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The well known least mean squares (LMS) algorithm is studied as a control system.  When 
applied in a noise canceller a block diagram approach is used to show that the step size has 
two upper limits.  One is the conventional limit beyond which instability results.  The 
second limit shows that if the step size is chosen to be too large then feed-through terms 
consisting of signal times noise will result in an additive term at the noise canceller output.  
This second limit is smaller than the first and will cause distortion at the noise canceller 
output. 

 
 
 
1 Introduction 
 
Noise cancellation based on the least mean squares (LMS) algorithm has been in existence for some time 
[1].  This approach illustrated in figure 1 uses two inputs, a primary input and a reference input. 
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Figure 1 : Adaptive Noise Canceller 
 

 where the noise nk reaches both the primary and reference inputs via different acoustic transfer 
functions H1(z-1) and H2(z-1) respectively.  Here it is assumed that the desired signal is only 
received at the primary input. 

 Although in practice this may not be the case, it is not central to the arguments in this paper. 
 This noise cancelling method has been studied extensively and most of the properties are known 

in the literature [2].  For example, the step size in the LMS algorithm µ must be chosen in such a 
way that convergence (and hence tracking) is fast whilst at the same time ensuring that stability 
is maintained.  This is particularly a problem when the noise data is non-stationary as an over 
conservative (small) value of µ will result in poor tracking ability.  Clearly there is a need to 
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select µ as large as possible consistent with stability.  The paper will show that even if µ is 
chosen to be well within the bounds of stability (for example, one tenth of its theoretical 
maximum) then a second problem occurs.  Cross modulation terms of signal x noise are fed 
through and appear as distortion on the final noise cancelled error output ek. 

 
 2 The LMS Algorithm 
 
 Consider the ordinary LMS algorithm applied to the noise cancellation problem of Figure 1. 
  e y X Wk k k

T
k 1= − −  (1) 

  W W 2 X ek k 1 k k= +− µ  (2) 

 where the weight vector W [w w w ]k o 1 n
T=  and Xk is the vector of regressors of rk given 

by X [r r r ]k k k 1 k n
T= − − , n is the order of the adaptive filter with (n+1) weights. 

 Define the variance of rk as E[rk
2] = σr

2 where E[rk] = 0.  Also define the correlation matrix R = 
E[XkXT

k].  Then the two well established formulae for convergence become [2]. 
 Convergence in the mean: 

  µ
λ

≺ 1

max

 (3) 

 where λ max  is the largest eigenvalue of the correlation matrix R. 
 Convergence is the mean square 
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 By choosing the step size parameter µ to satisfy (4) convergence in the mean (equation (3)) is 
automatically satisfied [2].  If  equation (4) is used as an equality, the LMS algorithm will be 

unstable.  Usually µ is chosen to be at least one third of 1
1 2( )n r+ σ  or even smaller values 

[3, 4] 
 
 Control System Approach 
 
 Kwong [5, 6] has used modern control theory to explain some important properties of LMS, 

namely the effect of gradient noise and the optimum step size.  Similarly, Dabis and Moir [7] 
have examined the LMS algorithm using classical control theory.  This work is extended in [8] 
to give an expression for µ  in terms of bandwidth. 

 It has been shown that 
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 where θB is the normalised bandwidth frequency in radians. 
 In [7, 8] the step size is analogous to a constant gain in a servo mechanism whilst φm defines the 

stability.  For example, for a maximum bandwidth θ πB = radians; µ σ=
+

1
1 2( )n r

 and 

the phase margin is zero degrees indicating instability as expected.  For a more conservative 
bandwidth of θ πB = 2 10/  (one tenth the sampling frequency) µ = 0.31/(n+1)σr

2 with φm = 
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72o, well within acceptable limits.  The problem is further compounded by the fact that the gain 
within the closed loop system of the LMS algorithm is time varying.  This is best illustrated with 
a block diagram.  Suppose for simplicity that only one parameter is to be estimated. 

