Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Bacteria associated with Haemonchus contortus

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy

at Massey University, Palmerston North, New Zealand.

Gajenthiran Sinnathamby

2012

Table of Contents

Table of Contents	i
Abstract	viii
Acknowledgements	x
List of Figures	xii
List of Tables	xvii
List of Abbreviations	xix
Introduction	xxiv

Chapter 1 Literature review 1
1.1. Bacterial associations with eukaryotes 1
1.1.1. Symbiosis
1.1.2. Evolution of symbiosis
1.1.3. Transmission of symbionts
1.2. Symbiotic bacteria 4
1.2.1. Gut symbionts
1.2.1.1. Rumen microbes
1.2.1.2. Human gut microbes
1.2.1.3. Gut microbes of the "Ecdysozoa"
1.2.2. Bacterial manipulation of reproduction 10
1.2.3. Bacterial manipulation of host fitness 12
1.3. Bacteria associated with nematodes
1.3.1. Free-living soil nematodes
1.3.2. Free-living marine nematodes
1.3.3. Plant parasitic nematodes
1.3.3.1. Xiphinema and Verrucomicrobia 16
1.3.3.2. Cyst forming nematodes
1.3.3.3. Radopholus similis
1.3.3.4. Pine wilt nematodes
1.3.4. Entomopathogenic nematodes

1.3.5. Nematodes of mammals	19
1.3.5.1. Wolbachia in filaria	20
1.3.5.2. Wolbachia in Strongyloidae	21
1.3.5.3. Ascaris suum	22
1.3.5.4. Heligmosomoides polygyrus	22
1.3.5.5. Trichuris muris	22
1.3.5.6. Haemonchus contortus	23
1.4. Exploring the bacterial profile of Haemonchus contortus	24

Chapter 2 Visualisation of Bacteria using Transmission Electron and Light

Microscopy	27
2.1. Introduction	27
2.2. Materials and methods	28
2.2.1. Sheep and parasites	28
2.2.2. Light microscopy	28
2.2.3. Transmission electron microscopy	29
2.3. Results	29
2.3.1. Light microscopy	29
2.3.2. Transmission electron microscopy	30
2.4. Discussion	30

Chapter 3 Development of protocols for DNA fingerprinting	32
3.1. Introduction	32
3.2. Materials and methods	33
3.2.1. Sheep	33
3.2.2. Haemonchus contortus	33
3.2.3. Collection of sheep gut samples	34
3.2.4. DNA free water and equipment	34
3.2.5. Development of molecular biological protocols	34
3.2.5.1. Extraction of DNA	34
3.2.5.1.1. Cetyltrimethylammonium bromide	35
3.2.5.1.2. Phenol-chloroform method	36
3.2.5.1.3. QIAamp DNA stool-kit method	36

3.2.5.1.4. QIAamp DNA stool-kit method with enzymatic digestion and/or
physical disruption
3.2.5.2. Primer selection
3.2.5.3. PCR-denaturing gel electrophoresis (PCR-DGGE)
3.2.5.3.1. PCR using primer set 338f and 518r 39
3.2.5.3.2. Selection of denaturing gradients, electrophoresis time and voltages. 39
3.2.5.4. Evaluation of bacterial contamination of reagents and solutions
3.2.6. Bacterial profiles of L3 and adult worms during recovery from gut contents
3.2.6.1. Collection of samples during larval culture
3.2.6.2. Collection of samples during adult worm recovery
3.3. Results
3.3. Results 423.3.1. Development of the experimental protocol42
3.3.1. Development of the experimental protocol
3.3.1. Development of the experimental protocol423.3.1.1. DNA extraction42
3.3.1. Development of the experimental protocol423.3.1.1. DNA extraction423.3.1.2. Primer selection43
3.3.1. Development of the experimental protocol423.3.1.1. DNA extraction423.3.1.2. Primer selection433.3.1.3. Denaturing gradients, electrophoresis time and voltages43
3.3.1. Development of the experimental protocol423.3.1.1. DNA extraction423.3.1.2. Primer selection433.3.1.3. Denaturing gradients, electrophoresis time and voltages433.3.1.4. Evaluation of bacterial contamination in reagents43
3.3.1. Development of the experimental protocol423.3.1.1. DNA extraction423.3.1.2. Primer selection433.3.1.3. Denaturing gradients, electrophoresis time and voltages433.3.1.4. Evaluation of bacterial contamination in reagents433.3.1.5. Bacterial profiles of adult worms and L3 during recovery from gut
3.3.1. Development of the experimental protocol423.3.1.1. DNA extraction423.3.1.2. Primer selection433.3.1.3. Denaturing gradients, electrophoresis time and voltages433.3.1.4. Evaluation of bacterial contamination in reagents433.3.1.5. Bacterial profiles of adult worms and L3 during recovery from gut contents44

