Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE EFFECT OF EARLY EXERCISE ON THE ARTICULAR CARTILAGE AND SUBCHONDRAL BONE OF THE DISTAL THIRD METACARPAL/METATARSAL BONES OF YOUNG THOROUGHBRED HORSES.

A thesis presented in partial fulfilment of the requirements for the degree of Master of Veterinary Science at Massey University, Palmerston North New Zealand.

> Susanne Dykgraaf 2003

CONTENTS

TITLEi				
TABLE OF CONTENTSii				ii
LIST	OF IL	LUST	RATIONS	v
LIST	OF T	ABLES		viii
ABBF	REVIA	TION	5	ix
ACK	NOWI	LEDGE	EMENTS	x
ABST	RAC	Г		xi
CHAI	PTER	1	INTRODUCTION	1
	1.1	Backg	ound	1
	1.2	Literat	ure Review	5
		1.2.1	Synovial joint structure and function	5
		1.2.2	Joint capsule and ligaments	6
		1.2.3	Synovial membrane	6
		1.2.4	Joint innervation and blood supply	6
		1.2.5	Synovial fluid and lubrication	7
		1.2.6	Articular cartilage	10
		1.2.7	Subchondral bone	21
		1.2.8	The equine metacarpophalangeal joint	23
		1.2.9	Biomechanical behaviour of articular cartilage and subchondral bone	26
		1.2.10	Loading of articular cartilage and subchondral bone	27
		1.2.11	Osteoarthritis (OA)	31
		1.2.12	Methods of assessing articular cartilage and bone	35
		1.2.13	Effect of exercise on articular cartilage and subchondral bone	39
		1.2.14	Viability staining and confocal microscopy	47
		1.2.15	Computed tomography	50
	1.3	Summa	ary	52
	1.4	Hypotl	neses	54
		1.4.1	Objectives of this study	55

CHAPTER	2 MATERIALS AND METHODS
2.1	Definitions
2.2	Animals
2.3	Joint Dissection

	2.4	Articular Cartilage Sample Collection and Preparation58		
	2.5	Confocal Microscopy		
		2.5.1 Viability staining	0	
		2.5.2 Microscopy	1	
	2.6	Computed Tomography6	4	
	2.7	Image Analysis	5	
	2.8	Histological Scoring Systems	6	
		2.8.1 Histomorphologic examination	6	
		2.8.2 Histochemical examination	7	
	2.9	Statistical Analysis	8	
СНА	PTER	3 RESULTS	9	
	3.1	Growth Rate and Work Load	9	
	3.2	Medical History6	9	
	3.3	Gross Pathology7	1	
	3.4	Non-calcified Cartilage Thickness of Mc37	2	
3.5 Total Number of Chondrocytes			4	
	3.6	Percentage of Viable Chondrocytes	7	
	3.7	Subchondral Bone Mineral Density	4	
	3.8	Percentage of Dead Chondrocytes and SCB Mineral Density	7	
	3.9	Location of Dead Chondrocytes9	1	
	3.10	Examples of Patterns of Chondrocyte Viability Staining9	3	
	3.11	Histological Assessment of Articular Cartilage9	8	
	3.12	Examples of Confocal Images With Corresponding Histological Images10)1	
СНА	PTER	4 DISCUSSION	13	
	4.1	Effect of Exercise and Loading on the Percentage of Viable Chondrocytes10	13	
	4.2	Effect of Exercise and Loading on the Total Number of Chondrocytes10	15	
	4.3	Relationship of Chondrocyte Viability and SCB BMD10	6	
	4.4	Location of Dead Chondrocytes Within the Articular Cartilage10	17	
	4.5	Effect of Exercise on Non-calcified Articular Cartilage Thickness10	8	
	4.6	Patterns of Cell Staining10	18	
	4.7	Medical History and Gross Pathology11	0	
	4.8	Histomorphometry, Histochemistry and Confocal Microscopy11	0	
	4.9	Workload, Sex and Limb Effects11	1	

