Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

DETECTION AND CLASSIFICATION OF MALICIOUS NETWORK STREAMS IN HONEYNETS

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AT MASSEY UNIVERSITY, PALMERSTON NORTH, NEW ZEALAND.

Fahim U.H. Abbasi

2013

Abstract

Variants of malware and exploits are emerging on the global canvas at an ever-increasing rate. There is a need to automate their detection by observing their malicious footprints over network streams. Misuse-based intrusion detection systems alone cannot cope with the dynamic nature of the security threats faced today by organizations globally, nor can anomaly-based systems and models that rely solely on packet header information, without considering the payload or content.

In this thesis we approach intrusion detection as a classification problem and describe a system using exemplar-based learning to correctly classify known classes of malware and their variants, using supervised learning techniques, and detect novel or unknown classes using unsupervised learning techniques. This is facilitated by an exemplar selection algorithm that selects most suitable exemplars and their thresholds for any given class and a novelty detection algorithm and classification algorithm that is capable to detect, learn and classify unknown malicious streams into their respective novel classes. The similarity between malicious network streams is determined by a proposed technique that uses string and information-theoretic metrics to evaluate the relative similarity or level of maliciousness between different categories of malicious network streams. This is measured by quantifying sections of analogous information or entropy between incoming network streams and reference malicious samples. Honeynets are deployed to capture these malicious streams and create labelled datasets. Clustering and classification methods are used to cluster similar groups of streams from the datasets. This technique is then evaluated using a large dataset and the correctness of the classifier is verified by using "area under the receiver operating characteristic curves" (ROC AUC) measures across various string metric-based classifiers. Different clustering algorithms are also compared and evaluated on a large dataset.

The outcomes of this research can be applied to aid existing intrusion detection systems (IDS) to detect and classify known and unknown malicious network streams by utilizing information-theoretic and machine learning based approaches.

Acknowledgements

All praises and thanks to Allah the exalted, the creator and lord of the universe, the source of all knowledge and wisdom. I thank Allah for all His blessings and especially for blessing me with good health, audacity, potential and ability to complete this manuscript.

I wish to express my profound gratitude to my supervisors Prof. Richard Harris, Dr. Giovanni Moretti and Prof. Stephen Marsland for their time, wisdom, patience, keen interest, inspiring guidance and valuable suggestions in planning, conducting and writing this manuscript. Thank you for sharing your wealth of knowledge with me and thank you for teaching me scientific methods and research. I would like to thank all my teachers who taught me in school, college and university in Pakistan and New Zealand. You all played your part that helped me to achieve my goals.

I have no words to express my gratitude to my father Mansoor-ul-Huda Abbasi and my mother Dr. Arsala Mansoor for all they have done for me. Thank you for believing in me and always encouraging me to pursue a Phd. I wish my father was alive and could be with us today to cherish this achievement. Both my parents were awarded a prestigious scholarship for Postgraduate studies overseas (in 1985) and I am glad to be their flag bearer. I would like to thank my siblings, my sister Asra, brother-in-law Irfan, and my brother Ibrahim. Thank you for your wishes and support.

I would like to thank my wife Rooshan, who has always stood firm by my side through good and difficult times during my PhD. Your constant love and support played a major role in completion of my PhD.

I would like to thank my lovely daughters Fatima and Sara. You have provided the perfect distraction that allowed me to keep my sanity and provided a good motivation to finish my thesis.

I would like to thank my fellow Postgrads at Massey University, especially my office mates Graham Jenson and Jevon Wright for the valuable discussions and distractions. I would like to thank my fellow Pakistani students and the Pakistani Palmerston North community for all their support and help, especially Yousuf, Jawad, Shujjat, Aamir, Jibran, Ibrar and Dr. Zulfiqar Butt. Thank you for all the support, festivities and distractions that made us feel at home.

I would like to thank the Higher Education Commission (HEC) of Pakistan for funding my studies at Massey University through the MS leading to PhD scholarship. You provided a very strong motivation to persue a PhD at Massey University NZ.

I would like to thank Massey University and the School of Engineering and Advanced Technology (SEAT) for giving me the opportunity to do a PhD degree.

I would like to the thank the SEAT staff especially Michele Wagner, Linda Lowe, Dilantha Punchihewa and Gayle Leader for sorting out numerous administrative and financial issues during the tenure of my PhD. and especially the SEAT support staff: Patrick Rynhart, Colin Plaw, Mike Lusby and Nick Look. Your technical expertise and discussions have helped me during the thick of things.

