiting case Bi — o, we will be dealing with the boundary condition
(5.4), and the function w that satisfies the boundary condition (5.5). In this case

the boundary inequality becomes

Yy =U + exp(Aw Znm) — 1,
=U, reodQ,

hence y is also a lower solution in this limiting case.

We can combine this result with Theorem 5.2 to give:

Theorem 5.21

If a,20 >0, U220 andn is sufficiently large, then (3.58), (3.32) has a solution u

satisfying

Ah
wq»wﬂ v rea

U+exp(AwEnn)—ISuSU+n[l +
q)c+q)c

Proof
We have previously shown that the lower bound is a lower solution for | sufficiently large,
and the upper bound is an upper solution for all U > 0. Then using Theorem 2.1.7 we must

simply show

M] w. (5.13)

U+exp(Aw£nT])—l<U+T][l+
¢e+q)c
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Now

£nn
exp(Aw fnm) — 1 _ exp(A llwllg ) ~ 1 GXP( 2 )‘1 -1

w lwll = T lwlly T hwllp

So if m is sufficiently large so that

n[l +?‘hw¢w¢c] > \/ﬁ“l

O, + B, Hwlly

then (5.13) is satisfied.

We can now combine Theorems 5.19 and 5.21 to give:

Theorem 5.22

If a, =20 >0, U is sufficiently small and m is sufficiently large, then (3.58), (3.32) has at

least two solutions.

Proof
We have constructed two pairs of upper and lower solutions. To prove the result we must

show that the hypotheses of Theorems 5.19, 5.21 hold and in addition

U+n CXP(E—G)"' N jexp( 2UW) w < U +exp(Aw nm) — 1,

for U sufficiently small and M sufficiently large. If M; is such that Theorem 5.21 holds for all

M 21, then fix n, >my. Then for M € [N, M,], Theorem 5.19 holds when U satisfies

-1
U.

-1 ) .\ Ahydywbe

N liwlly < exp('"['j N
e + Oc eXP[ﬁ]
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If in particular U; satisfies

-1
-1 Ah, 0.0, -
M, liwlly < exp(ZUJ+ B Loc exp( 2U1w) Uy,
e t+ e eXP(TUJ

then Theorem 5.19 holds V U € [0, U;] andm € [N, N3]

If U; is also required to satisfy

exp( -1 )+ Ahy, 0,0, Cxp(oc—ocw) < min £nm; fnm,
2U; o j 2U, 21, lwlly 7~ 2y lwlly )’

e + P exx{m

then for Ue [0,U;], ne [N, Nyl

o~ < S
2U o 2U 21 liwll, nw

-1 Ahy, 0,0, o0y, nm exp(Aw £nm) - 1
exp( ) + exp < .
e + b eprﬁj

So

o0l
jexp( 2Uw) w < U+ exp(Aw inm) - 1,

_ Al :
U exp( _[_1]_ ) . 1y Py P

¢4
e + e €XP| 515

as required
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In fact, using the two solutions (ug;, ug, say) derived above and a result of Amann [54]

Wwe can say:

Theorem 5.23
If a, 2o >0, U is sufficiently small and n is sufficiently large, then (3.58), (3.32) has at

least three solutions.

Proof
The result of Amann [54] can easily be extended to include the functional form we are

considering here. Amann's result states that if the problem

Vii+ju) =0, reQ,
(5.14)
Bu=0, reoQ,

(where B is a boundary operator of the form given in Definition 2.1.6), has two solutions

up, Uy, then it also has at least one further solution uy satisfying u; <u, <u,, provided the

linearized problems

Vi + i) x =0, reQ,l
(5.15)
By=0, redQ, J

i =1,2, have only the trivial solution (where j’(u;) is the Fréchet derivative of j evaluated
at u;). We extend this result to include the case we are studying here by first making the
transformation v = u — U to achieve a modified system with homogeneous boundary

conditions. Equations (3.58), (3.32) are then of the form
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V2v+f(v+U,I g(v+U) dVJ=O, reQ,
Q (5.16)

Bv=0, te€0Q,
the linearized form of which is

V3 +I(v+U) () =0, reQ,
(5.17)
B{=0, re 0Q,

where . J(v+U) (§) is the Fréchet derivative whose form is given in (5.3).

If we note that the solution of (5.16) can be written in the form
v=][, G, Df [v(’c) +U, [ g0v+U) dV)dVT,

where dV. is a volume element with respect to the dummy variable T and G, is the
Green's function for —V? with the boundary operator B, then it is easy to show that the

main result of Amann also holds for our functional case.

