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ABSTRACT

The Kauffman N-K, or random boolean network, model is an important tool for exploring
the properties of large scale complex systems. There are computational challenges in simulating
large networks with high connectivities. We describe some high-performance data structures and
algorithms for implementing large-scale simulations of the random boolean network model using
various storage types provided by the D programming language. We discuss the memory complexity
of an optimised simulation code and present some measured properties of large networks.
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1 Introduction

The classical random boolean network (RBN) model was introduced by Kauffman to represent
genetic regulatory networks [10, 11]. This model is also commonly known as the N-K model or as
Kauffman networks and consists of a network of N nodes, connected to K neighbours. Each node
is decorated by a boolean state which is initialised randomly, and also a boolean function of K
inputs, each of which is randomly assigned from one of the possible boolean functions of K inputs.

The model is studied by evolving the nodes synchronously, based on the state of their inputs.
It is known that a transition occurs at K = 2 and that for smaller K the system rapidly moves
to an attractor regime [9, 13] with nodes converging to a fixed value. Above the transition the
nodes are chaotic, changing their values with no discernible pattern. Kauffman networks have
been widely studied [5] and a variety of software tools are available for investigating small-sized
networks [6]. The model can be thought of as an extension of the binary cellular automaton model
of Wolfram [12], and indeed for K = 1 the model shows similar properties as can be seen in figure 1.

Figure 1 shows the time evolution of four random configurations of the classical random boolean
network model, each with 128 nodes, connected with K = 1,2, 3,4. In the case K = 1 most nodes
quickly become locked and no longer change. In the cases K = 3 and K = 4 the system remains
chaotic. Case K = 2 is known to be at the critical edge of chaos [3].

The model has important uses in the study of networks and recently there has been interest in
studying scale-free Kauffman networks [1]. Unlike the fixed-K normal Kauffman networks, a scale-
free network has an exponential distribution of connectivities, so although most nodes may have a
small connectivity, some can have large values. Due to the way N-K networks are constructed and
stored there are several practical implementation problems associated with simulating large N-K
networks. In this paper we explore these and investigate possible data structures and algorithms
for managing such large scale simulations.

In section 2 we outline the core algorithms for constructing the structural network and the
random boolean functions. We give a number of code fragments in the D programming language [2]
to illustrate these ideas. In section 3 we present some performance analysis results and discuss
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Figure 1: Classic random boolean network with 128 nodes (horizontally), evolved for 256 time
steps (top to bottom) from a random initialisation, for K = 1,2,3,4 (left to right). Red/white
denotes sites of value 0/1 and mauve/grey denotes 0/1 sites that are changing respectively.
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some of the measured properties of large N-K networks in section 4. We offer some conclusions
for the future simulation of large network models in section 5.

2 Simulation Algorithms and Experiments

The network is represented as an array of neighbour lists, and each of the IV nodes is decorated by
a boolean state and a random boolean function. The state is initialised randomly with 50 percent
probability of being a zero or a one. A random boolean function is assigned statically (i.e. once)
to each node.

The connectivity of the network itself can be stored in a number of ways. It is fundamentally
a directed graph and a convenient storage structure makes use of the dynamic D arrays. Our
neighbours[i] [n] structure lists the n neighbours of the i’th node. D arrays have the ‘length’
property which can be assigned a value to invoke an appropriate dynamic reallocation of memory
(and copying of old values) as necessary. This structure is suited to fixed-K networks as we discuss
here, or those with a distribution of K values, added dynamically.