Finally I would like to thank Dr Ian Welch, Dr Peter Komisarczuk, Dr Felix Leder and Dr. Tillmann Werner for their support and advice.

Contents

\mathbf{A}	Abstract iii				
Acknowledgements v					
1	Inti	roduction 1			
	1.1	Background	1		
	1.2	Motivation	3		
	1.3	Network-based Intrusion Detection Research Challenges	7		
	1.4	Scope of study	9		
		1.4.1 Collection of malicious network streams for ground truth \ldots	10		
		1.4.2 Detection of malicious network streams and their variants: Supervised Learning	11		
		1.4.2.1 Similarity measurement between malicious network streams The use of information-theoretic and string metrics based measures	s: 12		
		1.4.3 Detection of new or novel malicious network streams: Unsuper- vised Learning	12		
		1.4.4 Stream Classification	12		
	1.5	Research Goals	13		
	1.6	Contribution of this thesis	13		
	1.7	Limitations	14		
	1.8	Thesis Structure and Outline	14		

2	Lite	erature	Review	on Intrusion Detection	17
	2.1	Intrusi	on Detec	tion Systems	17
		2.1.1	A Brief	History and Review Of IDS	18
		2.1.2	A Taxor	nomy of Intrusion Detection Systems	22
		2.1.3	Categori	zation by Analysis Method	25
			2.1.3.1	Misuse-based Detection Systems:	27
			2.1.3.2	Anomaly-based Detection Systems:	28
			2.1.3.3	Hybrid Intrusion Detection Systems:	30
		2.1.4	Categori	zation by Location in the network:	31
			2.1.4.1	Host-based IDS (HIDS) \ldots	31
			2.1.4.2	Network-based Intrusion Detection Systems or (NIDS)	32
		2.1.5	Categori	ization by Information source	33
		2.1.6	Categori	zation by Detection Methodology:	33
			2.1.6.1	Statistical Methods for Intrusion Detection	34
			2.1.6.2	Knowledge-based detection	34
			2.1.6.3	Machine learning approaches for Intrusion Detection	34
			2.1.6.4	Information-theoretic approaches for Intrusion Detection	37
			2.1.6.5	Worm Detection Systems	38
		2.1.7	Categori	ization by Processing time:	40
		2.1.8	Categori	zation by Architecture:	40
		2.1.9	Categori	ization by Response:	41
		2.1.10	Gaps in	Intrusion Detection Systems	41
	2.2	Classif	ying Con	nputer Attacks	42
		2.2.1	Types of	f Attacks	42
		2.2.2	Why is i	t important to understand Computer Attacks? \ldots .	43
		2.2.3	A Brief	Taxonomy Of Computer Attacks	43
	2.3	Data (Collection	for Intrusion Detection	45

		2.3.1	Honeypots and Honeynets	47
			2.3.1.1 Honeypots	47
			2.3.1.2 Honeynet	48
	2.4	Summ	nary	49
3	Arc	hitect	ural Design, Honeynets and Datasets	51
	3.1	Proble	em Description	51
	3.2	Desig	n Overview	52
		3.2.1	The Malicious Stream Profiler	52
		3.2.2	Malicious Stream Processor	53
	3.3	Honey	vnet Architectures and Deployment Strategies	55
		3.3.1	Virtual Honeynet	56
		3.3.2	Data capture and analysis tools On the Gateway	57
		3.3.3	Data capture tools on the Honeypot	57
	3.4	Propo	sed Honeynet Architecture and Deployment Challenges	58
		3.4.1	Problem Identification and Proposed Solution	58
		3.4.2	Design Details and Discussion	60
		3.4.3	Results and Discussion	62
		3.4.4	Honeynet Architecture Summary	64
	3.5	Datas	et	66
	3.6	Summ	nary	68
4	\mathbf{Sim}	nilarity	Metrics	69
	4.1	Proble	em Description	69
	4.2	Metho	odology	71
		4.2.1	Feature Extraction: Packet/Stream Profiles	71
		4.2.2	Measuring similarity between packet/stream profiles?	72
	4.3	Simila	arity Metrics	73