Chapter 4 Identification of bacteria associated with Haemonchus contortus

using DNA fingerprinting	47
4.1. Introduction	47
4.2. Materials and methods	48
4.2.1. Sheep	48
4.2.2. Samples used for DNA extraction	48
4.2.3. Extraction of DNA	48
4.2.4. PCR-DGGE	49
4.2.5. Sequencing DNA fragments in excised DGGE bands	49
4.2.5.1. DNA extraction and PCR	49

4.2.5.2. Cloning and sequencing	49
4.2.5.3. DNA extraction and sequencing of Band 8 in DGGE gels	50
4.2.6. Sequence editing and analysis	50
4.3. Results	51
4.3.1. Haemonchus contortus and abomasal contents	51
4.3.2. Eggs, adult worms and L3	51
4.3.3. Male and female worms	51
4.3.4. Sequences from DGGE bands in Haemonchus contortus adults, L3 a	and
eggs	52
4.3.4.1. <i>Haemonchus contortus</i> adult worms	52
4.3.4.2. Haemonchus contortus L3	53
4.3.4.3. <i>Haemonchus contortus</i> eggs	53
4.4. Discussion	54

Chapter 5 Phylogenetic analysis of bacteria associated with Haemonchus

contortus	57
5.1. Introduction	57
5.2. Materials and methods	59
5.2.1. Haemonchus contortus DNA	59
5.2.2. PCR, cloning and colony PCR	59
5.2.3. Sequence editing	60
5.2.4. Clone library and phylogenetic analysis	60
5.3. Results	61
5.3.1. Clone libraries	61
5.3.2. Phylogenetic analysis of phylum Firmicutes ~1400bp 16S rRNA sequend	ces
	62
5.3.3. Phylogenetic analysis of ~1000bp 16S rRNA gene sequences	63
5.4. Discussion	64

Chapter 6 Fluorescence in situ hybridisation	67
6.1. Introduction	67
6.2. Materials and methods	69
6.2.1. Parasite samples	69

6.2.2. Reference bacterial cultures	. 69
6.2.3. Bacterial culture	. 69
6.2.4. Fixation of bacterial cells	. 70
6.2.5. Oligonucleotide probes	. 70
6.2.5.1. Optimisation of hybridisation stringency for FISH probes	. 71
6.2.5.2. FISH of PFA fixed reference bacteria	. 72
6.2.5.3. Epifluorescence microscopy	. 73
6.2.5.4. Confocal microscopy	. 73
6.2.6. Haemonchus contortus tissue sections	. 73
6.2.6.1. Adult worms	. 73
6.2.6.2. Eggs and L3	. 74
6.2.6.3. Preparation of sections for FISH	. 74
6.2.6.4. FISH on Haemonchus contortus sections	. 75
6.2.6.5. Epifluorescence and confocal laser scanning microscopy	. 76
6.3. Results	. 76
6.3.1. Optimisation of hybridisation stringency	. 76
6.3.2. Identification of bacteria in Haemonchus contortus	. 77
6.3.2.1. Bacteria in female worms	77
6.3.2.1.1. In eggs	77
6.3.2.1.2. In the uterus but outside the eggs	78
6.3.2.2. Bacteria in laid eggs	78
6.3.2.3. Gut bacteria	78
6.3.2.4. Bacteria in L3	79
6.4. Discussion	79
6.4.1. Probe specificities and optimal hybridisation stringencies	79
6.4.2. Proteobacteria	80
6.4.3. Gut bacteria	80
6.4.4. Bacteria in eggs	80
6.4.5. Bacteria in the uterus	82

Chapter 7 General discussion		••••••	83
7.1. Studying the community of bacteria	associated v	with <i>Haemonchus</i>	s contortus

