Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The Bacteriostatic Spectrum and Inhibitory Mechanism of Glycocin F, a Bacteriocin from *Lactobacillus plantarum* KW30

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Microbiology

at Massey University, Palmerston North, New Zealand

Andrew Philip Kerr

2013

Acknowledgements

Thank you to the following people:

Dr Mark Patchett

Dr Gillian Norris

For support, direction and encouragement.

Patrick Main

For killing time when there was time to be killed.

Soyeon Ahn

Trevor Loo

For technical expertise and experimental assistance.

The Rest of X-Lab

For advice and allowing me to 'commandeer' resources.

The Institute formerly known as IMBS

For making it an experience.

Abstract

Bacteriocins have been deemed the "microbial weapon of choice". The ability to ribosomally synthesise these toxins means that their peptide scaffolds can be rapidly adapted to optimise stability, potency and specificity, allowing producers to outgrow closely related strains and become dominant. In some cases, a bacteriocin may inhibit a broader spectrum of microbes than just its species/genus of origin. Recently, the bacteriocin glycocin F (GccF), produced by *Lactobacillus plantarum* KW30, was biochemically and structurally characterised. GccF is unique, as it has two covalently linked N-acetylglucosamine (GlcNAc) moieties, one *O*-linked and one *S*-linked, that are critical for the inhibition of target cell growth.

How GccF causes bacteriostasis in sensitive *Lactobacillus* cells was unknown. Experiments were developed and conducted to probe the antimicrobial spectrum of GccF and how this spectrum is affected by free GlcNAc. It was found that a variety of species and strains, not just those closely related to *L. plantarum* KW30, were inhibited by the addition of GccF to cultures in solid or liquid media. Susceptible strains were identified in the genera *Streptococcus*, *Enterococcus*, and *Bacillus*. Interestingly, assays indicated that free GlcNAc plays a more dynamic role in modulating GccF activity than previously thought. The protective effect of high concentrations of GlcNAc, including the reversal of GccF-induced bacteriostasis, was confirmed for susceptible *L. plantarum* strains, but surprisingly addition of relatively low concentrations of GlcNAc prior to GccF led to a concentration-dependent increase in bacteriostasis for some other species including *Enterococcus faecalis*. GccF's mechanism of action was found to be different to the bactericidal membrane-permeabilising effect of the lantibiotic nisin, as *L. plantarum* cells treated with GccF did not die, and there was no substantial release of ATP from cells upon GccF-induced bacteriostasis.

It was also found that for Gram-negative bacteria, which are generally resistant to GccF, growth inhibition was greatly enhanced if the integrity of the outer membrane was compromised by treatment with polymyxin, or by expression of a 'leaky' mutant of the outer membrane secretin PulD. Thus GccF-mediated inhibition of growth is limited to Gram-positive bacteria mainly because of the barrier function of the Gram-negative outer membrane.

Experiments to identify changes in *E. faecalis* V583 gene expression or the levels of specific proteins in response to free GlcNAc were inconclusive due to time constraints. Further research is needed to determine GccF's exact mechanism of action.

The results of experiments with GccF, with and without added GlcNAc, on a range of bacterial species led to a hypothetical model for the mechanism of action of GccF, specifically that GccF may be 'hijacking' GlcNAc-specific phosphotransferase system signalling pathways. This could disrupt normal GlcNAc metabolism, perhaps resulting in UDP-GlcNAc becoming limiting for peptidoglycan synthesis, thus preventing cell wall expansion, and normal cell growth and division.

Table of Contents

Acknowledgements	ii
Abstract	iii
Table of Contents	V
List of Figures	vii
List of Tables	ix
List of Abbreviations	x

1.0 A Brief Introduction to Bacteriocins

1.1 Introduction	1
1.2 Bacteriocins	2
1.3 Ecological Significance	3
1.4 Classification	6
1.5 Modes of Action of Bacteriocins	8
1.6 Applications	
1.7 Glycocin F (GccF) produced by Lactobacillus plantarum KW30	12
1.8 The Biological Roles of N-acetyl-D-glucosamine	13
1.9 Similar Bacteriocins (Other Glycocins?)	15
1.10 Research Aims	16