		4.3.1	String Metric or Edit distance based measures	73
		4.3.2	Information-theoretic measures	77
			4.3.2.1 Information Theory and Security	77
			4.3.2.2 Similarity using Spamsum	78
			4.3.2.3 Similarity with Normalized Compression Distance (NCD)	82
		4.3.3	Hybrid approach	86
	4.4	Exper	iments	87
		4.4.1	Experimental Objectives	88
		4.4.2	Experiment 1: Simulation	88
		4.4.3	Experiment 2: Mixed Internet and worm traffic	89
	4.5	Result	S	90
		4.5.1	Result 1: Simulation Results	90
		4.5.2	Validation of Simulation	96
		4.5.3	Result 2: Mixed Internet Traffic	96
	4.6	Limita	ation	97
	4.7	Comp	arison with Inverse Compression Ratio	97
	4.8	Conclu	usion	101
5	Clu	stering	g and Classification for Intrusion Detection	103
			-	104
	5.2		round	
		5.2.1	Machine Learning	
		5.2.2	Machine Learning for Intrusion Detection	
	5.3		ation	
	0.0	5.3.1	ROC	
	5.4		bodology and Experiments	
	7. 7	5.4.1	Information visualization and analysis through Multi-dimensional scaling MDS	

		5.4.2	Experimental Objectives	109
		5.4.3	Preparing Test Datasets for experiments	110
		5.4.4	Experiment 1: Determination of the best Clustering and Classi- fication algorithm	110
		5.4.5	Experiment 2: Determination of the threshold for T-NN	114
		5.4.6	Experiment 3: Determining the best Similarity Metric	115
	5.5	Result	s and Discussion:	115
		5.5.1	Result 1: The best clustering algorithm for our domain	115
		5.5.2	Result 2.1: T-NN with Fixed Threshold Clustering using different Similarity Metrics	115
		5.5.3	Result 2.2: T-NN Adaptive vs T-NN Fixed Threshold	120
		5.5.4	Threshold Results: Using T-NN with Adaptive threshold	120
			5.5.4.1 AUC vs Accuracy vs Zero False Positive (FP)	120
		5.5.5	Result 3: Best similarity metric using T-NN with adaptive threshold	123
		5.5.6	Comparative Results: Cluster comparisons	123
	5.6	Limita	tions	126
	5.7	Conclu	usions	128
6	Exe	mplar	Learning for Intrusion Detection	129
	6.1	Introd	uction \ldots	130
	6.2	Proble	em Description	130
	6.3	Metho	odology and Algorithm Design	131
		6.3.1	Exemplar Learning for Intrusion Detection	131
		6.3.2	Model Creation using exemplar-based learning	133
			6.3.2.1 Algorithm 1: Exemplar Selection (Choosing Exemplars from TR)	133
		6.3.3	Algorithm 2: Lifelong Learning (Detecting and adding novel in- put classes)	134

6.4	Exper	iments ar	nd Validation	137
	6.4.1	Validati	on of the Exemplar Selection Algorithm	137
		6.4.1.1	Experiment 1: Exemplar Selection (Supervised)	137
		6.4.1.2	Results of Experiment 1	138
		6.4.1.3	Discussion	138
	6.4.2	Validati	on of the Novelty Detection Algorithm	139
		6.4.2.1	Experiment 2: Novelty Detection (Supervised)	141
		6.4.2.2	Results of Experiment 2	142
		6.4.2.3	Experiment 3: Novelty Detection (Unsupervised)	142
		6.4.2.4	Results of Experiment 3	142
		6.4.2.5	Discussion	143
6.5	Comp	arative w	ork	145
	6.5.1	Experim	nent 4: Instance Selection	145
		6.5.1.1	How best to select the exemplars or instances required per class for classification?	145
	6.5.2	Experim	nent 5: Threshold Selection	145
		6.5.2.1	How to select the optimal threshold required per in- stance per class?	145
	6.5.3	Compar	ative Results	146
	6.5.4	Compar	ison with other instance selection algorithm $\ldots \ldots$	148
		6.5.4.1	Difference between ENN and our proposed algorithm .	148
		6.5.4.2	Experiment 6: Comparison with other Instance Selec- tion Algorithms (ENN)	149
		6.5.4.3	Results of Experiment 6	150
6.6	Conclu	usion .		150
Cor	nclusio	ns and F	Future Work	151
7.1	Summ	ary of the	e Research and Significant findings	151

7

7.2	Implementation summary	1	55
7.3	Contribution of this thesis	1	56
7.4	Future Research and Open Questions	1	56
Bibliography			59
AAd	leclaration of previous work	1'	73