7.2. Comparison of bacterial communities of parasites and their environments8	35
7.3. Gut bacteria	36
7.4. Bacteria in the uterus	37
7.5. Bacteria in eggs	39
7.6. Weissella and Leuconostoc 8	39
7.7. Symbionts of <i>Haemonchus contortus</i> 9) 0
7.8. Future work) 2
References) 3
	-
Appendix 1: Samples collected from experimental sheep	20
Appendix 2: Parasitology 12	21
2.1. Faecal egg flotation	21
2.2. Infection of sheep with L3 12	21
2.3. Larval culture	21
2.3.1. Sieve method (A) 12	21
2.3.2. Tray method (B) 12	22
2.4. Recovery of adult worms 12	23
2.5. In vitro laid eggs 12	23
2.6. Eggs extracted from faeces 12	24
Appendix 3: Microscopy12	26
3.1. Neutral buffered formalin 12	26
3.2. Gram Twort staining 12	26
3.2.1. Twort stain	26
3.2.2. Gram Twort staining	26
3.3. Nematode processing for TEM12	27
Appendix 4: Denaturing gradient gel electrophoresis	28
4.1. Solutions	28

4.1. Solutions	128
4.1.1. 50X Tris-acetate-EDTA (TAE buffer)	128

4.1.2. Dcode dye solution	128
4.1.3. 2X Gel loading dye	128
4.1.4. Denaturing gradient solutions for a 6% polyacrylamide DGGE G	el 128
4.2. Gel casting	129
4.3. Sample loading and electrophoresis	129
4.4. Staining and de-staining the gel	130

Appendix 6: Fluorescence in situ hybridisation	
6.1. Solutions	132
6.1.1. 4% Parafomaldehyde (PFA) solution	132
6.1.2. Hybridisation buffers	132
6.1.3. Washing buffers	133
6.2. Hybridisation of reference bacterial cultures	133
6.3. FISH on nematode samples	134

Appendix 7: Results of optimisation of probe hybridisation	stringency
against reference bacterial cultures.	137
7.1. Lactic acid bacterial specific probe Lab158	137
7.2. Weissella sp. specific probes (S-G-Wei-0121-a-S-20 and Wgp)	138
7.3. Strc493	139
7.4. Proteobacterial probes	140

Abstract

Internal parasitism, a major cause of production losses in sheep, is routinely controlled by anthelmintic drenches, however, alternative control strategies are needed to combat the increasing resistance to these chemicals. A possible novel method of controlling abomasal nematodes, such as *Haemonchus contortus*, is manipulation of their essential resident bacteria, as is currently used to control filarial nematodes. For the first time, bacteria have been identified in the reproductive tract, as well as in the gut, of *H. contortus*, using genetic fingerprinting, light and electron microscopy and fluorescence *in situ* hybridisation (FISH).

PCR-DGGE analysis showed that adult worms had less complex bacterial profiles than did abomasal contents. L3, eggs and adult worms had similar bacterial profiles; 16S rRNA sequences obtained from seven major common DGGE bands were dominated by lactic acid bacterial and Proteobacterial sequences. PCR-DGGE short sequences and clone libraries of nearly full length sequences from all three life-cycle stages contained sequences belonging to *Weissella, Lactococcus, Leuconostoc* and *Streptococcus*. Clone library sequences were used to design group-, class- and species-specific FISH probes to locate bacteria in the parasites.

The gut lumen of adult worms contained a mixed population of Grampositive and Gram-negative bacteria, which appeared to be multiple morphotypes in TEM images. The FISH probe (EUB338), which targets most bacteria, hybridised with the gut bacteria, but only some of these were targeted by Strc493, which targets most *Streptococcus* sp. and some *Lactococcus* sp. Neither the lactic acid bacterial group- nor the *Weissella* species-specific probes targeted any bacteria in the gut.

A single morphotype of Gram-positive bacteria was seen in large numbers in the distal uterus of female *H. contortus* in the TEM. They were close relatives of either *Lactococcus* sp. or *Streptococcus* sp., as they were targeted by the FISH probe Strc493. These bacteria seemed to be non-pathogenic to the nematodes, as adult female worms appeared to be healthy (normal in size and active) and carry normal eggs within them. Their roles in worm biology are unknown.