 The block diagram for such a problem is shown in Figure 2.    
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Figure 2 : Block diagram of LMS for one parameter 
 

 It can be seen that the block diagram consists of negative feedback around a discrete integrator 
with gain µ.  Two multipliers within the loop imply that the overall gain will vary from each 
sampling instant.  Since all signals and noise are zero mean, µ will define an average bandwidth 
via equation (5).  The unit delay z-1 in the feedback path ensures physical reliability of the 
algorithm as a closed-loop discrete control system cannot respond instantaneously.  If the 
discrete integrator and unit delay are replaced with a continuous time integrator, then the closed 
loop system can theoretically never be unstable.  This property that the gain for continuous time 
LMS has no upper bound has been noted by Karni and Zeng [9].  Both continuous and discrete 
versions of LMS have the same limitations on bandwidth which is born out with the following 
simple examples. 

 
  3 Illustrative Examples 
 
   The following examples show that a much smaller value of step size is required than is 

predicted by stability considerations. Whilst the algorithm will be stable, an unacceptable 
amount of distortion will be present. 

 
 Example 1 
 Consider a periodic signal with periodic noise.  Define H1(z-1) = m (a constant) and H2(z-1) = 1. 

Then rk = cos(θrk),  yk = cos (θyk),  zk = cos (θyk) + m cos (θrk)) where θr= 2πfr/fs and θy= 2πfy/fs 
The frequencies fy, fr,fs are respectively the signal, noise and sampling frequencies. 

 Taking m = 2, fs = 10kHz, fy = 5Hz, fr = 100Hz the LMS algorithm is examined with different µ 
values. 

 The single weight to be estimated is wo = 2.  Figures 3, 4 and 5 show this weight estimate and 
the error output for three µ values obtained from equation (5).  The three bandwidths chosen are 
respectively as 1kHz, 100Hz and 10Hz.  

     
 In Figure 3 it can be seen that the mean weight estimate is 2 but it fluctuates around this value.  

To get an expression for the weight vector it is necessary to look at the input to the integrator uk 
in Figure 2.  If the bandwidth of the integrator frequency response is too high uk will pass 
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through unfiltered. For high bandwidth ek = cos (θyk) + m cos (θrk) and rk = cos (θrk).  The 
integrator input µk = ekrk which becomes 
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 Equation (7) describes a double sideband suppressed carrier waveform (DSSC), a DC term m/2 
and a term at twice the reference frequency (200Hz). The DSSC spectrum is centred at 100Hz 
with side bands at ±  5Hz.  For a bandwidth of 1kHz (one tenth sampling frequency) all the 
frequencies in (7) will pass unfiltered and this is what appears in Figure 3.  
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  Figure 3 Weight Estimate for 1kHz Bandwidth 
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Figure 4 Weight Estimate for 100Hz Bandwidth 
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   Figure 5 Weight Estimate for 10Hz Bandwidth 
 
 In Figure 4, the bandwidth drops to 100Hz and the term at 200Hz becomes filtered leaving 

DSSC as the weight estimate with a DC level.  The error signal (signal estimate) is still severely 
distorted.  Finally in Figure 5 when the bandwidth is 10Hz the error becomes the 5Hz signal and 
the weight becomes closer to 2.  Since the bandwidth has been reduced by a decade the feed-
through term has also been reduced by 20dB (single integrator dynamics).  If the bandwidth is 
reduced further the noise can be almost entirely removed at the expense of slow adaptation.  For 
this example the DSSC waveform will have a spectrum with upper sideband at 105Hz and lower 
sideband at 95Hz.  Therefore by choosing the bandwidth of the LMS algorithm via (5) to be an 
order of magnitude less than 95Hz the DSSC is attenuated sufficiently.  In phaselock loops 
(PLL’s) a related problem exists where 2fc (fc is the carrier frequency) terms permeate onto the 
demodulated baseband signal.  In PLL’s the bandwidth is usually chosen to be (2fc/10).  For 
LMS by analogy it must be fL/10 where fL is the lowest sideband in the product of primary x 
reference. 
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 Example 2 
 Consider a periodic signal at a frequency of 100 Hz with sampling frequency  
 10kHz.  The noise is narrowband with bandwidth 40Hz centred also at 100Hz.  The noise is 