Note: The above results also hold in the limiting case Bi — oo, with the boundary

conditions for u and w given by (5.4) and (5.5) respectively. We have been

unable to derive corresponding multiplicity results for the case o >, > 0, due

to the difficulty of constructing an upper solution which does not get large as

U — 0. All the results in this section still hold if the convexity condition on Q is

relaxed.
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CHAPTER 6

Existence and uniqueness results for the time dependent problem.

In this final chapter we show that the time dependent problem defined by (3.28) - (3.30),
(3.32) - (3.37) has a unique solution on the region Qp = Q x (0, T], dQ1 = dQ x (0, T},
where T < oo, but can be arbitrarily large. Firstly we rewrite the equations (3.28) - (3.30),

(3.32) - (3.34) in the following form

Ju |, —1 —QL, -0
Frimil Viu = exp(T) + K{hwcpw X exp( a VJ— hede x exp(T) + hede y}

=f (u,y,x), inQg, (6.1)

dy ¥ 1 - X )

a%— ; sz = g{q)c X exp( ‘;)» (j)cy} =1, (u, y,x), inQ, (6.2)
a_X_l{ —_Ot =f in & 6.3
at - £ q)cy - q)e X €exXp u =13 (Ua Y, X), 1 séT, ()' )
Jdu . :

It Biu=BiU, ondQy, (6.4)
dy

an = 0, on aQT, (65)
g‘z':O, on dQr. (6.6)

The form of the initial conditions remains unchanged.
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The most interesting aspect of this system is the fact that the function f; (u, y, x) is not
necessarily monotone in the x variable. To obtain the desired existence/uniqueness
theorems we will therefore use the results of McNabb. In his 1961 paper, McNabb [55]
gave existence/uniqueness results for parabolic systems with source functions that satisfy
a monotone property, these have been extended to systems with more general boundary
conditions, see e.g. Ladde et al [56]. These results were later (1986) further extended
(McNabb [57]) to include non-monotone functions. These results involve imbedding the
non-monotone system in another system of twice the order. The following Theorem

represents the application of the main result contained in McNabb |57] to our system:

Theorem 6.1
Suppose the functions f;, f, f3 defined in (6.1) - (6.3) are Holder continuous and satisfy a
Lipschitz condition in Q. Suppose further that there exist continuous functions u, u, Y,

Y X, X (withuzu, y2 Y X 2 x) that satisfy the following inequalities

o

5{ _n, V2ﬁ 2_15:1 (ﬁ’ u, y: X: Xa E), in QT’ (6.7)
a_z X‘—I2"“>_‘ — = - inQ

v yh (u, u, ¥,y X, x), inL, (6.8)
OX _ = _ - .

5?2 Fs (u, u, y, Y X X), in Qr, (6.9)
du  , o9 _ _ _ .

F-NMVusE @y yy X x), inQr (6.10)
dy

ﬁ—gvzz <E @ uyy X x), inQrp (6.11)
ox _ _

S S u Yy X%, inQy, (6.12)




where

oL
1

2025’, on dQr,

g—l’izoz—g—ﬁ, on 0Qr,

U020, 2u@0), onQ,

yr0) 2y 2y (1,0), onQ,

X (1,0) 2 %) 2 x (1,0), on 52,

F, @ u

jst
=<
=
x|
<
N—
[
[z}
=t
=i

I—:2 (ﬁ) u, —)-/_, ya —)Z, &) = Sup
h u<,<u
X<0,5%

ﬁ3 (ﬁ’ u, 9: y: )_(, _&) = SUP
B ush, <u
y<0,sy
Ei(mou y,y, X, x) = inf
B y<0,<y
X<0,<%
Eo(u,u, y,y, %X, x) = inf
usg, <u
X<0,<x
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%+BiﬁZBiU2—aT“]+Big, on 99,

f] (_Ll) 823 63)3

f, (61, Y, 01),

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)
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E.3 (ﬁa u, ya )’, ia )_(.) = inf f3 (615 929 >_(.)‘
- 0
0

ININ
IN A
<=l

1
2

< =

Then there exists a unique solution u, y, x of (6.1) - (6.6), (3.35) - (3.37) with

ususy, ySy<y, x<x<x, inQr.