A smaller number of bacteria were seen in the TEM in eggs within female worms. They were closely related to *Weissella confusa*, as all were targeted by lactic acid bacterial group- and *Weissella* species-specific probes, as well as by EUB338. These bacteria were dispersed throughout the eggs, as they could be seen at different focal panels in confocal microscopy. DNA fingerprinting and visualisation of these bacteria in eggs strongly suggest they are maternally transmitted endosymbionts.

As this study was carried out on a parasite strain which has been maintained in the laboratory, practical applications of this research would depend on these bacteria being present in field strains of *H. contortus*.

Acknowledgments

I would like to thank my supervisors for guidance, patience and encouragment in helping me to achieve this goal. I would particularly express my sincere thanks to my chief supervisor Prof. Heather Simpson; it would not have been possible to write this doctoral thesis without her enthusiasm, interest and helpful criticism of my research work. I don't have words to describe how much I appreciate the sacrifice you have made for me which helped me to where I am today. Thank you for being there.

To Dr Gemma Henderson, I am very grateful for your guidance, inspiration and timely advice, particularly in assisting with the designing of the studies and being extremely helpful and a great source of inspiration to me.

My sincere thanks go to Dr Ross Bland for his constant inspiration, critical comments and prompt feedback. I really appreciate your help during this study.

The successful of this thesis would not have been possible without the expertise, cooperation and timely advice from Dr Peter Janssen. I greatly appreciate your help during this work and for allowing me to use the facilities in AgResearch, Grasslands.

Special thanks to Dr Bruce Simpson for his encouragement, advice and invaluable assistance for proof reading of this thesis.

I wish to express my gratitude to Mike Hogan, Sandra Kittelmann, people at the small animal physiology unit for looking after the sheep for my research work, histology technicians at IVABS, Doug Hopcroft and Jianyu Chen for their help with microscopy and Roy Meeking for allowing me to use the facilities at the Hopkirk Research Institute.

My thanks go to Meat and Wool New Zealand, the E&C Thomas Bequest and IVABS post graduate funds for providing the financial support for my research work.

The dream of a PhD in New Zealand would never have fulfilled without unflinching support from my family and Prof. Ravi Ravindran. To my family, though only my name appears on the cover of this thesis, you have a great contribution to its production; thank you for being there, for your encouragement, for supporting all my decisions and choice in life, and for making it easy to follow my dreams.

List of Figures

		Facing Page
Fig.1.1.	Life cycles of Photorhabdus and Xenorhabdus.	18
Fig.1.2.	Diagrammatic representation of an <i>in vitro</i> study of explants of mouse ileum showing that <i>T. muris</i> egg hatching is induced by contact with type 1 fimbriae of <i>Escherichia coli</i> .	
	type 1 Innonae of Escherichia con.	23
Fig. 2.1.	Sections of <i>H. contortus</i> female worm stained with haematoxalin and eosin.	29
Fig. 2.2.	Sections of <i>H. contortus</i> female worms stained with Gram stain.	30
Fig. 2.3.	TEM image of <i>H. contortus</i> eggs within a female worm.	30
Fig. 2.4.	TEM images of sections of adult female <i>H. contortus</i> showing the outer cuticle (Ct), uterine wall (Uw) and matrix (Um) and egg (E).	30
Fig. 2.5.	TEM images of <i>H. contortus</i> sperm in the uterus of an adult female worm.	30
Fig. 2.6.	TEM images of gut bacteria in an adult <i>H. contortus</i> female worm.	30
Fig. 2.7.	Location and morphology of bacteria in the gut (top), the uterus (centre) and eggs (bottom) of an adult female <i>H. contortus</i> .	30
Fig. 3.1.	Flow chart describing sample collection during larval culture from faeces.	40
Fig. 3.2.	Flow chart describing sample collection during adult worm recovery.	41
Fig. 3.3.	1.5% Agarose gel electrophoresis of PCR amplified products from adult <i>H. contortus</i> DNA using the bacterial 16S rRNA targeted	
	primer sets A-F at annealing temperatures from 54 to 62°C.	43