2.0 Materials and Methods

2.1 Disposable Materials	17
2.2 Laboratory Equipment	20
2.3 Methods	22

3.0 Determining the	e Antimicrobial Spectrum of Purified GccF	35
3.1 Objective	s	
3.2 Selecting	Candidate Organisms for GccF Susceptibility Testing	
3.2.1	In-plate Growth Assays	
3.2.2	Variation in Response to GccF and GlcNAc	42

3.2.3 Real-Time Growth Determination in Liquid Media Using a Typic	cal
Enterococcus faecalis strain, V583	46
3.2.4 Real-Time Growth Determination of Bacterial Cocci Strains, a	ınd
Species Obtained from ESR	51
3.2.5 Real-Time Growth Determination of Bacterial Rod Species in Liqu	Jid
Media	56

4.0 Investigating the Mode of Action of GccF
4.1 Objectives
4.2 Is GccF bactericidal, or bacteriostatic?
4.3 Monitoring ATP Efflux using a Bioluminescence Assay
4.4 Compromising Outer Membrane integrity sensitises Gram -ve Bacteria to GccF 70
4.4.1 Real-Time Growth in Liquid Media of Escherichia coli Secretin
Mutants72
4.4.2 Testing Experimental Controls for a "Leaky" PulD Secretin Mutant .76
4.4.3 GlcNAc-mediated Revival in <i>ApulD+pulS E. coli</i> from GccF-Induced
Bacteriostasis
4.5 Using Proteomics Methods to Investigate Proteins Involved in GccF
Susceptibility
4.6 Designing a qPCR Experiment for <i>nagE</i> of <i>E. faecalis</i> V58384
4.6.1 Verification of PCR Primer Specificity
4.6.2 RT-PCR of <i>nagE</i> , <i>gap2</i> and <i>rpoA</i>
5.0 Conclusions and Future Directions
6.0 Appendices
6.1 Bacterial Strains and Plasmids Used in this Study94
6.2 Antimicrobial Spotting on Indicator Bacterial Lawns
6.3 ATP Assay Standard Curves, Luminescence vs. [ATP]99
7.0 References

List of Figures

Introduction:

1.1 A simplified diagram of a non-transitive competition network
1.2 Schematic diagrams of the proposed modes of action for bacteriocins
1.3 Schematic diagram of the primary structure (i.e. amino acid sequence) of GccF.12
1.4 Schematic diagram of GlcNAc's fate in bacterial cells
1.5 Multiple sequence alignment of bacteriocins similar to GccF

Results and Discussion:

3.1 KEGG amino sugar metabolism pathway for <i>L. plantarum</i> WCSF136
3.2 Alignment tree of PTS18CBA protein orthologues
3.3 Variation in susceptibility to GccF within <i>Lactobacillus plantarum</i> 43
3.4 Examples of differential GlcNAc effects between species
3.5 Variation in GccF susceptibility and GlcNAc response within <i>E. faecalis</i>
3.6 OD_{600} growth curve of <i>E. faecalis</i> V583 with addition of 1 μ M GccF at time 046
3.7 OD_{600} growth curve of <i>E. faecalis</i> V583 with GlcNAc added at T (-60) minutes.47
3.8 Growth curve of <i>E. faecalis</i> V583 with a higher level GlcNAc supplementation at T (-60) minutess
3.9 OD ₆₀₀ growth curve of <i>E. faecalis</i> V583 showing GlcNAc-mediated recovery49
3.10 OD ₆₀₀ growth curves of <i>E. faecalis</i> NZRM 89 and NZRM 1240
3.11 OD ₆₀₀ growth curves of <i>E. faecalis</i> NZRM 3601 and NZRM 406153
3.12 OD ₆₀₀ growth curves of <i>Streptococcus</i> species
3.13 OD ₆₀₀ growth curves of <i>Bacillus megaterium</i> DSM31956
3.14 OD ₆₀₀ growth curve of <i>Yersinia frederiksenii</i> in the presence of a range of concentrations of polymyxin B
3.15 Growth curve of <i>Y. frederiksenii</i> in the presence of GccF with and without the addition of polymyxin B

