Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE DETERMINATION OF KINETIC PARAMETERS

IN HEAT PROCESSING OF BABY FOOD

A thesis presented in partial fulfilment of the requirements for the degree of Ph.D. in Biotechnology at Massey University

Kalaya Taimmanenate 1980

81_07833

ABSTRACT

Two methods of heat processing kinetic parameter determination by steady-state and unsteady-state heating procedures were studied. The unsteady-state procedure was used for colour and viscosity where large amounts of samples were required for measurement, and both were used in considering the destruction of ascorbic acid and riboflavin in a baby food.

To obtain accurate determination of the kinetic parameters, standard k and Ea, experimental methods had to be developed to measure the quality factors within narrow limits of accuracy.

Determination of the kinetic parameters by unsteady-state procedure involved the development of a computer method for the can temperature distribution calculation, the quality retention calculation, and finally determination of the empirical relationships of the standard parameters, k and Ea, to the residuals (differences between experimental and predicted concentrations). Temperature distribution in a can was predicted by a modified computer program based on an analytical solution to obtain a form fitting of the experimental heat penetration curve. From this, the quality retention was calculated by numerical integration. The standard k and Ea were roughly estimated from the literature either on the studied quality or on a similar quality. Then the ranges of standard k and Ea were assigned in an orthogonal composite design and used to calculate the retained quality which then was compared with the experimental result to obtain the absolute residual at each standard k and Ea. The average residual at each processing temperature was used in multiple linear regression to determine the relationships between the standard k and Ea, and the residual. By optimising the empirical equation the best values for the standard k and Ea were determined.

The standard k and Ea for ascorbic acid and riboflavin were also determined by the steady-state procedure. In this, small tubes of the baby food were heated in a constant temperature oil bath. Nearly identical results obtained for ascorbic acid by both methods indicated that the method used was feasible and the degradation of ascorbic acid was best described by a first order reaction. For riboflavin, different results were found from the two methods but these could be explained as the results of the low destruction rate of riboflavin on heating, the analytical error and the change in physical conditions from cans to tubes. So, use of the steady-state kinetic parameters for quality retention calculation in unsteady-state was confirmed experimentally.

For colour and viscosity changes in processing, the method of kinetic parameter determination in unsteady-state heating procedure was used assuming first order kinetics.

It was concluded in this food system for the temperature ranges of $60-139^{\circ}$ C, the kinetic reaction rate at 129° C and the activation energy were $0.42-0.44 \times 10^{-4} \text{ s}^{-1}$ and $77-85 \text{ kJ mole}^{-1}$, $0.11-0.25 \times 10^{-4} \text{ s}^{-1}$ and $84-105 \text{ kJ mole}^{-1}$, $1.20 \times 10^{-4} \text{ s}^{-1}$ and 122 kJ mole^{-1} and $1.65 \times 10^{-4} \text{ s}^{-1}$ and 151 kJ mole^{-1} for ascorbic acid, riboflavin, colour and viscosity respectively.

ACKNOWLEDGEMENTS

The success of this research was due to the experience and confidence of my supervisors, Professor R.L. Earle and Dr Mary D. Earle, whom I shall always be grateful. Their untiring interest, patience and encouragement are deeply appreciated.

This work would not have been possible without the support of Chulalongkorn University to whom I am indebted. This scholarship would not have been possible to obtain without the help of Dr Mary D. Earle and the Chemical Technology Department, in particular, Dr K. Santiyanont, Dr C. Thanyapittayakul, Mr V. Premyothin and Dr P. Chittaporn.

I also wish to express my appreciation to various people who assisted this research in many ways. In particular I would like to thank:

Dr A.C. Cleland for his valuable discussions and criticisms and also his willing assistance.

Food Technology Research Centre, Department of Food Technology for financing the experimental work.

Professor R. Richards for providing the facilities and funding the computer expenses.

Mr T. Gracie for his assistance in experimental work.

Miss S.A. Wilkinson for helpful guidance in setting up steady-state heating experiments.

All taste panelists for taking part in the preliminary work and all those in the Faculty of Food Science and Biotechnology for making such a happy working environment. Also to my typist, Vivienne Mair, for her efficiency and patience, and Nuch for taking part in the final preparation.

.

Finally to my mother, sister and brothers for their continual moral support during the study.