Fig. 3.4.	DGGE gels (6% acrylamide) of PCR amplified products of DNA extracted from <i>H. contortus</i> adult worms (HA) (Sample 5) using the universal bacterial 16S rRNA primers 338f (40bpGC clamp) and 518r.	43
Fig. 3.5.	1.5% Agarose gels of PCR amplifed products of molecular biological reagents, using the universal bacterial primer set 338f and 518r.	44
Fig. 3.6.	DGGE gels (6% acrylamide) of PCR amplified products of DNA extracted from samples collected during <i>H. contortus</i> larval culture from faeces.	44
Fig. 3.7.	A DGGE gel (6% acrylamide) of PCR amplified products generated from the DNA extracted from adult worms from three sheep.	44
Fig. 3.8.	A DGGE gel (6% acrylamide) of PCR amplified products of DNA extracted from samples collected during <i>H. contortus</i> adult worm recovery from abomasal contents, using the universal bacterial 16S rRNA primers 338f (40bp GC clamp) and 518r.	44
Fig. 4.1.	A DGGE gel (6% acrylamide) of PCR amplified products of DNA extracted from three samples of abomasal contents, three populations of manually collected worms from the abomasal mucosa, sodium hypochlorite washed mixed sex adult worms (MAW), faecal eggs (FE) and L3, using the universal bacterial 16S rRNA primers 338f (40bp GC clamp) and 518r.	51
Fig. 4.2.	A DGGE gel (6% acrylamide) of PCR amplified products of DNA extracted from three samples of <i>H. contortus</i> sodium hypochlorite washed mixed sex adult worms (HA), three samples of larvae (HL) and two samples of eggs (HE), using the universal bacterial 16S rRNA primers 338f (40bp GC-clamp) and 518r.	51
Fig. 4.3.	A DGGE gel (6% acrylamide) of PCR amplified products of DNA extracted from a male (HAM) and a female (HAF) <i>H. contortus</i> (sodium hypochlorite washed) sample from each of	
	three sheep.	51

Fig. 4.4.	A representative DGGE gel of PCR amplified products generated from DNA of <i>H. contortus</i> adult worms (HA), L3 (HL) and eggs (HEM: <i>in vitro</i> laid eggs and HEF: eggs collected from faeces) used for sequencing the bands of interest (left).	52
Fig. 5.1.	Phylogenetic tree based upon the maximum likelihood method from bacterial 16S rRNA gene sequences obtained from <i>H.</i> <i>contortus</i> using the primer set 27f and 1492r and reference 16S rRNA gene sequences.	63
Fig. 5.2.	Phylogenetic tree based upon the maximum likelihood method from bacterial 16S rRNA gene sequences obtained from <i>H.</i> <i>contortus</i> using the primer set 27f and 1492r and reference 16S rRNA gene sequences.	63
Fig. 5.3	Phylogenetic tree based upon the maximum likelihood method from bacterial 16S rRNA gene sequences obtained from <i>H.</i> <i>contortus</i> using the primer set 27f and 1492r and reference 16S rRNA gene sequences.	63
Fig. 5.4.	Phylogenetic tree based upon the maximum likelihood method from bacterial 16S rRNA gene sequences obtained from <i>H.</i> <i>contortus</i> using the primer set 27f and 1040firmR and reference 16S rRNA gene sequences.	64
Fig. 6.1.	Bacteria within eggs in adult H. contortus.	77
Fig. 6.2.	Bacteria within fertilised eggs (E) (presence of morula) in <i>H. contortus</i> .	77
Fig. 6.3.	Bacteria inside an egg near the ovipositor.	77
Fig. 6.4.	Bacteria inside eggs in a female H. contortus.	77
Fig. 6.5.	Bacteria inside an egg near the ovipositor of a female <i>H</i> . <i>contortus</i> .	77
Fig. 6.6.	Bacteria in the uteri of female H. contortus.	78