The algorithm for assigning the network neighbours array so that each node has exactly K
inputs is shown below. While this algorithm avoids self-arcs it does allow multi-arc neighbours —
i.e. the same node can be picked as an input more than once.

int [][] neighbours;
neighbours.length = N;
for (int i=0;i<N;i4++){
neighbours[i].length = K;
for (int n=0;n<neighbours[i].length;n++){
int choice; // avoid self—arcs
do{
choice = randomlInt() % N;
}while ( choice == 1 );
neighbours[i][n] = choice;
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The type system of the D programming language is somewhat stronger than that of C/C++ and
is therefore helpful in developing less error-prone simulation codes. The critical data type required
for the random boolean network simulation is that of a logical bit. The original D language
proposal had a bit as a fundamental data type, but due to implementation difficulties that was
unfortunately demoted. A bool in D is stored as a whole byte and is type-checked for boolean
logical operations. An int is the usual way C and (old fashioned) C++ programs implement a
logical bit. The standard library accompanying D, called ‘Phobos’, comes with a BitArray data
structure that has appropriate implementations of the opIndex and opAssignIndex operators that
make the conventional array indexing syntax with square brackets([ 1) work as expected.

The efficiency tradeoffs are obvious: an int or uint is the same size as the machine architec-
ture register width and is the fundamental unit of addressing, albeit wasting 31 bits on a 32-bit
architecture; a bool stored as a byte wastes only 7 bits of storage but in a modern machine
it may be almost as fast to address as a machine word. A packed data structure such as the
BitArray is fully efficient as regards memory utilisation but requires extra addressing arithmetic
and bit-shifting operations to insert/extract individual logical bit values.

The code fragments below are written in terms of a type definition for bits_t that can be one
of the following type definitions:

typedef int[] bits_t;
typedef bool[] bits_t;

typedef BitArray bits_t;

The performance consequences of using these different bit storage representations are discussed
in section 3.

The random boolean functions of K-inputs are represented by a truth table. An example
encoding of this for the simple case of K = 1 and K = 2 are shown in tables 1 and 3. Each column
of the table represents the complete specification of a possible boolean function of K inputs.

Although modern programming languages such as D do support higher dimensional arrays, it
would be inefficient to use a separate programming dimension ‘[ J[ J[ J[ ]...” of the truth
table for each of the K boolean inputs i, so they are encoded as an integer k = ig x 2° +4; x 21 +
igx 224+ .. 4+i, x2" forn=0,1,2,..., K — 1 and implemented as:

// compose bits_t wvector to a k—coding:
uint bits_to_k ( bits_t bits ){

int nBits = bits.length;

uint k = 0;

for (int n=0;n<nBits;n++)

if ( bits[n] )
k += powersOf2[b];
return k;

}

We can also write the inverse function to decode an integer into its bits, which is implemented
as:

// decompose k—coding to nBits—length
// bits_t wvector:
bits_t k_to_bits( uint k, int nBits ){
bits_t bit; bits.length = nBits;
for (int n=0;n<nBits;n++){
bits [n] = (k & powersOf2[n]) != 0;

return bits;

}
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Input Output
ig Opp  Op1  ©Op2  Oo3
0 0 1 0 1
1 0 0 1 1

Table 1: Truth table of the 22 = 22 = 4 random boolean functions for the example case K = 1.

Input States

Possible Boolean Functions

K 2K Npp = 2*"
1 2 4
2 4 16
3 8 256
4 16 65,536
5 32 4,294,967,296
6 64 | 18,446,744,073,709,551,616

Table 2: Exponential growth of the number of inputs states and number of possible boolean
functions with connectivity K.

Input Output
k |i; dp | 0gp ©Op1 ©Op2 ©0p3 ©Op4s ©Ops ©Ops ©Op7 ©Opg Opg O1p O11 ©O12 ©O13 O14 Ors
010 O 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
110 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
211 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
311 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 3: Truth table of the 22° = 24 = 16 random boolean functions for the example case K = 2.
The K = 2 inputs ¢; and iy are encoded as an integer k£ which can index into the TT[j] [k] to give
the boolean output value o for the j’th boolean function’s truth table, where j = 0,1, 225

There are other syntactic ways to encode these functions in C/C++ or D, but these forms are
type-safe against any of the three D typedefs described above.