Kalaya Taimmanenate October, 1980

CONTENTS

List of Tables

List of Figures

1.	INTROD	DUCTION	1
2.	LITERA	TURE REVIEW	3
2.1	Introd	luction	3
2.2	Kineti	c Theory of the Changes in Food During Heat Processing	4
	2.2.1	Theory of kinetic reaction rate	4
	2.2.2	Temperature dependence of the reaction rate	6
	2.2.3	Effect of other variables on the reaction rate	9
2.3	Quanti	tative Estimation of the Changes in Food During Heat	
	Proces	sing	10
	2.3.1	Analysis of concentration	10
	2.3.2	Determination of temperature distribution	10
		2.3.2.1 Determination of thermal lag in steady-state	
		heating	11
		2.3.2.2 Experimental heat penetration measurement	12
		2.3.2.3 Theoretical determination	13
	2.3.3	Calculation of kinetic parameters	14
2.4	Change	es of Food During Heat Processing	17
	2.4.1	Ascorbic acid	18
	2.4.2	Riboflavin	22
	2.4.3	Colour	2 5
		2.4.3.1 Browning reaction	25
		2.4.3.2 Pigment/chlorophyll destruction	28
		2.4.3.3 Total colour change	29
	2.4.4	Viscosity	32
2.5	Conclu	sion	33
3.	INVEST	IGATION OF TESTING METHODS AND DEVELOPMENT OF PROCESS	35
3.1	Introd	uction	35
3.2	Invest	igation of Testing Methods	36
	3.2.1	Ascorbic acid	36
	3.2.2	Riboflavin	37
	3.2.3	Colour	37
	3.2 4	Viscosity	38

3.3	Development of Process	38
	3.3.1 Preparation of baby foods	38
	3.3.2 Preprocessing	40
	3.3.2.1 Thawing	40
	3.3.2.2 Preheating	40
	3.3.3 Processing	41
	3.3.3.1 Temperature measurement	41
	3.3.3.2 Retort operation	42
	3.3.3.3 Processing conditions	42
3.4	Adjustment of Process	44
	3.4.1 Formulation .	44
	3.4.2 Preprocessing conditions	46
3.5	Final Process	47
4.	TEMPERATURE DISTRIBUTION IN A CAN DURING PROCESSING	51
4.1	Introduction	51
4.2	Experimental Determination of Temperature Distribution	52
4.3	Computer Programs for Temperature Distribution Calculation	54
	4.3.1 Analytical solution method	54
	4.3.2 Numerical finite difference method	57
4.4	Thermal Property Determination	60
4.5	Comparison between Predicted Temperatures from the Two Computer	•
	Programs - Analytical Solution and Numerical Finite Difference	63
4.6	Comparison of the Predicted Temperatures from the Analytical	
	Solution Program and the Experimental Temperatures	68
	4.6.1 Comparison of temperatures in the heating phase	68
	4.6.2 Comparison of temperatures in the cooling phase	71
	4.6.3 Comparison of temperatures in the overall process	75
4.7	Modification of the Analytical Solution Program	75
	4.7.1 The beginning of the cooling stage	75
	4.7.2 The later cooling stage	79
	4.7.3 Conclusion	80
4.8	Comparison of the Experimental Temperatures and the Predicted	
	Temperatures from the Modified Analytical Solution Program	82
4.9	Conclusion	86

.

5.	DETERMINATION OF KINETIC PARAMETERS BY UNSTEADY-STATE PROCEDUR	RE 88	
5.1	Introduction	88	
5.2	Experimental Analysis of Quality Retention	88	
5.3	Quality Retention Calculation	89	
	5.3.1 Theory of quality retention calculation	89	
	5.3.2 Computer program for quality retention calculation	92	
	5.3.3 Size of time increment and dimension increment	93	
5.4	Determination of Kinetic Parameters	95	
	5.4.1 The design	96	
	5.4.2 The analysis	96	
5.5	Determination of Kinetic Parameters for Ascorbic Acid	100	
	5.5.1 Determination of the range of $k_{129}o_{C}$ and Ea	100	
	5.5.2 A model for ascorbic acid for determination of kinetic		
	parameters	101	
5.6	Determination of Kinetic Parameters for Riboflavin	105	
5.7	Determination of Kinetic Parameters for Colour	110	
5.8	Determination of Kinetic Parameters for Viscosity	111	
5.9	Conclusion	114	
6.	KINETIC PARAMETER DETERMINATION BY STEADY-STATE PROCEDURE	117	
6.1	Introduction	117	
6.2	Experimentation	117	
	6.2.1 Sample preparation	117	
	6.2.2 Thermal processing system	118	
	6.2.3 Determination of ascorbic acid and riboflavin	119	
6.3	Destruction of Ascorbic Acid and Riboflavin on Heating	119	
6.4	Determination of the Order of Reaction	121	
6.5	Kinetic Parameters Determination	126	
	6.5.1 Calculation of kinetic parameters for first order		
	reaction	126	
	6.5.2 Calculation of kinetic parameters for second order		
	reaction	127	
	6.5.3 Determination of kinetic parameters for ascorbic acid	129	
	6.5.4 Determination of kinetic parameters for riboflavin	133	
6.6	Comparison of Kinetic Parameters Determined by Steady-State		
	and Unsteady-State Procedures 13		