4.1 Calculated cfu/mL for <i>L. plantarum</i> ATCC 8014 cultures, at 30 minute intervals after addition of GccF or <i>O</i> -deglycosylated GccF
4.2 Growth curves of <i>E. faecalis</i> V583 with and without 1 mM GlcNAc added at T(- 60 mins) and 1 μ M GccF added at T(0)
4.3 Outline of reactions taking place in the ATP bioluminescence assay
4.4 Change in ATP levels in cell-free supernatants over time67
4.5 A computer generated reconstruction of secretin multimers71
4.6 Schematic diagram of GccF's hypothetical entry through 'leaky' pIV or PulD72
4.7 Growth curves of <i>E. coli</i> parental strain and secretin mutants73
4.8 A generalised schematic of a sugar phosphotransferase system75
4.9 Growth curves of <i>E. coli</i> containing PulD-related plasmids77
4.10 Revival of growth of GccF-treated <i>E. coli/△pulD+pulS</i> with free GlcNAc78
4.11 Coomassie stained SDS-PAGE of proteins extracted from lysed <i>E. faecalis</i> V583 cells grown in the presence of GlcNAc
4.12 Schematic diagram of the hypothetical mechanism of GlcNAc's influence on susceptibility to GccF
4.13 1% Agarose gel electrophoresis of PCR products
4.14 CLC Genomics alignments of sequenced PCR products
4.15 1% Agarose gel electrophoresis of RT-PCR products
4.16 1% Agarose gel of RT-PCR step products

Conclusions and Future Directions:

5.1 Schematic diagram o	f GlcNAc-induced metabolic regulation	
5.2 Schematic diagram o	f Hypothesised GccF mechanism of action	

Appendices:

6.1 Indicator plates for antimicrobial agar diffusion assays	96
6.2 More indicator plates for antimicrobial agar diffusion assays	.97,98
6.3 Standard curves for the ATP bioluminescence assay taken for Figure 4.4	99

List of Tables

Introduction:

1.1 A proposed general bacteriocin classification scheme7, 8
Materials and Methods:
2.1 Reagents (in order of addition) and volumes for stacking and separating gel mixes for SDS-PAGE
2.2 PCR primer pairs for three <i>E. faecalis</i> V583 genes
2.3 Reagents/solutions and their respective volumes for a 20 μ L PCR mix31
2.4 Steps involved in PCR amplification of regions of selected genes
Discussion and Results:
3.1 Table of bacterial species and strains challenged with GccF in solid media39, 40
4.1 Top two protein hits for each band from Figure 4.11
Conclusions and Future Directions:
5.1 Key to Figures 5.1a and Figure 5.1b91
Appendices:
6.1 Comprehensive list of non-genetically modified bacteria used in this study
6.2 Escherichia coli strains and plasmids used in secretin mutant analysis

List of Abbreviations

ABC	ATP binding cassette
Abs	Absorbance (values)
ACN	Acetonitrile
ATCC	American Type Culture Collection
ATP	Adenosine triphosphate
BLiS	Bacteriocin-like substance
BP (bp)	Base pairs
cDNA	Copied DNA
Cfu	Colony forming units
Da	Dalton
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
ESR	Institute of Environmental Science and Research
EtBr	Ethidium bromide
G/Gram -ve	Gram-negative
G/Gram +ve	Gram-positive
GccF	Glycocin F
GcnA	N-acetyl-β-D-glucosaminidase
GlcN	Glucosamine
GlcNAc	N-acetylglucosamine
GlcNAc-1/6-P	N-acetlyglucosamine-1/6-phosphate
GRAS	Generally regarded as safe
IM	Inner membrane
kDa	kilodalton
KEGG	Kyoto Encyclopaedia of Genes and Genomes
LAB	Lactic acid bacteria
LB	Luria broth

man-PTS	Mannose-phosphotransferase system
mRNA	Messenger RNA
MRS	de Man, Rogosa and Sharpe medium
MRSA	Methicillin resistant Staphylococcus aureus
MS	Mass Spectrometry
NCBI	National Centre of Biotechnology Information
NZRM	New Zealand Reference Culture Collection, Medical Section
OD	Optical density
OM	Outer membrane
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PEP	Phosphoenolpyruvate
PTM	Post-translational modification
PTS	Phosphotransferase system
qPCR	Quantitative polymerase chain reaction
RNA	Ribonucleic acid
RT	Room Temperature
RT-PCR	Real-time polymerase chain reaction
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
T(x)	Time (value in minutes)
TBE	Tris/Borate/EDTA buffer
TEMED	<i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-Tetramethylethylene diamine
TSB	Tryptone soya broth
TSBgly	Tryptone soya broth with 1.2% (w/v) glycine
UDP	Uridine diphosphate
UV	Ultraviolet
VRE	Vancomycin resistant enterococci
w/v	Weight per volume