Using these function primitives, it is easy to construct each column of the truth table using
a bit representation of j. TT[j] [k] is the truth table for the j'th boolean function and the k’th
encoded bit-vector of the input bits and is implemented as:

for (int j=0;j<nBFuncs;j++){
TT[j] = k-to_bits( j, nBits );
}

The update algorithm for the random boolean network model of N nodes, numbered i =
0,1,2,...,N — 1 is then:

bits_t newState, swapState, bits;
newState.length = N;
bits.length = maxK;
for (int step=0;step<nSteps;step++){
for (int 1=0;i<N;i++){
for (int n=0;n<neighbours[i].length ;nt++){
bits [n] = state| neighbours[i][n] ];
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}

newState[i] =
TT[ bFunc[i] ][ bits_to_k(bits) ];
}

}

This uses a synchronous update whereby a new state vector is built at each time step and all
N nodes are updated effectively together at once through the use of the swapping of state arrays
newState and state. As might be expected there are various sweeping effects and other artifacts
that arise if a non-synchronous update algorithm is used [8].

Our code is written in terms of an integer lookup bFunc[i] that specifies which of the possible
boolean functions is assigned to node i. The number of inputs states grows as 2% with the number
of inputs K. Table 2 shows that the number of possible boolean functions Ngp = 22" grows
very rapidly and that it is not feasible to sample them all in any realisable network simulated on
affordable computers except for K smaller than around 5.

If the number of possible boolean functions (Ngp = 22K) is very much greater that the number
of nodes (N) then it is more effective to assign a truth table entry to each node directly and index
TT[i] directly. In this case, TT is set up accordingly and the algorithm lines 9 and 10 are replaced
by the line:

newState[i] = TT[ i ][ bits_to_k (bits) ];

We can encode our simulation to deal with K = 5 by using 64-bit unsigned integers for calcu-
lations involving powers of two. We can in fact extend this to K = 6 providing we accept we are
not uniformly sampling all possible boolean functions.

The D language has provision for a 128-bit unsigned integer (the ucent), but this is not yet
supported by available distributions [4, 7]. We have been able to obtain timings for our random
boolean network simulation up to values of K = 1,2, 3,4, 6 with the proviso that although the data
structures are correct and therefore the timings are correctly representative, the sample space of
possible boolean function is truncated for K = 6.

3 Performance Results and Analysis

For most of the sizes of system reported here we can quite easily use simple integers or bytes for
the states rather than packed bits, as memory is typically dominated by the storage space required
to specify the random boolean function at each node. The truth tables for the random boolean
functions occupy occupy 92" storage elements. In general the number of nodes IV in our network is
less than the possible number of boolean functions which grows very rapidly with K. In particular
for K =5, Ngp = 22° = 232 which presents interesting problems for programs running on 32-bit
architectures.

Phobos provides a BitArray structure which can conveniently be used to make packed bit
representations of the state and TT arrays. Using the overloaded [ | array indexing operators in
the D programming language, the BitArray can be used as a direct code substitute for any other
typed array representation for the bits. Memory is then no longer a concern, but the manipulation
of the k indices as 32- or 64-bit fixed entities still poses a limitation on our code. Table 4 shows
some timing analyses for the random boolean network simulation code on various platforms.

As table 4 indicates, the use of the bool data type is fastest in most cases for “medium” memory
utilisation. We carried out these timing experiments on a variety of platforms and generally for
“normal” program memory utilisation of less than 2GBytes the timings show a practical time
savings using the direct single byte bool type. At the time of writing 64-bit operating systems
support is becoming available and does work, but does not necessarily have appropriate cache and
page management sizes.