Proof

See McNabb [55], [57],

Using the above Theorem leads to the main result of this chapter:

Theorem 6.2

The system (6.1) - (6.6), (3.35) - (3.37) has a unique solution u, y, x satisfying

Cy + Dy exp(at)
, w

O<us<igll+U+

b4

0<y<A; exp(uit) + By exp(u,t),

Ay B,
0<x<—eu,; exp(p ) + ‘— ELly exp(Hat),
, R

C [
where

w is the solution of (5.1), (5.2),

N L
1 82 >

(6.19)
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by ="\ / %‘39 (6.20)

[ [TIVATIPS
B1=¢e Xallo = thyyllg Hl, (6.21)
e (Ko — 1)
Ay =lyllp— By, (6.22)
hy, 0y € Ity]
Co=1+MIA,l {Mmc %}, (6.23)
e
h
D, =1 B, {M+ th)C} . (6.24)

Proof

It is easy to show that the f;, 1 = 1, 2, 3 satisfy the desired Ho6lder and Lipschitz

conditions, since the partial derivatives of the f; with respect to u, y, x are bounded on any

o
bounded region (u = 0), (for u = 0 we replace exp(“a‘j etc. by zero). So we must simply

find functions u, u, Yy, s X, X that satisfy the inequalities (6.7) - (6.18). Now reinforcing

inequalities (6.7) - (6.12) gives

du

So-M VA2 144 (hy 0, X +ho 0T}, (6.25)
T Tvgetio,x-0.9), (626)
at £ e e C

ax

1
5220 (6.27)
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aLl. s o2 = —a

3N Vau <A —he ¢ X exp| [+ he by (6.28)
J 1

=Tty <oy, (6.29)

S - g -

x 1

S<_ 0. x. (6.30)
t g

Clearly w =y =x= 0 satisfy the inequalities (6.28) - (6.29) and the right-hand
inequalities of (6.13) - (6.18). Now consider the functions X; , ¥, that satisfy the coupled

ordinary differential equations

.Ci-:.l__l v 0
dr Tg %X 120
ax; 1.

Gt g ey 20

yi =0)=1lhylly, Xy (t=0)=liyllp.
This system has the simple analytic solution

= 2o e 0+ 2o s exptna 0,

(3 e

where L, Wy, By, A; are as defined in (6.19) - (6.22). It is easy to show that B; > 0 and
A, can be positive or negative depending on the initial conditions. Further, y; 2 Ihy,ll, for

all t > 0 and x; 2 lIy;lly for all t > 0. Clearly y = y; and X = X; satisfy the inequalities




202

(6.26), (6.27) and the left-hand inequalities of (6.14), (6.15), (6.17), (6.18). Next,

reinforcing inequality (6.25) gives
du oo
3N Va2 Cy + Dy exp(iyt), (6.31)

where C;, D; are as defined in (6.23), (6.24).

Now consider the function

C;+D t
T, = Il + U + L PLeXPU D

b

i
this function satisfies
Ju _ D, ex t
5%—1]' Vi, = Ha /P(Hz ) w + C, + Dy exp(iy ),

n
2 Cl + D] CXP(HZ t) s in Qr

Soclearly u=u, satisfies (6.31), as well as the left-hand inequality of (6.16). Finally this

choice of u satisfies

u C,+D t D
%9+Bia _ St Dy explia Y a—W+Bi(HC1IIO+U+C1+ 1eXp(H2 1 wj,
n 7 on n’
Ci +Djexp(iyt) /¢
- ‘]“,X*’(“ )(—‘)al—”]”wi w)+Bi (Gl + U,
n

Bi (I, lly + U),
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> Bi U, on aQT,

so the left-hand inequality of (6.13) is satisfied also.

This completes the proof.

Note:  The above results also hold in the limiting case Bi — oo, with the boundary
conditions for u and w given by (5.4) and (5.5) respectively, and a modified

boundary inequality (6.13) of the form

uzUz2u, ondQy.
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ncluding comment;

One of the most interesting aspects of this work has been the wide range of behaviour
which can be introduced into the model by the addition of the effects of moisture. In fact
the use of degenerate singularity theory demonstrated the existence of at least twenty-five
distinct bifurcation diagrams for the spatially uniform model (i.e. in the limiting case as
the thermal conductivity and diffusivity of the body become large). Also, as indicated in
Figure 4.2, the model predicts that the body can be substantially more prone to
spontaneous ignition when the effects of moisture are included. Results for the spatially
distributed model were obviously more difficult to obtain. The existence, uniqueness
and multiplicity results achieved for the steady state profiles give a good insight into the
behaviour of the model equations, but further results will still be required before the full
steady state behaviour can be predicted. These results include: (i) a better upper solution
for the case o>ow (i.e. one that does not get large as U gets small), (ii) a uniqueness
result for all positive U with 1 sufficiently small, and (iii) a result on multiple solutions
for the case a>0w (indeed the author conjectures that there can also be at least five

solutions for finite thermal conductivity and diffusivity).
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