4.10	Initiating Event in Osteoarthritis: Articular Cartilage Matrix	Degradation or
	Subchondral Bone Sclerosis?	112
4.11	Apoptosis or Necrosis?	113
4.12	Sources of Error and Limitations of the Study	113
4.13	Further Research	114
4.14	Conclusion	115
APPENDIC	CES	116
Арре	endix 1: Viability Stain Stock Solutions	116
Арре	endix 2: Thresholding	117
Арре	endix 3: Articular Cartilage Zones	118
Арре	endix 4: Histological Slide Preparation	
REFEREN	NCE LIST	

LIST OF ILLUSTRATIONS

Figure 1.1:	Diagram of a synovial joint	5
Figure 1.2:	Boundary lubrication of articular cartilage	8
Figure 1.3:	Hydrodynamic and squeeze film fluid lubrication.	10
Figure 1.4:	Regional organisation of mammalian articular cartilage	12
Figure 1.5:	Organisation of the major extra-cellular matrix components in articular	
cartilag	;e	15
Figure 1.6:	Diagrammatic representation of the large proteoglycan aggrecan and	
link pro	otein, which bind to each other and to hyaluronan (HA).	16
Figure 1.7:	The reparative attempt of chondral defects in which injury is limited to	
articula	r cartilage	20
Figure 1.8:	Diagram of a sagittal section of the metacarpophalangeal joint and the	
associa	ted soft tissue structures.	23
Figure 1.9:	Diagram of the factors involved in articular cartilage degradation in	
osteoar	thritis	31
Figure 1 10:	Diagram of factors involved in enzymatic degradation of articular	
cartilag	ge matrix	32
Figure 1.11:	Image of articular cartilage (articular surface at the top of the image)	
with pr	edominantly viable chondrocytes that have retained the fluorescent stain	
calcein	. (16x objective).	48
Figure 1.12	Image of articular cartilage, after to 80° for 30 minutes (articular	
surface	e at the top of the image), demonstrating dead chondrocytes. All	
chondr	ocytes have stained with propidium iodide (16x objective).	49
Figure 2.1:	Images of the articular cartilage explant location and sampling	
technic	jue	59
Figure 2.2:	Diagram of the bisection plane of the articular cartilage explants.	60
Figure 2.3:	Diagram of a mounted confocal microscopy slide	61
Figure 2.4:	Fluorescence emission profiles for calcein and for propidium iodide	
bound	to DNA.	62
Figure 2.5:	Diagram of a fresh articular cartilage sample.	63
Figure 2.6:	Images of pQCT data collection	65
Figure 3.1:	Workload of exercised group over study period	69
Figure 3.2:	Image of the right MCP joint of horse No.33 with a dorsomedial P_p	
chondr	oid fragment (arrow).	72

Figure 3.3: Box and whisker plot comparing the non-calcified articular cartilage	2
thickness in control and exercised horses between dorsal and palmar regions	3
Figure 3.4: Box and whisker plot of pooled total number of chondrocytes per field	
for individual horses. At least three confocal microscopy images from 10	
samples from the three joints of each horse were counted	1
Figure 3.5: Box and whisker plot of the total number of chondrocytes for pooled	
dorsal and palmar sites	5
Figure 3.6: Box and whisker plot of the total number of chondrocytes for pooled	
left and right forelimb sites	5
Figure 3.7: Box and whisker plot of the percentage of viable chondrocytes for	
forelimbs and hindlimb by treatment group77	7
Figure 3.8: Box and whisker plot of the percentage of viable chondrocytes in colts	
and fillies by treatment group	8
Figure 3.9: Box and whisker plot of the percentage of viable chondrocytes in	
exercised and control horses for data pooled across all sites	9
Figure 3.10: Box and whisker plot of the percentage of viable chondrocytes in	
exercised and control horses at dorsal and palmar sites	С
Figure 3.11: Box and whisker plot of the percentage of viable chondrocytes in the	
pooled dorsal and palmar sites	1
Figure 3.12: Box and whisker plot of the percentage of viable chondrocytes	2
Figure 3.13: Box and whisker plot of percentage of viable cells at pooled lateral and	
medial sites	3
Figure 3.14: Bone mineral density ranges in the dorsal regions of control and	
exercised horses	4
Figure 3.15: Bone mineral density ranges in the palmar regions of control and	
exercised horses	4
Figure 3.16: Box and whisker plot of the mean BMD for exercise and control	
groups pooled across all sites	5
Figure 3.17: Box and whisker plot of the percentage of area of very high density	
bone (> 0.76g/cm ³) for exercised and control groups pooled across all sites	5
Figure 3.18: Box and whisker plot of the percentage area of very high density bone	
for exercise and control groups at palmar and dorsal regions	6
Figure 3.19: pQCT images of dorsal (left) and palmar (right) slices of distal Mc3	6
Figure 3.20: Regression of the mean BMD with percentage of dead chondrocytes	
across pooled exercised and pooled control sites	7