In table 5 we show that for large systems that explore more than the 31-bit signed-integer
addressable range of memory (up to 2GBytes) the timing reflects the architecture’s cache size and
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N ‘ K ‘ bit_t ‘ Time H RSIZE ‘
128,000 1 | int[] 1.2 6.1
1 | booll] 1.1 4.9
1 | Bitarray | 2.9 4.7
128,000 2 | int[] 2.0 5.7
2 | booll] 1.9 4.9
2 | BitArray | 4.2 5.1
128,000 3 | booll] 2.4 4.9
4 | booll[] 5.0 9.5
5 | booll] 5.1 15.0
6 | booll] 7.0 23.0
1,280,000 | 1 | bool[] 16.1 43.4
2 | bool[] 25.6 43.4
3 | booll] 30.8 43.4
4 | booll] 68.6 66.2
5 | booll] 66.9 144
6 | booll] 86.8 225
1,280,000 | 1 | int[] 31.8 50.9
2 | int[] 47.2 50.9
3 | int([] 62.0 50.9
4 | int[] 122.2 80.0
5 | int[] 121.8 394
6 | int[] 147.3 717
1,280,000 | 1 | BitArray | 30.9 41.0
2 | BitArray | 48.7 41.0
3 | BitArray | 64.9 41.0
4 | BitArray | 98.8 62.8
5 | BitArray | 109.9 81.4
6 | BitArray | 121.0 81.4
2,560,000 | 1 | booll[] 43.7 86.1
2 | booll] 67.7 86.1
3 | booll] 83.5 86.1
4 | booll] 183.5 129
5 | booll] 171.7 287
6 | booll] 219.8 449

Table 4: Timing measurements of the random boolean network simulation code for 256 steps,
using GNU gdc D Compiler Version 0.23, with optimization level -06 set. Timing is measured
in seconds on a 2.66GHz 64-bin Xeon with 4GB of available RAM. RSIZE is the resident memory
size, as reported by the Unix top utility, measured in MB.
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page memory management system rather than being directly indicative of the simulation algorithm.
In these cases the packed storage BitArray shows a marked improvement and does allow us to
usefully simulate large systems of up to N ~ 107 network nodes.

BitArray | 77.9 648
BitArray | 92.4 648
BitArray | 168.4 973
BitArray | 306.1 | 1,260
BitArray | 325.7 | 1,260

[N [K [bitt [ Time | RSIZE |
5120000 | 1 | booll] 93 | 171
2 | booll] 12.3 171
3 | booll] 15.1 171
4 | booll] 24.9 254
5 | booll[] 48.8 575
6 | booll] 83.5 898
10,240,000 | 1 | bool[] 244 | 342
2 | booll[] 31.0 342
3 | booll] 38.6 342
4 | booll] 61.6 506
5 | booll] 172.4 | 1,120
6 | booll] 325 1,750
20,430,000 | 1 | booll] 650 | 633
2 | booll] 78.0 683
3 | booll] 97.1 683
4 | boolll | 165.9 | 1,008
5 | boolll | 737.6 | >2,000
6 | booll] 1437 | >3,000
20,480,000 | 1 | BitArray | 63.0 648
2
3
4
5
6

Table 5: Timing measurements of the random boolean network simulation code for 8 steps,
using GNU gdc D Compiler Version 0.23, with optimization level -06 set. Timing is measured
in seconds on a 2.66GHz 64-bin Xeon with 4GB of available RAM. RSIZE is the resident memory
size, as reported by the Unix top utility, measured in MB.

We can compute the memory complexity of the simulation algorithm and verify that the plat-
form is genuinely allocating the correct amounts of (packed-bits) memory by recording the resident
memory size as reported by a systems monitoring tool such as the Unix top utility.

The memory utilisation is shown in table 6. In the case in which bit_t is implemented as an
int we have N + N + N.K + N.2K + N = 4N + NK + 2K and if K = 2, we have 10N words
which requires 51MBytes (assuming a 4-byte machine word size). This is consistent with the RSIZE
values reported in table 4 and 5.

4 Some RBN Properties

As shown in figure 1, the random boolean network model has a varying degree of autocorrelation
in time. Nodes’ states will lock to fixed values below a critical value of K and will remain highly
chaotic above it. A simple measure of the regime is given by the first-order correlation moment,
which can be simply measured by:

int nSame = 0;

for (int 1=0;i<N;i++)
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Variable Number of | Data type
Name Elements
state N bit_t
newState N bit_t
neighbours N x K int
N void *
TT N x 2K bit_t
N void *

40

Table 6: Memory complexity of the random boolean network simulator code. For neighbours and
TT it is necessary to consider the all pointers required to efficiently implement a two-dimensional
array.

if ( state[i] == newState[i] ) nSame++;

Other moments of the auto-correlation function can be computed to obtain a time-series analysis
that identifies the set of attractors present in the network. For a statistically meaningful analysis we
need to consider how the system self-averages. Ideally we would require to sample over completely
independently generated large networks that individually properly sample all possible boolean
functions. This is not computationally feasible for K > 4. Nevertheless it is feasible to perform
reasonably unbiased sample of possible boolean functions for K = 5 that may be representative of
the large scale bulk network behaviour.