	6.6.1 Ascorbic acid	138	
	6.6.2 Riboflavin	139	
6.7	Conclusion	142	
7.	DISCUSSION		
7.1	Temperature Prediction in the Can	144	
7.2	Use of Steady-State Kinetics Data to Predict Quality Changes		
	in Unsteady-State Heat Processing	145	
7.3	Kinetic Analysis Using Unsteady-State Heating Procedure	145	
7.4	Kinetic Parameters for Ascorbic Acid, Riboflavin, Colour and		
	Viscosity in Heat Processing of Baby Food	146	
7.5	Application to Processing	148	
8.	CONCLUSION	149	
	REFERENCES	150	
	APPENDICES		
3.1	Analysis of Ascorbic Acid and Riboflavin	175	
3.2	Analytical Method	176	
3.3	x, y and Y of Control and Heated Samples	180	
4.1	Analytical Solution Program	181	
4.2	Numerical Finite Difference Method Program	186	
4.3	Thermal Diffusivity Determination Results	189	
4.4	Distribution of Residuals for Determining Accuracy of the		
	Analytical Solution for Calculating Temperatures	190	
4.5	Modified Analytical Solution Program	193	
4.6	Comparison of Experimental Temperatures and Predicted		
	Temperatures from the Modified Analytical Solution Program	199	
4.7	Method of Quality Retention Calculation for Micro-organisms		
	and Ascorbic Acid	201	
4.8	An Example of Lethality Calculation	203	
4.9	Distribution of Residuals for Determining Accuracy of the		
	Modified Analytical Solution Program for Calculating		
	Temperatures	205	
5.1	Analytical Results	207	
5.2	Quality Retention Calculation Program	211	

5.3	An Example of Kinetic Parameters Calculation	217
5.4	Estimation of k_{129}^{0} or the Design for Ascorbic Acid	224
5.5	Determination of k_{129}^{0} or c_{0} and Ea for Riboflavin, Colour Y, and	
	Viscosity Using Equivalent Processing Time	226
6.1	Quality Retention Calculation Program Based on Second Order	
	Kinetics	230

-

.

.

LIST OF TABLES

2.1	Reaction Rate Constants and Activation Energies for Ascorbic Acid	21
2.2	Reaction Rate Constants for Riboflavin	24
2.3	Reaction Rate Constants and Activation Energies for Non-Enzymic Browning Reaction	27
2.4	Reaction Rate Constants and Activation Energies for Chlorophyll Destruction	30
2.5	Reaction Rate Constants and Activation Energies for Colour Change	31
3.1	Distance from the Centre to the Measured Points	43
4.1	Experimental Run Number and Processing Conditions	53
4.2	Comparison of the Calculated Temperatures at the Centre of the Can	57
4.3	Diffusivities of Baby Food at Variuos Temperatures	62
4.4	Comparison of Temperatures Predicted by the Analytical Solution and the Numerical Finite Difference Programs	64
5.1	The Mean Initial and Final Quality on Heat Processing	90
5.2	Effect of Size of Increment on Quality Retention Calculation	93
5.3	Level of the $k_{\mbox{129}^{\rm O}{\rm C}}$ and the Ea in the Orthogonal Composite Design for Ascorbic Acid	103
5.4	Orthogonal Composite Design for Riboflavin	106
5.5	Average Absolute Residuals and their Standard Deviations Resulting from Different Levels of k ₁₂₉ ° _C and Ea	107
6.1	Heating Temperatures and Times for Steady-State Heating Method	119
6.2	Concentration of Ascorbic Acid and Riboflavin Before and After Heating	120
6.3	Correlation Coefficients of Regression Analysis of Concentration of Ascorbic Acid and Riboflavin with Time of Heating	123