Figure 3.21: Regression of the mean RMD with the percentage of dead	
chondrocytes across pooled palmar and pooled dorsal sites.	88
Figure 3.22: Regression of the percentage of very high BMD voxels with the % of	
dead chondrocytes across pooled exercised and control sites.	89
Figure 3.23: Regression of the percentage of very high BMD voxels with the % of	
dead chondrocytes across pooled palmar and pooled dorsal sites.	90
Figure 3.24: Box and whisker plot of the percentage of dead cells in zones A and B	
of the articular cartilage sections.	91
Figure 3.25: Box and whisker plot of the percentage of dead chondrocytes in each	
zone by treatment group.	92
Figure 3.26: Box and whisker plot of the percentage of dead chondrocytes in each	
zone by region	92
Figure 3.27: Confocal images of viable staining chondrocytes.	93
Figure 3.28: Confocal images of viable staining chondrocytes.	93
Figure 3.29: Confocal images of predominantly viable staining chondrocytes	94
Figure 3.30: Confocal images of viable and dead staining chondrocytes.	94
Figure 3.31: Confocal images of viable and dead staining chondrocytes.	95
Figure 3.32: Confocal images of viable staining deep zone chondrocytes	95
Figure 3.33: Confocal images of abnormal chondrocytes and articular cartilage	96
Figure 3.34: Confocal images of abnormal chondrocytes and articular cartilage	96
Figure 3.35: Confocal images of articular cartilage abnormality.	97
Figure 3.36: Histogram of the modified Mankin scores across pooled control and	
exercised sites	98
Figure 3.37: Histogram of the overall modified Mankin scores for dorsal and	
palmar regions.	98
Figure 3.38: Box and whisker plot of pooled colt and filly scores by treatment	
group	99
Figure 3.39: Histogram of the overall SOFG score for treatment group	.100
Figure 3.40: Histogram of the overall SOFG score by region	.100
Figure 3.41: Images comparing confocal, SOFG and H&E staining of the articular	
cartilage	.101
Figure 3.42: Images comparing confocal, SOFG and H&E staining of the articular	
cartilage.	.102

LIST OF TABLES

Table 1.1:	Comparison of the main features characteristic of apoptosis and	
necrosi	S	46
Table 3.1:	Musculoskeletal conditions and injuries occurring within 24 weeks of	
euthana	asia	70
Table 3.2:	Gross pathology within metacarpo/tarsophalangeal joints at dissection	71

ABBREVIATIONS

BMD	Volumetric bone mineral density
CDET	Common digital extensor tendon
CLSM	Confocal laser scanning microscopy
DDFT	Deep digital flexor tendon
DJD	Degenerative joint disease
DXA	Dual x-ray absorptiometry
ECM	Extra-cellular matrix
HA	Hyaluronan
II-1	Interleukin 1
Mc3	Third metacarpal bone
МСР	Metacarpophalangeal
MMP	Matrix metalloproteinases
Mt3	Third metatarsal bone
МТР	Metatarsophalangeal
NO	Nitric oxide
OA	Osteoarthritis
Pp	Proximal phalanx
PG	Proteoglycan
PI	Propidium iodide
рQСТ	Peripheral quantitative computed tomography
PSB	Proximal sesamoid bones
ROI	Regions of interest
RA	Rheumatoid arthritis
SDFT	Superficial digital flexor tendon
SCT	Subchondral calcified tissues
SCB	Subchondral bone
TNF	Tumour necrosis factor

ACKNOWLEDGEMENTS

I am very grateful for the encouragement and assistance provided by friends, family and colleagues during the course of this thesis.