Fig. 6.7.	Bacteria in the uterus of a female <i>H. contortus</i> .	78
Fig. 6.8.	Bacteria in H. contortus eggs collected from sheep faeces.	78
Fig. 6.9.	Bacteria in the gut of a female H. contortus.	78
Fig. 6.10.	Bacteria in the gut of a female H. contortus.	78
Fig. 5.1App.	Phylogenetic tree based upon the neighbour joining method from bacterial 16S rRNA genes sequences obtained from <i>H.</i> <i>contortus</i> using the primer set 27f and 1492r and reference 16S rRNA gene sequences.	131
Fig. 5.2App.	Phylogenetic tree based upon the neighbour joining method from bacterial 16S rRNA gene sequences obtained from <i>H.</i> <i>contortus</i> using the primer set 27f and 1492r and reference 16S rRNA gene sequences	131
Fig. 5.3App.	Phylogenetic tree based upon the parsimony method from bacterial 16S rRNA gene sequences obtained from <i>H. contortus</i> using the primer set 27f and 1492r and reference 16S rRNA gene sequences.	131
Fig. 5.4App.	Phylogenetic tree based upon the neighbour joining method from bacterial 16S rRNA gene sequences obtained from <i>H.</i> <i>contortus</i> using the primer set 27f and 1040firmR and reference 16S rRNA gene sequences.	131
Fig. 5.5App.	Phylogenetic tree based upon the parsimony method from bacterial 16S rRNA gene sequences obtained from <i>H. contortus</i> using the primer set 27f and 1040firmR and reference 16S rRNA gene sequences.	131
Fig. 7.1App.	Penetrability of the Lab158 (Cy3 labelled) probe with and without lysozyme treatment before the hybridisation.	137
Fig. 7.2App.	Verification of probe specificity and determination of optimal hybridisation stringency of the Lab158 (FITC labelled) probe.	137

Fig. 7.3App.	Verification of probe specificity and determination of optimal	
	hybridisation stringency of the S-G-Wei-0121-a-S-20 (Cy3 labelled) probe.	138
Fig. 7.4App.	Verification of probe specificity and determination of optimal hybridisation stringency of the Wgp (Cy3 labelled) probe.	138
Fig. 7.5App.	Verification of probe specificity and determination of optimal hybridisation stringency of the Strc493 (FITC labelled) probe.	139
Fig. 7.6App.	Optimisation of hybridisation stringency and verification of specificity of the ALFa1, Beta1 and SteMa1_439 (CY3 labelled) probes.	140

List of Tables

		Facing Page
Table 3.1	Universal bacterial primers used to target 16S rRNA	C
	sequences.	38
Table 3.2	PCR products generated at annealing temperatures from 54-	
	62°C using primer sets A to F	43
Table 4.1	Primers used for the amplification of inserts in the pCR 2.1	
	TOPO-TA vector.	49
Table 4.2	Summary of phylogenetic affiliations of bacterial sequences	
	obtained from <i>H. contortus</i> adult worms, L3 and eggs	
	(extracted from faeces and laid in vitro).	52
Table 5.1	Universal bacterial (27f + 1492r) and phylum Firmicutes-	
	specific (27f+1040firmR) primers used to target 16S rRNA	
	sequences to construct clone libraries.	59
Table 5.2	Taxonomic assignment of ~1400bp 16S rRNA sequences	
	from H. contortus, based on the closest cultured and type	
	strain relatives.	62
Table 5.3	Taxonomic assignment of ~1000bp of 16S rRNA sequences	
	obtained from <i>H. contortus</i> , based on the closest cultured	
	and type strain relatives, identified by comparative analysis	
	of 16S rRNA gene sequences.	64
Table 6.1	Conditions used for culture of reference bacteria.	69
Table 6.2	Oligonucleotide probes used for fluorescence in situ	
	hybridisation of sections of <i>H. contortus</i> and bacterial	
	reference cultures.	71
Table 6.3	Specificity, target and non-target species chosen to optimise	
	bacterial probes used for fluorescence in situ hybridisation.	71
Table 6.4	Characteristics of fluorochromes attached to the probes used	
	in fluorescence in situ hybridisation.	73
Table 6.5	Probe combinations, fluorochrome labels and formamide	
	concentrations for optimal hybridisation stringency of	
	bacterial species-, group- and class-specific probes used to	
	identify bacteria in H. contortus.	75

Table 6.6	Summary of the specificities of the probes used in	
	fluorescence in situ hybridisation and the locations of the	
	bacteria identified in H. contortus.	79
Table 7.1	Archael primers used to amplify bacterial sequences.	85
Table 5.1App	Summary of initial phylogenetic affiliations of bacterial	
	sequences obtained from H. contortus adult worms, L3, eggs	
	extracted from faeces (HEF) and laid in vitro (HEM).	131
Table 6.1App	Formamide volumes for hybridisation buffer.	132
Table 6.2App	NaCl concentrations of washing buffers according to	
	formamide concentration in hybridisation buffer.	133
Table 7.1App.	Lab158 probe penetrability into target and non-target	
	bacterial species, treated and not treated with lysozyme prior	
	to hybridisation.	137
Table 7.2App	Verification of probe specificity and determination of	
	optimal hybridisation stringency of the Lab158 probe, using	
	reference bacterial cultures.	137
Table 7.3App	Verification of probe specificity and determination of	
	optimal hybridisation stringency of the S-G-Wei-0121-a-S-	
	20 probe using reference bacterial cultures.	138
Table 7.4App	Verification of probe specificity and determination of	
	optimal hybridisation stringency of the Wgp probe using	
	reference bacterial cultures.	138
Table 7.5App	Verification of probe specificity and determination of	
	optimal hybridisation stringency of the Strc493 probe, using	
	reference bacterial cultures.	139
Table 7.6App	Verification of probe specificity and determination of	
	optimal hybridisation stringency of the class-specific phylum	
	Proteobacteria probes using reference bacterial cultures.	140