List of Tables

2.1	Proposed IDS Taxonomy	26
3.1	Project Summary: November, 2008	65
4.1	Comparison of MD5 with CTPH	79
4.2	Comparison of Similarity metrics: Levenshtein, Damerau Levenshtein, Hamming, Jaro Distance, Jaro-Winkler, NCD, NCD with Spamsum, Spamsum, Spamsum Reverse using Strings: strA and strB. Scaled such that 0 means perfect match and 1 means complete miss match	88
4.3	Comparison of IDS: Snort vs Similarity metric	91
6.1	Comparison of methods random exemplars vs selected exemplars $\ . \ . \ .$	138
6.2	Learning with Algorithm 2	142
6.3	Comparison of algorithms using incremental numbers of exemplars $\ . \ .$	148
6.4	Comparison with ENN	150

List of Figures

1.1	Intruder knowledge vs Attack sophistication (Lipson, 2002)	5
1.2	CERT Incident reports received from 1988-2003 (Hansman and Hunt, 2005)	6
2.1	Time-line of a few notable Intrusion Detection Systems	23
2.2	Taxonomy of Intrusion Detection Systems as per the proposed seven category criteria	24
2.3	A Honeypot comic by XKCD(http://xkcd.com/350/), showing several honeypots connected together in a network, running samples of malware	48
3.1	Malicious Stream Profiler: Create and label malicious streams	54
3.2	Malicious stream processor: Capture and compare network profiles	55
3.3	Honeywall Roo Logical Design	59
3.4	Virtual Honeynet Proposed Design	61
3.5	Top 50 Attackers by IP Address	63
3.6	Top 50 Attackers by Country	64
4.1	NCD results for 50 fuzzed packets. 50 packets were synthesized from an original slammer worm packet instance. Each synthesized packet contained 10 bytes of random fuzz added to its predecessor instance in a cumulative manner.	90
4.2	NCD results for 100 fuzzed packets. 100 packets were synthesized from an original slammer worm packet instance. Each synthesized packet contained 10 bytes of random fuzz added to its predecessor instance	91
	contained to bytes of random fuzz added to its predecessor installee	91

4.3	NCD results for 200 fuzzed packets. 200 packets were synthesized from an original slammer worm packet instance. Each synthesized packet contained 10 bytes of random fuzz added to its predecessor instance	92
4.4	Comparative results using various similarity metrics (both edit distance and information theoretic) on the 50 fuzz packet dataset. The y-axis shows distance or similarity scores without normalization. The x-axis represents each of the 50 fuzzed packet.	93
4.5	Comparative results on the 50 fuzz packet dataset (similarity scores are normalized and scaled between 0-1). Here $0 =$ identical and $1 =$ dissimilar	94
4.6	Sensitivity test of distance with incremental fuzz	95
4.7	NCD and Jaro results for fuzzed Slammer worm packets	96
4.8	Mixed Internet traffic, containing malicious and benign samples from the 500 dataset compared with a reference Slammer worm exemplar/instance.	98
4.9	Condensed results: Mixed Internet traffic, containing malicious and be- nign samples from the 500 dataset	99
4.10	Comparison of similarity metrics on fuzzed worm packets, with reference Slammer worm instance	.00
5.1	ROC Curve: the points on the curve represent the performance of the classifier. The ideal model is one that obtains a True Positive Rate of one and a zero False Positive Rate (i.e., TPrate = 1 and FPrate = 0, point A in this figure. A worst case scenario would be point B, coordinates $(1,0)$, where TPR is zero and FPR is a maximum. A model that makes a random guess should reside along the line connecting the points (TPrate = 0, FPrate = 0), where every instance is predicted as a negative class, and (TPrate = 1, FPrate = 1), where every instance is predicted as a positive class	.08
5.2	A 2D visualization of a small dataset of different types of packet data, using MDS. The natural clusters forming are highlighted and partitioning between different packets types is clearly visible	.09
5.3	MQTC on a small dataset of mixed 100 packets of benign and worm packets. The algorithm took a long time to calculate a stable tree even	

for such a small dataset. The clusters are highlighted here in this figure. 112

5.4	UPGMA on a small dataset @ T = 0.55. The rectangular boxes show
	the clusters, the dark oval nodes represent similarity and dissimilarity
	percentages, while the light coloured flat oval nodes represent the pack-
	ets. In a very short span of time (less than a minute), UPGMA was
	able to correctly cluster the dataset according to its labels. UPGMA
	results were visualized using a modified version of Ero Carreras script
	(http://blog.dkbza.org/2005/07/using-complexity-theory-to-measure.html) 113