In particular, I am extremely fortunate to have had the benefit of working with my supervisors, Professor Elwyn Firth, Dr Chris Rogers and Dr Chris Kawcak. I am indebted to them for their generosity in providing, their time, guidance and advice, and for igniting and fuelling an interest in musculoskeletal research.

I am especially grateful to The New Zealand Equine Research Foundation for their generosity in providing financial assistance towards this project. I would like to thank The Global Equine Research Alliance (GERA) for allowing me to use tissues from their animals and to work with such world renowned researchers.

Special thanks must be extended to Liz Nickless and Al Rowland for their patience in guiding me through the wonderful world of confocal microscopy. Liz's expertise in image analysis was also appreciated as was Don Bailey's input. Mike Doube's ever present enthusiasm was also an important factor in this project. The original illustrations in Chapter 2 are mostly due to Mike's artistic abilities. I would like to thank Dr Peter Bush for his advice on viability staining of articular cartilage, and Mervyn Birtles, Guy Hessell and Marti Sherin for their expertise and advice with the histological slides and CT scanning respectively.

I would like to thank Trish Moffat, Donna Williamson, Andy Hunt, Vaughan Seed, Tony Mogg, and Martin Johnson for their support. Dr Mark Ethell was instrumental during the early phases of this study and his input has been a major influence during my initiation into research and veterinary surgery.

To my parents Bob and Muriel, thank you for your never-ending encouragement and support.

ABSTRACT

The effect of early moderate exercise on articular cartilage and subchondral bone were investigated by comparing two groups of age and sex matched, pasture reared, 18 month old (\pm one month) Thoroughbred horses. The treatment group (n=6, 3 colts, 3 fillies) were exercised five days per week from 10 days of age on a purpose-built grass racetrack. The control group were managed identically but did not participate in an exercise programme.

Articular cartilage samples were taken from all horses, from the palmar and dorsal regions of the left and right distal third metacarpal bones (Mc3) and the palmar region of the left third metatarsal bone (Mt3). The sites were selected from regions that sustain high (palmar region) and low (dorsal region) load during exercise. The fresh articular cartilage samples were incubated with fluorescent stains (calcein-AM and propidium iodide) and examined under confocal laser scanning microscopy to assess chondrocyte viability. The number of viable and dead chondrocytes at each site was determined based on the fluorescent staining characteristics. The subchondral epiphyseal bone mineral density adjacent to the articular cartilage sample sites was measured using computed tomography data from regions of interest which were 2mm proximal to the interface of calcified cartilage and subchondral bone.

There was a 14% greater percentage of viable chondrocytes in the exercised horses (p=0.001), and a 34% greater percentage of viable chondrocytes at the control palmar regions compared to control dorsal regions (p=0.001). One exercised horse and five control horses had subtle macroscopic features consistent with osteoarthritis (OA) in the metacarpo(tarso)-phalangeal joints. Variation in chondrocyte viability was less in palmar and dorsal sites from exercised animals, and palmar sites from control animals. An association between percentage of dead chondrocyte viability occurred independently of SCB sclerosis. The sequence of initiating events leading to reduced articular cartilage viability appeared to be unassociated with SCB sclerosis at the sites of distal Mc3/Mt3 under the moderate exercise regimen imposed.

The effect of early exercise on the articular cartilage and SCB of young Thoroughbred horses has been further elucidated. Early exercise appeared to have beneficial effect on the viability of the articular cartilage sampled in this group of horses. The abnormalities detected may have been the earliest stages of idiopathic OA, but the relative and temporal involvements of articular cartilage and SCB remain undefined.