List of Abbreviations

А	adenosine
A. aegypti	Aedes aegypti
A. albopictus	Aedes albopictus
A. cantonensis	Angiostrongylus cantonensis
A. stephensi	Anophleles stephensi
A. suum	Ascaris suum
ATCC	American type culture collection
BLAST	basic local alignment search tool
B. malayi	Brugia malayi
B. mucronatus	Bursaphelenchus mucronatus
bp	base pair
B. xylophilus	Bursaphelenchus xylophilus
С	cytosine
C. elegans	Caenorhabditis elegans
СТАВ	cetyltrimethylammonium bromide
C. onchophora	Cooperia onchophora
Cy3 and Cy5	cyanine
DGGE	denaturing gradient gel electrophoresis
D. immitis	Dirofilaria immitis
D. melanogaster	Drosophila melanogaster
DNA	deoxyribonucleic acid

dNTP	deoxyribonucleotide triphosphate
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen
EDTA	ethylenediaminetetraacetic
EPN	entomopathogenic nematodes
FISH	fluorescence in situ hybridisation
FITC	fluorescein isothiocyanate
g	gram
g	gravitational force
G	guanidine
G. rostochiensis	Globodera rostochiensis
h	hour
H. contortus	Haemonchus contortus
H & E	hematoxylin and eosin
H. glycines	Heterodera glycines
H. goettingiana	Heterodera goettingiana
H. polygyrus	Heligmosomoides polygyrus
H. pylori	Helicobacter pylori
IJ	infective juvenile
Inc	Incorporated
J2	second-stage juvenile
Kg	kilogram
kV	kilovolt
LAB	lactic acid bacteria
LB	Luria Bertani

L1	first stage larva
L2	second stage larva
L3	third stage larva
L4	fourth stage larva
LM	light microscopy
Ltd	limited
М	molar
mg	milligram
MEGA	molecular evolutionary genetics analysis
min	minute
ml	millilitre
ML	maximum likelihood
mm	millimeter
mM	millimolar
MMIC	Manawatu Microscopy and Imaging Centre
M. punctatissima	Megacopta punctatissima
MQ	milli Q
N. brasiliensis	Nippostrongylus brasiliensis
NCBI	National Center for Biotechnology Information
N. dubius	Nematospiroides dubius
ng	nanogram
NJ	neighbour joining
nm	nanometre
O. ostertagi	Ostertagia ostertagi
OTUs	operational taxonomic units

O. volvulus	Onchocerca volvulus
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PFA	paraformaldehyde
RDP	ribosomal database project
RNA	ribonucleic acid
RO	reverse osmosis
r.p.m	revolutions per minute
R. similis	Radopholus similis
SDS	sodium dodecyl sulphate
sec	second
sp	species
Т	thymidine
TAE	tris-acetate EDTA
Taq	Thermus aquaticus
T. circumcincta	Teladorsagia circumcincta
T. colubriformis	Trichostrongylus colubriformis
TE	tris EDTA
TEM	transmission electron microscopy
TEMED	tetramethylenediamine
TGGE	temperature gradient gel electrophoresis
T. muris	Trichuris muris
T. spiralis	Trichinella spiralis

xxii

U	unit
UV	ultraviolet
[v/v]	volume per volume
[v/v/v]	volume per volume per volume
[w/v]	weight per volume
X. americanum	Xiphinema americanum
X. brevicollum	Xiphinema brevicollum
X. rivesi	Xiphinema rivesi
μg	microgram
μΙ	microlitre
μΜ	micromolar
16S rRNA	small subunit ribosomal RNA