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Abstract

Variants of malware and exploits are emerging on the global canvas at an ever-increasing

rate. There is a need to automate their detection by observing their malicious footprints

over network streams. Misuse-based intrusion detection systems alone cannot cope with

the dynamic nature of the security threats faced today by organizations globally, nor

can anomaly-based systems and models that rely solely on packet header information,

without considering the payload or content.

In this thesis we approach intrusion detection as a classification problem and describe

a system using exemplar-based learning to correctly classify known classes of malware

and their variants, using supervised learning techniques, and detect novel or unknown

classes using unsupervised learning techniques. This is facilitated by an exemplar se-

lection algorithm that selects most suitable exemplars and their thresholds for any

given class and a novelty detection algorithm and classification algorithm that is capa-

ble to detect, learn and classify unknown malicious streams into their respective novel

classes. The similarity between malicious network streams is determined by a proposed

technique that uses string and information-theoretic metrics to evaluate the relative

similarity or level of maliciousness between different categories of malicious network

streams. This is measured by quantifying sections of analogous information or entropy

between incoming network streams and reference malicious samples. Honeynets are

deployed to capture these malicious streams and create labelled datasets. Cluster-

ing and classification methods are used to cluster similar groups of streams from the

datasets. This technique is then evaluated using a large dataset and the correctness

of the classifier is verified by using “area under the receiver operating characteristic

curves” (ROC AUC) measures across various string metric-based classifiers. Different

clustering algorithms are also compared and evaluated on a large dataset.

The outcomes of this research can be applied to aid existing intrusion detection systems

(IDS) to detect and classify known and unknown malicious network streams by utilizing

information-theoretic and machine learning based approaches.
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