•

6.4	Kinetic Reaction Rate Constants at Various Temperatures for Ascorbic Acid	1 30
6.5	Activation Energy, Frequency Factor and Kinetic Reaction Rate at 129 ⁰ C for Ascorbic Acid	130
6.6	Kinetic Reaction Rate Constants at Various Temperatures for Riboflavin	134
6.7	Activation Energy, Frequency Factor and Kinetic Reaction Rate at 129 ⁰ C for Riboflavin	134
6.8	Second Order Kinetic Reaction Rate Constants at Various Temperatures for Riboflavin	136
6.9	Activation Energy, Frequency Factor, Kinetic Reaction Rate at 129 ⁰ C for Second Order Kinetics for Riboflavin	136
6.10	Comparison of Ea and k ₁₂₉ 0 _C for Ascorbic Acid Determined by Steady- and Unsteady-State Procedures	138
6.11	Comparison of Ea and k ₁₂₉ 0 _C for Riboflavin Determined by Steady- and Unsteady-State Procedures	139
6.12	Average Residuals at Various k_{129}^{0} or Riboflavin in Unsteady-State Heating in Can	141

LIST OF FIGURES

3.1	Thermocouple Arrrangement in a Can	43
3.2	Time, Temperature and Viscosity Relationships During Preprocessing of Baby Food	48
4.1	Comparison of Predicted Temperatures from the Computer Programs at $(r/a, x/h)$ of $(0.0, 0.0)$	65
4.2	Comparison of Predicted Temperatures from the Computer Programs at $(r/a, x/h)$ of $(2/3, 2/3)$	66
4.3	Distribution of Residuals for Comparison of the Analytical Solution and the Numerical Finite Difference Method for Run no.6	67
4.4	Comparison of Experimental Temperatures and Predicted Temperatures from the Analytical Solution Computer Program for Run no.6	69
4.5	Comparison of Experimental Temperatures and Predicted Temperatures from the Analytical Solution Computer Program for Run no.7	70
4.6	Heat Penetration Curves for Different Can Contents and Different Headspaces	73
4.7	Diagram Showing Different Parts in Heat Processing	76
4.8	Variance versus Thermal Diffusivity	78
4.9	Comparison of Experimental Temperatures and Predicted Temperatures from the Modified Analytical Computer Program for Run no.6	83
4.10	Comparison of Experimental Temperatures and Predicted Temperatures from the Modified Analytical Computer Program for Run no.7	84
5.1	Flow Chart for Quality Retention Calculation Program	94
5.2	An Orthogonal Central Composite Design to Fit a Second Order Response Surface	97

5.3	First Design for Ascorbic Acid with Calculated Average Absolute Residuals and their Standard Deviations	102
5.4	Orthogonal Design for Ascorbic Acid with Calculated Average Residuals and their Standard Deviations	104
5.5	Second Orthogonal Composite Design for Riboflavin with Average Absolute Residuals and their Standard Deviations	108
5.6	First Orthogonal Composite Design for Colour, Y, with Average Absolute Residuals and their Standard Deviations	110
5.7	Second Orthogonal Composite Design for Colour, Y, with Average Absolute Residuals and their Standard Deviations	112
5.8	First Orthogonal Composite Design for Viscosity with Average Absolute Residuals and their Standard Deviations	113
5.9	Second Orthogonal Composite Design for Viscosity with Average Absolute Residuals and their Standard Deviations	115
6.1	Degradation Rate for Ascorbic Acid in Baby Food on Heating Described by First Order Kinetics	124
6.2	Degradation Rate for Riboflavin in Baby Food on Heating Described by First Order Kinetics	125
6.3	Degradation Rate for Riboflavin in Baby Food on Heating Described by Second Order Kinetics	125
6.4	Arrhenius Plot for Degradation of Ascorbic Acid and Riboflavin in Baby Food on Heating	131
6.5	Probability Plot of Calculated % Residual for Ascorbic Acid	132
6.6	Probability Plot of Calculated % Residual for Riboflavin	135
6.7	Arrhenius Plot for Degradation of Riboflavin in Baby Food on	
	Heating Described by Second Order Kinetics	137