The results of this are shown in figure 2. At K < 2 the nodes tend to order, fairly rapidly,
whereas for K > 2 the system tends to remain decorrelated to an extend dependent upon K. For
higher K the tendency is for more and more nodes to remain changing. The curves shown are
reasonably smooth and show convergence to definite values. This is due to the large network size,
relative to the number of possible boolean functions.

Figure 3 shows the cluster size distribution for a system generated with 128,000 nodes for K = 1.
At higher K values the system is fully connected with a single cluster. Using this algorithm at
K = 1 however, there is a distribution of islands of nodes, clustered as shown. A log-log plot
reveals that cluster size population goes as cluster size s to the power of ~ —1.5.

5 Discussion and Conclusions

We have shown how relatively large scale random boolean networks can be simulated for K =1, ...,5
and that a suitable data structure can be managed for K = 6 providing some means of generating
unbiased and representative samples of the possible boolean functions can be provided. One such
mechanism is to store a copy of the particular K-input boolean function for each network node.
An arbitrary precision arithmetic package could then be used to generate the (long) look-up tables
required for a high connectivity node. This will be feasible to implement in memory providing
most nodes have a relatively small connectivity, K. This then provides us with a platform for
investigating scale-free networks, where the distribution of connectivities is indeed exponential in
K.

We have shown the memory complexity and typical performance achieved using various bit
storage types in the D programming language. We believe this language has great promise for
numerical simulations such as the study of random boolean networks.
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Figure 2: The 1-step correlation fraction for an RBN for different connectivities K = 1,2, 3,4 over
128 steps.
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K=1, RBN Generation Algorithm
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Figure 3: The cluster size distribution for a K = 1 network, generated using the algorithm de-
scribed.



Simulating Large Random Boolean Networks 43

References

[1] Aldana, Maximino, Boolean dynamics of networks with scale-free topology, Physica D 185
(2003) 45-66.

[2] The D Programming Language, http://www.prowiki.org/wikidd /wiki.cgi?-
LanguageSpecification, accessed May 2007.

[3] Derrida, B., and Pomeau, Y., Random Networks of Automata: A simple annealed approxi-
mation, Europhys. Lett. 1(2) 45-49, 1986.

[4] Digital Mars, D Compiler, http://www.digitalmars.com/d/, accessed May 2007.

[5] Gershenson, Carlos, Introduction to Random Boolean Networks, arXiv:nlin/0408006v3 12
August, 2004.

[6] Gershenson, Carlos, RBNLab, http://homepages.vub.ac.be/ cgershen/rbn/, accessed May
2007.

[7] GNU D Compiler, http://dgcc.sourceforge.net/, accessed May 2007.

[8] Harvey, I. and Bossomaier, T., Time out of joint: Attractors in Asynchronous Random Boolean
Networks, In Proc Fourth European Conference on Artificial Life (ECAL9T), pp67-75, MIT
Press, ed. P. Husbands and Harvey, 1., 1997.

[9] Kadanoff, Leo, Coppersmith, Susan and Aldana, Maximino, Boolean Dynamics with Random
Couplings, arXiv:nlin/0204062v2, 2002.

[10] Kauffman, S. A., Metabolic stability and epigenesis in randomly constructed genetic nets,
Journal of Theoretical Biology, 22:437—467, 1969.

[11] Kauffman, S. A., The Origins of Order, Oxford University Press, 1993.

[12] Wolfram, Stephen, Theory and Applications of Cellular Automata, Pub. World Scientific,
1986.

[13] Wuensche, A., Discrete Dynamical networks and their attractor basins, In Proc. Complex

Systems 1998 pp3-21. ed R.Standish et al., UNSW Sydney, Australia.