5.5	NCD on a small dataset $@$ T=0.55. The different galaxies represent
	the various clusters, the connections are represented by edges with their
	similarity scores. Almost all nodes seem to be part of a cluster, which
	shows the effectiveness of NCD @ T=0.55

5.10	Adaptive vs fixed threshold: The adaptive threshold technique has a clear advantage over the fixed threshold technique, in terms of accuracy. Here applying an adaptive threshold gives 87% accuracy, while using a fixed threshold gives only 64% accuracy
5.11	Accuracy vs AUC vs Zero FP across all metrics. This figure shows that NCD with AUC yields a high number of TP values with very few FP values compared to Accuracy. This tradeoff helps decide a suitable threshold (T) using the adaptive thresholding method for T-NN clustering.123
5.12	FP results for NCD, Jaro, Levenshtein and Hamming distance metricsAUC vs Accuracy. Here NCD is showing the lowest number of FP samples compared to the others
5.13	FP results for NCD and Jaro – AUC vs. Accuracy. Here NCD with AUC is showing the least number of FP samples
5.14	ROC: Hamming vs Levenshtein vs Jaro vs NCD, while step-wise vary- ing the threshold. Here Hamming and Levenshtein distance performs poorly with many false positives at the start and getting worse towards the end. Jaro distance, compared to the previous two metrics performs much better, with many TP results until at the end a few FP results start to appear. As is evident from the ROC curve analysis, NCD has outperformed other similarity metrics by comparison
5.15	An ROC curve comparing Hamming, Levenshtein, Jaro, NCD and Spam- sum similarity measures, while step-wise varying the threshold. It can be seen that Hamming and Levenshtein distance measures perform poorly, with many false positives at the start and getting worse towards the end. Jaro distance metric is much better, with true positive results until, at the end, a few false positives results start to appear. NCD and Spamsum outperform the other similarity metrics
5.16	Comparative work to determine the best clustering algorithm for our domain. Adaptive thresholding performs the best, followed by fixed thresholding and k-NN for $k = 3$ and 5
6.1	For categories a, b, c, d , each with a set of samples such as $a_1 \dots a_n$, a model can be defined as a list of tuples, where each tuple comprises of an exemplar a_{ϵ} selected from the samples and a corresponding distance threshold value a_{τ} . If there are significant variations within one class, there may be several exemplars from the same class

6.2	The model written out to a csv file. Each row can be read as: The labelled exemplar ϵ , and the threshold τ . There can be several exemplars from the same class (e.g. class 30 in this case has several exemplars), indicating rich variations within the class samples or candidate sub-classes. Otherwise if all samples in the class are quite similar, then they can be represented by a single exemplar.	132
6.3	Novelty detection	135
6.4	An aerial view of the classification. We can see multiple clusters forming, with one large cluster in the center representing the majority class. While the minority classes are shown in the sides. This graphic gives a clear picture and idea of the different sizes of classes. We used 49 exemplars to successfully cluster this test set	139
6.5	The core of the large cluster is visible here. It has 1 exemplar, represented as green node and multiple samples of the same class, represented as pale blue nodes.	140
6.6	Enlarging previous figure: The core of the large cluster is visible here. It has 1 exemplar, represented as green node and multiple samples of the same class, represented as blue nodes.	140
6.7	A small cluster representing a small class, having 2 exemplars, repre- sented as green nodes and multiple samples of the same class, represented as blue nodes.	141
6.8	Original model, with highlighted samples that will be removed from the model for testing the novelty detection algorithm	143
6.9	List of outliers found by the novelty detection algorithm	144
6.10	New Exemplar ϵ_{novel} and Threshold τ_{novel} pairs proposed by the algorithm. The highlighted samples/exemplars are the samples from the same class that we initially removed from the original model $\ldots \ldots$	144
6.11	A comparison of classification methodologies showing accuracy results for: (1) Fixed threshold (2) Optimum threshold using step-wise thresh- olding (3) Nearest Neighbour (4) k-Nearest Neighbour and (5) for exem- plar learning. Results are calculated at varying number of exemplars for techniques 1-4. It can be seen here that exemplar learning results using Algorithm 1 (first green triangle) and then Algorithm 2 (second green triangle) outperforms other techniques by yielding better accuracy with least number of exemplars	147