generated by passing zero-mean white Guassian noise with unit variance through a fourth order 
discrete IIR Butterworth filter.  The set-up is as shown in Figure 1 with the filter 

( ) ( ) ( ) ( )H z B z A z H z1
1 1 1

2
1 1− − − −= =/ and  .  The polynomials 

  B(z-1) and A(z-1) were generated using MATLAB and are respectively 
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A z z z z z z z z z

B z z z z z
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= − + − + − − − +

= − + − +
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1 6 2 4 6 8

1 8 27 45 54 4 67 4 535 26 6 7 5 0 94

10 0 024 0 096 0145 0 096 0 024

. . . . . . .

. . . . .
  

 The adaptive filter was chosen to be order n = 20.  Figures 6,7 and 8 show the error (the signal 
estimate) for bandwidths of 1kHz, 100Hz and 10Hz respectively. 
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  Figure 6 Signal Estimate for 1kHz Bandwidth 
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  Figure 7 Signal Estimate for 100Hz Bandwidth 
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  Figure 8 Signal Estimate for 10Hz Bandwidth 
 
  As expected the signal to noise ratio improves with a reduction in µ.  In example 1, the 

bandwidth of the LMS algorithm is reduced so as to significantly reduce the lowest sideband in 
the spectrum of the product of the primary x reference signals.  Since in this case the reference 
signal is white noise, the product will have power across the spectrum.  Only the DC content of 
this product is required by the integration of the LMS algorithm. By reducing the bandwidth 
sufficiently some feedthrough terms are attenuated at the expense of poor tracking.  In order to 
achieve good cancellation (reduction in feedthrough terms) and high bandwidth a modification is 
required.  If the reference signal rk is filtered by a high pass filter up to say 2kHz, then there will 
be negligible power below that frequency.  For this example a tenth order IIR Butterworth 
highpass filter was used.  Figures 9 and 10 show the noise cancelled signal for bandwidths of 
1kHz and 100Hz respectively.  
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  Figure 9 Signal Estimate for 1kHz Bandwidth 
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  Figure 10 Signal Bandwidth for 100Hz Bandwidth 
 
 Comparing Figures 6 and 9 show the improvement in highpass filtering the reference signal 

before applying it to the LMS algorithm.  Figures 10 illustrates the near perfect recovery of the 
original waveform except for minor amplitude modulation. 

 
 5 Conclusions 
 
 It has been shown that there is advantage in considering the LMS algorithm as a control system 

as applied to noise cancellation.   
 If the spectrum of the primary and reference signals are known, a priori, (a practical proposition) 

then the best strategy can be used to obtain maximum tracking ability and good filtering action.  
It has been shown that cross modulation terms will feedthrough and cause distortion if µ is 
chosen to be  too large.  Conversely, it is well established that for small µ the convergence will 
be slow.  To obtain the best value for µ  the lowest sideband frequency in the spectrum of the 
product primary x reference must be sufficiently attenuated. This sideband frequency defines the 

  nominal bandwidth of the LMS algorithm and hence µ via equation (5).  When the reference is 
wideband, it is possible to highpass filter it to attenuate frequencies below a defined bandwidth. 
The bandwidth will be as high as possible consistent with closed-loop stability. These methods 
give fast convergence and hence good tracking whilst maintaining good filtering action. 

 The results apply equally to continuous time LMS where stability is less of a problem than the 
discrete case since µ is not upper bounded [9]. 
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